SlideShare a Scribd company logo
1 of 42
Chebyshev Inequalities for Products of
Random Variables
Napat RUJEERAPAIBOON
(joint work with D. Kuhn and W. Wiesemann)
Department of Industrial Systems Engineering & Management
National University of Singapore
Algebra of Random Variables
Ÿ For random variables ˜ξt p1 ¤ t ¤ Tq, our goal is to compute
Pphp˜ξ1, . . . , ˜ξT q ¤ γq ? (for a given γ)
for predominant choices of the functional hp¤q.
Ÿ Varying γ € p¡V,  Vq gives a complete picture of the CDF.
Stock Prices Seismic Hazards Insurances
Algebra of Random Variables
Ÿ For random variables ˜ξt p1 ¤ t ¤ Tq, our goal is to compute
Pphp˜ξ1, . . . , ˜ξT q ¤ γq ? (for a given γ)
for predominant choices of the functional hp¤q.
Ÿ Here, we focus on hp˜ξ1, . . . , ˜ξT q  ±T
t1
˜ξt .
Stock Prices Seismic Hazards Insurances
Products of Random Variables
Theorem 1
For T  2,
Pp˜ξ1
˜ξ2 ¤ γq 
» γ
¡V
»  V
¡V
f
¢
α,
β
α

1
|α| dα dβ,
where fp¤, ¤q denotes the PDF of p˜ξ1, ˜ξ2q.
Proof. See Rohatgi, V. (1976)
 Generalizable to other T ¥ 2.
 Easy to derive.
 But difficult to compute.
Geometric Brownian Motions
Theorem 2
For T  2, ˜ξt i.i.d. and log ˜ξt  Npµ, σ2
q,
Pp˜ξ1
˜ξ2 ¤ γq  Φ
¢
log γ ¡2µ
c
2σ

,
where Φp¤q denotes CDF of the standard normal r.v.
Proof. log ˜ξ1
˜ξ2  log ˜ξ1  log ˜ξ2  Np2µ, 2σ2
q.
 Straightforward extension to other T ¥ 2.
 (Log-)Normality assumption may be unjustifiable.
 ˜ξt ¡ 0 P-a.s. can be overly optimistic!
Distributional Ambiguity
Ÿ Consider an asset whose initial price is ˜S0.
˜St 1  ˜St
˜ξt 1, t  0, 1, . . .
Ÿ Total return after T periods is given by
˜ST {˜S0  ±T
t1
˜ξt , T  1, 2, . . .
Distributional Ambiguity
Ÿ Consider an asset whose initial price is ˜S0.
˜St 1  ˜St
˜ξt 1, t  0, 1, . . .
Ÿ Total return after T periods is given by
˜ST {˜S0  ±T
t1
˜ξt , T  1, 2, . . .
Ÿ Estimation error: distribution of t˜ξt uT
t1 is not fully known.
Ÿ Bankruptcy condition: ˜ST  0 with non-zero probability.
Chebyshev Ambiguity
Roy, A. (1952). Econometrica.
In analyzing economic time series, the mean µ and variance σ2
are
the only quantities that can be distilled out of the past.
Chebyshev Ambiguity
Roy, A. (1952). Econometrica.
In analyzing economic time series, the mean µ and variance σ2
are
the only quantities that can be distilled out of the past.
P € Ppµ, σq .

6
98
97
P :
Pp˜ξt ¥ 0q  1 dt ¤ T
EPp˜ξt q  µ dt ¤ T
EPp˜ξs
˜ξt q  δst σ2
 µ2
ds, t ¤ T
D
GF
GE
Ÿ The ambiguity set Ppµ, σq was first studied by Chebyshev.
Ÿ Later extended by Marshall and Olkin, El Ghaoui et al. and
Vandenberghe et al., etc.
Chebyshev Ambiguity
Roy, A. (1952). Econometrica.
In analyzing economic time series, the mean µ and variance σ2
are
the only quantities that can be distilled out of the past.
P € Ppµ, σq .

