SlideShare a Scribd company logo
1 of 60
Download to read offline
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
State of Solid-State Batteries
Prof. Kevin S. Jones
Department of Materials Science
and Engineering
University of Florida
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Acknowledgments
• Dave Danielson Program Director at
ARPA-E
• Scott Faris, Richard Fox, Roland Pitts and
Isaiah Oladeji at Planar Energy
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Outline
• Introduction
• Liquid vs. Solid-State Batteries
• Solid-state Li Ion Batteries
– Companies
• Battery Needs for Electric Vehicles
– BEEST Program
• Planar Energy
• Conclusions
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Typical Li Ion Battery
During use
(discharge)
ions move
from anode to
cathode
Figure courtesy C. Daniel JOM Vol. 60, No.9 pp. 43-48, 2008
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Battery Basics
• Basic terminology
• Type I vs. Type II Battery: Type II (secondary) is rechargeable
• Li Metal vs. Li Ion Battery: Based on anode used; Li vs. a compound
• Capacity: Measure of Li that moves between the anode and cathode (Ah)
• Cycle Life: Number of recharge cycles before x% of the capacity is lost
• Energy Density: Energy the battery can deliver per volume (Wh/l)
• Specific Energy: Energy the battery can deliver per mass (Wh/kg)
• Specific Power: A measure of the Watts the battery can deliver (W/kg)
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Existing Battery Types
Specific energy is the total energy a battery can deliver in watt-hours per kilogram (Wh/kg)
Specific power is the battery’s ability to deliver power in watts per kilogram (W/kg).
• Ragone Plot
• Higher power and
energy are driving
the Li Ion battery
growth
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
25000
20000
15000
10000
5000
Type II Battery Market
Source:http://seekingalpha.com/instablog/495621-jrbrown/44054
Li Ion
dominating
the $10B
rechargeable
battery market
Li Ion sales
forecast to
more than
double in the
next 10 years
Li Polymer
Li Ion
NiMH
NiCd
$M
today
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Why Li Ion Batteries?
• Advantages
• High specific energy (Li is very light)
• High open circuit voltage (more power at low current)
• Less memory effect (observed in Ni Cd batteries)
• Slow self discharge (longer shelf life)
• Disadvantages
• Flammable liquids
• Limited Cell/cycle Life (SEI degradation)
• Battery life decreases with increasing temperature
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Outline
• Introduction
• Liquid vs. Solid-State Batteries
• Solid-state Li Ion Batteries
– Companies
• Battery Needs for Electric Vehicles
– BEEST Program
• Planar Energy
• Conclusions
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Types of Li Ion Batteries
• Liquid Electrolyte
– LiPF6 in organic carbonates
– Li Ion conductivity 10-2-10-3S/cm
• Gel/polymer electrolyte
– Not covered in this talk
• Solid-state Ceramic Electrolyte
– Focus of this talk
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Type II Battery Market
Source:http://seekingalpha.com/instablog/495621-jrbrown/44054
25000
20000
15000
10000
5000
Li Polymer
Li Ion
NiMH
NiCd
$M
today
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Estimated
current
solid-state
battery
sales <1%
of $8B Li
Ion Battery
Market*
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Why Solid-State Batteries?
• Advantages over liquid
• Safety
• Would eliminate thermal runaway
• Performance
• Higher voltages possible
• Life
• Much longer cycle life
• Disadvantages
• Cost
• Traditionally very expensive to
make
• Temperature sensitive
• Low temperature operation can
be a challenge
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Liquid vs Solid-state Li Ion Battery
Liquid solvent
and polymer
separator (not
shown)
Replaced by
solid electrolyte
Figure courtesy C. Daniel JOM Vol. 60, No.9 pp. 43-48, 2008
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
The most common solid-state electrolyte
LiPON
• LiPON is a solid-state electrolyte developed at Oak Ridge National Labs
• LiPON is an amorphous glass
• RF Magnetron deposition from Li3PO4 target in N2
• The chemical composition varies from Li3.3PO3.8 N0.24 to Li3.6PO3.3N0.69*
• The N increases the Li ion conductivity relative to Li3PO4
• Li Ion Conductivity of LiPON is ~2 x 10-6 S/cm
• still 3-4 orders of magnitude worse than liquid
*N.J. Dudney, J. Power Sources, 89, 176, 2000
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Conventional Solid-State Batteries
Vacuum deposition for all layers
Cathode: LiCoO2 or LiMn2O4 or V2O5
Electrolyte: LiPON glass
Anode: Li Metal or Sn3N4
Capacity: Typically very low (0.001 to 0.01Ah)
Normally LiPON
Source: http://www.excellatron.com
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Outline
• Introduction
• Liquid vs. Solid-State Batteries
• Solid-state Li Ion Batteries
– Companies
• Battery Needs for Electric Vehicles
– BEEST Program
• Planar Energy
• Conclusions
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Existing Solid-state Li Battery Companies
• Cymbet
• Excellatron
• Front Edge
• Infinite Power
• Sakti3
• Seeo
• Toyota/AIST
• Planar Energy
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Cymbet Enerchips
• Location: Minnesota Based
• Status: VC funded, selling product
• Product: Embedded battery back up on PC boards,
microcontroller memory, SRAM etc.
• Electrolyte: LiPON
• Capacity: 0.001-0.05 Ah batteries
• Additional features
• Very low self discharge rates (unlike liquid batteries)
