SlideShare a Scribd company logo
1 of 506
Download to read offline
Eyal Buks



Quantum Mechanics - Lecture
Notes
December 23, 2012




Technion
Preface




The dynamics of a quantum system is governed by the celebrated Schrödinger
equation
        d
    i     |ψ = H |ψ ,                                                      (0.1)
       dt
             √
where i = −1 and = 1.05457266 × 10−34 J s is Planck’s h-bar constant.
However, what is the meaning of the symbols |ψ and H? The answers will
be given in the first part of the course (chapters 1-4), which reviews several
physical and mathematical concepts that are needed to formulate the theory
of quantum mechanics. We will learn that |ψ in Eq. (0.1) represents the
ket-vector state of the system and H represents the Hamiltonian operator.
The operator H is directly related to the Hamiltonian function in classical
physics, which will be defined in the first chapter. The ket-vector state and
its physical meaning will be introduced in the second chapter. Chapter 3
reviews the position and momentum operators, whereas chapter 4 discusses
dynamics of quantum systems. The second part of the course (chapters 5-7)
is devoted to some relatively simple quantum systems including a harmonic
oscillator, spin, hydrogen atom and more. In chapter 8 we will study quantum
systems in thermal equilibrium. The third part of the course (chapters 9-13)
is devoted to approximation methods such as perturbation theory, semiclas-
sical and adiabatic approximations. Light and its interaction with matter are
the subjects of chapter 14-15. Finally, systems of identical particles will be
discussed in chapter 16 and open quantum systems in chapter 17. Most of
the material in these lecture notes is based on the textbooks [1, 2, 3, 4, 6, 7].
Contents




1.   Hamilton’s Formalism of Classical Physics . . . . . . . . . . . . . . . .                                       1
     1.1 Action and Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                   1
     1.2 Principle of Least Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                   2
     1.3 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .           5
     1.4 Poisson’s Brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .              7
     1.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        8
     1.6 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       9

2.   State Vectors and Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                        15
     2.1 Linear Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                15
     2.2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        17
     2.3 Dirac’s notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .           17
     2.4 Dual Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                  18
     2.5 Matrix Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                  20
     2.6 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        22
          2.6.1 Hermitian Adjoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                   22
          2.6.2 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . .                            23
     2.7 Quantum Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                      28
     2.8 Example - Spin 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .               29
     2.9 Unitary Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .              32
     2.10 Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   33
     2.11 Commutation Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                  34
     2.12 Simultaneous Diagonalization of Commuting Operators . . . . .                                             35
     2.13 Uncertainty Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .               36
     2.14 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      38
     2.15 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     40

3.   The Position and Momentum Observables . . . . . . . . . . . . . . . .                                          49
     3.1 The One Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                       49
         3.1.1 Position Representation . . . . . . . . . . . . . . . . . . . . . . . . . . .                        50
         3.1.2 Momentum Representation . . . . . . . . . . . . . . . . . . . . . . . .                              54
     3.2 Transformation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                    55
     3.3 Generalization for 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                57
     3.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       58
Contents

     3.5 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.   Quantum Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                69
     4.1 Time Evolution Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                 69
     4.2 Time Independent Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . .                        70
     4.3 Example - Spin 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .            71
     4.4 Connection to Classical Dynamics . . . . . . . . . . . . . . . . . . . . . . . .                        73
     4.5 Symmetric Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .              74
     4.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    76
     4.7 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   79

5.   The Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                    97
     5.1 Eigenstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      98
     5.2 Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         100
     5.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    103
     5.4 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   110

6.   Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                137
     6.1 Angular Momentum and Rotation . . . . . . . . . . . . . . . . . . . . . . . .                           138
     6.2 General Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                      140
     6.3 Simultaneous Diagonalization of J2 and Jz . . . . . . . . . . . . . . . .                               140
     6.4 Example - Spin 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .            145
     6.5 Orbital Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                      145
     6.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    151
     6.7 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   158

7.   Central Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         185
     7.1 Simultaneous Diagonalization of the Operators H, L2 and Lz                                              186
     7.2 The Radial Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .             188
     7.3 Hydrogen Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .           190
     7.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    195
     7.5 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   197

8.   Density Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          205
     8.1 Time Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          209
     8.2 Quantum Statistical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . .                     209
     8.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    210
     8.4 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   218

9.   Time Independent Perturbation Theory . . . . . . . . . . . . . . . . . .                                    257
     9.1 The Level En . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        258
         9.1.1 Nondegenerate Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                    259
         9.1.2 Degenerate Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                 261
     9.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     261
     9.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    264



Eyal Buks                   Quantum Mechanics - Lecture Notes                                                     6
Contents

       9.4 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

10. Time-Dependent Perturbation Theory . . . . . . . . . . . . . . . . . . . .                                   291
    10.1 Time Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          291
    10.2 Perturbation Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                292
    10.3 The Operator O (t) = u† (t, t0 ) u (t, t0 ) . . . . . . . . . . . . . . . . . . . . .
                                           0                                                                     293
    10.4 Transition Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .            294
         10.4.1 The Stationary Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                  296
         10.4.2 The Near-Resonance Case . . . . . . . . . . . . . . . . . . . . . . . . .                        297
         10.4.3 H1 is Separable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .              298
    10.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    298
    10.6 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   300

11. WKB Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                  303
    11.1 WKB Wavefunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                303
    11.2 Turning Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       306
    11.3 Bohr-Sommerfeld Quantization Rule . . . . . . . . . . . . . . . . . . . . . .                           310
    11.4 Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     312
    11.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    313
    11.6 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   313

12. Path Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         321
    12.1 Charged Particle in Electromagnetic Field . . . . . . . . . . . . . . . . .                             321
    12.2 Classical Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       325
    12.3 Aharonov-Bohm Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                 326
         12.3.1 Two-slit Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                328
         12.3.2 Gauge Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .               329
    12.4 One Dimensional Path Integrals . . . . . . . . . . . . . . . . . . . . . . . . . .                      331
         12.4.1 One Dimensional Free Particle . . . . . . . . . . . . . . . . . . . . .                          332
         12.4.2 Expansion Around the Classical Path . . . . . . . . . . . . . . .                                333
         12.4.3 One Dimensional Harmonic Oscillator . . . . . . . . . . . . . . .                                335
    12.5 Semiclassical Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .           339
    12.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    340
    12.7 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   341

13. Adiabatic Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                    349
    13.1 Momentary Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                   349
    13.2 Gauge Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                351
    13.3 Adiabatic Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         351
    13.4 The Case of Two Dimensional Hilbert Space . . . . . . . . . . . . . . .                                 352
    13.5 Transition Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .            354
         13.5.1 The Case of Two Dimensional Hilbert Space . . . . . . . . .                                      355
    13.6 Slow and Fast Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                 358
    13.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    361
    13.8 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   361


Eyal Buks                     Quantum Mechanics - Lecture Notes                                                   7
Contents

14. The Quantized Electromagnetic Field . . . . . . . . . . . . . . . . . . . . .                                   363
    14.1 Classical Electromagnetic Cavity . . . . . . . . . . . . . . . . . . . . . . . . .                         363
    14.2 Quantum Electromagnetic Cavity . . . . . . . . . . . . . . . . . . . . . . . .                             368
    14.3 Periodic Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . .                         370
    14.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       371
    14.5 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      371

15. Light Matter Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                    379
    15.1 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          379
    15.2 Transition Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .             380
         15.2.1 Spontaneous Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . .                        380
         15.2.2 Stimulated Emission and Absorption . . . . . . . . . . . . . . . .                                  381
         15.2.3 Selection Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .               382
    15.3 Semiclassical Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .             384
    15.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       386
    15.5 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      386

16. Identical Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .             391
    16.1 Basis for the Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                    391
    16.2 Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     394
    16.3 Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       395
    16.4 Changing the Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .               397
    16.5 Many Particle Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                    399
         16.5.1 One-Particle Observables . . . . . . . . . . . . . . . . . . . . . . . . . .                        399
         16.5.2 Two-Particle Observables . . . . . . . . . . . . . . . . . . . . . . . . . .                        400
    16.6 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          401
    16.7 Momentum Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                        404
    16.8 Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   406
    16.9 The Electron Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .               407
    16.10Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       409
    16.11Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      410

17. Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .               421
    17.1 Macroscopic Wavefunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                     421
         17.1.1 Single Particle in Electromagnetic Field . . . . . . . . . . . . .                                  421
         17.1.2 Drude Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                 423
         17.1.3 The Macroscopic Quantum Model . . . . . . . . . . . . . . . . . .                                   425
         17.1.4 London Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                    426
    17.2 The Josephson Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                  430
         17.2.1 The First Josephson Relation . . . . . . . . . . . . . . . . . . . . . .                            430
         17.2.2 The Second Josephson Relation . . . . . . . . . . . . . . . . . . . .                               431
         17.2.3 The Energy of a Josephson Junction . . . . . . . . . . . . . . . .                                  432
    17.3 RF SQUID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .           432
         17.3.1 Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .              433
         17.3.2 Flux Quantum Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                    436


Eyal Buks                     Quantum Mechanics - Lecture Notes                                                      8
Contents

            17.3.3 Qubit Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .               436
       17.4 BCS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        445
            17.4.1 Phonon Mediated Electron-Electron Interaction . . . . . .                                         445
            17.4.2 The Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                 449
            17.4.3 Bogoliubov Transformation . . . . . . . . . . . . . . . . . . . . . . . .                         449
            17.4.4 The Energy Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                  452
            17.4.5 The Ground State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                  454
            17.4.6 Pairing Wavefunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                    456
       17.5 The Josephson Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                457
            17.5.1 The Second Josephson Relation . . . . . . . . . . . . . . . . . . . .                             459
            17.5.2 The Energy of a Josephson Junction . . . . . . . . . . . . . . . .                                460
            17.5.3 The First Josephson Relation . . . . . . . . . . . . . . . . . . . . . .                          463
       17.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     464
       17.7 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    465

18. Open Quantum Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                         469
    18.1 Classical Resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .               469
    18.2 Quantum Resonator Coupled to Thermal Bath . . . . . . . . . . . . .                                         470
         18.2.1 The closed System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                    470
         18.2.2 Coupling to Thermal Bath . . . . . . . . . . . . . . . . . . . . . . . .                             471
         18.2.3 Thermal Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                        474
    18.3 Two Level System Coupled to Thermal Bath . . . . . . . . . . . . . . .                                      477
         18.3.1 The Closed System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                      477
         18.3.2 Coupling to Thermal Baths . . . . . . . . . . . . . . . . . . . . . . . .                            478
         18.3.3 Thermal Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                        482
         18.3.4 Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                      483
         18.3.5 The Bloch Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                        485
    18.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        485
    18.5 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       486

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495




Eyal Buks                      Quantum Mechanics - Lecture Notes                                                         9
1. Hamilton’s Formalism of Classical Physics




In this chapter the Hamilton’s formalism of classical physics is introduced,
with a special emphasis on the concepts that are needed for quantum me-
chanics.


1.1 Action and Lagrangian
Consider a classical physical system having N degrees of freedom. The clas-
sical state of the system can be described by N independent coordinates qn ,
where n = 1, 2, · · · , N . The vector of coordinates is denoted by

    Q = (q1 , q2 , · · · , qN ) .                                      (1.1)

Consider the case where the vector of coordinates takes the value Q1 at time
t1 and the value Q2 at a later time t2 > t1 , namely
    Q (t1 ) = Q1 ,                                                     (1.2)
    Q (t2 ) = Q2 .                                                     (1.3)
The action S associated with the evolution of the system from time t1 to
time t2 is defined by
           t2

    S=          dt L ,                                                 (1.4)
         t1

where L is the Lagrangian function of the system. In general, the Lagrangian
                                                   ˙
is a function of the coordinates Q, the velocities Q and time t, namely

             ˙
    L = L Q, Q; t         ,                                            (1.5)

where
    ˙
    Q = (q1 , q2 , · · · , qN ) ,
         ˙ ˙               ˙                                           (1.6)

and where overdot denotes time derivative. The time evolution of Q, in turn,
depends of the trajectory taken by the system from point Q1 at time t1
Chapter 1. Hamilton’s Formalism of Classical Physics


                       Q
              Q2




              Q1
                                                              t
                        t1                       t2

Fig. 1.1. A trajectory taken by the system from point Q1 at time t1 to point Q2
at time t2 .


to point Q2 at time t2 (see Fig. 1.1). For a given trajectory Γ the time
dependency is denoted as
    Q (t) = QΓ (t) .                                                      (1.7)



1.2 Principle of Least Action
For any given trajectory Q (t) the action can be evaluated using Eq. (1.4).
Consider a classical system evolving in time from point Q1 at time t1 to point
Q2 at time t2 along the trajectory QΓ (t). The trajectory QΓ (t), which is
obtained from the laws of classical physics, has the following unique property
known as the principle of least action:
Proposition 1.2.1 (principle of least action). Among all possible trajec-
tories from point Q1 at time t1 to point Q2 at time t2 the action obtains its
minimal value by the classical trajectory QΓ (t).
    In a weaker version of this principle, the action obtains a local minimum
for the trajectory QΓ (t). As the following theorem shows, the principle of
least action leads to a set of equations of motion, known as Euler-Lagrange
equations.
Theorem 1.2.1. The classical trajectory QΓ (t), for which the action obtains
its minimum value, obeys the Euler-Lagrange equations of motion, which are
given by

Eyal Buks           Quantum Mechanics - Lecture Notes                        2
1.2. Principle of Least Action

     d ∂L      ∂L
             =     ,                                                             (1.8)
     dt ∂ qn
          ˙    ∂qn
where n = 1, 2, · · · , N.

Proof. Consider another trajectory QΓ ′ (t) from point Q1 at time t1 to point
Q2 at time t2 (see Fig. 1.2). The difference

    δQ = QΓ ′ (t) − QΓ (t) = (δq1 , δq2 , · · · , δqN )                          (1.9)

is assumed to be infinitesimally small. To lowest order in δQ the change in
the action δS is given by
             t2

    δS =          dt δL
            t1
             t2         N                   N
                            ∂L            ∂L
        =         dt            δqn +          δ qn
                                                 ˙
                        n=1
                            ∂qn       n=1
                                          ∂ qn
                                            ˙
            t1
             t2         N                   N
                            ∂L            ∂L d
        =         dt            δqn +             δqn     .
                        n=1
                            ∂qn       n=1
                                          ∂ qn dt
                                            ˙
            t1
                                                                                (1.10)
Integrating the second term by parts leads to
             t2        N
                              ∂L   d ∂L
    δS =          dt             −              δqn
                       n=1
                              ∂qn dt ∂ qn
                                       ˙
            t1
                  N                t2
                        ∂L
            +                δqn        .
                 n=1
                        ∂ qn
                          ˙        t1
                                                                                (1.11)
The last term vanishes since

    δQ (t1 ) = δQ (t2 ) = 0 .                                                   (1.12)

The principle of least action implies that

    δS = 0 .                                                                    (1.13)

This has to be satisfied for any δQ, therefore the following must hold
     d ∂L      ∂L
             =     .                                                            (1.14)
     dt ∂ qn
          ˙    ∂qn



Eyal Buks                    Quantum Mechanics - Lecture Notes                      3
Chapter 1. Hamilton’s Formalism of Classical Physics


                        Q
               Q2


                                        Γ

                                          Γ’
               Q1
                                                                   t
                          t1                        t2

Fig. 1.2. The classical trajectory QΓ (t) and the trajectory QΓ ′ (t).


    In what follows we will assume for simplicity that the kinetic energy T of
                                                                  ˙
the system can be expressed as a function of the velocities Q only (namely,
it does not explicitly depend on the coordinates Q). The components of the
generalized force Fn , where n = 1, 2, · · · , N , are derived from the potential
energy U of the system as follows
             ∂U   d ∂U
    Fn = −      +        .                                                (1.15)
             ∂qn dt ∂ qn
                      ˙
When the potential energy can be expressed as a function of the coordinates
                                                          ˙
Q only (namely, when it is independent on the velocities Q), the system is
said to be conservative. For that case, the Lagrangian can be expressed in
terms of T and U as
    L=T −U .                                                              (1.16)
Example 1.2.1. Consider a point particle having mass m moving in a one-
dimensional potential U (x). The Lagrangian is given by
                 mx2
                   ˙
    L=T −U =         − U (x) .                                            (1.17)
                  2
From the Euler-Lagrange equation
    d ∂L      ∂L
           =       ,                                                      (1.18)
    dt ∂ x
         ˙    ∂x
one finds that
            ∂U
    m¨ = −
      x          .                                                        (1.19)
             ∂x

Eyal Buks              Quantum Mechanics - Lecture Notes                       4
1.3. Hamiltonian

1.3 Hamiltonian
The set of Euler-Lagrange equations contains N second order differential
equations. In this section we derive an alternative and equivalent set of equa-
tions of motion, known as Hamilton-Jacobi equations, that contains twice the
number of equations, namely 2N, however, of first, instead of second, order.
Definition 1.3.1. The variable canonically conjugate to qn is defined by
             ∂L
    pn =          .                                                     (1.20)
             ∂ qn
               ˙
Definition 1.3.2. The Hamiltonian of a physical system is a function of
the vector of coordinates Q, the vector of canonical conjugate variables P =
(p1 , p2 , · · · , pN ) and time, namely

    H = H (Q, P ; t) ,                                                  (1.21)

is defined by
             N
    H=            pn qn − L ,
                     ˙                                                  (1.22)
           n=1

where L is the Lagrangian.
Theorem 1.3.1. The classical trajectory satisfies the Hamilton-Jacobi equa-
tions of motion, which are given by
         ∂H
    qn =
    ˙        ,                                                          (1.23)
         ∂pn
           ∂H
    pn = −
    ˙          ,                                                        (1.24)
           ∂qn
where n = 1, 2, · · · , N.
Proof. The differential of H is given by
                  N
    dH = d             pn qn − dL
                          ˙
                 n=1
                                                        
              N                                  
                                                 
         =     qn dpn + pn dqn − ∂L dqn − ∂L dqn  − ∂L dt
               ˙            ˙
                                  ∂qn      ∂ qn
                                             ˙
                                                ˙ 
           n=1                                    ∂t
                                          d ∂L      pn
                                          dt ∂ qn
                                               ˙

              N
                                          ∂L
         =         (qn dpn − pn dqn ) −
                    ˙        ˙               dt .
             n=1
                                          ∂t
                                                                        (1.25)

Eyal Buks                 Quantum Mechanics - Lecture Notes                  5
Chapter 1. Hamilton’s Formalism of Classical Physics

Thus the following holds
            ∂H
       qn =
       ˙         ,                                                    (1.26)
            ∂pn
              ∂H
       pn = −
       ˙           ,                                                  (1.27)
              ∂qn
      ∂L    ∂H
    −     =     .                                                     (1.28)
      ∂t    ∂t
Corollary 1.3.1. The following holds
    dH   ∂H
       =    .                                                         (1.29)
    dt   ∂t
Proof. Using Eqs. (1.23) and (1.24) one finds that
              N
    dH               ∂H       ∂H       ∂H   ∂H
       =                 qn +
                         ˙        pn +
                                  ˙       =    .                      (1.30)
    dt   n=1
                     ∂qn      ∂pn      ∂t   ∂t
                               =0

    The last corollary implies that H is time independent provided that H
does not depend on time explicitly, namely, provided that ∂H/∂t = 0. This
property is referred to as the law of energy conservation. The theorem below
further emphasizes the relation between the Hamiltonian and the total energy
of the system.