6
98
97
P :
Pp˜ξt ¥ 0q  1 dt ¤ T
EPp˜ξt q  µ dt ¤ T
EPp˜ξs
˜ξt q  δst σ2
 µ2
ds, t ¤ T
D
GF
GE
Ÿ The ambiguity set Ppµ, σq was first studied by Chebyshev.
Ÿ Later extended by Marshall and Olkin, El Ghaoui et al. and
Vandenberghe et al., etc.
 Support information remains a challenge!
Ruin Probability I
Theorem 3 (Chebyshev)
If T ¡
 µ
σ
¨2
 2, then
sup
P€Ppµ,σq
Pp˜ST  0q  1,
where Ppµ, σq is the Chebyshev ambiguity set.
Interpretation: Companies have a finite lifespan.
Proof:
1 Define supp0
pPq 
3
pξ1, . . . , ξT q € supppPq :
±T
t1 ξt  0
A
.
% It suffices to identify P s.t. supppPq  supp0
pPq.
Ruin Probability I
Theorem 3 (Chebyshev)
If T ¡
 µ
σ
¨2
 2, then
sup
P€Ppµ,σq
Pp˜ST  0q  1,
where Ppµ, σq is the Chebyshev ambiguity set.
Interpretation: Companies have a finite lifespan.
Proof:
1 Define supp0
pPq 
3
pξ1, . . . , ξT q € supppPq :
±T
t1 ξt  0
A
.
2 Construct a mapping T : Ppµ, σq Ñ Ppµ, σq s.t.
|supppT pPqq|  |supppPq| and |supp0
pT pPqq| ¡ |supp0
pPq|.
Ruin Probability I
Theorem 3 (Chebyshev)
If T ¡
 µ
σ
¨2
 2, then
sup
P€Ppµ,σq
Pp˜ST  0q  1,
where Ppµ, σq is the Chebyshev ambiguity set.
Interpretation: Companies have a finite lifespan.
Proof:
1 Define supp0
pPq 
3
pξ1, . . . , ξT q € supppPq :
±T
t1 ξt  0
A
.
2 Construct a mapping T : Ppµ, σq Ñ Ppµ, σq s.t.
|supppT pPqq|  |supppPq| and |supp0
pT pPqq| ¡ |supp0
pPq|.
3 The proof completes as there is a P s.t. |supppPq|    V.
Ruin Probability II
Theorem 4 (Chebyshev + I.I.D.)
For any T ¥ 1,
sup
P€Qpµ,σq
Pp˜ST  0q  1 ¡
¢
µ2
µ2  σ2
T
,
where Qpµ, σq 
2
QT
: QT
€ Ppµ, σq
@
.
Interpretation: Nothing lasts forever.
Proof:
1 Write Pp˜ST  0q  1 ¡±T
t1 Pp˜ξt ¡ 0q  1 ¡p1 ¡Qpξ  0qqT
.
2 Derive a tight upper bound for Qpξ  0q.
Ruin Probability II
Theorem 4 (Chebyshev + I.I.D.)
For any T ¥ 1,
sup
P€Qpµ,σq
Pp˜ST  0q  1 ¡
¢
µ2
µ2  σ2
T
,
where Qpµ, σq 
2
QT
: QT
€ Ppµ, σq
@
.
Interpretation: Nothing lasts forever.
Proof:
The Cauchy-Schwarz inequality implies
»
R  
1 dQpξq¤
»
R  
ξ2
dQpξq ¥
£»
R  
ξ dQpξq
2
,
which in turns gives a tight upper bound on Qpξ  0q.
Ruin Probability II
Theorem 4 (Chebyshev + I.I.D.)
For any T ¥ 1,
sup
P€Qpµ,σq
Pp˜ST  0q  1 ¡
¢
µ2
µ2  σ2
T
,
where Qpµ, σq 
2
QT
: QT
€ Ppµ, σq
@
.
Interpretation: Nothing lasts forever.
Proof:
The Cauchy-Schwarz inequality implies
p1 ¡Qpξ  0qq¤
»
R  
ξ2
dQpξq ¥
£»
R  
ξ dQpξq
2
,
which in turns gives a tight upper bound on Qpξ  0q.
Ruin Probability II
Theorem 4 (Chebyshev + I.I.D.)
For any T ¥ 1,
sup
P€Qpµ,σq
Pp˜ST  0q  1 ¡
¢
µ2
µ2  σ2
T
,
where Qpµ, σq 
2
QT
: QT
€ Ppµ, σq
@
.
Interpretation: Nothing lasts forever.
Proof:
The Cauchy-Schwarz inequality implies
p1 ¡Qpξ  0qq¤pµ2
 σ2
q ¥
£»
R  
ξ dQpξq
2
,
which in turns gives a tight upper bound on Qpξ  0q.
Ruin Probability II
Theorem 4 (Chebyshev + I.I.D.)
For any T ¥ 1,
sup
P€Qpµ,σq
Pp˜ST  0q  1 ¡
¢
µ2
µ2  σ2
T
,
where Qpµ, σq 
2
QT
: QT
€ Ppµ, σq
@
.
Interpretation: Nothing lasts forever.
Proof:
The Cauchy-Schwarz inequality implies
p1 ¡Qpξ  0qq¤pµ2
 σ2
q ¥ µ2
,
which in turns gives a tight upper bound on Qpξ  0q.
Ruin Probability II
Theorem 4 (Chebyshev + I.I.D.)
For any T ¥ 1,
sup
P€Qpµ,σq
Pp˜ST  0q  1 ¡
¢
µ2
µ2  σ2
T
,
where Qpµ, σq 
2
QT
: QT
€ Ppµ, σq
@
.
Interpretation: Nothing lasts forever.
Proof:
1 Write Pp˜ST  0q  1 ¡±T
t1 Pp˜ξt ¡ 0q  1 ¡p1 ¡Qpξ  0qqT
.
2 Derive a tight upper bound for Qpξ  0q, i.e., σ2
{pµ2
 σ2
q.
3 Combine the results from the previous steps.
Ruin Probability III
Remark 1 (Geometric Brownian Motion)
For any T    V,
Pp˜ST  0q  0,
under the Black-Scholes economy.
Interpretation: Booming economy. If µ4
¡ µ2
 σ2
, we even have
lim
TÑV
Pp˜ST ¤ ˜S0q  0.
Proof: Every ˜ξt is strictly positive with probability 1.
Chebyshev is a realist!
Ÿ Arguably, we have shown 3 different viewpoints of economy.
Chebyshev Chebyshev + I.I.D. Black-Scholes
Chebyshev is a realist!
Ÿ Arguably, we have shown 3 different viewpoints of economy.
Chebyshev Chebyshev + I.I.D. Black-Scholes
Optimist
Chebyshev is a realist!
Ÿ Arguably, we have shown 3 different viewpoints of economy.
Chebyshev Chebyshev + I.I.D.
Romantic
Black-Scholes
Optimist
Chebyshev is a realist!
Ÿ Arguably, we have shown 3 different viewpoints of economy.
Chebyshev
Realist
Chebyshev + I.I.D.
Romantic
Black-Scholes
Optimist
Chebyshev is a realist!
Ÿ “(Unrealistic) optimism leads people to attribute the wrong
probabilities to events.”—Coelho, M. (2010)
Chebyshev
Realist
Chebyshev + I.I.D.
Romantic
Black-Scholes
Optimist
Ÿ Chebyshev is a realist (and at most a romantic), so am I!
Bounds for CDFs
Chebyshev (1821–1894)
Ÿ Upper bound for the CDF.
Upγq .
 sup
P€Ppµ,σq
P
¡±T
t1
˜ξt ¤ γ
©
Ÿ Lower bound for the CDF.
Lpγq .
 inf
P€Ppµ,σq
P
¡±T
t1
˜ξt ¤ γ
©
Computing Upγq
Theorem 5
For any γ ¡ 0, Upγq can be computed from a finite SDP.
Proof:
Step 1: Formulate a moment problem representing supP.
Upγq  sup
»
ξ€RT
 