Source: http://www.cymbet.com/
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Excellatron
Source: www.excellatron.com/
• Location: Georgia Based
• Status: Private funded, Pilot Line
• Product: Thin film batteries, Smart cards, RFID
implantable medical devices, IC’s
• Electrolyte: LiPON
• Capacity: 0.001- 0.01Ah batteries
• Additional features
over 50,000 cycles for very thin (0.05µm) cathodes (small capacity)
Pulse discharge possible, 1000C rates
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Front Edge Technology
• Location: California Based
• Status: VC funded, selling product
• Product: NanoEnergy ultra thin battery, smart card,
portable sensors, and RFID tag.
• Electrolyte: LiPON
• Capacity: 0.001 Ah batteries
• Additional features: Thinnest batteries (50 microns),
Cycle Life >1000 at 100% discharge
Flexible
NanoEnergy® powering a blue LED
Source:
www.frontedgetechnology.com
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Infinite Power Solutions
• Location: Colorado Based
• Status: VC funded, Shipping product
• Product: World leader in Microbatteries (Micro energy cell)
wireless sensor, active RFID, powered smart
card, medical device, consumer electronic
• Electrolyte: LiPON
• Capacity: 0.0001Ah to 0.0025 Ah
• Additional features: Cycle life >10,000
Source: www.infinitepowersolutions.com/
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
SAKTI3
• Location: Michigan Based
• Status: VC funded, R&D
• Product: solid-state batteries
• Electrolyte: LiPON?
• Capacity: aimed at automotive market
• Additional features:
Novel mechanical engineering of vacuum deposition process
Not many technical details
Source: www.sakti3.com/
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
SEEO Batteries
• Location: California Based
• Status: VC funded, R&D
• Product: solid-state batteries
• Electrolyte: Solid Polymer
• Capacity: Goal: grid scale energy storage
• Additional features:
Electrolyte developed at LBL
Received DOE ARRA funding from Grid program
Source: www.seeo.com
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Toyota/AIST solid-state Battery
• Location: Japan
• Status: Collaboration, R&D
• Product: solid-state Battery
• Electrolyte: Li Oxide material (LIPON?)
• Capacity: 0.0001Ah?
• Additional features:
Using Aerosol deposition (low temperature)
Electrolyte conductivity at 3-5 x 10-6 S/cm
Source: http://www.aist.go.jp/aist_e/latest
_research/2010/20101224/20101224.html
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Solid-state Battery Companies
Source: Company websites
Company Electrolyte Cathode Anode Size Status
Cymbet LiPON unknown unknown microbatteries VC:
Commercial
Excellatron LiPON LiCoO2,
LiMn2O4
Li metal or
Sn3N4
microbatteries Private:
Pilot
Front Edge LiPON LiCoO2 Li Metal microbatteries VC:
Commercial
Infinite
Power
LiPON LiCoO2 Li metal microbatteries VC:
Commercial
Sakti3 LiPON? unknown unknown Automotive? VC:
R&D or Pilot
SEEO Solid
Polymer
unknown unknown Grid Scale? VC:
R&D
Toyota/AIST Oxide
(LiPON?)
LiCoO2
LiMn2O4
Graphite
Li4Ti5O12
microbatteries Toyota:
R&D
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Solid-state Battery Companies
Source: Company websites
Company Electrolyte Cathode Anode Size Status
Cymbet LiPON unknown unknown microbatteries VC:
Commercial
Excellatron LiPON LiCoO2,
LiMn2O4
Li metal or
Sn3N4
microbatteries Private:
Pilot
Front Edge LiPON LiCoO2 Li Metal microbatteries VC:
Commercial
Infinite
Power
LiPON LiCoO2 Li metal microbatteries VC:
Commercial
Sakti3 LiPON? unknown unknown Automotive? VC:
R&D or Pilot
SEEO Solid
Polymer
unknown unknown Grid Scale? VC:
R&D
Toyota/AIST Oxide
(LiPON?)
LiCoO2
LiMn2O4
Graphite
Li4Ti5O12
microbatteries Toyota:
R&D
Planar
Energy
Thio-
LiSICON
CuS SnO2 1-20Ah cells
automotive
VC:
Pilot
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Why the interest on larger Solid-state Batteries?
BEV: Battery
Electric Vehicles
Significant growth opportunity and need in automotive applications
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Outline
• Battery History
• Liquid vs. Solid-State Batteries
• Solid-state Li Ion Batteries
– Companies
• Battery Needs for Electric Vehicles
– BEEST Program
• Planar Energy
• Conclusions
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
BEEST Program
(Batteries for Electrical Energy Storage in Transportation)
• ARPA-E was created in response to National Academies
report “Rising above the gathering storm
• 2009 $400M in funding from Recovery Act
• Modeled after DARPA
• BEEST Program was one of the ARPA-E focus areas
• 10 proposals funded from ~1000 submissions
• Average funding $3-5M for 3 years
• The Goal of the BEEST program “Developing batteries for
PHEVs and EVs that can make a 300- to 500-mile-range
electric car a reality”
Courtesy: ARPA –E Website
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Why do we care about the Electric Car?
THE OPPORTUNITY:
• Reduced Oil Imports
• Reduced Energy Related Emissions
• Lower & More Stable Fuel Cost
(< $1.00/gallon of gasoline equivalent @ 10¢/kWh)
THE CHALLENGE:
• Batteries…
– Low Energy Density (Short Range)
– High Cost
– Safety
Courtesy: Dave Danielson ARPA -E
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Do batteries have the potential to rival the energy density
of gasoline powered vehicles on a system level?
Specific Energy (Wh/kg)
Courtesy: Dave Danielson
ARPA -E
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Do batteries have the potential to rival the energy
density of gasoline powered vehicles on a system level?
Theoretical Max
Courtesy: Dave Danielson
ARPA -E