Theorem 1.3.2. Assume that the kinetic energy of a conservative system is
given by

    T =          αnm qn qm ,
                     ˙ ˙                                              (1.31)
           n,m

where αnm are constants. Then,the Hamiltonian of the system is given by

    H =T +U ,                                                         (1.32)

where T is the kinetic energy of the system and where U is the potential
energy.

Proof. For a conservative system the potential energy is independent on ve-
locities, thus
           ∂L     ∂T
    pl =        =      ,                                              (1.33)
           ∂ ql
             ˙    ∂ ql
                    ˙
where L = T − U is the Lagrangian. The Hamiltonian is thus given by




Eyal Buks               Quantum Mechanics - Lecture Notes                 6
1.4. Poisson’s Brackets

          N
    H=          pl ql − L
                   ˙
          l=1
                ∂T
      =              ql − (T − U )
                     ˙
                ∂ ql
                  ˙
            l
                                            
                       ∂q˙n      ∂ qm 
                                    ˙ 
                      
      =           αnm qm
                        ˙    + qn
                               ˙        ql − T + U
                                         ˙
                       ∂ ql
                          ˙       ∂ ql 
                                     ˙
          l,n,m
                              δnl     δ ml

      =2          αnm qn qm − T + U
                      ˙ ˙
            n,m

                      T
      = T +U .
                                                                        (1.34)


1.4 Poisson’s Brackets

Consider two physical quantities F and G that can be expressed as a function
of the vector of coordinates Q, the vector of canonical conjugate variables P
and time t, namely
    F = F (Q, P ; t) ,                                                  (1.35)
    G = G (Q, P ; t) ,                                                  (1.36)
The Poisson’s brackets are defined by
                  N
                          ∂F ∂G    ∂F ∂G
    {F, G} =                     −               ,                      (1.37)
                  n=1
                          ∂qn ∂pn ∂pn ∂qn

The Poisson’s brackets are employed for writing an equation of motion for a
general physical quantity of interest, as the following theorem shows.

Theorem 1.4.1. Let F be a physical quantity that can be expressed as a
function of the vector of coordinates Q, the vector of canonical conjugate
variables P and time t, and let H be the Hamiltonian. Then, the following
holds
    dF            ∂F
       = {F, H} +    .                                                  (1.38)
    dt            ∂t
Proof. Using Eqs. (1.23) and (1.24) one finds that the time derivative of F
is given by



Eyal Buks                 Quantum Mechanics - Lecture Notes                 7
Chapter 1. Hamilton’s Formalism of Classical Physics

              N
    dF              ∂F       ∂F       ∂F
       =                qn +
                        ˙        pn +
                                 ˙
    dt   n=1
                    ∂qn      ∂pn      ∂t
              N
                    ∂F ∂H    ∂F ∂H         ∂F
          =                −          +
              n=1
                    ∂qn ∂pn ∂pn ∂qn        ∂t
                       ∂F
          = {F, H} +      .
                       ∂t
                                                                     (1.39)
Corollary 1.4.1. If F does not explicitly depend on time, namely if ∂F/∂t =
0, and if {F, H} = 0, then F is a constant of the motion, namely
    dF
       =0.                                                           (1.40)
    dt


1.5 Problems
 1. Consider a particle having charge q and mass m in electromagnetic field
    characterized by the scalar potential ϕ and the vector potential A. The
    electric field E and the magnetic field B are given by
                        1 ∂A
          E = −∇ϕ −          ,                                       (1.41)
                        c ∂t
    and
          B=∇×A.                                                     (1.42)
    Let r = (x, y, z) be the Cartesian coordinates of the particle.
     a) Verify that the Lagrangian of the system can be chosen to be given
        by
                    1 2        q
               L=     m˙ − qϕ + A · r ,
                       r            ˙                                (1.43)
                    2          c
       by showing that the corresponding Euler-Lagrange equations are
       equivalent to Newton’s 2nd law (i.e., F = m¨).
                                                   r
    b) Show that the Hamilton-Jacobi equations are equivalent to Newton’s
       2nd law.
    c) Gauge transformation — The electromagnetic field is invariant un-
       der the gauge transformation of the scalar and vector potentials
           A → A + ∇χ ,                                              (1.44)
                     1 ∂χ
            ϕ → ϕ−                                                   (1.45)
                     c ∂t
       where χ = χ (r, t) is an arbitrary smooth and continuous function
       of r and t. What effect does this gauge transformation have on the
       Lagrangian and Hamiltonian? Is the motion affected?

Eyal Buks             Quantum Mechanics - Lecture Notes                  8
1.6. Solutions




                            L               C



Fig. 1.3. LC resonator.


 2. Consider an LC resonator made of a capacitor having capacitance C in
    parallel with an inductor having inductance L (see Fig. 1.3). The state
    of the system is characterized by the coordinate q , which is the charge
    stored by the capacitor.
     a) Find the Euler-Lagrange equation of the system.
     b) Find the Hamilton-Jacobi equations of the system.
     c) Show that {q, p} = 1 .
 3. Show that Poisson brackets satisfy the following relations
           {qj , qk } = 0 ,                                           (1.46)
           {pj , pk } = 0 ,                                           (1.47)
           {qj , pk } = δ jk ,                                        (1.48)
            {F, G} = − {G, F } ,                                      (1.49)
            {F, F } = 0 ,                                             (1.50)
            {F, K} = 0 if K constant or F depends only on t ,         (1.51)
        {E + F, G} = {E, G} + {F, G} ,                                (1.52)
          {E, F G} = {E, F } G + F {E, G} .                           (1.53)
 4. Show that the Lagrange equations are coordinate invariant.
 5. Consider a point particle having mass m moving in a 3D central po-
    tential, namely a potential V (r) that depends only on the distance
    r = x2 + y 2 + z 2 from the origin. Show that the angular momentum
    L = r × p is a constant of the motion.


1.6 Solutions

 1. The Lagrangian of the system (in Gaussian units) is taken to be given
    by
           1           q
        L = m˙ 2 − qϕ + A · r .
             r              ˙                                         (1.54)
           2           c



Eyal Buks           Quantum Mechanics - Lecture Notes                     9
Chapter 1. Hamilton’s Formalism of Classical Physics

    a) The Euler-Lagrange equation for the coordinate x is given by

             d ∂L     ∂L
                    =    ,                                                  (1.55)
             dt ∂ x
                  ˙   ∂x
       where
             d ∂L          q    ∂Ax    ∂Ax    ∂Ax    ∂Ax
                    = m¨ +
                       x            +x
                                     ˙     +y
                                            ˙     +z
                                                   ˙                    ,   (1.56)
             dt ∂ x
                  ˙        c     ∂t     ∂x     ∂y     ∂z

       and
             ∂L      ∂ϕ q           ∂Ax    ∂Ay    ∂Az
                = −q    +       x
                                ˙       +y
                                         ˙     +z
                                                ˙             ,             (1.57)
             ∂x      ∂x   c          ∂x     ∂x     ∂x

       thus
                   ∂ϕ q ∂Ax
           m¨ = −q
            x         −
                   ∂x   c ∂t
                          qEx
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                    q  ∂Ay     ∂Ax            ∂Ax ∂Az            
                   + y ˙     −           −z
                                           ˙       −               ,
                    c   ∂x     ∂y             ∂z   ∂x           
                                                                  
                                                                 
                           (∇ ×A)z                 (∇ ×A)y       
                                                                 
                                      (˙ ×(∇×A))x
                                       r

                                                                            (1.58)
       or
                          q
             m¨ = qEx +
              x             (˙ × B)x .
                             r                                              (1.59)
                          c
       Similar equations are obtained for y and z in the same way. These 3
                                          ¨     ¨
       equations can be written in a vector form as

                       1
             m¨ = q E + r × B
              r          ˙            .                                     (1.60)
                       c

    b) The variable vector canonically conjugate to the coordinates vector
       r is given by
                  ∂L       q
             p=      = m˙ + A .
                        r                                                   (1.61)
                  ∂r
                   ˙       c
       The Hamiltonian is thus given by




Eyal Buks           Quantum Mechanics - Lecture Notes                          10
1.6. Solutions

            H = p·r−L
                  ˙
                          1      q
               = r · p − m˙ − A + qϕ
                 ˙           r
                          2      c
                 1 2
               = m˙ + qϕ
                     r
                 2
                          2
                   p− q A
                       c
               =            + qϕ .
                     2m
                                                                    (1.62)
       The Hamilton-Jacobi equation for the coordinate x is given by
                 ∂H
            x=
            ˙        ,                                                      (1.63)
                 ∂px
       thus
                 px − q Ax
                      c
            x=
            ˙              ,                                                (1.64)
                    m
       or
                    q
            px = mx+ Ax .
                  ˙                                                         (1.65)
                    c
       The Hamilton-Jacobi equation for the canonically conjugate variable
       px is given by
                     ∂H
            px = −
            ˙           ,                                                   (1.66)
                     ∂x
       where
                         q       ∂Ax    ∂Ax    ∂Ax        q ∂Ax
            px = m¨+
            ˙     x          x
                             ˙       +y
                                      ˙     +z
                                             ˙        +         ,           (1.67)
                         c        ∂x     ∂y     ∂z        c ∂t

       and
         ∂H   q       px − q Ax ∂Ax py − q Ay ∂Ay
                           c                c        pz − q Az ∂Az
                                                          c                     ∂ϕ
       −    =                         +            +                       −q
         ∂x   c           m       ∂x       m   ∂x       m       ∂x              ∂x
              q         ∂Ax       ∂Ay     ∂Az     ∂ϕ
            =         x
                      ˙      +y ˙      +z
                                        ˙     −q     ,
              c          ∂x        ∂x      ∂x     ∂x
                                                                            (1.68)
       thus

                  ∂ϕ q ∂Ax q              ∂Ay   ∂Ax            ∂Ax ∂Az
       m¨ = −q
        x           −     +   y
                              ˙               −           −z
                                                           ˙       −        .
                  ∂x c ∂t   c              ∂x    ∂y             ∂z   ∂x
                                                                       (1.69)

       The last result is identical to Eq. (1.59).


Eyal Buks            Quantum Mechanics - Lecture Notes                          11
Chapter 1. Hamilton’s Formalism of Classical Physics

     c) Clearly, the fields E and B, which are given by Eqs. (1.41) and (1.42)
        respectively, are unchanged since
                   ∂χ         ∂ (∇χ)
              ∇           −          =0,                               (1.70)
                   ∂t            ∂t
        and
              ∇ × (∇χ) = 0 .                                           (1.71)
        Thus, even though both L and H are modified, the motion, which
        depends on E and B only, is unaffected.
 2. The kinetic energy in this case T = Lq 2 /2 is the energy stored in the
                                           ˙
    inductor, and the potential energy U = q 2 /2C is the energy stored in the
    capacitor.
     a) The Lagrangian is given by
                               Lq 2
                                 ˙    q2
              L=T −U =              −    .                             (1.72)
                                2     2C
        The Euler-Lagrange equation for the coordinate q is given by
               d ∂L     ∂L
                      =    ,                                           (1.73)
               dt ∂ q
                    ˙   ∂q
        thus
                     q
              L¨ +
               q       =0.                                             (1.74)
                     C
       This equation expresses the requirement that the voltage across the
       capacitor is the same as the one across the inductor.
    b) The canonical conjugate momentum is given by
                   ∂L
              p=      = Lq ,
                         ˙                                             (1.75)
                   ∂q
                    ˙
        and the Hamiltonian is given by
                                p2   q2
              H = pq − L =
                   ˙               +    .                              (1.76)
                                2L 2C
        Hamilton-Jacobi equations read
                p
              q=
              ˙                                                        (1.77)
                L
                  q
              p=− ,
              ˙                                                        (1.78)
                  C
        thus
                     q
              L¨ +
               q       =0.                                             (1.79)
                     C

Eyal Buks               Quantum Mechanics - Lecture Notes                  12
1.6. Solutions

     c) Using the definition (1.37) one has
                            ∂q ∂p ∂q ∂p
               {q, p} =          −      =1.                               (1.80)
                            ∂q ∂p ∂p ∂q
 3. All these relations are easily proven using the definition (1.37).
                     ˙
 4. Let L = L Q, Q; t be a Lagrangian of a system, where Q = (q1 , q2 , · · · )
                                     ˙
    is the vector of coordinates, Q = (q1 , q2 , · · · ) is the vector of veloci-
                                           ˙ ˙
    ties, and where overdot denotes time derivative. Consider the coordinates
    transformation

          xa = xa (q1 , q2 , ..., t) ,                                    (1.81)

    where a = 1, 2, · · · . The following holds
                 ∂xa      ∂xa
          xa =
          ˙          qb +
                     ˙        ,                                           (1.82)
                 ∂qb       ∂t
    where the summation convention is being used, namely, repeated indices
    are summed over. Moreover
          ∂L    ∂L ∂xb    ∂L ∂ xb
                                ˙
              =         +          ,                                      (1.83)
          ∂qa   ∂xb ∂qa   ∂ xb ∂qa
                            ˙
    and
          d      ∂L         d    ∂L ∂ xb˙
                        =                    .                            (1.84)
          dt     ∂ qa
                   ˙        dt   ∂ xb ∂ qa
                                   ˙    ˙

    As can be seen from Eq. (1.82), one has
          ∂ xb
            ˙    ∂xb
               =     .                                                    (1.85)
          ∂ qa
            ˙    ∂qa
    Thus, using Eqs. (1.83) and (1.84) one finds

          d      ∂L         ∂L    d ∂L ∂xb
                        −       =
          dt     ∂ qa
                   ˙        ∂qa   dt ∂ xb ∂qa
                                        ˙
                                  ∂L ∂xb     ∂L ∂ xb˙
                                −          −
                                  ∂xb ∂qa    ∂ xb ∂qa
                                               ˙
                                    d ∂L          ∂L    ∂xb
                                =             −
                                   dt ∂ xb˙      ∂xb    ∂qa
                                   d ∂xb         ∂ xb
                                                   ˙    ∂L
                                +             −              .
                                   dt ∂qa        ∂qa    ∂ xb
                                                          ˙
                                                                          (1.86)

    As can be seen from Eq. (1.82), the second term vanishes since

Eyal Buks               Quantum Mechanics - Lecture Notes                     13
Chapter 1. Hamilton’s Formalism of Classical Physics

          ∂ xb
            ˙     ∂ 2 xb      ∂ 2 xb   d      ∂xb
               =         qc +
                         ˙           =                ,
          ∂qa    ∂qa ∂qc      ∂t∂qa    dt     ∂qa

   thus
          d    ∂L          ∂L    d    ∂L          ∂L ∂xb
                       −       =              −           .                (1.87)
          dt   ∂ qa
                 ˙         ∂qa   dt   ∂ xb
                                        ˙         ∂xb ∂qa

    The last result shows that if the coordinate transformation is reversible,
    namely if det (∂xb /∂qa ) = 0 then Lagrange equations are coordinate
    invariant.
 5. The angular momentum L is given by
                                   
                            x y ˆ
                            ˆ ˆ z
        L = r × p = det  x y z  ,                                    (1.88)
                           px py pz

   where r = (x, y, z) is the position vector and where p = (px , py , pz ) is the
   momentum vector. The Hamiltonian is given by

               p2
         H=       + V (r) .                                                (1.89)
               2m
   Using
         {xi , pj } = δ ij ,                                               (1.90)
                Lz = xpy − ypx ,                                           (1.91)
   one finds that
           p2 , Lz = p2 , Lz + p2 , Lz + p2 , Lz
                      x         y         z
                      = p2 , xpy − p2 , ypx
                          x            y
                      = −2px py + 2py px
                      =0,
                                                                           (1.92)
   and
           r2 , Lz = x2 , Lz + y 2 , Lz + z 2 , Lz
                      = −y x2 , px + y 2 , py x
                      =0.
                                                                           (1.93)
   Thus f r2 , Lz = 0 for arbitrary smooth function f r2 , and con-
   sequently {H, Lz } = 0. In a similar way one can show that {H, Lx } =
   {H, Ly } = 0, and therefore H, L2 = 0.