1±T
t1 ξt ¤γpξqPpdξq
s. t.
»
ξ€RT
 
1Ppdξq  1
»
ξ€RT
 
ξPpdξq  µ1
»
ξ€RT
 
ξξ Ppdξq  σ2
I  µ2
11
Computing Upγq
Theorem 5
For any γ ¡ 0, Upγq can be computed from a finite SDP.
Proof:
Step 2: Leverage LP duality.
Upγq  inf α  µβ 1   Γ, σ2
I  µ2
11
s. t. α  β ξ   Γ, ξξ ¥ 1±T
t1 ξt ¤γpξq dξ ¥ 0
(N.B. Strong duality holds as long as µ, σ ¡ 0.)
Computing Upγq
Theorem 5
For any γ ¡ 0, Upγq can be computed from a finite SDP.
Proof:
Step 3: Exploit the symmetry of the objective function and target set.
Upγq  inf α  β pµ1q  Γ, σ2
I  µ2
11
s. t. α  β ξ   Γ, ξξ ¥ 1±T
t1 ξt ¤γpξq dξ ¥ 0
Computing Upγq
Theorem 5
For any γ ¡ 0, Upγq can be computed from a finite SDP.
Proof:
Step 3:
Γ
Permuted Γs
Average Γ
Computing Upγq
Theorem 5
For any γ ¡ 0, Upγq can be computed from a finite SDP.
Proof:
Step 3: W.l.o.g, add strucural constraints.
Upγq  inf α  µβ 1   Γ, σ2
I  µ2
11
s. t. β  β1, Γ  γ1I  γ211
α  β ξ   Γ, ξξ ¥ 1±T
t1 ξt ¤γpξq dξ ¥ 0
Computing Upγq
Theorem 5
For any γ ¡ 0, Upγq can be computed from a finite SDP.
Proof:
Step 4: Simplify the semi-infinite constraint.
α  β ξ   Γ, ξξ ¥ 1±T
t1 ξt ¤γpξq dξ ¥ 0
 α  βs  γ2s2
 γ1}ξ}2
2 ¥ 1±T
t1 ξt ¤γpξq ds ¥ 0 dξ ¥ 0 : }ξ}1  s
Put differently, we seek the worst-case ps, ξpsqq.

6
8
7
infs¥0 α  βs  γ2s2
 γ1rinf |supsξ¥0:}ξ}1s}ξ}2
2 ¥ 0
infs¥0 α  βs  γ2s2
 γ1rinf |supsξ¥0:}ξ}1s,
±T
t1 ξt ¤γ}ξ}2
2 ¥ 1
Computing Upγq
Theorem 5
For any γ ¡ 0, Upγq can be computed from a finite SDP.
Proof:
Step 4: Simplify the semi-infinite constraint.
α  β ξ   Γ, ξξ ¥ 1±T
t1 ξt ¤γpξq dξ ¥ 0
 α  βs  γ2s2
 γ1}ξ}2
2 ¥ 1±T
t1 ξt ¤γpξq ds ¥ 0 dξ ¥ 0 : }ξ}1  s
Put differently, we seek the worst-case ps, ξpsqq.

6
8
7
infs¥0 α  βs  γ2s2
 γ1rT¡1
s2
|s2
s ¥ 0
infs¥0 α  βs  γ2s2
 γ1rinf |supsξ¥0:}ξ}1s,
±T
t1 ξt ¤γ}ξ}2
2 ¥ 1
Computing Upγq
Theorem 5
For any γ ¡ 0, Upγq can be computed from a finite SDP.
Proof:
Step 4: Simplify the semi-infinite constraint.
α  β ξ   Γ, ξξ ¥ 1±T
t1 ξt ¤γpξq dξ ¥ 0
 α  βs  γ2s2
 γ1}ξ}2
2 ¥ 1±T
t1 ξt ¤γpξq ds ¥ 0 dξ ¥ 0 : }ξ}1  s
Put differently, we seek the worst-case ps, ξpsqq.

6
8
7
infs¥0 α  βs  γ2s2
 γ1rT¡1
s2
|s2
s ¥ 0
infs¥0 α  βs  γ2s2
 γ1rinf |s2
sξ¥0:}ξ}1s,
±T
t1 ξt ¤γ}ξ}2
2 ¥ 1
Computing Upγq
Theorem 5
For any γ ¡ 0, Upγq can be computed from a finite SDP.
Proof:
Step 5: 3 out of 4 cases reduce to univariate polynomial optimization.
α  β ξ   Γ, ξξ ¥ 1±T
t1 ξt ¤γpξq dξ ¥ 0
 α  βs  γ2s2
 γ1}ξ}2
2 ¥ 1±T
t1 ξt ¤γpξq ds ¥ 0 dξ ¥ 0 : }ξ}1  s
N.B. these are SDP-representable (Nesterov, Y. 2000).

6
8
7
infs¥0 α  βs  γ2s2
 γ1r|s ¥ 0
infs¥0 α  βs  γ2s2
 γ1rinf |sξ¥0:}ξ}1s,
±T
t1 ξt ¤γ}ξ}2
2 ¥ 1
Auxiliary Lemma
Lemma 1
The non-convex optimization problem
inf
ξ¥0
3
}ξ}2
2 : }ξ}1  s,
±T
t1 ξt ¤ γ
A
is solved by ξ  pξ, ξ, . . . , ξq:
(i) ξ  ξ  s{T if γ ¥ ps{TqT
and (ii) ξ pT ¡1qξ  s, ξξT¡1
 γ o/w.
The remaining case from Step 5 reduces to a
Ÿ univariate polynomial optimization, if γ ¥ ps{TqT
.
Ÿ trivariate polynomial optimization with two ‘=’ constraints, o/w.
Computing Upγq
Theorem 5
For any γ ¡ 0, Upγq can be computed from a finite SDP.
Proof:
Step 5: All cases reduce to univariate polynomial optimization.
α  β ξ   Γ, ξξ ¥ 1±T
t1 ξt ¤γpξq dξ ¥ 0
 α  βs  γ2s2
 γ1}ξ}2
2 ¥ 1±T
t1 ξt ¤γpξq ds ¥ 0 dξ ¥ 0 : }ξ}1  s
N.B. these are SDP-representable (Nesterov, Y. 2000).