Specific Energy (Wh/kg)
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Do batteries have the potential to rival the energy density
of gasoline powered vehicles on a system level?
Courtesy: Dave Danielson
ARPA -E
Cell level
Specific Energy (Wh/kg)
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Do batteries have the potential to rival the energy density
of gasoline powered vehicles on a system level?
Courtesy: Dave Danielson
ARPA -E
Cell Pack Level
Specific Energy (Wh/kg)
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Do batteries have the potential to rival the energy density of
gasoline powered vehicles on a system level?
Courtesy: Dave Danielson
ARPA -E
System level including
electric motors
Specific Energy (Wh/kg)
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Do batteries have the potential to rival the energy density of
gasoline powered vehicles on a system level? Yes
Courtesy: Dave Danielson
ARPA -E
Factor engine
and gas weight
and Carnot efficiency
Specific Energy (Wh/kg)
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
FACT: Batteries have the potential to rival the energy density
of gasoline powered vehicles on a system level
Courtesy: Dave Danielson
ARPA -E
Specific Energy (Wh/kg)
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Widespread Adoption of EV’s Requires RANGE and COST
Parity with Internal Combustion Engine (ICE) Vehicles
COST: ICE Cost Benchmark ~ 24¢/mile
RANGE: 250+ mile range needed to eliminate
“range anxiety”
In Battery terms the critical factors are:
• The battery pack price ($/kWh) (cost)
• The battery pack energy (kWh) (range)
• The battery pack specific energy (Wh/kg) (weight)
Courtesy: Dave Danielson ARPA -E
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Widespread Adoption of EV’s Requires RANGE and COST
Parity with Internal Combustion Engine Vehicles
COST: ICE Cost Benchmark ~ 24¢/mile
RANGE: 250+ mile range needed to eliminate
“range anxiety”
Ba#ery Pack Cost
($/kWh)
Discounted Vehicle Cost per Mile
600 (0.22) (0.27) (0.32) (0.37) (0.42) (0.47) (0.52)
500 (0.21) (0.25) (0.29) (0.34) (0.38) (0.42) (0.46)
400 (0.20) (0.24) (0.27) (0.30) (0.34) (0.37) (0.40)
300 (0.19) (0.22) (0.24) (0.27) (0.29) (0.32) (0.34)
250 (0.19) (0.21) (0.23) (0.25) (0.27) (0.29) (0.32)
200 (0.19) (0.20) (0.22) (0.24) (0.25) (0.27) (0.29)
150 (0.18) (0.19) (0.21) (0.22) (0.23) (0.24) (0.26)
Vehicle Range (mi) 50 100 150 200 250 300 350
Pack Energy (kWh) 13 25 38 50 63 75 88
Courtesy: Dave Danielson ARPA -E
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Widespread Adoption of EV’s Requires RANGE and COST
Parity with Internal Combustion Engine Vehicles
COST: ICE Cost Benchmark ~ 24¢/mile
RANGE: 250+ mile range needed to eliminate
“range anxiety”
Ba#ery Pack Cost
($/kWh)
Discounted Vehicle Cost per Mile
600 (0.22) (0.27) (0.32) (0.37) (0.42) (0.47) (0.52)
500 (0.21) (0.25) (0.29) (0.34) (0.38) (0.42) (0.46)
400 (0.20) (0.24) (0.27) (0.30) (0.34) (0.37) (0.40)
300 (0.19) (0.22) (0.24) (0.27) (0.29) (0.32) (0.34)
250 (0.19) (0.21) (0.23) (0.25) (0.27) (0.29) (0.32)
200 (0.19) (0.20) (0.22) (0.24) (0.25) (0.27) (0.29)
150 (0.18) (0.19) (0.21) (0.22) (0.23) (0.24) (0.26)
Vehicle Range (mi) 50 100 150 200 250 300 350
Pack Energy (kWh) 13 25 38 50 63 75 88
Now
Courtesy: Dave Danielson ARPA -E
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Widespread Adoption of EV’s Requires RANGE and COST
Parity with Internal Combustion Engine Vehicles
COST: ICE Cost Benchmark ~ 24¢/mile
RANGE: 250+ mile range needed to eliminate
“range anxiety”
Ba#ery Pack Cost
($/kWh)
Discounted Vehicle Cost per Mile
600 (0.22) (0.27) (0.32) (0.37) (0.42) (0.47) (0.52)
500 (0.21) (0.25) (0.29) (0.34) (0.38) (0.42) (0.46)
400 (0.20) (0.24) (0.27) (0.30) (0.34) (0.37) (0.40)
300 (0.19) (0.22) (0.24) (0.27) (0.29) (0.32) (0.34)
250 (0.19) (0.21) (0.23) (0.25) (0.27) (0.29) (0.32)
200 (0.19) (0.20) (0.22) (0.24) (0.25) (0.27) (0.29)
150 (0.18) (0.19) (0.21) (0.22) (0.23) (0.24) (0.26)
Vehicle Range (mi) 50 100 150 200 250 300 350
Pack Energy (kWh) 13 25 38 50 63 75 88
Now
Large EV Penetration
Courtesy: Dave Danielson ARPA -E
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Widespread Adoption of EV’s Requires RANGE and COST
Parity with Internal Combustion Engine Vehicles
COST: ICE Cost Benchmark ~ 24¢/mile
RANGE: 250+ mile range needed to eliminate
“range anxiety”
Ba#ery Pack Cost
($/kWh)
Discounted Vehicle Cost per Mile
600 (0.22) (0.27) (0.32) (0.37) (0.42) (0.47) (0.52)
500 (0.21) (0.25) (0.29) (0.34) (0.38) (0.42) (0.46)
400 (0.20) (0.24) (0.27) (0.30) (0.34) (0.37) (0.40)
300 (0.19) (0.22) (0.24) (0.27) (0.29) (0.32) (0.34)
250 (0.19) (0.21) (0.23) (0.25) (0.27) (0.29) (0.32)
200 (0.19) (0.20) (0.22) (0.24) (0.25) (0.27) (0.29)
150 (0.18) (0.19) (0.21) (0.22) (0.23) (0.24) (0.26)
Vehicle Range (mi) 50 100 150 200 250 300 350
Pack Energy (kWh) 13 25 38 50 63 75 88
Now
Large EV Penetration
Courtesy: Dave Danielson ARPA -E
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Widespread Adoption of EV’s Requires RANGE and COST
Parity with Internal Combustion Engine Vehicles
COST: ICE Cost Benchmark ~ 24¢/mile
RANGE: 250+ mile range needed to eliminate
“range anxiety”
Ba#ery Pack Cost
($/kWh)
Discounted Vehicle Cost per Mile
600 (0.22) (0.27) (0.32) (0.37) (0.42) (0.47) (0.52)
500 (0.21) (0.25) (0.29) (0.34) (0.38) (0.42) (0.46)
400 (0.20) (0.24) (0.27) (0.30) (0.34) (0.37) (0.40)
300 (0.19) (0.22) (0.24) (0.27) (0.29) (0.32) (0.34)
250 (0.19) (0.21) (0.23) (0.25) (0.27) (0.29) (0.32)
200 (0.19) (0.20) (0.22) (0.24) (0.25) (0.27) (0.29)