Eyal Buks               Quantum Mechanics - Lecture Notes                      14
2. State Vectors and Operators




In quantum mechanics the state of a physical system is described by a state
vector |α , which is a vector in a vector space F, namely
    |α ∈ F .                                                             (2.1)
Here, we have employed the Dirac’s ket-vector notation |α for the state vec-
tor, which contains all information about the state of the physical system
under study. The dimensionality of F is finite in some specific cases (no-
tably, spin systems), however, it can also be infinite in many other cases
of interest. The basic mathematical theory dealing with vector spaces hav-
ing infinite dimensionality was mainly developed by David Hilbert. Under
some conditions, vector spaces having infinite dimensionality have properties
similar to those of their finite dimensionality counterparts. A mathematically
rigorous treatment of such vector spaces having infinite dimensionality, which
are commonly called Hilbert spaces, can be found in textbooks that are de-
voted to this subject. In this chapter, however, we will only review the main
properties that are useful for quantum mechanics. In some cases, when the
generalization from the case of finite dimensionality to the case of arbitrary
dimensionality is nontrivial, results will be presented without providing a
rigorous proof and even without accurately specifying what are the validity
conditions for these results.


2.1 Linear Vector Space
A linear vector space F is a set {|α } of mathematical objects called vectors.
The space is assumed to be closed under vector addition and scalar multipli-
cation. Both, operations (i.e., vector addition and scalar multiplication) are
commutative. That is:
 1. |α + |β = |β + |α ∈ F for every |α ∈ F and |β ∈ F
 2. c |α = |α c ∈ F for every |α ∈ F and c ∈ C (where C is the set of
    complex numbers)
   A vector space with an inner product is called an inner product space.
An inner product of the ordered pair |α , |β ∈ F is denoted as β |α . The
inner product is a function F 2 → C that satisfies the following properties:
Chapter 2. State Vectors and Operators

     β |α ∈ C ,                                                              (2.2)
                      ∗
     β |α = α |β          ,                                                  (2.3)
     α (c1 |β 1 + c2 |β 2 ) = c1 α |β 1 + c2 α |β 2 , where c1 , c2 ∈ C ,    (2.4)

     α |α ∈ R and α |α ≥ 0. Equality holds iff |α = 0 .
                                                                             (2.5)
Note that the asterisk in Eq. (2.3) denotes complex conjugate. Below we list
some important definitions and comments regarding inner product:
• The real number    α |α is called the norm of the vector |α ∈ F.
• A normalized vector has a unity norm, namely α |α = 1.
• Every nonzero vector 0 = |α ∈ F can be normalized using the transfor-
  mation
                  |α
      |α →              .                                                    (2.6)
                   α |α

• The vectors |α ∈ F and |β ∈ F are said to be orthogonal if β |α = 0.
• A set of vectors {|φn }n , where |φn ∈ F is called a complete orthonormal
  basis if
  — The vectors are all normalized and orthogonal to each other, namely

         φm |φn = δ nm .                                                     (2.7)

  — Every |α ∈ F can be written as a superposition of the basis vectors,
    namely

        |α =          cn |φn ,                                               (2.8)
                  n

    where cn ∈ C.
• By evaluating the inner product φm |α , where |α is given by Eq. (2.8)
  one finds with the help of Eq. (2.7) and property (2.4) of inner products
  that

       φm |α = φm                 cn |φn   =         cn φm |φn = cm .        (2.9)
                              n                  n
                                                        =δnm

• The last result allows rewriting Eq. (2.8) as

      |α =        cn |φn =            |φn cn =       |φn φn |α .            (2.10)
              n                   n              n




Eyal Buks              Quantum Mechanics - Lecture Notes                       16
2.3. Dirac’s notation

2.2 Operators
Operators, as the definition below states, are function from F to F:
Definition 2.2.1. An operator A : F → F on a vector space maps vectors
onto vectors, namely A |α ∈ F for every |α ∈ F.

   Some important definitions and comments are listed below:
• The operators X : F → F and Y : F → F are said to be equal, namely
  X = Y , if for every |α ∈ F the following holds

      X |α = Y |α .                                                    (2.11)

• Operators can be added, and the addition is both, commutative and asso-
  ciative, namely
           X +Y = Y +X ,                                               (2.12)
      X + (Y + Z) = (X + Y ) + Z .                                     (2.13)
• An operator A : F → F is said to be linear if

      A (c1 |γ 1 + c2 |γ 2 ) = c1 A |γ 1 + c2 A |γ 2                   (2.14)

  for every |γ 1 , |γ 2 ∈ F and c1 , c2 ∈ C.
• The operators X : F → F and Y : F → F can be multiplied, where

      XY |α = X (Y |α )                                                (2.15)

  for any |α ∈ F.
• Operator multiplication is associative

      X (Y Z) = (XY ) Z = XY Z .                                       (2.16)

• However, in general operator multiplication needs not be commutative

      XY = Y X .                                                       (2.17)


2.3 Dirac’s notation
In Dirac’s notation the inner product is considered as a multiplication of two
mathematical objects called ’bra’ and ’ket’

     β |α = β| |α .                                                    (2.18)
              bra   ket

While the ket-vector |α is a vector in F, the bra-vector β| represents a
functional that maps any ket-vector |α ∈ F to the complex number β |α .

Eyal Buks             Quantum Mechanics - Lecture Notes                    17
Chapter 2. State Vectors and Operators

While the multiplication of a bra-vector on the left and a ket-vector on the
right represents inner product, the outer product is obtained by reversing the
order

    Aαβ = |α β| .                                                          (2.19)

The outer product Aαβ is clearly an operator since for any |γ ∈ F the object
Aαβ |γ is a ket-vector

    Aαβ |γ = (|β α|) |γ = |β α |γ ∈ F .                                    (2.20)
                                    ∈C

Moreover, according to property (2.4), Aαβ is linear since for every |γ 1 , |γ 2 ∈
F and c1 , c2 ∈ C the following holds
    Aαβ (c1 |γ 1 + c2 |γ 2 ) = |α β| (c1 |γ 1 + c2 |γ 2 )
                             = |α (c1 β |γ 1 + c2 β |γ 2 )
                             = c1 Aαβ |γ 1 + c2 Aαβ |γ 2 .
                                                                           (2.21)
   With Dirac’s notation Eq. (2.10) can be rewritten as


    |α =           |φn φn | |α .                                           (2.22)
               n

Since the above identity holds for any |α ∈ F one concludes that the quantity
in brackets is the identity operator, which is denoted as 1, namely

    1=        |φn φn | .                                                   (2.23)
          n

This result, which is called the closure relation, implies that any complete
orthonormal basis can be used to express the identity operator.


2.4 Dual Correspondence

As we have mentioned above, the bra-vector β| represents a functional map-
ping any ket-vector |α ∈ F to the complex number β |α . Moreover, since
the inner product is linear [see property (2.4) above], such a mapping is linear,
namely for every |γ 1 , |γ 2 ∈ F and c1 , c2 ∈ C the following holds

     β| (c1 |γ 1 + c2 |γ 2 ) = c1 β |γ 1 + c2 β |γ 2 .                     (2.24)

The set of linear functionals from F to C, namely, the set of functionals F : F
→ C that satisfy


Eyal Buks             Quantum Mechanics - Lecture Notes                        18
2.4. Dual Correspondence

    F (c1 |γ 1 + c2 |γ 2 ) = c1 F (|γ 1 ) + c2 F (|γ 2 )                     (2.25)

for every |γ 1 , |γ 2 ∈ F and c1 , c2 ∈ C, is called the dual space F ∗ . As
the name suggests, there is a dual correspondence (DC) between F and F ∗ ,
namely a one to one mapping between these two sets, which are both linear
vector spaces. The duality relation is presented using the notation

     α| ⇔ |α ,                                                               (2.26)

where |α ∈ F and α| ∈ F ∗ . What is the dual of the ket-vector |γ =
c1 |γ 1 + c2 |γ 2 , where |γ 1 , |γ 2 ∈ F and c1 , c2 ∈ C? To answer this question
we employ the above mentioned general properties (2.3) and (2.4) of inner
products and consider the quantity γ |α for an arbitrary ket-vector |α ∈ F
     γ |α = α |γ ∗
          = (c1 α |γ 1 + c2 α |γ 2 )∗
          = c∗ γ 1 |α + c2 γ 2 |α
             1
          = (c∗ γ 1 | + c∗ γ 2 |) |α .
              1          2
                                                                             (2.27)
From this result we conclude that the duality relation takes the form

    c∗ γ 1 | + c∗ γ 2 | ⇔ c1 |γ 1 + c2 |γ 2 .
     1          2                                                            (2.28)

    The last relation describes how to map any given ket-vector |β ∈ F
to its dual F = β| : F → C, where F ∈ F ∗ is a linear functional that
maps any ket-vector |α ∈ F to the complex number β |α . What is the
inverse mapping? The answer can take a relatively simple form provided that
a complete orthonormal basis exists, and consequently the identity operator
can be expressed as in Eq. (2.23). In that case the dual of a given linear
functional F : F → C is the ket-vector |FD ∈ F, which is given by

    |FD =         (F (|φn ))∗ |φn .                                          (2.29)
              n

The duality is demonstrated by proving the two claims below:

Claim. |β DD = |β for any |β ∈ F, where |β DD is the dual of the dual of
|β .

Proof. The dual of |β is the bra-vector β|, whereas the dual of β| is found
using Eqs. (2.29) and (2.23), thus




Eyal Buks             Quantum Mechanics - Lecture Notes                         19
Chapter 2. State Vectors and Operators

                                      ∗
    |β DD =                 β |φn         |φn
                    n
                            = φn |β

            =           |φn φn |β
                    n

            =           |φn φn | |β
                    n

                            =1
            = |β .
                                                                        (2.30)

Claim. FDD = F for any F ∈ F ∗ , where FDD is the dual of the dual of F .

Proof. The dual |FD ∈ F of the functional F ∈ F ∗ is given by Eq. (2.29).
Thus with the help of the duality relation (2.28) one finds that dual FDD ∈ F ∗
of |FD is given by

    FDD =            F (|φn ) φn | .                                    (2.31)
                n

Consider an arbitrary ket-vector |α ∈ F that is written as a superposition
of the complete orthonormal basis vectors, namely

    |α =            cm |φm .                                            (2.32)
            m

Using the above expression for FDD and the linearity property one finds that
    FDD |α =                 cm F (|φn ) φn |φm
                    n,m
                                                δmn

                =            cn F (|φn )
                        n


                =F                 cn |φn
                               n
                = F (|α ) ,
                                                                        (2.33)
therefore, FDD = F .


2.5 Matrix Representation
Given a complete orthonormal basis, ket-vectors, bra-vectors and linear op-
erators can be represented using matrices. Such representations are easily
obtained using the closure relation (2.23).

Eyal Buks                     Quantum Mechanics - Lecture Notes            20
2.5. Matrix Representation

• The inner product between the bra-vector β| and the ket-vector |α can
  be written as
       β |α = β| 1 |α
             =       β |φn φn | α
                 n
                                              
                                         φ1 |α
                                              
             =   β |φ1   β |φ2   · · ·  φ2 |α  .
                                           .
                                           .
                                           .
                                                                         (2.34)
  Thus, the inner product can be viewed as a product between the row vector
       β| = β |φ1
          ˙           β |φ2 · · · ,                                      (2.35)
  which is the matrix representation of the bra-vector β|, and the column
  vector
                   
              φ1 |α
                   
      |α =  φ2 |α  ,
          ˙                                                         (2.36)
                .
                .
                .
  which is the matrix representation of the ket-vector |α . Obviously, both
  representations are basis dependent.
• Multiplying the relation |γ = X |α from the right by the basis bra-vector
   φm | and employing again the closure relation (2.23) yields

      φm |γ = φm | X |α = φm | X1 |α =               φm | X |φn φn |α , (2.37)
                                                 n

  or in matrix form
                                                           
         φ1 |γ      φ1 | X |φ1        φ1 | X |φ2 · · ·    φ1 |α
       φ2 |γ   φ2 | X |φ1          φ2 | X |φ2 · · ·  φ2 |α  .
              =                                                    (2.38)
           .
           .             .
                         .                 .
                                           .                .
                                                            .
           .             .                 .                .
  In view of this expression, the matrix representation of the linear operator
  X is given by
                                        
              φ1 | X |φ1 φ1 | X |φ2 · · ·
                                        
      X =  φ2 | X |φ1 φ2 | X |φ2 · · · .
         ˙                                                              (2.39)
                   .
                   .          .
                              .
                   .          .
  Alternatively, the last result can be written as
      Xnm = φn | X |φm ,                                                 (2.40)
  where Xnm is the element in row n and column m of the matrix represen-
  tation of the operator X.

Eyal Buks            Quantum Mechanics - Lecture Notes                      21
Chapter 2. State Vectors and Operators

• Such matrix representation of linear operators can be useful also for mul-
  tiplying linear operators. The matrix elements of the product Z = XY are
  given by

 φm | Z |φn = φm | XY |φn = φm | X1Y |φn =                φm | X |φl φl | Y |φn .
                                                      l
                                                                           (2.41)

• Similarly, the matrix representation of the outer product |β α| is given
  by
                       
                  φ1 |β
                       
     |β α| =  φ2 |β  α |φ1 α |φ2 · · ·
              ˙
                    .
                    .
                    .
                                                 
                  φ1 |β α |φ1 φ1 |β α |φ2 · · ·
                                                 
              =  φ2 |β α |φ1 φ2 |β α |φ2 · · · .
                        .
                        .              .
                                       .
                        .              .
                                                                    (2.42)


2.6 Observables
Measurable physical variables are represented in quantum mechanics by Her-
mitian operators.

2.6.1 Hermitian Adjoint

Definition 2.6.1. The Hermitian adjoint of an operator X is denoted as X †
and is defined by the following duality relation

    α| X † ⇔ X |α .                                                        (2.43)

Namely, for any ket-vector |α ∈ F, the dual to the ket-vector X |α is the
bra-vector α| X † .
Definition 2.6.2. An operator is said to be Hermitian if X = X † .
   Below we prove some simple relations:
                             ∗
Claim. β| X |α = α| X † |β
Proof. Using the general property (2.3) of inner products one has
                                             ∗                 ∗
    β| X |α = β| (X |α ) =       α| X † |β       = α| X † |β       .       (2.44)

Note that this result implies that if X = X † then β| X |α = α| X |β ∗ .

Eyal Buks          Quantum Mechanics - Lecture Notes                          22
2.6. Observables

               †
Claim. X †         =X

Proof. For any |α , |β ∈ F the following holds
                                ∗ ∗                 ∗              †
       β| X |α =      β| X |α         = α| X † |β       = β| X †       |α ,        (2.45)
           †
thus X †       = X.

Claim. (XY )† = Y † X †

Proof. Applying XY on an arbitrary ket-vector |α ∈ F and employing the
duality correspondence yield

    XY |α = X (Y |α ) ⇔               α| Y † X † = α| Y † X † ,                    (2.46)

thus

    (XY )† = Y † X † .                                                             (2.47)

Claim. If X = |β α| then X † = |α β|

Proof. By applying X on an arbitrary ket-vector |γ ∈ F and employing the
duality correspondence one finds that

    X |γ = (|β α|) |γ = |β ( α |γ ) ⇔ ( α |γ )∗ β| = γ |α β| = γ| X † ,
                                                                (2.48)

where X † = |α β|.

2.6.2 Eigenvalues and Eigenvectors

Each operator is characterized by its set of eigenvalues, which is defined
below:

Definition 2.6.3. A number an ∈ C is said to be an eigenvalue of an op-
erator A : F → F if for some nonzero ket-vector |an ∈ F the following
holds

    A |an = an |an .                                                               (2.49)

The ket-vector |an is then said to be an eigenvector of the operator A with
an eigenvalue an .

   The set of eigenvectors associated with a given eigenvalue of an operator
A is called eigensubspace and is denoted as

    Fn = {|an ∈ F such that A |an = an |an } .                                     (2.50)

Eyal Buks               Quantum Mechanics - Lecture Notes                             23
Chapter 2. State Vectors and Operators

Clearly, Fn is closed under vector addition and scalar multiplication, namely
c1 |γ 1 + c2 |γ 2 ∈ Fn for every |γ 1 , |γ 2 ∈ Fn and for every c1 , c2 ∈ C. Thus,
the set Fn is a subspace of F. The dimensionality of Fn (i.e., the minimum
number of vectors that are needed to span Fn ) is called the level of degeneracy
gn of the eigenvalue an , namely

    gn = dim Fn .                                                          (2.51)

   As the theorem below shows, the eigenvalues and eigenvectors of a Her-
mitian operator have some unique properties.

Theorem 2.6.1. The eigenvalues of a Hermitian operator A are real. The
eigenvectors of A corresponding to different eigenvalues are orthogonal.

Proof. Let a1 and a2 be two eigenvalues of A with corresponding eigen vectors
|a1 and |a2
    A |a1 = a1 |a1 ,                                                       (2.52)
    A |a2 = a2 |a2 .                                                       (2.53)
Multiplying Eq. (2.52) from the left by the bra-vector a2 |, and multiplying
the dual of Eq. (2.53), which since A = A† is given by

     a2 | A = a∗ a2 | ,
               2                                                           (2.54)

from the right by the ket-vector |a1 yield
     a2 | A |a1 = a1 a2 |a1 ,                                              (2.55)
     a2 | A |a1 = a∗ a2 |a1 .
                   2                                                       (2.56)
Thus, we have found that

    (a1 − a∗ ) a2 |a1 = 0 .
           2                                                               (2.57)

The first part of the theorem is proven by employing the last result (2.57)
for the case where |a1 = |a2 . Since |a1 is assumed to be a nonzero ket-
vector one concludes that a1 = a∗ , namely a1 is real. Since this is true for
                                 1
any eigenvalue of A, one can rewrite Eq. (2.57) as

    (a1 − a2 ) a2 |a1 = 0 .                                                (2.58)

The second part of the theorem is proven by considering the case where
a1 = a2 , for which the above result (2.58) can hold only if a2 |a1 = 0.
Namely eigenvectors corresponding to different eigenvalues are orthogonal.