6
8
7
infs¥0 α  βs  γ2s2
 γ1r|s ¥ 0
infs¥0 α  βs  γ2s2
 γ1r|s ¥ 1
Computing Lpγq
Theorem 6
For any γ ¡ 0, Lpγq can be computed from a finite SDP.
Proof:
Lpγq  inf
P€Ppµ,σq
P
¡±T
t1
˜ξt ¤ γ
©
1 Formulate Lpγq as a semi-infinite linear program and dualize.
2 Add structural constraints on the dual variables.
3 Reduce dual constraints to univariate polynomial optimization.
Application to Portfolio Selection
Corollary 1
Let ν and Σ denote the mean vector and the covariance matrix of the
asset return distribution. Any portfolio w solving
max
w€W,γ
γ
s.t. P
¡±T
t1
˜ξt ¤ γ
©
¤ dP € Ppw ν,
c
w Σwq
is mean-variance efficient.
Interpretation: Find a portfolio w whose total return falls below γ
with probability at most À 15%.
Ÿ Generalize exact single-period results (El Ghaoui et al. 2003).
Ÿ Generalize approx multi-period results (R. et al. 2016).
Markowitz, H. (1952)
Conclusions
Ÿ Chebyshev ambiguity  “companies have a finite lifespan”.
Ÿ Chebyshev bounds Lpγq and Upγq can be computed from SDPs.
Ÿ Proof techniques from this talk lay the groundwork for:
Ÿ Pairwise correlations among tξt uT
t1.
Ÿ Imprecise variances.
Ÿ Other functionals hp¤q e.g. sums, maxima and minima.
References
Ÿ El Ghaoui, L., Oks, M. and Oustry, F.
Worst-case value-at-risk and robust portfolio optimization.
Operations Research, 2003.
Ÿ Marshall, A. and Olkin, I.
Multivariate Chebyshev Inequalities.
Annals of Mathematical Statistics, 1960.
Ÿ Rujeerapaiboon, N., Kuhn, D. and Wiesemann, W.
Chebyshev Inequalities for Products of Random Variables.
Mathematics of Operations Research, 2018.
Ÿ Vandenberghe, L., Boyd, S. and Comanor, K.
Generalized Chebyshev bounds via semidefinite programming.
SIAM Review, 2007.
Appreciate the artworks from tRoundicons, Smashicons, Dimitry
Miroliubov, Freepiku@flaticon.com
napat.rujeerapaiboon@nus.edu.sg
Proof of Theorem 1
We let gp¤q denote the PDF of ˜ξ1
˜ξ2 and write
Pp˜ξ1
˜ξ2 ¤ γq 
»  V
0
» γ{α
¡V
fpα, βqdβ dα  
» 0
¡V
»  V
γ{α
fpα, βqdβ dα.
Taking a derivative w.r.t. γ and applying Fundamental Theorem of
Calculus yields
gpγq 
»  V
0
fpα, γ{αq1
α
dα  
» 0
¡V
¡fpα, γ{αq1
α
dα

»  V
¡V
fpα, γ{αq 1
|α| dα.
Finally, we can recover the CDF of ˜ξ1
˜ξ2 from the PDF gp¤q.

More Related Content

Similar to Chebyshev Inequality

lecture 7
lecture 7lecture 7
lecture 7
sajinsc
 
015 canonical tranformation ii
015 canonical tranformation ii015 canonical tranformation ii
015 canonical tranformation ii
dwyphy
 

Similar to Chebyshev Inequality (20)

Robust Growth-Optimal Portfolios
Robust Growth-Optimal PortfoliosRobust Growth-Optimal Portfolios
Robust Growth-Optimal Portfolios
 
Quaternionic rigid meromorphic cocycles
Quaternionic rigid meromorphic cocyclesQuaternionic rigid meromorphic cocycles
Quaternionic rigid meromorphic cocycles
 
Week3 ap3421 2019_part1
Week3 ap3421 2019_part1Week3 ap3421 2019_part1
Week3 ap3421 2019_part1
 
Ch16z5efreeenergy 110115232348-phpapp01
Ch16z5efreeenergy 110115232348-phpapp01Ch16z5efreeenergy 110115232348-phpapp01
Ch16z5efreeenergy 110115232348-phpapp01
 
lecture 7
lecture 7lecture 7
lecture 7
 
Slides ensae 9
Slides ensae 9Slides ensae 9
Slides ensae 9
 
Merged Talk: A Verified Optimizer for Quantum Circuits & Verified Translation...
Merged Talk: A Verified Optimizer for Quantum Circuits & Verified Translation...Merged Talk: A Verified Optimizer for Quantum Circuits & Verified Translation...
Merged Talk: A Verified Optimizer for Quantum Circuits & Verified Translation...
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansion
 
Conic Clustering
Conic ClusteringConic Clustering
Conic Clustering
 
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
 
Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...
 
Presentation
PresentationPresentation
Presentation
 
Basic concepts and how to measure price volatility
Basic concepts and how to measure price volatility Basic concepts and how to measure price volatility
Basic concepts and how to measure price volatility
 
L2.pdf
L2.pdfL2.pdf
L2.pdf
 
P, NP and NP-Complete, Theory of NP-Completeness V2
P, NP and NP-Complete, Theory of NP-Completeness V2P, NP and NP-Complete, Theory of NP-Completeness V2
P, NP and NP-Complete, Theory of NP-Completeness V2
 
015 canonical tranformation ii
015 canonical tranformation ii015 canonical tranformation ii
015 canonical tranformation ii
 
pattern recognition
pattern recognition pattern recognition
pattern recognition
 
Developing fast low-rank tensor methods for solving PDEs with uncertain coef...
Developing fast  low-rank tensor methods for solving PDEs with uncertain coef...Developing fast  low-rank tensor methods for solving PDEs with uncertain coef...
Developing fast low-rank tensor methods for solving PDEs with uncertain coef...
 