150 (0.18) (0.19) (0.21) (0.22) (0.23) (0.24) (0.26)
Vehicle Range (mi) 50 100 150 200 250 300 350
Pack Energy (kWh) 13 25 38 50 63 75 88
Pack Specific Energy (Wh/kg) 42 83 125 167 208 250 292
Now
Large EV Penetration
Courtesy: Dave Danielson ARPA -E
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
BEEST Program Targets
System Energy
(Wh/kg)
100
>200
Current
BEEST
2x
RANGE
Courtesy: Dave Danielson ARPA -E
System Cost
(/kWh)
$1,000
<$250
COST
4x
• Cost needs
to drop by 4X
• Specific
Energy needs
to double
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Outline
• Battery History
• Liquid vs. Solid-State Batteries
• solid-state Li Ion Batteries
– Companies
• Battery Needs for Electric Vehicles
– BEEST Program
• Planar Energy
• Conclusions
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Solid-state Batteries and Cars
• Clearly there is a need for high energy, high power, low mass,
high cycle number batteries for automotive applications.
• Solid-state batteries offer the potential for
– High Energy (higher voltage cathodes possible)
– High Power (large discharge rates possible)
– Low Mass (less inert material)
– High cycle number (10X cycle life of typical Liquid)
• So why are they not being considered?
– COST
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
SOLID-STATE IS PROVEN - BUT DOES NOT SCALE
$25
0.001Ah
Courtesy: Scott Faris Planar Energy
$25 for a 0.001Ah battery that
meets specific needs is
acceptable
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
SOLID-STATE IS PROVEN - BUT DOES NOT SCALE
Using current thin film
technology the cost of
a single 1.1Ah battery
would be ~$15,000
One very expensive
cell phone
$25
0.001Ah 1.1 Ah
Courtesy: Scott Faris Planar Energy
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
SOLID-STATE IS PROVEN - BUT DOES NOT SCALE
1.1 Ah 20 Ah
$25
0.001Ah
Courtesy: Scott Faris Planar Energy
Using current
thin film
technology the
cost of a single
20Ah battery
would be
$100,000
A high range EV
will require
800-1000 20Ah
cells
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
UNDERLYING PROBLEM – MANUFACTURING & MATERIALS
Electronic Grade
Material
Complex
Equipment
Simple
Integrated
Device
THIN FILM SOLID-STATE APPROACH
Traditional solid-state Battery Methodology
Courtesy: Scott Faris Planar Energy
The Cost Challenge
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Cost Reduction
• Avoid semiconductor grade chemicals
– Develop process around inexpensive
chemicals
• Avoid Vacuum technologies
– Slows Manufacturing
– High Capital expense
• Develop high throughput process
– e.g. roll to roll
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Planar Energy
• Location: Florida Based
• Status: VC funded, early Prototype development
• Product: solid-state battery
• Electrolyte: LiAlGaSPO4
• Capacity: 0.1Ah to 20 Ah cells
• Additional features:
• Recipient of one of the 10 ARPA E BEEST grants
• Unique deposition process (SPEED)
• High conductivity solid-state electrolyte
• Aggressively pursuing thick cathodes for high capacity
batteries
Source: Scott Faris, Planar Energy
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Planar Energy Deposition Approach
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
VP SPEED Gen 3
Courtesy Planar Energy
In Line
Scalable Batch Pilot
Growth Medium:
deionized water
Water soluble reagents
and complexing agents
prevent homogeneous
nucleation in solution
Heated substrate
promotes growth only
on hydrophilic surface
Result: dense
nanoscale grains
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Si
SSE
TiN
Rapid switching response
of electrolyte
High Ionic Conductivity
Courtesy Planar Energy
• SPEED produces self assembled
coating
• New Composition
• Li Ion Conductivity 1 x 10-4S/cm
vs. 10-6-10-7S/cm for LiPON
7 orders of
magnitude
difference in
ionic and
electronic
conductivity
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Key Challenges
• Interfaces are always a challenge for solid-state systems
– Accommodation of current flow across solid-solid interfaces
• Thick cathodes essential for high energy cells
– Must reduce impedance of thick cathode materials
• New Deposition method and chemistries
– Further optimization of the SPEED process
– Further optimization of the new thio-LiSICON
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Markets
Products
Mfg
Scale
Courtesy Planar Energy
Goal is shipping 1-20Ah cells by 2014
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
SOLID-STATE IS PROVEN - BUT DOES NOT SCALE
“SPEED” greatly
reduces the cost
of manufacturing
solid-state cells.
1.1 Ah 20 Ah
$25
0.001Ah
Forecast price using
SPEED
$5-10
Forecast price using
SPEED
$25-50
Courtesy Planar Energy
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
BEEST Program Targets
System Energy
(Wh/kg)
100
>200
Current
BEEST
2x
RANGE
Courtesy: Scott Faris Planar Energy
System Cost
(/kWh)
$1,000
<$250
COST
4x
Planar solid-state Batteries
$250/kWh 400Wh/kg With new
Electrolyte and
SPEED
process Planar
believes it can
meet the
BEEST Targets
with a solid-
state battery
Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu)
Conclusions
• Liquid based Li Ion Batteries dominate the current market
• Solid-state batteries offer intriguing opportunities for
greatly increased cycle life, safety, and energy density
• To date solid-state batteries have found application
primarily in small milliamp hour batteries
• With recent advances in electrolytes and processing
technology, solid-state batteries are poised to
contribute to the energy storage challenges on a
much larger scale including transportation.