    Consider a Hermitian operator A having a set of eigenvalues {an }n . Let
gn be the degree of degeneracy of eigenvalue an , namely gn is the dimension
of the corresponding eigensubspace, which is denoted by Fn . For simplic-
ity, assume that gn is finite for every n. Let {|an,1 , |an,2 , · · · , |an,gn } be

Eyal Buks            Quantum Mechanics - Lecture Notes                         24
2.6. Observables

an orthonormal basis of the eigensubspace Fn , namely an,i′ |an,i = δ ii′ .
Constructing such an orthonormal basis for Fn can be done by the so-called
Gram-Schmidt process. Moreover, since eigenvectors of A corresponding to
different eigenvalues are orthogonal, the following holds

     an′ ,i′ |an,i = δ nn′ δ ii′ ,                                                    (2.59)

In addition, all the ket-vectors |an,i are eigenvectors of A

    A |an,i = an |an,i .                                                              (2.60)

Projectors. Projector operators are useful for expressing the properties of
an observable.
Definition 2.6.4. An Hermitian operator P is called a projector if P 2 = P .
Claim. The only possible eigenvalues of a projector are 0 and 1.

Proof. Assume that |p is an eigenvector of P with an eigenvalue p, namely
P |p = p |p . Applying the operator P on both sides and using the fact that
P 2 = P yield P |p = p2 |p , thus p (1 − p) |p = 0, therefore since |p is
assumed to be nonzero, either p = 0 or p = 1.

   A projector is said to project any given vector onto the eigensubspace
corresponding to the eigenvalue p = 1.
   Let {|an,1 , |an,2 , · · · , |an,gn } be an orthonormal basis of an eigensub-
space Fn corresponding to an eigenvalue of an observable A. Such an ortho-
normal basis can be used to construct a projection Pn onto Fn , which is given
by
             gn
    Pn =            |an,i an,i | .                                                    (2.61)
             i=1

                                  †
Clearly, Pn is a projector since Pn = Pn and since
               gn                                      gn
     2
    Pn   =             |an,i an,i |an,i′   an,i′ | =         |an,i an,i | = Pn .      (2.62)
             i,i′ =1                                   i=1
                                 δii′

Moreover, it is easy to show using the orthonormality relation (2.59) that the
following holds

    Pn Pm = Pm Pn = Pn δ nm .                                                         (2.63)

    For linear vector spaces of finite dimensionality, it can be shown that the
set {|an,i }n,i forms a complete orthonormal basis of eigenvectors of a given
Hermitian operator A. The generalization of this result for the case of ar-
bitrary dimensionality is nontrivial, since generally such a set needs not be

Eyal Buks                   Quantum Mechanics - Lecture Notes                            25
Chapter 2. State Vectors and Operators

complete. On the other hand, it can be shown that if a given Hermitian oper-
ator A satisfies some conditions (e.g., A needs to be completely continuous)
then completeness is guarantied. For all Hermitian operators of interest for
this course we will assume that all such conditions are satisfied. That is, for
any such Hermitian operator A there exists a set of ket vectors {|an,i }, such
that:
 1. The set is orthonormal, namely

          an′ ,i′ |an,i = δ nn′ δ ii′ ,                                               (2.64)

 2. The ket-vectors |an,i are eigenvectors, namely

          A |an,i = an |an,i ,                                                        (2.65)

    where an ∈ R.
 3. The set is complete, namely closure relation [see also Eq. (2.23)] is satis-
    fied
                        gn
          1=                 |an,i an,i | =        Pn ,                               (2.66)
                 n   i=1                       n

    where
                   gn
          Pn =          |an,i an,i |                                                  (2.67)
                 i=1

    is the projector onto eigen subspace Fn with the corresponding eigenvalue
    an .
    The closure relation (2.66) can be used to express the operator A in terms
of the projectors Pn
                             gn                                gn
    A = A1 =                      A |an,i an,i | =        an         |an,i an,i | ,   (2.68)
                     n i=1                           n         i=1

that is

    A=         an Pn .                                                                (2.69)
           n

   The last result is very useful when dealing with a function f (A) of the
operator A. The meaning of a function of an operator can be understood in
terms of the Taylor expansion of the function

    f (x) =          fm xm ,                                                          (2.70)
               m



Eyal Buks                    Quantum Mechanics - Lecture Notes                           26
2.6. Observables

where
           1 dm f
    fm =          .                                                     (2.71)
           m! dxm
With the help of Eqs. (2.63) and (2.69) one finds that
    f (A) =          fm Am
                m
                                           m

           =         fm            an Pn
                m              n

           =         fm        am Pn
                                n
                m          n

           =              fm am Pn ,
                              n
                n     m

                       f (an )

                                                                        (2.72)
thus

    f (A) =          f (an ) Pn .                                       (2.73)
                n

Exercise 2.6.1. Express the projector Pn in terms of the operator A and
its set of eigenvalues.
Solution 2.6.1. We seek a function f such that f (A) = Pn . Multiplying
from the right by a basis ket-vector |am,i yields

    f (A) |am,i = δ mn |am,i .                                          (2.74)

On the other hand

    f (A) |am,i = f (am ) |am,i .                                       (2.75)

Thus we seek a function that satisfy

    f (am ) = δ mn .                                                    (2.76)

The polynomial function

    f (a) = K             (a − am ) ,                                   (2.77)
                m=n

where K is a constant, satisfies the requirement that f (am ) = 0 for every
m = n. The constant K is chosen such that f (an ) = 1, that is
                      a − am
    f (a) =                  ,                                          (2.78)
                     an − am
               m=n


Eyal Buks                 Quantum Mechanics - Lecture Notes                27
Chapter 2. State Vectors and Operators

Thus, the desired expression is given by
               A − am
    Pn =               .                                                (2.79)
           m=n
               an − am



2.7 Quantum Measurement

Consider a measurement of a physical variable denoted as A(c) performed on
a quantum system. The standard textbook description of such a process is
described below. The physical variable A(c) is represented in quantum me-
chanics by an observable, namely by a Hermitian operator, which is denoted
as A. The correspondence between the variable A(c) and the operator A will
be discussed below in chapter 4. As we have seen above, it is possible to con-
struct a complete orthonormal basis made of eigenvectors of the Hermitian
operator A having the properties given by Eqs. (2.64), (2.65) and (2.66). In
that basis, the vector state |α of the system can be expressed as
                        gn
    |α = 1 |α =              an,i |α |an,i .                            (2.80)
                    n i=1

Even when the state vector |α is given, quantum mechanics does not gener-
ally provide a deterministic answer to the question: what will be the outcome
of the measurement. Instead it predicts that:
 1. The possible results of the measurement are the eigenvalues {an } of the
    operator A.
 2. The probability pn to measure the eigen value an is given by
                             gn
         pn = α| Pn |α =           | an,i |α |2 .                       (2.81)
                             i=1

    Note that the state vector |α is assumed to be normalized.
 3. After a measurement of A with an outcome an the state vector collapses
    onto the corresponding eigensubspace and becomes

                    Pn |α
         |α →                .                                          (2.82)
                    α| Pn |α

   It is easy to show that the probability to measure something is unity
provided that |α is normalized:


         pn =       α| Pn |α = α|            Pn |α = 1 .                (2.83)
     n          n                        n




Eyal Buks            Quantum Mechanics - Lecture Notes                     28
2.8. Example - Spin 1/2

We also note that a direct consequence of the collapse postulate is that two
subsequent measurements of the same observable performed one immediately
after the other will yield the same result. It is also important to note that the
above ’standard textbook description’ of the measurement process is highly
controversial, especially, the collapse postulate. However, a thorough discus-
sion of this issue is beyond the scope of this course.
    Quantum mechanics cannot generally predict the outcome of a specific
measurement of an observable A, however it can predict the average, namely
the expectation value, which is denoted as A . The expectation value is easily
calculated with the help of Eq. (2.69)

     A =         an pn =        an α| Pn |α = α| A |α .                   (2.84)
            n               n




2.8 Example - Spin 1/2

Spin is an internal degree of freedom of elementary particles. Electrons, for
example, have spin 1/2. This means, as we will see in chapter 6, that the
state of a spin 1/2 can be described by a state vector |α in a vector space
of dimensionality 2. In other words, spin 1/2 is said to be a two-level system.
The spin was first discovered in 1921 by Stern and Gerlach in an experiment
in which the magnetic moment of neutral silver atoms was measured. Silver
atoms have 47 electrons, 46 out of which fill closed shells. It can be shown
that only the electron in the outer shell contributes to the total magnetic
moment of the atom. The force F acting on a magnetic moment µ moving in
a magnetic field B is given by F = ∇ (µ · B). Thus by applying a nonuniform
magnetic field B and by monitoring the atoms’ trajectories one can measure
the magnetic moment.
    It is important to keep in mind that generally in addition to the spin
contribution to the magnetic moment of an electron, also the orbital motion
of the electron can contribute. For both cases, the magnetic moment is related
to angular momentum by the gyromagnetic ratio. However this ratio takes
different values for these two cases. The orbital gyromagnetic ratio can be
evaluated by considering a simple example of an electron of charge e moving
in a circular orbit or radius r with velocity v. The magnetic moment is given
by
                 AI
    µorbital =      ,                                                     (2.85)
                  c
where A = πr2 is the area enclosed by the circular orbit and I = ev/ (2πr)
is the electrical current carried by the electron, thus
                 erv
    µorbital =       .                                                    (2.86)
                  2c


Eyal Buks                Quantum Mechanics - Lecture Notes                    29
Chapter 2. State Vectors and Operators

This result can be also written as
              µ
    µorbital = B L ,                                                    (2.87)

where L = me vr is the orbital angular momentum, and where
            e
    µB =                                                                (2.88)
           2me c
is the Bohr’s magneton constant. The proportionality factor µB / is the
orbital gyromagnetic ratio. In vector form and for a more general case of
orbital motion (not necessarily circular) the orbital gyromagnetic relation is
given by
                 µB
    µorbital =         L.                                               (2.89)

    On the other hand, as was first shown by Dirac, the gyromagnetic ratio
for the case of spin angular momentum takes twice this value
              2µB
    µspin =         S.                                                  (2.90)

Note that we follow here the convention of using the letter L for orbital
angular momentum and the letter S for spin angular momentum.
    The Stern-Gerlach apparatus allows measuring any component of the
magnetic moment vector. Alternatively, in view of relation (2.90), it can be
said that any component of the spin angular momentum S can be measured.
The experiment shows that the only two possible results of such a measure-
ment are + /2 and − /2. As we have seen above, one can construct a com-
plete orthonormal basis to the vector space made of eigenvectors of any given
observable. Choosing the observable Sz = S · ˆ for this purpose we construct
                                               z
a basis made of two vectors {|+; ˆ , |−; ˆ }. Both vectors are eigenvectors of
                                 z       z
Sz

    Sz |+; ˆ =
           z           |+; ˆ ,
                           z                                            (2.91)
                   2
    Sz |−; ˆ = − |−; ˆ .
           z           z                                                (2.92)
                 2
In what follow we will use the more compact notation
    |+ = |+; ˆ ,
             z                                                          (2.93)
    |− = |−; ˆ .
             z                                                          (2.94)
The orthonormality property implied that
     + |+ = − |− = 1 ,                                                  (2.95)
     − |+ = 0 .                                                         (2.96)
The closure relation in the present case is expressed as

Eyal Buks                Quantum Mechanics - Lecture Notes                 30
2.8. Example - Spin 1/2

    |+ +| + |− −| = 1 .                                                 (2.97)

In this basis any ket-vector |α can be written as

    |α = |+ + |α + |− − |α .                                            (2.98)

The closure relation (2.97) and Eqs. (2.91) and (2.92) yield

    Sz =       (|+ +| − |− −|)                                          (2.99)
           2
It is useful to define also the operators S+ and S−
    S+ = |+ −| ,                                                       (2.100)
    S− = |− +| .                                                       (2.101)
In chapter 6 we will see that the x and y components of S are given by

    Sx =       (|+ −| + |− +|) ,                                       (2.102)
           2
    Sy =     (−i |+ −| + i |− +|) .                                  (2.103)
           2
All these ket-vectors and operators have matrix representation, which for the
basis {|+; ˆ , |−; ˆ } is given by
           z       z
                1
    |+ =
       ˙             ,                                                 (2.104)
                0
                0
    |− =
       ˙             ,                                                 (2.105)
                1
                    01
    Sx =
       ˙                   ,                                           (2.106)
            2       10
                    0 −i
    Sy =
       ˙                       ,                                       (2.107)
            2       i 0
                    1 0
    Sz =
       ˙                       ,                                       (2.108)
            2       0 −1
                    01
    S+ =
       ˙                   ,                                           (2.109)
                    00
                    00
    S− =
       ˙                   .                                           (2.110)
                    10

Exercise 2.8.1. Given that the state vector of a spin 1/2 is |+; ˆ calculate
                                                                 z
(a) the expectation values Sx and Sz (b) the probability to obtain a value
of + /2 in a measurement of Sx .

Solution 2.8.1. (a) Using the matrix representation one has



Eyal Buks                  Quantum Mechanics - Lecture Notes               31
Chapter 2. State Vectors and Operators

                                            01       1
     Sx = +| Sx |+ =                   10                    =0,             (2.111)
                               2            10       0
                                            1 0          1
     Sz = +| Sz |+ =               10                            =       .   (2.112)
                               2            0 −1         0           2
(b) First, the eigenvectors of the operator Sx are found by solving the equa-
tion Sx |α = λ |α , which is done by diagonalization of the matrix represen-
tation of Sx . The relation Sx |α = λ |α for the two eigenvectors is written
in a matrix form as
                   1
                   √                   1
                                       √
             01     2                   2
                   1       =           1    ,                                (2.113)
        2    10    √
                    2
                               2       √
                                        2
                   1
                   √                     1
                                         √
            01      2                     2
                     1     =−              1     .                           (2.114)
    2       10    − √2             2    − √2

That is, in ket notation

    Sx |±; x = ± |±; x ,
           ˆ         ˆ                                                       (2.115)
                2
where the eigenvectors of Sx are given by
            1
    |±; x = √ (|+ ± |− ) .
        ˆ                                                                    (2.116)
             2
Using this result the probability p+ is easily calculated
                                                             2
                           1                                         1
    p+ = | + |+; x |2 = +| √ (|+ + |− )
                 ˆ                                               =     .     (2.117)
                            2                                        2


2.9 Unitary Operators

Unitary operators are useful for transforming from one orthonormal basis to
another.

Definition 2.9.1. An operator U is said to be unitary if U † = U −1 , namely
if U U † = U † U = 1.

   Consider two observables A and B, and two corresponding complete and
orthonormal bases of eigenvectors
    A |an = an |an , am |an = δ nm ,                     |an an | = 1 ,      (2.118)
                                                     n

    B |bn = bn |bn , bm |bn = δ nm ,                     |bn bn | = 1 .      (2.119)
                                                     n

The operator U, which is given by

Eyal Buks                Quantum Mechanics - Lecture Notes                       32
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes

More Related Content

What's hot

(10) electron spin & angular momentum coupling
(10) electron spin & angular momentum coupling(10) electron spin & angular momentum coupling
(10) electron spin & angular momentum couplingIbenk Hallen
 
Quantum Chemistry
Quantum ChemistryQuantum Chemistry
Quantum Chemistrybaoilleach
 
Statistical mechanics
Statistical mechanics Statistical mechanics
Statistical mechanics Kumar
 
Classical mechanics
Classical mechanicsClassical mechanics
Classical mechanicshue34
 
Quantum course
Quantum courseQuantum course
Quantum courseFLI
 
Introduction to perturbation theory, part-1
Introduction to perturbation theory, part-1Introduction to perturbation theory, part-1
Introduction to perturbation theory, part-1Kiran Padhy
 
Schrodinger Equation of Hydrogen Atom
Schrodinger Equation of Hydrogen AtomSchrodinger Equation of Hydrogen Atom
Schrodinger Equation of Hydrogen AtomSaad Shaukat
 
Particle physics - Standard Model
Particle physics - Standard ModelParticle physics - Standard Model
Particle physics - Standard ModelDavid Young
 
Quantum mechanics a brief
Quantum mechanics a briefQuantum mechanics a brief
Quantum mechanics a briefChaitanya Areti
 
Quantum chemistry ppt
Quantum chemistry pptQuantum chemistry ppt
Quantum chemistry pptPriyaGandhi35
 
Introduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equationIntroduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equationGaurav Singh Gusain
 
Lecture 02.; spectroscopic notations by Dr. Salma Amir
Lecture 02.; spectroscopic notations by Dr. Salma AmirLecture 02.; spectroscopic notations by Dr. Salma Amir
Lecture 02.; spectroscopic notations by Dr. Salma Amirsalmaamir2
 

What's hot (20)

(10) electron spin & angular momentum coupling
(10) electron spin & angular momentum coupling(10) electron spin & angular momentum coupling
(10) electron spin & angular momentum coupling
 
Quantum Chemistry
Quantum ChemistryQuantum Chemistry
Quantum Chemistry
 
Statistical mechanics
Statistical mechanics Statistical mechanics
Statistical mechanics
 
Classical mechanics
Classical mechanicsClassical mechanics
Classical mechanics
 
Quantum course
Quantum courseQuantum course
Quantum course
 
Introduction to perturbation theory, part-1
Introduction to perturbation theory, part-1Introduction to perturbation theory, part-1
Introduction to perturbation theory, part-1
 