Regular Convolutions on  , C 
Regular Convolutions on  , C Regular Convolutions on  , C 
Regular Convolutions on  , C 
 
Analytic construction of elliptic curves and rational points
Analytic construction of elliptic curves and rational pointsAnalytic construction of elliptic curves and rational points
Analytic construction of elliptic curves and rational points
 

Recently uploaded

SURVEY I created for uni project research
SURVEY I created for uni project researchSURVEY I created for uni project research
SURVEY I created for uni project research
CaitlinCummins3
 
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
中 央社
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
中 央社
 
Personalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes GuàrdiaPersonalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes Guàrdia
EADTU
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
AnaAcapella
 

Recently uploaded (20)

Major project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategiesMajor project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategies
 
Basic Civil Engineering notes on Transportation Engineering & Modes of Transport
Basic Civil Engineering notes on Transportation Engineering & Modes of TransportBasic Civil Engineering notes on Transportation Engineering & Modes of Transport
Basic Civil Engineering notes on Transportation Engineering & Modes of Transport
 
Andreas Schleicher presents at the launch of What does child empowerment mean...
Andreas Schleicher presents at the launch of What does child empowerment mean...Andreas Schleicher presents at the launch of What does child empowerment mean...
Andreas Schleicher presents at the launch of What does child empowerment mean...
 
SURVEY I created for uni project research
SURVEY I created for uni project researchSURVEY I created for uni project research
SURVEY I created for uni project research
 
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
 
MOOD STABLIZERS DRUGS.pptx
MOOD     STABLIZERS           DRUGS.pptxMOOD     STABLIZERS           DRUGS.pptx
MOOD STABLIZERS DRUGS.pptx
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & Systems
 
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...
 
ANTI PARKISON DRUGS.pptx
ANTI         PARKISON          DRUGS.pptxANTI         PARKISON          DRUGS.pptx
ANTI PARKISON DRUGS.pptx
 
male presentation...pdf.................
male presentation...pdf.................male presentation...pdf.................
male presentation...pdf.................
 
UChicago CMSC 23320 - The Best Commit Messages of 2024
UChicago CMSC 23320 - The Best Commit Messages of 2024UChicago CMSC 23320 - The Best Commit Messages of 2024
UChicago CMSC 23320 - The Best Commit Messages of 2024
 
How To Create Editable Tree View in Odoo 17
How To Create Editable Tree View in Odoo 17How To Create Editable Tree View in Odoo 17
How To Create Editable Tree View in Odoo 17
 
The Story of Village Palampur Class 9 Free Study Material PDF
The Story of Village Palampur Class 9 Free Study Material PDFThe Story of Village Palampur Class 9 Free Study Material PDF
The Story of Village Palampur Class 9 Free Study Material PDF
 
An overview of the various scriptures in Hinduism
An overview of the various scriptures in HinduismAn overview of the various scriptures in Hinduism
An overview of the various scriptures in Hinduism
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
 
Spring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community PartnershipsSpring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community Partnerships
 
Observing-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptxObserving-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptx
 
Personalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes GuàrdiaPersonalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes Guàrdia
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
 
Trauma-Informed Leadership - Five Practical Principles
Trauma-Informed Leadership - Five Practical PrinciplesTrauma-Informed Leadership - Five Practical Principles
Trauma-Informed Leadership - Five Practical Principles
 