More Related Content

Similar to energy-ss-batteries-jones.pdf

Energy Storage and US Competitiveness
Energy Storage and US CompetitivenessEnergy Storage and US Competitiveness
Energy Storage and US CompetitivenessCharged2020
 
ENABLING EVTOL WITH BREAKTHROUGH BATTERIES
ENABLING EVTOL WITH BREAKTHROUGH BATTERIESENABLING EVTOL WITH BREAKTHROUGH BATTERIES
ENABLING EVTOL WITH BREAKTHROUGH BATTERIESiQHub
 
Emerging Battery Chemistries | Reimagining EVs Beyond Conventional Li-Ion Bat...
Emerging Battery Chemistries | Reimagining EVs Beyond Conventional Li-Ion Bat...Emerging Battery Chemistries | Reimagining EVs Beyond Conventional Li-Ion Bat...
Emerging Battery Chemistries | Reimagining EVs Beyond Conventional Li-Ion Bat...BIS Research Inc.
 
Presentation for Power Management of Smart phones
Presentation for Power Management of Smart phonesPresentation for Power Management of Smart phones
Presentation for Power Management of Smart phonesUniversity of Calcutta
 
The current & future trends on ultra high
The current & future trends on ultra highThe current & future trends on ultra high
The current & future trends on ultra highchandan kumar
 
Nanowire battery
Nanowire batteryNanowire battery
Nanowire batteryrounak077
 
Wearable Energy Sources
Wearable Energy SourcesWearable Energy Sources
Wearable Energy SourcesDawson Hun
 
E-mobility | Part 2 - Battery Technology & Alternative Innovations (English)
E-mobility | Part 2 - Battery Technology & Alternative Innovations (English)E-mobility | Part 2 - Battery Technology & Alternative Innovations (English)
E-mobility | Part 2 - Battery Technology & Alternative Innovations (English)Vertex Holdings
 
EIS BASED BATTERY MANAGEMENT SYSTEMS - ADVANTAGES, CHALLENGES, AND STRATEGIES
EIS BASED BATTERY MANAGEMENT SYSTEMS - ADVANTAGES, CHALLENGES, AND STRATEGIESEIS BASED BATTERY MANAGEMENT SYSTEMS - ADVANTAGES, CHALLENGES, AND STRATEGIES
EIS BASED BATTERY MANAGEMENT SYSTEMS - ADVANTAGES, CHALLENGES, AND STRATEGIESDesignTeam8
 
MQP Poster Draft 4.20.15final
MQP Poster Draft 4.20.15finalMQP Poster Draft 4.20.15final
MQP Poster Draft 4.20.15finalOmri Flaisher
 
Electrical measurement lithium-ion_batteries
Electrical measurement lithium-ion_batteriesElectrical measurement lithium-ion_batteries
Electrical measurement lithium-ion_batteriesNIHON DENKEI SINGAPORE
 
Steve Sloop - OnTo Technologies (Drive Oregon EV Battery Recycling and Reuse ...
Steve Sloop - OnTo Technologies (Drive Oregon EV Battery Recycling and Reuse ...Steve Sloop - OnTo Technologies (Drive Oregon EV Battery Recycling and Reuse ...
Steve Sloop - OnTo Technologies (Drive Oregon EV Battery Recycling and Reuse ...Forth
 
IEEE.Power.Electronics-March.2017-P2P.pdf
IEEE.Power.Electronics-March.2017-P2P.pdfIEEE.Power.Electronics-March.2017-P2P.pdf
IEEE.Power.Electronics-March.2017-P2P.pdfivan ion
 
capstone final presentation
capstone final presentationcapstone final presentation
capstone final presentationAmmar Sal
 
IMI Labs Semiconductor Applications
IMI Labs Semiconductor ApplicationsIMI Labs Semiconductor Applications
IMI Labs Semiconductor ApplicationsIntermolecular
 
IMI Labs Semiconductor Applications
IMI Labs Semiconductor ApplicationsIMI Labs Semiconductor Applications
IMI Labs Semiconductor ApplicationsGregory Belloni
 

Similar to energy-ss-batteries-jones.pdf (20)

Energy Storage and US Competitiveness
Energy Storage and US CompetitivenessEnergy Storage and US Competitiveness
Energy Storage and US Competitiveness
 
detailed study on Nanobatterys
detailed study on Nanobatterys detailed study on Nanobatterys
detailed study on Nanobatterys
 
ENABLING EVTOL WITH BREAKTHROUGH BATTERIES
ENABLING EVTOL WITH BREAKTHROUGH BATTERIESENABLING EVTOL WITH BREAKTHROUGH BATTERIES
ENABLING EVTOL WITH BREAKTHROUGH BATTERIES
 
Emerging Battery Chemistries | Reimagining EVs Beyond Conventional Li-Ion Bat...
Emerging Battery Chemistries | Reimagining EVs Beyond Conventional Li-Ion Bat...Emerging Battery Chemistries | Reimagining EVs Beyond Conventional Li-Ion Bat...
Emerging Battery Chemistries | Reimagining EVs Beyond Conventional Li-Ion Bat...
 
Presentation for Power Management of Smart phones
Presentation for Power Management of Smart phonesPresentation for Power Management of Smart phones
Presentation for Power Management of Smart phones
 
The current & future trends on ultra high
The current & future trends on ultra highThe current & future trends on ultra high
The current & future trends on ultra high
 
CK2018: Battery technology
CK2018: Battery technology CK2018: Battery technology
CK2018: Battery technology
 
Nanowire battery
Nanowire batteryNanowire battery
Nanowire battery
 
Wearable Energy Sources
Wearable Energy SourcesWearable Energy Sources
Wearable Energy Sources
 
New Battery Technology Developments
New Battery Technology DevelopmentsNew Battery Technology Developments
New Battery Technology Developments
 
E-mobility | Part 2 - Battery Technology & Alternative Innovations (English)
E-mobility | Part 2 - Battery Technology & Alternative Innovations (English)E-mobility | Part 2 - Battery Technology & Alternative Innovations (English)
E-mobility | Part 2 - Battery Technology & Alternative Innovations (English)
 