Schrodinger Equation of Hydrogen Atom
Schrodinger Equation of Hydrogen AtomSchrodinger Equation of Hydrogen Atom
Schrodinger Equation of Hydrogen Atom
 
Particle physics - Standard Model
Particle physics - Standard ModelParticle physics - Standard Model
Particle physics - Standard Model
 
Quantum mechanics I
Quantum mechanics IQuantum mechanics I
Quantum mechanics I
 
Quantum mechanics a brief
Quantum mechanics a briefQuantum mechanics a brief
Quantum mechanics a brief
 
Part V - The Hydrogen Atom
Part V - The Hydrogen AtomPart V - The Hydrogen Atom
Part V - The Hydrogen Atom
 
statistic mechanics
statistic mechanicsstatistic mechanics
statistic mechanics
 
Quantum chemistry ppt
Quantum chemistry pptQuantum chemistry ppt
Quantum chemistry ppt
 
Introduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equationIntroduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equation
 
Quantum mechanics
Quantum mechanicsQuantum mechanics
Quantum mechanics
 
Chapter 4 optical properties of phonons
Chapter 4   optical properties of phononsChapter 4   optical properties of phonons
Chapter 4 optical properties of phonons
 
Lecture 02.; spectroscopic notations by Dr. Salma Amir
Lecture 02.; spectroscopic notations by Dr. Salma AmirLecture 02.; spectroscopic notations by Dr. Salma Amir
Lecture 02.; spectroscopic notations by Dr. Salma Amir
 
13 angular momentum
13 angular momentum13 angular momentum
13 angular momentum
 
Statistical Mechanics B.Sc. Sem VI
Statistical Mechanics B.Sc. Sem VIStatistical Mechanics B.Sc. Sem VI
Statistical Mechanics B.Sc. Sem VI
 
Angular momentum
Angular momentumAngular momentum
Angular momentum
 

Viewers also liked

Understanding the arithmetic of color
Understanding the arithmetic of colorUnderstanding the arithmetic of color
Understanding the arithmetic of colorpolariton
 
Sosyal Girişimin Lafzı ve Ruhu
Sosyal Girişimin Lafzı ve Ruhu Sosyal Girişimin Lafzı ve Ruhu
Sosyal Girişimin Lafzı ve Ruhu Eda Bayraktar
 
K hutton web 2 technology
K hutton web 2 technologyK hutton web 2 technology
K hutton web 2 technologyINTOGCU
 
Rural Council Planning Flying Squad
Rural Council Planning Flying SquadRural Council Planning Flying Squad
Rural Council Planning Flying Squadmavevents
 
Erdem Genç - M3 Works
Erdem Genç - M3 WorksErdem Genç - M3 Works
Erdem Genç - M3 WorksEda Bayraktar
 
BioRezonans & Peak Performans
BioRezonans & Peak PerformansBioRezonans & Peak Performans
BioRezonans & Peak PerformansEda Bayraktar
 
Social media ppt
Social media pptSocial media ppt
Social media pptlelo1010
 
PM大我們換個方式寫文件吧
PM大我們換個方式寫文件吧PM大我們換個方式寫文件吧
PM大我們換個方式寫文件吧Jamis Liao
 
27650534 soalan-english-bi-bahasa-inggeris-tahun-4-paper-1
27650534 soalan-english-bi-bahasa-inggeris-tahun-4-paper-127650534 soalan-english-bi-bahasa-inggeris-tahun-4-paper-1
27650534 soalan-english-bi-bahasa-inggeris-tahun-4-paper-1Ahmad Faisal
 
Poly Cystic Ovarian Syndrome By Dr. Vidhi Agarwal
Poly  Cystic  Ovarian  Syndrome By Dr. Vidhi AgarwalPoly  Cystic  Ovarian  Syndrome By Dr. Vidhi Agarwal
Poly Cystic Ovarian Syndrome By Dr. Vidhi AgarwalMayank Agarwal
 

Viewers also liked (18)

Understanding the arithmetic of color
Understanding the arithmetic of colorUnderstanding the arithmetic of color
Understanding the arithmetic of color
 
Sosyal Girişimin Lafzı ve Ruhu
Sosyal Girişimin Lafzı ve Ruhu Sosyal Girişimin Lafzı ve Ruhu
Sosyal Girişimin Lafzı ve Ruhu
 
Horrores ortograficos
Horrores ortograficosHorrores ortograficos
Horrores ortograficos
 
K hutton web 2 technology
K hutton web 2 technologyK hutton web 2 technology
K hutton web 2 technology
 
ChangemakerXchange
ChangemakerXchangeChangemakerXchange
ChangemakerXchange
 
Noraida rodriguez. tarea 2
Noraida rodriguez. tarea 2Noraida rodriguez. tarea 2
Noraida rodriguez. tarea 2
 
Rural Council Planning Flying Squad
Rural Council Planning Flying SquadRural Council Planning Flying Squad
Rural Council Planning Flying Squad
 
SolBrella
SolBrellaSolBrella
SolBrella
 
Erdem Genç - M3 Works
Erdem Genç - M3 WorksErdem Genç - M3 Works
Erdem Genç - M3 Works
 
Lucía Urresti
Lucía UrrestiLucía Urresti
Lucía Urresti
 
BioRezonans & Peak Performans
BioRezonans & Peak PerformansBioRezonans & Peak Performans
BioRezonans & Peak Performans
 
YolYola
YolYolaYolYola
YolYola
 
Social media ppt
Social media pptSocial media ppt
Social media ppt
 
Failure of Money
Failure of MoneyFailure of Money
Failure of Money
 
LA MOTIVACION
LA MOTIVACIONLA MOTIVACION
LA MOTIVACION
 
PM大我們換個方式寫文件吧
PM大我們換個方式寫文件吧PM大我們換個方式寫文件吧
PM大我們換個方式寫文件吧
 
27650534 soalan-english-bi-bahasa-inggeris-tahun-4-paper-1
27650534 soalan-english-bi-bahasa-inggeris-tahun-4-paper-127650534 soalan-english-bi-bahasa-inggeris-tahun-4-paper-1
27650534 soalan-english-bi-bahasa-inggeris-tahun-4-paper-1
 
Poly Cystic Ovarian Syndrome By Dr. Vidhi Agarwal
Poly  Cystic  Ovarian  Syndrome By Dr. Vidhi AgarwalPoly  Cystic  Ovarian  Syndrome By Dr. Vidhi Agarwal
Poly Cystic Ovarian Syndrome By Dr. Vidhi Agarwal
 

Similar to Quantum Mechanics: Lecture notes

I do like cfd vol 1 2ed_v2p2
I do like cfd vol 1 2ed_v2p2I do like cfd vol 1 2ed_v2p2
I do like cfd vol 1 2ed_v2p2NovoConsult S.A.C
 
Introduction to methods of applied mathematics or Advanced Mathematical Metho...
Introduction to methods of applied mathematics or Advanced Mathematical Metho...Introduction to methods of applied mathematics or Advanced Mathematical Metho...
Introduction to methods of applied mathematics or Advanced Mathematical Metho...Hamed Oloyede
 
Applied mathematics I for enginering
Applied mathematics  I for engineringApplied mathematics  I for enginering
Applied mathematics I for engineringgeletameyu
 
Introduction to Methods of Applied Mathematics
Introduction to Methods of Applied MathematicsIntroduction to Methods of Applied Mathematics
Introduction to Methods of Applied Mathematics鍾誠 陳鍾誠
 
Essentials of applied mathematics
Essentials of applied mathematicsEssentials of applied mathematics
Essentials of applied mathematicsThomas Prasetyo
 
Stochastic Programming
Stochastic ProgrammingStochastic Programming
Stochastic ProgrammingSSA KPI
 
Go to TOCStatistics for the SciencesCharles Peters.docx
Go to TOCStatistics for the SciencesCharles Peters.docxGo to TOCStatistics for the SciencesCharles Peters.docx
Go to TOCStatistics for the SciencesCharles Peters.docxwhittemorelucilla
 
Ric walter (auth.) numerical methods and optimization a consumer guide-sprin...
Ric walter (auth.) numerical methods and optimization  a consumer guide-sprin...Ric walter (auth.) numerical methods and optimization  a consumer guide-sprin...
Ric walter (auth.) numerical methods and optimization a consumer guide-sprin...valentincivil
 
continuous_time_signals_and_systems-2013-09-11-uvic.pdf
continuous_time_signals_and_systems-2013-09-11-uvic.pdfcontinuous_time_signals_and_systems-2013-09-11-uvic.pdf
continuous_time_signals_and_systems-2013-09-11-uvic.pdfZiaOul
 
Crowell benjamin-newtonian-physics-1
Crowell benjamin-newtonian-physics-1Crowell benjamin-newtonian-physics-1
Crowell benjamin-newtonian-physics-1Pristiadi Utomo
 

Similar to Quantum Mechanics: Lecture notes (20)

I do like cfd vol 1 2ed_v2p2
I do like cfd vol 1 2ed_v2p2I do like cfd vol 1 2ed_v2p2
I do like cfd vol 1 2ed_v2p2
 
Introduction to methods of applied mathematics or Advanced Mathematical Metho...
Introduction to methods of applied mathematics or Advanced Mathematical Metho...Introduction to methods of applied mathematics or Advanced Mathematical Metho...
Introduction to methods of applied mathematics or Advanced Mathematical Metho...
 
Applied mathematics I for enginering
Applied mathematics  I for engineringApplied mathematics  I for enginering
Applied mathematics I for enginering
 
Introduction to Methods of Applied Mathematics
Introduction to Methods of Applied MathematicsIntroduction to Methods of Applied Mathematics
Introduction to Methods of Applied Mathematics
 
genral physis
genral physisgenral physis
genral physis
 
Transport
TransportTransport
Transport
 
Free high-school-science-texts-physics
Free high-school-science-texts-physicsFree high-school-science-texts-physics
Free high-school-science-texts-physics
 
Zettili.pdf
Zettili.pdfZettili.pdf
Zettili.pdf
 
Essentials of applied mathematics
Essentials of applied mathematicsEssentials of applied mathematics
Essentials of applied mathematics
 
General physics
General physicsGeneral physics
General physics
 
Ode2015
Ode2015Ode2015
Ode2015
 
Stochastic Programming
Stochastic ProgrammingStochastic Programming
Stochastic Programming
 
Go to TOCStatistics for the SciencesCharles Peters.docx
Go to TOCStatistics for the SciencesCharles Peters.docxGo to TOCStatistics for the SciencesCharles Peters.docx
Go to TOCStatistics for the SciencesCharles Peters.docx
 
Thats How We C
Thats How We CThats How We C
Thats How We C
 
Frmsyl1213
Frmsyl1213Frmsyl1213
Frmsyl1213
 
Physical Introduction
Physical IntroductionPhysical Introduction
Physical Introduction
 
Ric walter (auth.) numerical methods and optimization a consumer guide-sprin...
Ric walter (auth.) numerical methods and optimization  a consumer guide-sprin...Ric walter (auth.) numerical methods and optimization  a consumer guide-sprin...
Ric walter (auth.) numerical methods and optimization a consumer guide-sprin...
 
Offshore structures
Offshore structuresOffshore structures
Offshore structures
 
continuous_time_signals_and_systems-2013-09-11-uvic.pdf
continuous_time_signals_and_systems-2013-09-11-uvic.pdfcontinuous_time_signals_and_systems-2013-09-11-uvic.pdf
continuous_time_signals_and_systems-2013-09-11-uvic.pdf
 
Crowell benjamin-newtonian-physics-1
Crowell benjamin-newtonian-physics-1Crowell benjamin-newtonian-physics-1
Crowell benjamin-newtonian-physics-1
 

More from polariton

Light's Orbital Angular momentum Momentum
Light's  Orbital Angular momentum Momentum Light's  Orbital Angular momentum Momentum
Light's Orbital Angular momentum Momentum polariton
 
Optica casas
Optica casasOptica casas
Optica casaspolariton
 
Cardiac polarization Science_report 2015
Cardiac polarization Science_report 2015Cardiac polarization Science_report 2015
Cardiac polarization Science_report 2015polariton
 
Tesis colorimetria PhD
Tesis colorimetria PhDTesis colorimetria PhD
Tesis colorimetria PhDpolariton
 
Espectroscopia raman y sus aplicaciones
Espectroscopia raman y sus aplicacionesEspectroscopia raman y sus aplicaciones
Espectroscopia raman y sus aplicacionespolariton
 
Laser and gaussian
Laser and gaussianLaser and gaussian
Laser and gaussianpolariton
 

More from polariton (7)

Light's Orbital Angular momentum Momentum
Light's  Orbital Angular momentum Momentum Light's  Orbital Angular momentum Momentum
Light's Orbital Angular momentum Momentum
 
Optica casas
Optica casasOptica casas
Optica casas
 
Cardiac polarization Science_report 2015
Cardiac polarization Science_report 2015Cardiac polarization Science_report 2015
Cardiac polarization Science_report 2015
 
Tesis colorimetria PhD
Tesis colorimetria PhDTesis colorimetria PhD
Tesis colorimetria PhD
 
Espectroscopia raman y sus aplicaciones
Espectroscopia raman y sus aplicacionesEspectroscopia raman y sus aplicaciones
Espectroscopia raman y sus aplicaciones
 
Qd hankel
Qd hankelQd hankel
Qd hankel
 
Laser and gaussian
Laser and gaussianLaser and gaussian
Laser and gaussian
 

Recently uploaded

Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 

Recently uploaded (20)

Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 

Quantum Mechanics: Lecture notes

  • 1. Eyal Buks Quantum Mechanics - Lecture Notes December 23, 2012 Technion
  • 2.
  • 3. Preface The dynamics of a quantum system is governed by the celebrated Schrödinger equation d i |ψ = H |ψ , (0.1) dt √ where i = −1 and = 1.05457266 × 10−34 J s is Planck’s h-bar constant. However, what is the meaning of the symbols |ψ and H? The answers will be given in the first part of the course (chapters 1-4), which reviews several physical and mathematical concepts that are needed to formulate the theory of quantum mechanics. We will learn that |ψ in Eq. (0.1) represents the ket-vector state of the system and H represents the Hamiltonian operator. The operator H is directly related to the Hamiltonian function in classical physics, which will be defined in the first chapter. The ket-vector state and its physical meaning will be introduced in the second chapter. Chapter 3 reviews the position and momentum operators, whereas chapter 4 discusses dynamics of quantum systems. The second part of the course (chapters 5-7) is devoted to some relatively simple quantum systems including a harmonic oscillator, spin, hydrogen atom and more. In chapter 8 we will study quantum systems in thermal equilibrium. The third part of the course (chapters 9-13) is devoted to approximation methods such as perturbation theory, semiclas- sical and adiabatic approximations. Light and its interaction with matter are the subjects of chapter 14-15. Finally, systems of identical particles will be discussed in chapter 16 and open quantum systems in chapter 17. Most of the material in these lecture notes is based on the textbooks [1, 2, 3, 4, 6, 7].
  • 4.
  • 5. Contents 1. Hamilton’s Formalism of Classical Physics . . . . . . . . . . . . . . . . 1 1.1 Action and Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Principle of Least Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Poisson’s Brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.6 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2. State Vectors and Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 Linear Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Dirac’s notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4 Dual Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 Matrix Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.6 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.6.1 Hermitian Adjoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.6.2 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . 23 2.7 Quantum Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.8 Example - Spin 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.9 Unitary Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.10 Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.11 Commutation Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.12 Simultaneous Diagonalization of Commuting Operators . . . . . 35 2.13 Uncertainty Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.14 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.15 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3. The Position and Momentum Observables . . . . . . . . . . . . . . . . 49 3.1 The One Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.1.1 Position Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.1.2 Momentum Representation . . . . . . . . . . . . . . . . . . . . . . . . 54 3.2 Transformation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3 Generalization for 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
  • 6. Contents 3.5 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4. Quantum Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.1 Time Evolution Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.2 Time Independent Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3 Example - Spin 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.4 Connection to Classical Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 73 4.5 Symmetric Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.7 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5. The Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.1 Eigenstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.2 Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.4 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6. Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.1 Angular Momentum and Rotation . . . . . . . . . . . . . . . . . . . . . . . . 138 6.2 General Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.3 Simultaneous Diagonalization of J2 and Jz . . . . . . . . . . . . . . . . 140 6.4 Example - Spin 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 6.5 Orbital Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 6.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.7 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 7. Central Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7.1 Simultaneous Diagonalization of the Operators H, L2 and Lz 186 7.2 The Radial Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 7.3 Hydrogen Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 7.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 7.5 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 8. Density Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 8.1 Time Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 8.2 Quantum Statistical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 8.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 8.4 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 9. Time Independent Perturbation Theory . . . . . . . . . . . . . . . . . . 257 9.1 The Level En . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 9.1.1 Nondegenerate Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 9.1.2 Degenerate Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 9.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 9.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 Eyal Buks Quantum Mechanics - Lecture Notes 6
  • 7. Contents 9.4 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 10. Time-Dependent Perturbation Theory . . . . . . . . . . . . . . . . . . . . 291 10.1 Time Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 10.2 Perturbation Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 10.3 The Operator O (t) = u† (t, t0 ) u (t, t0 ) . . . . . . . . . . . . . . . . . . . . . 0 293 10.4 Transition Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 10.4.1 The Stationary Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 10.4.2 The Near-Resonance Case . . . . . . . . . . . . . . . . . . . . . . . . . 297 10.4.3 H1 is Separable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 10.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 10.6 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 11. WKB Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 11.1 WKB Wavefunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 11.2 Turning Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 11.3 Bohr-Sommerfeld Quantization Rule . . . . . . . . . . . . . . . . . . . . . . 310 11.4 Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 11.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 11.6 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 12. Path Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 12.1 Charged Particle in Electromagnetic Field . . . . . . . . . . . . . . . . . 321 12.2 Classical Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 12.3 Aharonov-Bohm Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 12.3.1 Two-slit Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 12.3.2 Gauge Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 12.4 One Dimensional Path Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 331 12.4.1 One Dimensional Free Particle . . . . . . . . . . . . . . . . . . . . . 332 12.4.2 Expansion Around the Classical Path . . . . . . . . . . . . . . . 333 12.4.3 One Dimensional Harmonic Oscillator . . . . . . . . . . . . . . . 335 12.5 Semiclassical Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 12.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 12.7 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 13. Adiabatic Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 13.1 Momentary Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 13.2 Gauge Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 13.3 Adiabatic Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 13.4 The Case of Two Dimensional Hilbert Space . . . . . . . . . . . . . . . 352 13.5 Transition Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 13.5.1 The Case of Two Dimensional Hilbert Space . . . . . . . . . 355 13.6 Slow and Fast Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 13.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 13.8 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 Eyal Buks Quantum Mechanics - Lecture Notes 7
  • 8. Contents 14. The Quantized Electromagnetic Field . . . . . . . . . . . . . . . . . . . . . 363 14.1 Classical Electromagnetic Cavity . . . . . . . . . . . . . . . . . . . . . . . . . 363 14.2 Quantum Electromagnetic Cavity . . . . . . . . . . . . . . . . . . . . . . . . 368 14.3 Periodic Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 14.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 14.5 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 15. Light Matter Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 15.1 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 15.2 Transition Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 15.2.1 Spontaneous Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 15.2.2 Stimulated Emission and Absorption . . . . . . . . . . . . . . . . 381 15.2.3 Selection Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 15.3 Semiclassical Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 15.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386 15.5 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386 16. Identical Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 16.1 Basis for the Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 16.2 Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 16.3 Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 16.4 Changing the Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 16.5 Many Particle Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 16.5.1 One-Particle Observables . . . . . . . . . . . . . . . . . . . . . . . . . . 399 16.5.2 Two-Particle Observables . . . . . . . . . . . . . . . . . . . . . . . . . . 400 16.6 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 16.7 Momentum Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 16.8 Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 16.9 The Electron Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 16.10Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 16.11Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 17. Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 17.1 Macroscopic Wavefunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 17.1.1 Single Particle in Electromagnetic Field . . . . . . . . . . . . . 421 17.1.2 Drude Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 17.1.3 The Macroscopic Quantum Model . . . . . . . . . . . . . . . . . . 425 17.1.4 London Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 17.2 The Josephson Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430 17.2.1 The First Josephson Relation . . . . . . . . . . . . . . . . . . . . . . 430 17.2.2 The Second Josephson Relation . . . . . . . . . . . . . . . . . . . . 431 17.2.3 The Energy of a Josephson Junction . . . . . . . . . . . . . . . . 432 17.3 RF SQUID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 17.3.1 Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 17.3.2 Flux Quantum Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436 Eyal Buks Quantum Mechanics - Lecture Notes 8
  • 9. Contents 17.3.3 Qubit Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436 17.4 BCS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445 17.4.1 Phonon Mediated Electron-Electron Interaction . . . . . . 445 17.4.2 The Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 17.4.3 Bogoliubov Transformation . . . . . . . . . . . . . . . . . . . . . . . . 449 17.4.4 The Energy Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452 17.4.5 The Ground State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454 17.4.6 Pairing Wavefunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 17.5 The Josephson Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457 17.5.1 The Second Josephson Relation . . . . . . . . . . . . . . . . . . . . 459 17.5.2 The Energy of a Josephson Junction . . . . . . . . . . . . . . . . 460 17.5.3 The First Josephson Relation . . . . . . . . . . . . . . . . . . . . . . 463 17.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464 17.7 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 18. Open Quantum Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469 18.1 Classical Resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469 18.2 Quantum Resonator Coupled to Thermal Bath . . . . . . . . . . . . . 470 18.2.1 The closed System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470 18.2.2 Coupling to Thermal Bath . . . . . . . . . . . . . . . . . . . . . . . . 471 18.2.3 Thermal Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474 18.3 Two Level System Coupled to Thermal Bath . . . . . . . . . . . . . . . 477 18.3.1 The Closed System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 18.3.2 Coupling to Thermal Baths . . . . . . . . . . . . . . . . . . . . . . . . 478 18.3.3 Thermal Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 18.3.4 Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483 18.3.5 The Bloch Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485 18.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485 18.5 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495 Eyal Buks Quantum Mechanics - Lecture Notes 9
  • 10.
  • 11. 1. Hamilton’s Formalism of Classical Physics In this chapter the Hamilton’s formalism of classical physics is introduced, with a special emphasis on the concepts that are needed for quantum me- chanics. 1.1 Action and Lagrangian Consider a classical physical system having N degrees of freedom. The clas- sical state of the system can be described by N independent coordinates qn , where n = 1, 2, · · · , N . The vector of coordinates is denoted by Q = (q1 , q2 , · · · , qN ) . (1.1) Consider the case where the vector of coordinates takes the value Q1 at time t1 and the value Q2 at a later time t2 > t1 , namely Q (t1 ) = Q1 , (1.2) Q (t2 ) = Q2 . (1.3) The action S associated with the evolution of the system from time t1 to time t2 is defined by t2 S= dt L , (1.4) t1 where L is the Lagrangian function of the system. In general, the Lagrangian ˙ is a function of the coordinates Q, the velocities Q and time t, namely ˙ L = L Q, Q; t , (1.5) where ˙ Q = (q1 , q2 , · · · , qN ) , ˙ ˙ ˙ (1.6) and where overdot denotes time derivative. The time evolution of Q, in turn, depends of the trajectory taken by the system from point Q1 at time t1
  • 12. Chapter 1. Hamilton’s Formalism of Classical Physics Q Q2 Q1 t t1 t2 Fig. 1.1. A trajectory taken by the system from point Q1 at time t1 to point Q2 at time t2 . to point Q2 at time t2 (see Fig. 1.1). For a given trajectory Γ the time dependency is denoted as Q (t) = QΓ (t) . (1.7) 1.2 Principle of Least Action For any given trajectory Q (t) the action can be evaluated using Eq. (1.4). Consider a classical system evolving in time from point Q1 at time t1 to point Q2 at time t2 along the trajectory QΓ (t). The trajectory QΓ (t), which is obtained from the laws of classical physics, has the following unique property known as the principle of least action: Proposition 1.2.1 (principle of least action). Among all possible trajec- tories from point Q1 at time t1 to point Q2 at time t2 the action obtains its minimal value by the classical trajectory QΓ (t). In a weaker version of this principle, the action obtains a local minimum for the trajectory QΓ (t). As the following theorem shows, the principle of least action leads to a set of equations of motion, known as Euler-Lagrange equations. Theorem 1.2.1. The classical trajectory QΓ (t), for which the action obtains its minimum value, obeys the Euler-Lagrange equations of motion, which are given by Eyal Buks Quantum Mechanics - Lecture Notes 2
  • 13. 1.2. Principle of Least Action d ∂L ∂L = , (1.8) dt ∂ qn ˙ ∂qn where n = 1, 2, · · · , N. Proof. Consider another trajectory QΓ ′ (t) from point Q1 at time t1 to point Q2 at time t2 (see Fig. 1.2). The difference δQ = QΓ ′ (t) − QΓ (t) = (δq1 , δq2 , · · · , δqN ) (1.9) is assumed to be infinitesimally small. To lowest order in δQ the change in the action δS is given by t2 δS = dt δL t1 t2 N N ∂L ∂L = dt δqn + δ qn ˙ n=1 ∂qn n=1 ∂ qn ˙ t1 t2 N N ∂L ∂L d = dt δqn + δqn . n=1 ∂qn n=1 ∂ qn dt ˙ t1 (1.10) Integrating the second term by parts leads to t2 N ∂L d ∂L δS = dt − δqn n=1 ∂qn dt ∂ qn ˙ t1 N t2 ∂L + δqn . n=1 ∂ qn ˙ t1 (1.11) The last term vanishes since δQ (t1 ) = δQ (t2 ) = 0 . (1.12) The principle of least action implies that δS = 0 . (1.13) This has to be satisfied for any δQ, therefore the following must hold d ∂L ∂L = . (1.14) dt ∂ qn ˙ ∂qn Eyal Buks Quantum Mechanics - Lecture Notes 3
  • 14. Chapter 1. Hamilton’s Formalism of Classical Physics Q Q2 Γ Γ’ Q1 t t1 t2 Fig. 1.2. The classical trajectory QΓ (t) and the trajectory QΓ ′ (t). In what follows we will assume for simplicity that the kinetic energy T of ˙ the system can be expressed as a function of the velocities Q only (namely, it does not explicitly depend on the coordinates Q). The components of the generalized force Fn , where n = 1, 2, · · · , N , are derived from the potential energy U of the system as follows ∂U d ∂U Fn = − + . (1.15) ∂qn dt ∂ qn ˙ When the potential energy can be expressed as a function of the coordinates ˙ Q only (namely, when it is independent on the velocities Q), the system is said to be conservative. For that case, the Lagrangian can be expressed in terms of T and U as L=T −U . (1.16) Example 1.2.1. Consider a point particle having mass m moving in a one- dimensional potential U (x). The Lagrangian is given by mx2 ˙ L=T −U = − U (x) . (1.17) 2 From the Euler-Lagrange equation d ∂L ∂L = , (1.18) dt ∂ x ˙ ∂x one finds that ∂U m¨ = − x . (1.19) ∂x Eyal Buks Quantum Mechanics - Lecture Notes 4