Chebyshev Inequality

  • 1. Chebyshev Inequalities for Products of Random Variables Napat RUJEERAPAIBOON (joint work with D. Kuhn and W. Wiesemann) Department of Industrial Systems Engineering & Management National University of Singapore
  • 2. Algebra of Random Variables Ÿ For random variables ˜ξt p1 ¤ t ¤ Tq, our goal is to compute Pphp˜ξ1, . . . , ˜ξT q ¤ γq ? (for a given γ) for predominant choices of the functional hp¤q. Ÿ Varying γ € p¡V,  Vq gives a complete picture of the CDF. Stock Prices Seismic Hazards Insurances
  • 3. Algebra of Random Variables Ÿ For random variables ˜ξt p1 ¤ t ¤ Tq, our goal is to compute Pphp˜ξ1, . . . , ˜ξT q ¤ γq ? (for a given γ) for predominant choices of the functional hp¤q. Ÿ Here, we focus on hp˜ξ1, . . . , ˜ξT q ±T t1 ˜ξt . Stock Prices Seismic Hazards Insurances
  • 4. Products of Random Variables Theorem 1 For T 2, Pp˜ξ1 ˜ξ2 ¤ γq » γ ¡V »  V ¡V f ¢ α, β α 1 |α| dα dβ, where fp¤, ¤q denotes the PDF of p˜ξ1, ˜ξ2q. Proof. See Rohatgi, V. (1976) Generalizable to other T ¥ 2. Easy to derive. But difficult to compute.
  • 5. Geometric Brownian Motions Theorem 2 For T 2, ˜ξt i.i.d. and log ˜ξt Npµ, σ2 q, Pp˜ξ1 ˜ξ2 ¤ γq Φ ¢ log γ ¡2µ c 2σ , where Φp¤q denotes CDF of the standard normal r.v. Proof. log ˜ξ1 ˜ξ2 log ˜ξ1  log ˜ξ2 Np2µ, 2σ2 q. Straightforward extension to other T ¥ 2. (Log-)Normality assumption may be unjustifiable. ˜ξt ¡ 0 P-a.s. can be overly optimistic!
  • 6. Distributional Ambiguity Ÿ Consider an asset whose initial price is ˜S0. ˜St 1 ˜St ˜ξt 1, t 0, 1, . . . Ÿ Total return after T periods is given by ˜ST {˜S0 ±T t1 ˜ξt , T 1, 2, . . .
  • 7. Distributional Ambiguity Ÿ Consider an asset whose initial price is ˜S0. ˜St 1 ˜St ˜ξt 1, t 0, 1, . . . Ÿ Total return after T periods is given by ˜ST {˜S0 ±T t1 ˜ξt , T 1, 2, . . . Ÿ Estimation error: distribution of t˜ξt uT t1 is not fully known. Ÿ Bankruptcy condition: ˜ST 0 with non-zero probability.
  • 8. Chebyshev Ambiguity Roy, A. (1952). Econometrica. In analyzing economic time series, the mean µ and variance σ2 are the only quantities that can be distilled out of the past.
  • 9. Chebyshev Ambiguity Roy, A. (1952). Econometrica. In analyzing economic time series, the mean µ and variance σ2 are the only quantities that can be distilled out of the past. P € Ppµ, σq . 6 98 97 P : Pp˜ξt ¥ 0q 1 dt ¤ T EPp˜ξt q µ dt ¤ T EPp˜ξs ˜ξt q δst σ2  µ2 ds, t ¤ T D GF GE Ÿ The ambiguity set Ppµ, σq was first studied by Chebyshev. Ÿ Later extended by Marshall and Olkin, El Ghaoui et al. and Vandenberghe et al., etc.
  • 10. Chebyshev Ambiguity Roy, A. (1952). Econometrica. In analyzing economic time series, the mean µ and variance σ2 are the only quantities that can be distilled out of the past. P € Ppµ, σq . 6 98 97 P : Pp˜ξt ¥ 0q 1 dt ¤ T EPp˜ξt q µ dt ¤ T EPp˜ξs ˜ξt q δst σ2  µ2 ds, t ¤ T D GF GE Ÿ The ambiguity set Ppµ, σq was first studied by Chebyshev. Ÿ Later extended by Marshall and Olkin, El Ghaoui et al. and Vandenberghe et al., etc. Support information remains a challenge!
  • 11. Ruin Probability I Theorem 3 (Chebyshev) If T ¡  µ σ ¨2  2, then sup P€Ppµ,σq Pp˜ST 0q 1, where Ppµ, σq is the Chebyshev ambiguity set. Interpretation: Companies have a finite lifespan. Proof: 1 Define supp0 pPq 3 pξ1, . . . , ξT q € supppPq : ±T t1 ξt 0 A . % It suffices to identify P s.t. supppPq supp0 pPq.
  • 12. Ruin Probability I Theorem 3 (Chebyshev) If T ¡  µ σ ¨2  2, then sup P€Ppµ,σq Pp˜ST 0q 1, where Ppµ, σq is the Chebyshev ambiguity set. Interpretation: Companies have a finite lifespan. Proof: 1 Define supp0 pPq 3 pξ1, . . . , ξT q € supppPq : ±T t1 ξt 0 A . 2 Construct a mapping T : Ppµ, σq Ñ Ppµ, σq s.t. |supppT pPqq| |supppPq| and |supp0 pT pPqq| ¡ |supp0 pPq|.
  • 13. Ruin Probability I Theorem 3 (Chebyshev) If T ¡  µ σ ¨2  2, then sup P€Ppµ,σq Pp˜ST 0q 1, where Ppµ, σq is the Chebyshev ambiguity set. Interpretation: Companies have a finite lifespan. Proof: 1 Define supp0 pPq 3 pξ1, . . . , ξT q € supppPq : ±T t1 ξt 0 A . 2 Construct a mapping T : Ppµ, σq Ñ Ppµ, σq s.t. |supppT pPqq| |supppPq| and |supp0 pT pPqq| ¡ |supp0 pPq|. 3 The proof completes as there is a P s.t. |supppPq|    V.
  • 14. Ruin Probability II Theorem 4 (Chebyshev + I.I.D.) For any T ¥ 1, sup P€Qpµ,σq Pp˜ST 0q 1 ¡ ¢ µ2 µ2  σ2 T , where Qpµ, σq 2 QT : QT € Ppµ, σq @ . Interpretation: Nothing lasts forever. Proof: 1 Write Pp˜ST 0q 1 ¡±T t1 Pp˜ξt ¡ 0q 1 ¡p1 ¡Qpξ 0qqT . 2 Derive a tight upper bound for Qpξ 0q.