EIS BASED BATTERY MANAGEMENT SYSTEMS - ADVANTAGES, CHALLENGES, AND STRATEGIES
EIS BASED BATTERY MANAGEMENT SYSTEMS - ADVANTAGES, CHALLENGES, AND STRATEGIESEIS BASED BATTERY MANAGEMENT SYSTEMS - ADVANTAGES, CHALLENGES, AND STRATEGIES
EIS BASED BATTERY MANAGEMENT SYSTEMS - ADVANTAGES, CHALLENGES, AND STRATEGIES
 
Analytical Study and Comparison of Solid and Liquid Batteries for Electric Ve...
Analytical Study and Comparison of Solid and Liquid Batteries for Electric Ve...Analytical Study and Comparison of Solid and Liquid Batteries for Electric Ve...
Analytical Study and Comparison of Solid and Liquid Batteries for Electric Ve...
 
MQP Poster Draft 4.20.15final
MQP Poster Draft 4.20.15finalMQP Poster Draft 4.20.15final
MQP Poster Draft 4.20.15final
 
Electrical measurement lithium-ion_batteries
Electrical measurement lithium-ion_batteriesElectrical measurement lithium-ion_batteries
Electrical measurement lithium-ion_batteries
 
Steve Sloop - OnTo Technologies (Drive Oregon EV Battery Recycling and Reuse ...
Steve Sloop - OnTo Technologies (Drive Oregon EV Battery Recycling and Reuse ...Steve Sloop - OnTo Technologies (Drive Oregon EV Battery Recycling and Reuse ...
Steve Sloop - OnTo Technologies (Drive Oregon EV Battery Recycling and Reuse ...
 
IEEE.Power.Electronics-March.2017-P2P.pdf
IEEE.Power.Electronics-March.2017-P2P.pdfIEEE.Power.Electronics-March.2017-P2P.pdf
IEEE.Power.Electronics-March.2017-P2P.pdf
 
capstone final presentation
capstone final presentationcapstone final presentation
capstone final presentation
 
IMI Labs Semiconductor Applications
IMI Labs Semiconductor ApplicationsIMI Labs Semiconductor Applications
IMI Labs Semiconductor Applications
 
IMI Labs Semiconductor Applications
IMI Labs Semiconductor ApplicationsIMI Labs Semiconductor Applications
IMI Labs Semiconductor Applications
 

Recently uploaded

What is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsWhat is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsVIEW
 
Databricks Generative AI FoundationCertified.pdf
Databricks Generative AI FoundationCertified.pdfDatabricks Generative AI FoundationCertified.pdf
Databricks Generative AI FoundationCertified.pdfVinayVadlagattu
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Ramkumar k
 
History of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & ModernizationHistory of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & ModernizationEmaan Sharma
 
Diploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdfDiploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdfJNTUA
 
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书c3384a92eb32
 
Filters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsFilters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsMathias Magdowski
 
Circuit Breakers for Engineering Students
Circuit Breakers for Engineering StudentsCircuit Breakers for Engineering Students
Circuit Breakers for Engineering Studentskannan348865
 
DBMS-Report on Student management system.pptx
DBMS-Report on Student management system.pptxDBMS-Report on Student management system.pptx
DBMS-Report on Student management system.pptxrajjais1221
 
Call for Papers - Journal of Electrical Systems (JES), E-ISSN: 1112-5209, ind...
Call for Papers - Journal of Electrical Systems (JES), E-ISSN: 1112-5209, ind...Call for Papers - Journal of Electrical Systems (JES), E-ISSN: 1112-5209, ind...
Call for Papers - Journal of Electrical Systems (JES), E-ISSN: 1112-5209, ind...Christo Ananth
 
Artificial intelligence presentation2-171219131633.pdf
Artificial intelligence presentation2-171219131633.pdfArtificial intelligence presentation2-171219131633.pdf
Artificial intelligence presentation2-171219131633.pdfKira Dess
 
Presentation on Slab, Beam, Column, and Foundation/Footing
Presentation on Slab,  Beam, Column, and Foundation/FootingPresentation on Slab,  Beam, Column, and Foundation/Footing
Presentation on Slab, Beam, Column, and Foundation/FootingEr. Suman Jyoti
 
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...ronahami
 
01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...
01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...
01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...AshwaniAnuragi1
 
Basics of Relay for Engineering Students
Basics of Relay for Engineering StudentsBasics of Relay for Engineering Students
Basics of Relay for Engineering Studentskannan348865
 
Adsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) pptAdsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) pptjigup7320
 
5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...archanaece3
 
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdfInvolute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdfJNTUA
 
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and ToolsMaximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Toolssoginsider
 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxkalpana413121
 

Recently uploaded (20)

What is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsWhat is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, Functions
 
Databricks Generative AI FoundationCertified.pdf
Databricks Generative AI FoundationCertified.pdfDatabricks Generative AI FoundationCertified.pdf
Databricks Generative AI FoundationCertified.pdf
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
 
History of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & ModernizationHistory of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & Modernization
 
Diploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdfDiploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdf
 
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
 
Filters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsFilters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility Applications
 
Circuit Breakers for Engineering Students
Circuit Breakers for Engineering StudentsCircuit Breakers for Engineering Students
Circuit Breakers for Engineering Students
 
DBMS-Report on Student management system.pptx
DBMS-Report on Student management system.pptxDBMS-Report on Student management system.pptx
DBMS-Report on Student management system.pptx
 
Call for Papers - Journal of Electrical Systems (JES), E-ISSN: 1112-5209, ind...
Call for Papers - Journal of Electrical Systems (JES), E-ISSN: 1112-5209, ind...Call for Papers - Journal of Electrical Systems (JES), E-ISSN: 1112-5209, ind...
Call for Papers - Journal of Electrical Systems (JES), E-ISSN: 1112-5209, ind...
 