  • 15. 1.3. Hamiltonian 1.3 Hamiltonian The set of Euler-Lagrange equations contains N second order differential equations. In this section we derive an alternative and equivalent set of equa- tions of motion, known as Hamilton-Jacobi equations, that contains twice the number of equations, namely 2N, however, of first, instead of second, order. Definition 1.3.1. The variable canonically conjugate to qn is defined by ∂L pn = . (1.20) ∂ qn ˙ Definition 1.3.2. The Hamiltonian of a physical system is a function of the vector of coordinates Q, the vector of canonical conjugate variables P = (p1 , p2 , · · · , pN ) and time, namely H = H (Q, P ; t) , (1.21) is defined by N H= pn qn − L , ˙ (1.22) n=1 where L is the Lagrangian. Theorem 1.3.1. The classical trajectory satisfies the Hamilton-Jacobi equa- tions of motion, which are given by ∂H qn = ˙ , (1.23) ∂pn ∂H pn = − ˙ , (1.24) ∂qn where n = 1, 2, · · · , N. Proof. The differential of H is given by N dH = d pn qn − dL ˙ n=1   N    = qn dpn + pn dqn − ∂L dqn − ∂L dqn  − ∂L dt ˙ ˙ ∂qn ∂ qn ˙ ˙  n=1   ∂t d ∂L pn dt ∂ qn ˙ N ∂L = (qn dpn − pn dqn ) − ˙ ˙ dt . n=1 ∂t (1.25) Eyal Buks Quantum Mechanics - Lecture Notes 5
  • 16. Chapter 1. Hamilton’s Formalism of Classical Physics Thus the following holds ∂H qn = ˙ , (1.26) ∂pn ∂H pn = − ˙ , (1.27) ∂qn ∂L ∂H − = . (1.28) ∂t ∂t Corollary 1.3.1. The following holds dH ∂H = . (1.29) dt ∂t Proof. Using Eqs. (1.23) and (1.24) one finds that N dH ∂H ∂H ∂H ∂H = qn + ˙ pn + ˙ = . (1.30) dt n=1 ∂qn ∂pn ∂t ∂t =0 The last corollary implies that H is time independent provided that H does not depend on time explicitly, namely, provided that ∂H/∂t = 0. This property is referred to as the law of energy conservation. The theorem below further emphasizes the relation between the Hamiltonian and the total energy of the system. Theorem 1.3.2. Assume that the kinetic energy of a conservative system is given by T = αnm qn qm , ˙ ˙ (1.31) n,m where αnm are constants. Then,the Hamiltonian of the system is given by H =T +U , (1.32) where T is the kinetic energy of the system and where U is the potential energy. Proof. For a conservative system the potential energy is independent on ve- locities, thus ∂L ∂T pl = = , (1.33) ∂ ql ˙ ∂ ql ˙ where L = T − U is the Lagrangian. The Hamiltonian is thus given by Eyal Buks Quantum Mechanics - Lecture Notes 6
  • 17. 1.4. Poisson’s Brackets N H= pl ql − L ˙ l=1 ∂T = ql − (T − U ) ˙ ∂ ql ˙ l    ∂q˙n ∂ qm  ˙   = αnm qm ˙ + qn ˙  ql − T + U ˙  ∂ ql ˙ ∂ ql  ˙ l,n,m δnl δ ml =2 αnm qn qm − T + U ˙ ˙ n,m T = T +U . (1.34) 1.4 Poisson’s Brackets Consider two physical quantities F and G that can be expressed as a function of the vector of coordinates Q, the vector of canonical conjugate variables P and time t, namely F = F (Q, P ; t) , (1.35) G = G (Q, P ; t) , (1.36) The Poisson’s brackets are defined by N ∂F ∂G ∂F ∂G {F, G} = − , (1.37) n=1 ∂qn ∂pn ∂pn ∂qn The Poisson’s brackets are employed for writing an equation of motion for a general physical quantity of interest, as the following theorem shows. Theorem 1.4.1. Let F be a physical quantity that can be expressed as a function of the vector of coordinates Q, the vector of canonical conjugate variables P and time t, and let H be the Hamiltonian. Then, the following holds dF ∂F = {F, H} + . (1.38) dt ∂t Proof. Using Eqs. (1.23) and (1.24) one finds that the time derivative of F is given by Eyal Buks Quantum Mechanics - Lecture Notes 7
  • 18. Chapter 1. Hamilton’s Formalism of Classical Physics N dF ∂F ∂F ∂F = qn + ˙ pn + ˙ dt n=1 ∂qn ∂pn ∂t N ∂F ∂H ∂F ∂H ∂F = − + n=1 ∂qn ∂pn ∂pn ∂qn ∂t ∂F = {F, H} + . ∂t (1.39) Corollary 1.4.1. If F does not explicitly depend on time, namely if ∂F/∂t = 0, and if {F, H} = 0, then F is a constant of the motion, namely dF =0. (1.40) dt 1.5 Problems 1. Consider a particle having charge q and mass m in electromagnetic field characterized by the scalar potential ϕ and the vector potential A. The electric field E and the magnetic field B are given by 1 ∂A E = −∇ϕ − , (1.41) c ∂t and B=∇×A. (1.42) Let r = (x, y, z) be the Cartesian coordinates of the particle. a) Verify that the Lagrangian of the system can be chosen to be given by 1 2 q L= m˙ − qϕ + A · r , r ˙ (1.43) 2 c by showing that the corresponding Euler-Lagrange equations are equivalent to Newton’s 2nd law (i.e., F = m¨). r b) Show that the Hamilton-Jacobi equations are equivalent to Newton’s 2nd law. c) Gauge transformation — The electromagnetic field is invariant un- der the gauge transformation of the scalar and vector potentials A → A + ∇χ , (1.44) 1 ∂χ ϕ → ϕ− (1.45) c ∂t where χ = χ (r, t) is an arbitrary smooth and continuous function of r and t. What effect does this gauge transformation have on the Lagrangian and Hamiltonian? Is the motion affected? Eyal Buks Quantum Mechanics - Lecture Notes 8
  • 19. 1.6. Solutions L C Fig. 1.3. LC resonator. 2. Consider an LC resonator made of a capacitor having capacitance C in parallel with an inductor having inductance L (see Fig. 1.3). The state of the system is characterized by the coordinate q , which is the charge stored by the capacitor. a) Find the Euler-Lagrange equation of the system. b) Find the Hamilton-Jacobi equations of the system. c) Show that {q, p} = 1 . 3. Show that Poisson brackets satisfy the following relations {qj , qk } = 0 , (1.46) {pj , pk } = 0 , (1.47) {qj , pk } = δ jk , (1.48) {F, G} = − {G, F } , (1.49) {F, F } = 0 , (1.50) {F, K} = 0 if K constant or F depends only on t , (1.51) {E + F, G} = {E, G} + {F, G} , (1.52) {E, F G} = {E, F } G + F {E, G} . (1.53) 4. Show that the Lagrange equations are coordinate invariant. 5. Consider a point particle having mass m moving in a 3D central po- tential, namely a potential V (r) that depends only on the distance r = x2 + y 2 + z 2 from the origin. Show that the angular momentum L = r × p is a constant of the motion. 1.6 Solutions 1. The Lagrangian of the system (in Gaussian units) is taken to be given by 1 q L = m˙ 2 − qϕ + A · r . r ˙ (1.54) 2 c Eyal Buks Quantum Mechanics - Lecture Notes 9
  • 20. Chapter 1. Hamilton’s Formalism of Classical Physics a) The Euler-Lagrange equation for the coordinate x is given by d ∂L ∂L = , (1.55) dt ∂ x ˙ ∂x where d ∂L q ∂Ax ∂Ax ∂Ax ∂Ax = m¨ + x +x ˙ +y ˙ +z ˙ , (1.56) dt ∂ x ˙ c ∂t ∂x ∂y ∂z and ∂L ∂ϕ q ∂Ax ∂Ay ∂Az = −q + x ˙ +y ˙ +z ˙ , (1.57) ∂x ∂x c ∂x ∂x ∂x thus ∂ϕ q ∂Ax m¨ = −q x − ∂x c ∂t qEx           q  ∂Ay ∂Ax ∂Ax ∂Az  + y ˙ − −z ˙ −  , c ∂x ∂y ∂z ∂x      (∇ ×A)z (∇ ×A)y    (˙ ×(∇×A))x r (1.58) or q m¨ = qEx + x (˙ × B)x . r (1.59) c Similar equations are obtained for y and z in the same way. These 3 ¨ ¨ equations can be written in a vector form as 1 m¨ = q E + r × B r ˙ . (1.60) c b) The variable vector canonically conjugate to the coordinates vector r is given by ∂L q p= = m˙ + A . r (1.61) ∂r ˙ c The Hamiltonian is thus given by Eyal Buks Quantum Mechanics - Lecture Notes 10
  • 21. 1.6. Solutions H = p·r−L ˙ 1 q = r · p − m˙ − A + qϕ ˙ r 2 c 1 2 = m˙ + qϕ r 2 2 p− q A c = + qϕ . 2m (1.62) The Hamilton-Jacobi equation for the coordinate x is given by ∂H x= ˙ , (1.63) ∂px thus px − q Ax c x= ˙ , (1.64) m or q px = mx+ Ax . ˙ (1.65) c The Hamilton-Jacobi equation for the canonically conjugate variable px is given by ∂H px = − ˙ , (1.66) ∂x where q ∂Ax ∂Ax ∂Ax q ∂Ax px = m¨+ ˙ x x ˙ +y ˙ +z ˙ + , (1.67) c ∂x ∂y ∂z c ∂t and ∂H q px − q Ax ∂Ax py − q Ay ∂Ay c c pz − q Az ∂Az c ∂ϕ − = + + −q ∂x c m ∂x m ∂x m ∂x ∂x q ∂Ax ∂Ay ∂Az ∂ϕ = x ˙ +y ˙ +z ˙ −q , c ∂x ∂x ∂x ∂x (1.68) thus ∂ϕ q ∂Ax q ∂Ay ∂Ax ∂Ax ∂Az m¨ = −q x − + y ˙ − −z ˙ − . ∂x c ∂t c ∂x ∂y ∂z ∂x (1.69) The last result is identical to Eq. (1.59). Eyal Buks Quantum Mechanics - Lecture Notes 11
  • 22. Chapter 1. Hamilton’s Formalism of Classical Physics c) Clearly, the fields E and B, which are given by Eqs. (1.41) and (1.42) respectively, are unchanged since ∂χ ∂ (∇χ) ∇ − =0, (1.70) ∂t ∂t and ∇ × (∇χ) = 0 . (1.71) Thus, even though both L and H are modified, the motion, which depends on E and B only, is unaffected. 2. The kinetic energy in this case T = Lq 2 /2 is the energy stored in the ˙ inductor, and the potential energy U = q 2 /2C is the energy stored in the capacitor. a) The Lagrangian is given by Lq 2 ˙ q2 L=T −U = − . (1.72) 2 2C The Euler-Lagrange equation for the coordinate q is given by d ∂L ∂L = , (1.73) dt ∂ q ˙ ∂q thus q L¨ + q =0. (1.74) C This equation expresses the requirement that the voltage across the capacitor is the same as the one across the inductor. b) The canonical conjugate momentum is given by ∂L p= = Lq , ˙ (1.75) ∂q ˙ and the Hamiltonian is given by p2 q2 H = pq − L = ˙ + . (1.76) 2L 2C Hamilton-Jacobi equations read p q= ˙ (1.77) L q p=− , ˙ (1.78) C thus q L¨ + q =0. (1.79) C Eyal Buks Quantum Mechanics - Lecture Notes 12
  • 23. 1.6. Solutions c) Using the definition (1.37) one has ∂q ∂p ∂q ∂p {q, p} = − =1. (1.80) ∂q ∂p ∂p ∂q 3. All these relations are easily proven using the definition (1.37). ˙ 4. Let L = L Q, Q; t be a Lagrangian of a system, where Q = (q1 , q2 , · · · ) ˙ is the vector of coordinates, Q = (q1 , q2 , · · · ) is the vector of veloci- ˙ ˙ ties, and where overdot denotes time derivative. Consider the coordinates transformation xa = xa (q1 , q2 , ..., t) , (1.81) where a = 1, 2, · · · . The following holds ∂xa ∂xa xa = ˙ qb + ˙ , (1.82) ∂qb ∂t where the summation convention is being used, namely, repeated indices are summed over. Moreover ∂L ∂L ∂xb ∂L ∂ xb ˙ = + , (1.83) ∂qa ∂xb ∂qa ∂ xb ∂qa ˙ and d ∂L d ∂L ∂ xb˙ = . (1.84) dt ∂ qa ˙ dt ∂ xb ∂ qa ˙ ˙ As can be seen from Eq. (1.82), one has ∂ xb ˙ ∂xb = . (1.85) ∂ qa ˙ ∂qa Thus, using Eqs. (1.83) and (1.84) one finds d ∂L ∂L d ∂L ∂xb − = dt ∂ qa ˙ ∂qa dt ∂ xb ∂qa ˙ ∂L ∂xb ∂L ∂ xb˙ − − ∂xb ∂qa ∂ xb ∂qa ˙ d ∂L ∂L ∂xb = − dt ∂ xb˙ ∂xb ∂qa d ∂xb ∂ xb ˙ ∂L + − . dt ∂qa ∂qa ∂ xb ˙ (1.86) As can be seen from Eq. (1.82), the second term vanishes since Eyal Buks Quantum Mechanics - Lecture Notes 13
  • 24. Chapter 1. Hamilton’s Formalism of Classical Physics ∂ xb ˙ ∂ 2 xb ∂ 2 xb d ∂xb = qc + ˙ = , ∂qa ∂qa ∂qc ∂t∂qa dt ∂qa thus d ∂L ∂L d ∂L ∂L ∂xb − = − . (1.87) dt ∂ qa ˙ ∂qa dt ∂ xb ˙ ∂xb ∂qa The last result shows that if the coordinate transformation is reversible, namely if det (∂xb /∂qa ) = 0 then Lagrange equations are coordinate invariant. 5. The angular momentum L is given by   x y ˆ ˆ ˆ z L = r × p = det  x y z  , (1.88) px py pz where r = (x, y, z) is the position vector and where p = (px , py , pz ) is the momentum vector. The Hamiltonian is given by p2 H= + V (r) . (1.89) 2m Using {xi , pj } = δ ij , (1.90) Lz = xpy − ypx , (1.91) one finds that p2 , Lz = p2 , Lz + p2 , Lz + p2 , Lz x y z = p2 , xpy − p2 , ypx x y = −2px py + 2py px =0, (1.92) and r2 , Lz = x2 , Lz + y 2 , Lz + z 2 , Lz = −y x2 , px + y 2 , py x =0. (1.93) Thus f r2 , Lz = 0 for arbitrary smooth function f r2 , and con- sequently {H, Lz } = 0. In a similar way one can show that {H, Lx } = {H, Ly } = 0, and therefore H, L2 = 0. Eyal Buks Quantum Mechanics - Lecture Notes 14
  • 25. 2. State Vectors and Operators In quantum mechanics the state of a physical system is described by a state vector |α , which is a vector in a vector space F, namely |α ∈ F . (2.1) Here, we have employed the Dirac’s ket-vector notation |α for the state vec- tor, which contains all information about the state of the physical system under study. The dimensionality of F is finite in some specific cases (no- tably, spin systems), however, it can also be infinite in many other cases of interest. The basic mathematical theory dealing with vector spaces hav- ing infinite dimensionality was mainly developed by David Hilbert. Under some conditions, vector spaces having infinite dimensionality have properties similar to those of their finite dimensionality counterparts. A mathematically rigorous treatment of such vector spaces having infinite dimensionality, which are commonly called Hilbert spaces, can be found in textbooks that are de- voted to this subject. In this chapter, however, we will only review the main properties that are useful for quantum mechanics. In some cases, when the generalization from the case of finite dimensionality to the case of arbitrary dimensionality is nontrivial, results will be presented without providing a rigorous proof and even without accurately specifying what are the validity conditions for these results. 2.1 Linear Vector Space A linear vector space F is a set {|α } of mathematical objects called vectors. The space is assumed to be closed under vector addition and scalar multipli- cation. Both, operations (i.e., vector addition and scalar multiplication) are commutative. That is: 1. |α + |β = |β + |α ∈ F for every |α ∈ F and |β ∈ F 2. c |α = |α c ∈ F for every |α ∈ F and c ∈ C (where C is the set of complex numbers) A vector space with an inner product is called an inner product space. An inner product of the ordered pair |α , |β ∈ F is denoted as β |α . The inner product is a function F 2 → C that satisfies the following properties:
  • 26. Chapter 2. State Vectors and Operators β |α ∈ C , (2.2) ∗ β |α = α |β , (2.3) α (c1 |β 1 + c2 |β 2 ) = c1 α |β 1 + c2 α |β 2 , where c1 , c2 ∈ C , (2.4) α |α ∈ R and α |α ≥ 0. Equality holds iff |α = 0 . (2.5) Note that the asterisk in Eq. (2.3) denotes complex conjugate. Below we list some important definitions and comments regarding inner product: • The real number α |α is called the norm of the vector |α ∈ F. • A normalized vector has a unity norm, namely α |α = 1. • Every nonzero vector 0 = |α ∈ F can be normalized using the transfor- mation |α |α → . (2.6) α |α • The vectors |α ∈ F and |β ∈ F are said to be orthogonal if β |α = 0. • A set of vectors {|φn }n , where |φn ∈ F is called a complete orthonormal basis if — The vectors are all normalized and orthogonal to each other, namely φm |φn = δ nm . (2.7) — Every |α ∈ F can be written as a superposition of the basis vectors, namely |α = cn |φn , (2.8) n where cn ∈ C. • By evaluating the inner product φm |α , where |α is given by Eq. (2.8) one finds with the help of Eq. (2.7) and property (2.4) of inner products that φm |α = φm cn |φn = cn φm |φn = cm . (2.9) n n =δnm • The last result allows rewriting Eq. (2.8) as |α = cn |φn = |φn cn = |φn φn |α . (2.10) n n n Eyal Buks Quantum Mechanics - Lecture Notes 16
  • 27. 2.3. Dirac’s notation 2.2 Operators Operators, as the definition below states, are function from F to F: Definition 2.2.1. An operator A : F → F on a vector space maps vectors onto vectors, namely A |α ∈ F for every |α ∈ F. Some important definitions and comments are listed below: • The operators X : F → F and Y : F → F are said to be equal, namely X = Y , if for every |α ∈ F the following holds X |α = Y |α . (2.11) • Operators can be added, and the addition is both, commutative and asso- ciative, namely X +Y = Y +X , (2.12) X + (Y + Z) = (X + Y ) + Z . (2.13) • An operator A : F → F is said to be linear if A (c1 |γ 1 + c2 |γ 2 ) = c1 A |γ 1 + c2 A |γ 2 (2.14) for every |γ 1 , |γ 2 ∈ F and c1 , c2 ∈ C. • The operators X : F → F and Y : F → F can be multiplied, where XY |α = X (Y |α ) (2.15) for any |α ∈ F. • Operator multiplication is associative X (Y Z) = (XY ) Z = XY Z . (2.16) • However, in general operator multiplication needs not be commutative XY = Y X . (2.17) 2.3 Dirac’s notation In Dirac’s notation the inner product is considered as a multiplication of two mathematical objects called ’bra’ and ’ket’ β |α = β| |α . (2.18) bra ket While the ket-vector |α is a vector in F, the bra-vector β| represents a functional that maps any ket-vector |α ∈ F to the complex number β |α . Eyal Buks Quantum Mechanics - Lecture Notes 17
  • 28. Chapter 2. State Vectors and Operators While the multiplication of a bra-vector on the left and a ket-vector on the right represents inner product, the outer product is obtained by reversing the order Aαβ = |α β| . (2.19) The outer product Aαβ is clearly an operator since for any |γ ∈ F the object Aαβ |γ is a ket-vector Aαβ |γ = (|β α|) |γ = |β α |γ ∈ F . (2.20) ∈C Moreover, according to property (2.4), Aαβ is linear since for every |γ 1 , |γ 2 ∈ F and c1 , c2 ∈ C the following holds Aαβ (c1 |γ 1 + c2 |γ 2 ) = |α β| (c1 |γ 1 + c2 |γ 2 ) = |α (c1 β |γ 1 + c2 β |γ 2 ) = c1 Aαβ |γ 1 + c2 Aαβ |γ 2 . (2.21) With Dirac’s notation Eq. (2.10) can be rewritten as |α = |φn φn | |α . (2.22) n Since the above identity holds for any |α ∈ F one concludes that the quantity in brackets is the identity operator, which is denoted as 1, namely 1= |φn φn | . (2.23) n This result, which is called the closure relation, implies that any complete orthonormal basis can be used to express the identity operator. 2.4 Dual Correspondence As we have mentioned above, the bra-vector β| represents a functional map- ping any ket-vector |α ∈ F to the complex number β |α . Moreover, since the inner product is linear [see property (2.4) above], such a mapping is linear, namely for every |γ 1 , |γ 2 ∈ F and c1 , c2 ∈ C the following holds β| (c1 |γ 1 + c2 |γ 2 ) = c1 β |γ 1 + c2 β |γ 2 . (2.24) The set of linear functionals from F to C, namely, the set of functionals F : F → C that satisfy Eyal Buks Quantum Mechanics - Lecture Notes 18
  • 29. 2.4. Dual Correspondence F (c1 |γ 1 + c2 |γ 2 ) = c1 F (|γ 1 ) + c2 F (|γ 2 ) (2.25) for every |γ 1 , |γ 2 ∈ F and c1 , c2 ∈ C, is called the dual space F ∗ . As the name suggests, there is a dual correspondence (DC) between F and F ∗ , namely a one to one mapping between these two sets, which are both linear vector spaces. The duality relation is presented using the notation α| ⇔ |α , (2.26) where |α ∈ F and α| ∈ F ∗ . What is the dual of the ket-vector |γ = c1 |γ 1 + c2 |γ 2 , where |γ 1 , |γ 2 ∈ F and c1 , c2 ∈ C? To answer this question we employ the above mentioned general properties (2.3) and (2.4) of inner products and consider the quantity γ |α for an arbitrary ket-vector |α ∈ F γ |α = α |γ ∗ = (c1 α |γ 1 + c2 α |γ 2 )∗ = c∗ γ 1 |α + c2 γ 2 |α 1 = (c∗ γ 1 | + c∗ γ 2 |) |α . 1 2 (2.27) From this result we conclude that the duality relation takes the form c∗ γ 1 | + c∗ γ 2 | ⇔ c1 |γ 1 + c2 |γ 2 . 1 2 (2.28) The last relation describes how to map any given ket-vector |β ∈ F to its dual F = β| : F → C, where F ∈ F ∗ is a linear functional that maps any ket-vector |α ∈ F to the complex number β |α . What is the inverse mapping? The answer can take a relatively simple form provided that a complete orthonormal basis exists, and consequently the identity operator can be expressed as in Eq. (2.23). In that case the dual of a given linear functional F : F → C is the ket-vector |FD ∈ F, which is given by |FD = (F (|φn ))∗ |φn . (2.29) n The duality is demonstrated by proving the two claims below: Claim. |β DD = |β for any |β ∈ F, where |β DD is the dual of the dual of |β . Proof. The dual of |β is the bra-vector β|, whereas the dual of β| is found using Eqs. (2.29) and (2.23), thus Eyal Buks Quantum Mechanics - Lecture Notes 19