  • 15. Ruin Probability II Theorem 4 (Chebyshev + I.I.D.) For any T ¥ 1, sup P€Qpµ,σq Pp˜ST 0q 1 ¡ ¢ µ2 µ2  σ2 T , where Qpµ, σq 2 QT : QT € Ppµ, σq @ . Interpretation: Nothing lasts forever. Proof: The Cauchy-Schwarz inequality implies » R   1 dQpξq¤ » R   ξ2 dQpξq ¥ £» R   ξ dQpξq 2 , which in turns gives a tight upper bound on Qpξ 0q.
  • 16. Ruin Probability II Theorem 4 (Chebyshev + I.I.D.) For any T ¥ 1, sup P€Qpµ,σq Pp˜ST 0q 1 ¡ ¢ µ2 µ2  σ2 T , where Qpµ, σq 2 QT : QT € Ppµ, σq @ . Interpretation: Nothing lasts forever. Proof: The Cauchy-Schwarz inequality implies p1 ¡Qpξ 0qq¤ » R   ξ2 dQpξq ¥ £» R   ξ dQpξq 2 , which in turns gives a tight upper bound on Qpξ 0q.
  • 17. Ruin Probability II Theorem 4 (Chebyshev + I.I.D.) For any T ¥ 1, sup P€Qpµ,σq Pp˜ST 0q 1 ¡ ¢ µ2 µ2  σ2 T , where Qpµ, σq 2 QT : QT € Ppµ, σq @ . Interpretation: Nothing lasts forever. Proof: The Cauchy-Schwarz inequality implies p1 ¡Qpξ 0qq¤pµ2  σ2 q ¥ £» R   ξ dQpξq 2 , which in turns gives a tight upper bound on Qpξ 0q.
  • 18. Ruin Probability II Theorem 4 (Chebyshev + I.I.D.) For any T ¥ 1, sup P€Qpµ,σq Pp˜ST 0q 1 ¡ ¢ µ2 µ2  σ2 T , where Qpµ, σq 2 QT : QT € Ppµ, σq @ . Interpretation: Nothing lasts forever. Proof: The Cauchy-Schwarz inequality implies p1 ¡Qpξ 0qq¤pµ2  σ2 q ¥ µ2 , which in turns gives a tight upper bound on Qpξ 0q.
  • 19. Ruin Probability II Theorem 4 (Chebyshev + I.I.D.) For any T ¥ 1, sup P€Qpµ,σq Pp˜ST 0q 1 ¡ ¢ µ2 µ2  σ2 T , where Qpµ, σq 2 QT : QT € Ppµ, σq @ . Interpretation: Nothing lasts forever. Proof: 1 Write Pp˜ST 0q 1 ¡±T t1 Pp˜ξt ¡ 0q 1 ¡p1 ¡Qpξ 0qqT . 2 Derive a tight upper bound for Qpξ 0q, i.e., σ2 {pµ2  σ2 q. 3 Combine the results from the previous steps.
  • 20. Ruin Probability III Remark 1 (Geometric Brownian Motion) For any T    V, Pp˜ST 0q 0, under the Black-Scholes economy. Interpretation: Booming economy. If µ4 ¡ µ2  σ2 , we even have lim TÑV Pp˜ST ¤ ˜S0q 0. Proof: Every ˜ξt is strictly positive with probability 1.
  • 21. Chebyshev is a realist! Ÿ Arguably, we have shown 3 different viewpoints of economy. Chebyshev Chebyshev + I.I.D. Black-Scholes
  • 22. Chebyshev is a realist! Ÿ Arguably, we have shown 3 different viewpoints of economy. Chebyshev Chebyshev + I.I.D. Black-Scholes Optimist
  • 23. Chebyshev is a realist! Ÿ Arguably, we have shown 3 different viewpoints of economy. Chebyshev Chebyshev + I.I.D. Romantic Black-Scholes Optimist
  • 24. Chebyshev is a realist! Ÿ Arguably, we have shown 3 different viewpoints of economy. Chebyshev Realist Chebyshev + I.I.D. Romantic Black-Scholes Optimist
  • 25. Chebyshev is a realist! Ÿ “(Unrealistic) optimism leads people to attribute the wrong probabilities to events.”—Coelho, M. (2010) Chebyshev Realist Chebyshev + I.I.D. Romantic Black-Scholes Optimist Ÿ Chebyshev is a realist (and at most a romantic), so am I!
  • 26. Bounds for CDFs Chebyshev (1821–1894) Ÿ Upper bound for the CDF. Upγq . sup P€Ppµ,σq P ¡±T t1 ˜ξt ¤ γ © Ÿ Lower bound for the CDF. Lpγq . inf P€Ppµ,σq P ¡±T t1 ˜ξt ¤ γ ©
  • 27. Computing Upγq Theorem 5 For any γ ¡ 0, Upγq can be computed from a finite SDP. Proof: Step 1: Formulate a moment problem representing supP. Upγq sup » ξ€RT   1±T t1 ξt ¤γpξqPpdξq s. t. » ξ€RT   1Ppdξq 1 » ξ€RT   ξPpdξq µ1 » ξ€RT   ξξ Ppdξq σ2 I  µ2 11
  • 28. Computing Upγq Theorem 5 For any γ ¡ 0, Upγq can be computed from a finite SDP. Proof: Step 2: Leverage LP duality. Upγq inf α  µβ 1   Γ, σ2 I  µ2 11 s. t. α  β ξ   Γ, ξξ ¥ 1±T t1 ξt ¤γpξq dξ ¥ 0 (N.B. Strong duality holds as long as µ, σ ¡ 0.)
  • 29. Computing Upγq Theorem 5 For any γ ¡ 0, Upγq can be computed from a finite SDP. Proof: Step 3: Exploit the symmetry of the objective function and target set. Upγq inf α  β pµ1q  Γ, σ2 I  µ2 11 s. t. α  β ξ   Γ, ξξ ¥ 1±T t1 ξt ¤γpξq dξ ¥ 0
  • 30. Computing Upγq Theorem 5 For any γ ¡ 0, Upγq can be computed from a finite SDP. Proof: Step 3: Γ Permuted Γs Average Γ
  • 31. Computing Upγq Theorem 5 For any γ ¡ 0, Upγq can be computed from a finite SDP. Proof: Step 3: W.l.o.g, add strucural constraints. Upγq inf α  µβ 1   Γ, σ2 I  µ2 11 s. t. β β1, Γ γ1I  γ211 α  β ξ   Γ, ξξ ¥ 1±T t1 ξt ¤γpξq dξ ¥ 0