Artificial intelligence presentation2-171219131633.pdf
Artificial intelligence presentation2-171219131633.pdfArtificial intelligence presentation2-171219131633.pdf
Artificial intelligence presentation2-171219131633.pdf
 
Presentation on Slab, Beam, Column, and Foundation/Footing
Presentation on Slab,  Beam, Column, and Foundation/FootingPresentation on Slab,  Beam, Column, and Foundation/Footing
Presentation on Slab, Beam, Column, and Foundation/Footing
 
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
 
01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...
01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...
01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...
 
Basics of Relay for Engineering Students
Basics of Relay for Engineering StudentsBasics of Relay for Engineering Students
Basics of Relay for Engineering Students
 
Adsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) pptAdsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) ppt
 
5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...
 
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdfInvolute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
 
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and ToolsMaximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptx
 

energy-ss-batteries-jones.pdf

  • 1. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) State of Solid-State Batteries Prof. Kevin S. Jones Department of Materials Science and Engineering University of Florida
  • 2. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Acknowledgments • Dave Danielson Program Director at ARPA-E • Scott Faris, Richard Fox, Roland Pitts and Isaiah Oladeji at Planar Energy
  • 3. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Outline • Introduction • Liquid vs. Solid-State Batteries • Solid-state Li Ion Batteries – Companies • Battery Needs for Electric Vehicles – BEEST Program • Planar Energy • Conclusions
  • 4. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Typical Li Ion Battery During use (discharge) ions move from anode to cathode Figure courtesy C. Daniel JOM Vol. 60, No.9 pp. 43-48, 2008
  • 5. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Battery Basics • Basic terminology • Type I vs. Type II Battery: Type II (secondary) is rechargeable • Li Metal vs. Li Ion Battery: Based on anode used; Li vs. a compound • Capacity: Measure of Li that moves between the anode and cathode (Ah) • Cycle Life: Number of recharge cycles before x% of the capacity is lost • Energy Density: Energy the battery can deliver per volume (Wh/l) • Specific Energy: Energy the battery can deliver per mass (Wh/kg) • Specific Power: A measure of the Watts the battery can deliver (W/kg)
  • 6. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Existing Battery Types Specific energy is the total energy a battery can deliver in watt-hours per kilogram (Wh/kg) Specific power is the battery’s ability to deliver power in watts per kilogram (W/kg). • Ragone Plot • Higher power and energy are driving the Li Ion battery growth
  • 7. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) 25000 20000 15000 10000 5000 Type II Battery Market Source:http://seekingalpha.com/instablog/495621-jrbrown/44054 Li Ion dominating the $10B rechargeable battery market Li Ion sales forecast to more than double in the next 10 years Li Polymer Li Ion NiMH NiCd $M today 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
  • 8. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Why Li Ion Batteries? • Advantages • High specific energy (Li is very light) • High open circuit voltage (more power at low current) • Less memory effect (observed in Ni Cd batteries) • Slow self discharge (longer shelf life) • Disadvantages • Flammable liquids • Limited Cell/cycle Life (SEI degradation) • Battery life decreases with increasing temperature
  • 9. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Outline • Introduction • Liquid vs. Solid-State Batteries • Solid-state Li Ion Batteries – Companies • Battery Needs for Electric Vehicles – BEEST Program • Planar Energy • Conclusions
  • 10. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Types of Li Ion Batteries • Liquid Electrolyte – LiPF6 in organic carbonates – Li Ion conductivity 10-2-10-3S/cm • Gel/polymer electrolyte – Not covered in this talk • Solid-state Ceramic Electrolyte – Focus of this talk
  • 11. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Type II Battery Market Source:http://seekingalpha.com/instablog/495621-jrbrown/44054 25000 20000 15000 10000 5000 Li Polymer Li Ion NiMH NiCd $M today 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Estimated current solid-state battery sales <1% of $8B Li Ion Battery Market*
  • 12. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Why Solid-State Batteries? • Advantages over liquid • Safety • Would eliminate thermal runaway • Performance • Higher voltages possible • Life • Much longer cycle life • Disadvantages • Cost • Traditionally very expensive to make • Temperature sensitive • Low temperature operation can be a challenge
  • 13. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Liquid vs Solid-state Li Ion Battery Liquid solvent and polymer separator (not shown) Replaced by solid electrolyte Figure courtesy C. Daniel JOM Vol. 60, No.9 pp. 43-48, 2008
  • 14. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) The most common solid-state electrolyte LiPON • LiPON is a solid-state electrolyte developed at Oak Ridge National Labs • LiPON is an amorphous glass • RF Magnetron deposition from Li3PO4 target in N2 • The chemical composition varies from Li3.3PO3.8 N0.24 to Li3.6PO3.3N0.69* • The N increases the Li ion conductivity relative to Li3PO4 • Li Ion Conductivity of LiPON is ~2 x 10-6 S/cm • still 3-4 orders of magnitude worse than liquid *N.J. Dudney, J. Power Sources, 89, 176, 2000
  • 15. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Conventional Solid-State Batteries Vacuum deposition for all layers Cathode: LiCoO2 or LiMn2O4 or V2O5 Electrolyte: LiPON glass Anode: Li Metal or Sn3N4 Capacity: Typically very low (0.001 to 0.01Ah) Normally LiPON Source: http://www.excellatron.com
  • 16. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Outline • Introduction • Liquid vs. Solid-State Batteries • Solid-state Li Ion Batteries – Companies • Battery Needs for Electric Vehicles – BEEST Program • Planar Energy • Conclusions
  • 17. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Existing Solid-state Li Battery Companies • Cymbet • Excellatron • Front Edge • Infinite Power • Sakti3 • Seeo • Toyota/AIST • Planar Energy