  • 30. Chapter 2. State Vectors and Operators ∗ |β DD = β |φn |φn n = φn |β = |φn φn |β n = |φn φn | |β n =1 = |β . (2.30) Claim. FDD = F for any F ∈ F ∗ , where FDD is the dual of the dual of F . Proof. The dual |FD ∈ F of the functional F ∈ F ∗ is given by Eq. (2.29). Thus with the help of the duality relation (2.28) one finds that dual FDD ∈ F ∗ of |FD is given by FDD = F (|φn ) φn | . (2.31) n Consider an arbitrary ket-vector |α ∈ F that is written as a superposition of the complete orthonormal basis vectors, namely |α = cm |φm . (2.32) m Using the above expression for FDD and the linearity property one finds that FDD |α = cm F (|φn ) φn |φm n,m δmn = cn F (|φn ) n =F cn |φn n = F (|α ) , (2.33) therefore, FDD = F . 2.5 Matrix Representation Given a complete orthonormal basis, ket-vectors, bra-vectors and linear op- erators can be represented using matrices. Such representations are easily obtained using the closure relation (2.23). Eyal Buks Quantum Mechanics - Lecture Notes 20
  • 31. 2.5. Matrix Representation • The inner product between the bra-vector β| and the ket-vector |α can be written as β |α = β| 1 |α = β |φn φn | α n   φ1 |α   = β |φ1 β |φ2 · · ·  φ2 |α  . . . . (2.34) Thus, the inner product can be viewed as a product between the row vector β| = β |φ1 ˙ β |φ2 · · · , (2.35) which is the matrix representation of the bra-vector β|, and the column vector   φ1 |α   |α =  φ2 |α  , ˙ (2.36) . . . which is the matrix representation of the ket-vector |α . Obviously, both representations are basis dependent. • Multiplying the relation |γ = X |α from the right by the basis bra-vector φm | and employing again the closure relation (2.23) yields φm |γ = φm | X |α = φm | X1 |α = φm | X |φn φn |α , (2.37) n or in matrix form      φ1 |γ φ1 | X |φ1 φ1 | X |φ2 · · · φ1 |α  φ2 |γ   φ2 | X |φ1 φ2 | X |φ2 · · ·  φ2 |α  .  =   (2.38) . . . . . . . . . . . . In view of this expression, the matrix representation of the linear operator X is given by   φ1 | X |φ1 φ1 | X |φ2 · · ·   X =  φ2 | X |φ1 φ2 | X |φ2 · · · . ˙ (2.39) . . . . . . Alternatively, the last result can be written as Xnm = φn | X |φm , (2.40) where Xnm is the element in row n and column m of the matrix represen- tation of the operator X. Eyal Buks Quantum Mechanics - Lecture Notes 21
  • 32. Chapter 2. State Vectors and Operators • Such matrix representation of linear operators can be useful also for mul- tiplying linear operators. The matrix elements of the product Z = XY are given by φm | Z |φn = φm | XY |φn = φm | X1Y |φn = φm | X |φl φl | Y |φn . l (2.41) • Similarly, the matrix representation of the outer product |β α| is given by   φ1 |β   |β α| =  φ2 |β  α |φ1 α |φ2 · · · ˙ . . .   φ1 |β α |φ1 φ1 |β α |φ2 · · ·   =  φ2 |β α |φ1 φ2 |β α |φ2 · · · . . . . . . . (2.42) 2.6 Observables Measurable physical variables are represented in quantum mechanics by Her- mitian operators. 2.6.1 Hermitian Adjoint Definition 2.6.1. The Hermitian adjoint of an operator X is denoted as X † and is defined by the following duality relation α| X † ⇔ X |α . (2.43) Namely, for any ket-vector |α ∈ F, the dual to the ket-vector X |α is the bra-vector α| X † . Definition 2.6.2. An operator is said to be Hermitian if X = X † . Below we prove some simple relations: ∗ Claim. β| X |α = α| X † |β Proof. Using the general property (2.3) of inner products one has ∗ ∗ β| X |α = β| (X |α ) = α| X † |β = α| X † |β . (2.44) Note that this result implies that if X = X † then β| X |α = α| X |β ∗ . Eyal Buks Quantum Mechanics - Lecture Notes 22
  • 33. 2.6. Observables † Claim. X † =X Proof. For any |α , |β ∈ F the following holds ∗ ∗ ∗ † β| X |α = β| X |α = α| X † |β = β| X † |α , (2.45) † thus X † = X. Claim. (XY )† = Y † X † Proof. Applying XY on an arbitrary ket-vector |α ∈ F and employing the duality correspondence yield XY |α = X (Y |α ) ⇔ α| Y † X † = α| Y † X † , (2.46) thus (XY )† = Y † X † . (2.47) Claim. If X = |β α| then X † = |α β| Proof. By applying X on an arbitrary ket-vector |γ ∈ F and employing the duality correspondence one finds that X |γ = (|β α|) |γ = |β ( α |γ ) ⇔ ( α |γ )∗ β| = γ |α β| = γ| X † , (2.48) where X † = |α β|. 2.6.2 Eigenvalues and Eigenvectors Each operator is characterized by its set of eigenvalues, which is defined below: Definition 2.6.3. A number an ∈ C is said to be an eigenvalue of an op- erator A : F → F if for some nonzero ket-vector |an ∈ F the following holds A |an = an |an . (2.49) The ket-vector |an is then said to be an eigenvector of the operator A with an eigenvalue an . The set of eigenvectors associated with a given eigenvalue of an operator A is called eigensubspace and is denoted as Fn = {|an ∈ F such that A |an = an |an } . (2.50) Eyal Buks Quantum Mechanics - Lecture Notes 23
  • 34. Chapter 2. State Vectors and Operators Clearly, Fn is closed under vector addition and scalar multiplication, namely c1 |γ 1 + c2 |γ 2 ∈ Fn for every |γ 1 , |γ 2 ∈ Fn and for every c1 , c2 ∈ C. Thus, the set Fn is a subspace of F. The dimensionality of Fn (i.e., the minimum number of vectors that are needed to span Fn ) is called the level of degeneracy gn of the eigenvalue an , namely gn = dim Fn . (2.51) As the theorem below shows, the eigenvalues and eigenvectors of a Her- mitian operator have some unique properties. Theorem 2.6.1. The eigenvalues of a Hermitian operator A are real. The eigenvectors of A corresponding to different eigenvalues are orthogonal. Proof. Let a1 and a2 be two eigenvalues of A with corresponding eigen vectors |a1 and |a2 A |a1 = a1 |a1 , (2.52) A |a2 = a2 |a2 . (2.53) Multiplying Eq. (2.52) from the left by the bra-vector a2 |, and multiplying the dual of Eq. (2.53), which since A = A† is given by a2 | A = a∗ a2 | , 2 (2.54) from the right by the ket-vector |a1 yield a2 | A |a1 = a1 a2 |a1 , (2.55) a2 | A |a1 = a∗ a2 |a1 . 2 (2.56) Thus, we have found that (a1 − a∗ ) a2 |a1 = 0 . 2 (2.57) The first part of the theorem is proven by employing the last result (2.57) for the case where |a1 = |a2 . Since |a1 is assumed to be a nonzero ket- vector one concludes that a1 = a∗ , namely a1 is real. Since this is true for 1 any eigenvalue of A, one can rewrite Eq. (2.57) as (a1 − a2 ) a2 |a1 = 0 . (2.58) The second part of the theorem is proven by considering the case where a1 = a2 , for which the above result (2.58) can hold only if a2 |a1 = 0. Namely eigenvectors corresponding to different eigenvalues are orthogonal. Consider a Hermitian operator A having a set of eigenvalues {an }n . Let gn be the degree of degeneracy of eigenvalue an , namely gn is the dimension of the corresponding eigensubspace, which is denoted by Fn . For simplic- ity, assume that gn is finite for every n. Let {|an,1 , |an,2 , · · · , |an,gn } be Eyal Buks Quantum Mechanics - Lecture Notes 24
  • 35. 2.6. Observables an orthonormal basis of the eigensubspace Fn , namely an,i′ |an,i = δ ii′ . Constructing such an orthonormal basis for Fn can be done by the so-called Gram-Schmidt process. Moreover, since eigenvectors of A corresponding to different eigenvalues are orthogonal, the following holds an′ ,i′ |an,i = δ nn′ δ ii′ , (2.59) In addition, all the ket-vectors |an,i are eigenvectors of A A |an,i = an |an,i . (2.60) Projectors. Projector operators are useful for expressing the properties of an observable. Definition 2.6.4. An Hermitian operator P is called a projector if P 2 = P . Claim. The only possible eigenvalues of a projector are 0 and 1. Proof. Assume that |p is an eigenvector of P with an eigenvalue p, namely P |p = p |p . Applying the operator P on both sides and using the fact that P 2 = P yield P |p = p2 |p , thus p (1 − p) |p = 0, therefore since |p is assumed to be nonzero, either p = 0 or p = 1. A projector is said to project any given vector onto the eigensubspace corresponding to the eigenvalue p = 1. Let {|an,1 , |an,2 , · · · , |an,gn } be an orthonormal basis of an eigensub- space Fn corresponding to an eigenvalue of an observable A. Such an ortho- normal basis can be used to construct a projection Pn onto Fn , which is given by gn Pn = |an,i an,i | . (2.61) i=1 † Clearly, Pn is a projector since Pn = Pn and since gn gn 2 Pn = |an,i an,i |an,i′ an,i′ | = |an,i an,i | = Pn . (2.62) i,i′ =1 i=1 δii′ Moreover, it is easy to show using the orthonormality relation (2.59) that the following holds Pn Pm = Pm Pn = Pn δ nm . (2.63) For linear vector spaces of finite dimensionality, it can be shown that the set {|an,i }n,i forms a complete orthonormal basis of eigenvectors of a given Hermitian operator A. The generalization of this result for the case of ar- bitrary dimensionality is nontrivial, since generally such a set needs not be Eyal Buks Quantum Mechanics - Lecture Notes 25
  • 36. Chapter 2. State Vectors and Operators complete. On the other hand, it can be shown that if a given Hermitian oper- ator A satisfies some conditions (e.g., A needs to be completely continuous) then completeness is guarantied. For all Hermitian operators of interest for this course we will assume that all such conditions are satisfied. That is, for any such Hermitian operator A there exists a set of ket vectors {|an,i }, such that: 1. The set is orthonormal, namely an′ ,i′ |an,i = δ nn′ δ ii′ , (2.64) 2. The ket-vectors |an,i are eigenvectors, namely A |an,i = an |an,i , (2.65) where an ∈ R. 3. The set is complete, namely closure relation [see also Eq. (2.23)] is satis- fied gn 1= |an,i an,i | = Pn , (2.66) n i=1 n where gn Pn = |an,i an,i | (2.67) i=1 is the projector onto eigen subspace Fn with the corresponding eigenvalue an . The closure relation (2.66) can be used to express the operator A in terms of the projectors Pn gn gn A = A1 = A |an,i an,i | = an |an,i an,i | , (2.68) n i=1 n i=1 that is A= an Pn . (2.69) n The last result is very useful when dealing with a function f (A) of the operator A. The meaning of a function of an operator can be understood in terms of the Taylor expansion of the function f (x) = fm xm , (2.70) m Eyal Buks Quantum Mechanics - Lecture Notes 26
  • 37. 2.6. Observables where 1 dm f fm = . (2.71) m! dxm With the help of Eqs. (2.63) and (2.69) one finds that f (A) = fm Am m m = fm an Pn m n = fm am Pn n m n = fm am Pn , n n m f (an ) (2.72) thus f (A) = f (an ) Pn . (2.73) n Exercise 2.6.1. Express the projector Pn in terms of the operator A and its set of eigenvalues. Solution 2.6.1. We seek a function f such that f (A) = Pn . Multiplying from the right by a basis ket-vector |am,i yields f (A) |am,i = δ mn |am,i . (2.74) On the other hand f (A) |am,i = f (am ) |am,i . (2.75) Thus we seek a function that satisfy f (am ) = δ mn . (2.76) The polynomial function f (a) = K (a − am ) , (2.77) m=n where K is a constant, satisfies the requirement that f (am ) = 0 for every m = n. The constant K is chosen such that f (an ) = 1, that is a − am f (a) = , (2.78) an − am m=n Eyal Buks Quantum Mechanics - Lecture Notes 27
  • 38. Chapter 2. State Vectors and Operators Thus, the desired expression is given by A − am Pn = . (2.79) m=n an − am 2.7 Quantum Measurement Consider a measurement of a physical variable denoted as A(c) performed on a quantum system. The standard textbook description of such a process is described below. The physical variable A(c) is represented in quantum me- chanics by an observable, namely by a Hermitian operator, which is denoted as A. The correspondence between the variable A(c) and the operator A will be discussed below in chapter 4. As we have seen above, it is possible to con- struct a complete orthonormal basis made of eigenvectors of the Hermitian operator A having the properties given by Eqs. (2.64), (2.65) and (2.66). In that basis, the vector state |α of the system can be expressed as gn |α = 1 |α = an,i |α |an,i . (2.80) n i=1 Even when the state vector |α is given, quantum mechanics does not gener- ally provide a deterministic answer to the question: what will be the outcome of the measurement. Instead it predicts that: 1. The possible results of the measurement are the eigenvalues {an } of the operator A. 2. The probability pn to measure the eigen value an is given by gn pn = α| Pn |α = | an,i |α |2 . (2.81) i=1 Note that the state vector |α is assumed to be normalized. 3. After a measurement of A with an outcome an the state vector collapses onto the corresponding eigensubspace and becomes Pn |α |α → . (2.82) α| Pn |α It is easy to show that the probability to measure something is unity provided that |α is normalized: pn = α| Pn |α = α| Pn |α = 1 . (2.83) n n n Eyal Buks Quantum Mechanics - Lecture Notes 28
  • 39. 2.8. Example - Spin 1/2 We also note that a direct consequence of the collapse postulate is that two subsequent measurements of the same observable performed one immediately after the other will yield the same result. It is also important to note that the above ’standard textbook description’ of the measurement process is highly controversial, especially, the collapse postulate. However, a thorough discus- sion of this issue is beyond the scope of this course. Quantum mechanics cannot generally predict the outcome of a specific measurement of an observable A, however it can predict the average, namely the expectation value, which is denoted as A . The expectation value is easily calculated with the help of Eq. (2.69) A = an pn = an α| Pn |α = α| A |α . (2.84) n n 2.8 Example - Spin 1/2 Spin is an internal degree of freedom of elementary particles. Electrons, for example, have spin 1/2. This means, as we will see in chapter 6, that the state of a spin 1/2 can be described by a state vector |α in a vector space of dimensionality 2. In other words, spin 1/2 is said to be a two-level system. The spin was first discovered in 1921 by Stern and Gerlach in an experiment in which the magnetic moment of neutral silver atoms was measured. Silver atoms have 47 electrons, 46 out of which fill closed shells. It can be shown that only the electron in the outer shell contributes to the total magnetic moment of the atom. The force F acting on a magnetic moment µ moving in a magnetic field B is given by F = ∇ (µ · B). Thus by applying a nonuniform magnetic field B and by monitoring the atoms’ trajectories one can measure the magnetic moment. It is important to keep in mind that generally in addition to the spin contribution to the magnetic moment of an electron, also the orbital motion of the electron can contribute. For both cases, the magnetic moment is related to angular momentum by the gyromagnetic ratio. However this ratio takes different values for these two cases. The orbital gyromagnetic ratio can be evaluated by considering a simple example of an electron of charge e moving in a circular orbit or radius r with velocity v. The magnetic moment is given by AI µorbital = , (2.85) c where A = πr2 is the area enclosed by the circular orbit and I = ev/ (2πr) is the electrical current carried by the electron, thus erv µorbital = . (2.86) 2c Eyal Buks Quantum Mechanics - Lecture Notes 29
  • 40. Chapter 2. State Vectors and Operators This result can be also written as µ µorbital = B L , (2.87) where L = me vr is the orbital angular momentum, and where e µB = (2.88) 2me c is the Bohr’s magneton constant. The proportionality factor µB / is the orbital gyromagnetic ratio. In vector form and for a more general case of orbital motion (not necessarily circular) the orbital gyromagnetic relation is given by µB µorbital = L. (2.89) On the other hand, as was first shown by Dirac, the gyromagnetic ratio for the case of spin angular momentum takes twice this value 2µB µspin = S. (2.90) Note that we follow here the convention of using the letter L for orbital angular momentum and the letter S for spin angular momentum. The Stern-Gerlach apparatus allows measuring any component of the magnetic moment vector. Alternatively, in view of relation (2.90), it can be said that any component of the spin angular momentum S can be measured. The experiment shows that the only two possible results of such a measure- ment are + /2 and − /2. As we have seen above, one can construct a com- plete orthonormal basis to the vector space made of eigenvectors of any given observable. Choosing the observable Sz = S · ˆ for this purpose we construct z a basis made of two vectors {|+; ˆ , |−; ˆ }. Both vectors are eigenvectors of z z Sz Sz |+; ˆ = z |+; ˆ , z (2.91) 2 Sz |−; ˆ = − |−; ˆ . z z (2.92) 2 In what follow we will use the more compact notation |+ = |+; ˆ , z (2.93) |− = |−; ˆ . z (2.94) The orthonormality property implied that + |+ = − |− = 1 , (2.95) − |+ = 0 . (2.96) The closure relation in the present case is expressed as Eyal Buks Quantum Mechanics - Lecture Notes 30
  • 41. 2.8. Example - Spin 1/2 |+ +| + |− −| = 1 . (2.97) In this basis any ket-vector |α can be written as |α = |+ + |α + |− − |α . (2.98) The closure relation (2.97) and Eqs. (2.91) and (2.92) yield Sz = (|+ +| − |− −|) (2.99) 2 It is useful to define also the operators S+ and S− S+ = |+ −| , (2.100) S− = |− +| . (2.101) In chapter 6 we will see that the x and y components of S are given by Sx = (|+ −| + |− +|) , (2.102) 2 Sy = (−i |+ −| + i |− +|) . (2.103) 2 All these ket-vectors and operators have matrix representation, which for the basis {|+; ˆ , |−; ˆ } is given by z z 1 |+ = ˙ , (2.104) 0 0 |− = ˙ , (2.105) 1 01 Sx = ˙ , (2.106) 2 10 0 −i Sy = ˙ , (2.107) 2 i 0 1 0 Sz = ˙ , (2.108) 2 0 −1 01 S+ = ˙ , (2.109) 00 00 S− = ˙ . (2.110) 10 Exercise 2.8.1. Given that the state vector of a spin 1/2 is |+; ˆ calculate z (a) the expectation values Sx and Sz (b) the probability to obtain a value of + /2 in a measurement of Sx . Solution 2.8.1. (a) Using the matrix representation one has Eyal Buks Quantum Mechanics - Lecture Notes 31
  • 42. Chapter 2. State Vectors and Operators 01 1 Sx = +| Sx |+ = 10 =0, (2.111) 2 10 0 1 0 1 Sz = +| Sz |+ = 10 = . (2.112) 2 0 −1 0 2 (b) First, the eigenvectors of the operator Sx are found by solving the equa- tion Sx |α = λ |α , which is done by diagonalization of the matrix represen- tation of Sx . The relation Sx |α = λ |α for the two eigenvectors is written in a matrix form as 1 √ 1 √ 01 2 2 1 = 1 , (2.113) 2 10 √ 2 2 √ 2 1 √ 1 √ 01 2 2 1 =− 1 . (2.114) 2 10 − √2 2 − √2 That is, in ket notation Sx |±; x = ± |±; x , ˆ ˆ (2.115) 2 where the eigenvectors of Sx are given by 1 |±; x = √ (|+ ± |− ) . ˆ (2.116) 2 Using this result the probability p+ is easily calculated 2 1 1 p+ = | + |+; x |2 = +| √ (|+ + |− ) ˆ = . (2.117) 2 2 2.9 Unitary Operators Unitary operators are useful for transforming from one orthonormal basis to another. Definition 2.9.1. An operator U is said to be unitary if U † = U −1 , namely if U U † = U † U = 1. Consider two observables A and B, and two corresponding complete and orthonormal bases of eigenvectors A |an = an |an , am |an = δ nm , |an an | = 1 , (2.118) n B |bn = bn |bn , bm |bn = δ nm , |bn bn | = 1 . (2.119) n The operator U, which is given by Eyal Buks Quantum Mechanics - Lecture Notes 32