  • 32. Computing Upγq Theorem 5 For any γ ¡ 0, Upγq can be computed from a finite SDP. Proof: Step 4: Simplify the semi-infinite constraint. α  β ξ   Γ, ξξ ¥ 1±T t1 ξt ¤γpξq dξ ¥ 0 α  βs  γ2s2  γ1}ξ}2 2 ¥ 1±T t1 ξt ¤γpξq ds ¥ 0 dξ ¥ 0 : }ξ}1 s Put differently, we seek the worst-case ps, ξpsqq. 6 8 7 infs¥0 α  βs  γ2s2  γ1rinf |supsξ¥0:}ξ}1s}ξ}2 2 ¥ 0 infs¥0 α  βs  γ2s2  γ1rinf |supsξ¥0:}ξ}1s, ±T t1 ξt ¤γ}ξ}2 2 ¥ 1
  • 33. Computing Upγq Theorem 5 For any γ ¡ 0, Upγq can be computed from a finite SDP. Proof: Step 4: Simplify the semi-infinite constraint. α  β ξ   Γ, ξξ ¥ 1±T t1 ξt ¤γpξq dξ ¥ 0 α  βs  γ2s2  γ1}ξ}2 2 ¥ 1±T t1 ξt ¤γpξq ds ¥ 0 dξ ¥ 0 : }ξ}1 s Put differently, we seek the worst-case ps, ξpsqq. 6 8 7 infs¥0 α  βs  γ2s2  γ1rT¡1 s2 |s2 s ¥ 0 infs¥0 α  βs  γ2s2  γ1rinf |supsξ¥0:}ξ}1s, ±T t1 ξt ¤γ}ξ}2 2 ¥ 1
  • 34. Computing Upγq Theorem 5 For any γ ¡ 0, Upγq can be computed from a finite SDP. Proof: Step 4: Simplify the semi-infinite constraint. α  β ξ   Γ, ξξ ¥ 1±T t1 ξt ¤γpξq dξ ¥ 0 α  βs  γ2s2  γ1}ξ}2 2 ¥ 1±T t1 ξt ¤γpξq ds ¥ 0 dξ ¥ 0 : }ξ}1 s Put differently, we seek the worst-case ps, ξpsqq. 6 8 7 infs¥0 α  βs  γ2s2  γ1rT¡1 s2 |s2 s ¥ 0 infs¥0 α  βs  γ2s2  γ1rinf |s2 sξ¥0:}ξ}1s, ±T t1 ξt ¤γ}ξ}2 2 ¥ 1
  • 35. Computing Upγq Theorem 5 For any γ ¡ 0, Upγq can be computed from a finite SDP. Proof: Step 5: 3 out of 4 cases reduce to univariate polynomial optimization. α  β ξ   Γ, ξξ ¥ 1±T t1 ξt ¤γpξq dξ ¥ 0 α  βs  γ2s2  γ1}ξ}2 2 ¥ 1±T t1 ξt ¤γpξq ds ¥ 0 dξ ¥ 0 : }ξ}1 s N.B. these are SDP-representable (Nesterov, Y. 2000). 6 8 7 infs¥0 α  βs  γ2s2  γ1r|s ¥ 0 infs¥0 α  βs  γ2s2  γ1rinf |sξ¥0:}ξ}1s, ±T t1 ξt ¤γ}ξ}2 2 ¥ 1
  • 36. Auxiliary Lemma Lemma 1 The non-convex optimization problem inf ξ¥0 3 }ξ}2 2 : }ξ}1 s, ±T t1 ξt ¤ γ A is solved by ξ pξ, ξ, . . . , ξq: (i) ξ ξ s{T if γ ¥ ps{TqT and (ii) ξ pT ¡1qξ s, ξξT¡1 γ o/w. The remaining case from Step 5 reduces to a Ÿ univariate polynomial optimization, if γ ¥ ps{TqT . Ÿ trivariate polynomial optimization with two ‘=’ constraints, o/w.
  • 37. Computing Upγq Theorem 5 For any γ ¡ 0, Upγq can be computed from a finite SDP. Proof: Step 5: All cases reduce to univariate polynomial optimization. α  β ξ   Γ, ξξ ¥ 1±T t1 ξt ¤γpξq dξ ¥ 0 α  βs  γ2s2  γ1}ξ}2 2 ¥ 1±T t1 ξt ¤γpξq ds ¥ 0 dξ ¥ 0 : }ξ}1 s N.B. these are SDP-representable (Nesterov, Y. 2000). 6 8 7 infs¥0 α  βs  γ2s2  γ1r|s ¥ 0 infs¥0 α  βs  γ2s2  γ1r|s ¥ 1
  • 38. Computing Lpγq Theorem 6 For any γ ¡ 0, Lpγq can be computed from a finite SDP. Proof: Lpγq inf P€Ppµ,σq P ¡±T t1 ˜ξt ¤ γ © 1 Formulate Lpγq as a semi-infinite linear program and dualize. 2 Add structural constraints on the dual variables. 3 Reduce dual constraints to univariate polynomial optimization.
  • 39. Application to Portfolio Selection Corollary 1 Let ν and Σ denote the mean vector and the covariance matrix of the asset return distribution. Any portfolio w solving max w€W,γ γ s.t. P ¡±T t1 ˜ξt ¤ γ © ¤ dP € Ppw ν, c w Σwq is mean-variance efficient. Interpretation: Find a portfolio w whose total return falls below γ with probability at most À 15%. Ÿ Generalize exact single-period results (El Ghaoui et al. 2003). Ÿ Generalize approx multi-period results (R. et al. 2016). Markowitz, H. (1952)
  • 40. Conclusions Ÿ Chebyshev ambiguity “companies have a finite lifespan”. Ÿ Chebyshev bounds Lpγq and Upγq can be computed from SDPs. Ÿ Proof techniques from this talk lay the groundwork for: Ÿ Pairwise correlations among tξt uT t1. Ÿ Imprecise variances. Ÿ Other functionals hp¤q e.g. sums, maxima and minima.
  • 41. References Ÿ El Ghaoui, L., Oks, M. and Oustry, F. Worst-case value-at-risk and robust portfolio optimization. Operations Research, 2003. Ÿ Marshall, A. and Olkin, I. Multivariate Chebyshev Inequalities. Annals of Mathematical Statistics, 1960. Ÿ Rujeerapaiboon, N., Kuhn, D. and Wiesemann, W. Chebyshev Inequalities for Products of Random Variables. Mathematics of Operations Research, 2018. Ÿ Vandenberghe, L., Boyd, S. and Comanor, K. Generalized Chebyshev bounds via semidefinite programming. SIAM Review, 2007. Appreciate the artworks from tRoundicons, Smashicons, Dimitry Miroliubov, Freepiku@flaticon.com napat.rujeerapaiboon@nus.edu.sg
  • 42. Proof of Theorem 1 We let gp¤q denote the PDF of ˜ξ1 ˜ξ2 and write Pp˜ξ1 ˜ξ2 ¤ γq »  V 0 » γ{α ¡V fpα, βqdβ dα   » 0 ¡V »  V γ{α fpα, βqdβ dα. Taking a derivative w.r.t. γ and applying Fundamental Theorem of Calculus yields gpγq »  V 0 fpα, γ{αq1 α dα   » 0 ¡V ¡fpα, γ{αq1 α dα »  V ¡V fpα, γ{αq 1 |α| dα. Finally, we can recover the CDF of ˜ξ1 ˜ξ2 from the PDF gp¤q.