  • 18. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Cymbet Enerchips • Location: Minnesota Based • Status: VC funded, selling product • Product: Embedded battery back up on PC boards, microcontroller memory, SRAM etc. • Electrolyte: LiPON • Capacity: 0.001-0.05 Ah batteries • Additional features • Very low self discharge rates (unlike liquid batteries) Source: http://www.cymbet.com/
  • 19. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Excellatron Source: www.excellatron.com/ • Location: Georgia Based • Status: Private funded, Pilot Line • Product: Thin film batteries, Smart cards, RFID implantable medical devices, IC’s • Electrolyte: LiPON • Capacity: 0.001- 0.01Ah batteries • Additional features over 50,000 cycles for very thin (0.05µm) cathodes (small capacity) Pulse discharge possible, 1000C rates
  • 20. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Front Edge Technology • Location: California Based • Status: VC funded, selling product • Product: NanoEnergy ultra thin battery, smart card, portable sensors, and RFID tag. • Electrolyte: LiPON • Capacity: 0.001 Ah batteries • Additional features: Thinnest batteries (50 microns), Cycle Life >1000 at 100% discharge Flexible NanoEnergy® powering a blue LED Source: www.frontedgetechnology.com
  • 21. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Infinite Power Solutions • Location: Colorado Based • Status: VC funded, Shipping product • Product: World leader in Microbatteries (Micro energy cell) wireless sensor, active RFID, powered smart card, medical device, consumer electronic • Electrolyte: LiPON • Capacity: 0.0001Ah to 0.0025 Ah • Additional features: Cycle life >10,000 Source: www.infinitepowersolutions.com/
  • 22. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) SAKTI3 • Location: Michigan Based • Status: VC funded, R&D • Product: solid-state batteries • Electrolyte: LiPON? • Capacity: aimed at automotive market • Additional features: Novel mechanical engineering of vacuum deposition process Not many technical details Source: www.sakti3.com/
  • 23. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) SEEO Batteries • Location: California Based • Status: VC funded, R&D • Product: solid-state batteries • Electrolyte: Solid Polymer • Capacity: Goal: grid scale energy storage • Additional features: Electrolyte developed at LBL Received DOE ARRA funding from Grid program Source: www.seeo.com
  • 24. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Toyota/AIST solid-state Battery • Location: Japan • Status: Collaboration, R&D • Product: solid-state Battery • Electrolyte: Li Oxide material (LIPON?) • Capacity: 0.0001Ah? • Additional features: Using Aerosol deposition (low temperature) Electrolyte conductivity at 3-5 x 10-6 S/cm Source: http://www.aist.go.jp/aist_e/latest _research/2010/20101224/20101224.html
  • 25. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Solid-state Battery Companies Source: Company websites Company Electrolyte Cathode Anode Size Status Cymbet LiPON unknown unknown microbatteries VC: Commercial Excellatron LiPON LiCoO2, LiMn2O4 Li metal or Sn3N4 microbatteries Private: Pilot Front Edge LiPON LiCoO2 Li Metal microbatteries VC: Commercial Infinite Power LiPON LiCoO2 Li metal microbatteries VC: Commercial Sakti3 LiPON? unknown unknown Automotive? VC: R&D or Pilot SEEO Solid Polymer unknown unknown Grid Scale? VC: R&D Toyota/AIST Oxide (LiPON?) LiCoO2 LiMn2O4 Graphite Li4Ti5O12 microbatteries Toyota: R&D
  • 26. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Solid-state Battery Companies Source: Company websites Company Electrolyte Cathode Anode Size Status Cymbet LiPON unknown unknown microbatteries VC: Commercial Excellatron LiPON LiCoO2, LiMn2O4 Li metal or Sn3N4 microbatteries Private: Pilot Front Edge LiPON LiCoO2 Li Metal microbatteries VC: Commercial Infinite Power LiPON LiCoO2 Li metal microbatteries VC: Commercial Sakti3 LiPON? unknown unknown Automotive? VC: R&D or Pilot SEEO Solid Polymer unknown unknown Grid Scale? VC: R&D Toyota/AIST Oxide (LiPON?) LiCoO2 LiMn2O4 Graphite Li4Ti5O12 microbatteries Toyota: R&D Planar Energy Thio- LiSICON CuS SnO2 1-20Ah cells automotive VC: Pilot
  • 27. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Why the interest on larger Solid-state Batteries? BEV: Battery Electric Vehicles Significant growth opportunity and need in automotive applications
  • 28. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Outline • Battery History • Liquid vs. Solid-State Batteries • Solid-state Li Ion Batteries – Companies • Battery Needs for Electric Vehicles – BEEST Program • Planar Energy • Conclusions
  • 29. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) BEEST Program (Batteries for Electrical Energy Storage in Transportation) • ARPA-E was created in response to National Academies report “Rising above the gathering storm • 2009 $400M in funding from Recovery Act • Modeled after DARPA • BEEST Program was one of the ARPA-E focus areas • 10 proposals funded from ~1000 submissions • Average funding $3-5M for 3 years • The Goal of the BEEST program “Developing batteries for PHEVs and EVs that can make a 300- to 500-mile-range electric car a reality” Courtesy: ARPA –E Website
  • 30. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Why do we care about the Electric Car? THE OPPORTUNITY: • Reduced Oil Imports • Reduced Energy Related Emissions • Lower & More Stable Fuel Cost (< $1.00/gallon of gasoline equivalent @ 10¢/kWh) THE CHALLENGE: • Batteries… – Low Energy Density (Short Range) – High Cost – Safety Courtesy: Dave Danielson ARPA -E
  • 31. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Do batteries have the potential to rival the energy density of gasoline powered vehicles on a system level? Specific Energy (Wh/kg) Courtesy: Dave Danielson ARPA -E
  • 32. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Do batteries have the potential to rival the energy density of gasoline powered vehicles on a system level? Theoretical Max Courtesy: Dave Danielson ARPA -E Specific Energy (Wh/kg)
  • 33. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Do batteries have the potential to rival the energy density of gasoline powered vehicles on a system level? Courtesy: Dave Danielson ARPA -E Cell level Specific Energy (Wh/kg)
  • 34. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Do batteries have the potential to rival the energy density of gasoline powered vehicles on a system level? Courtesy: Dave Danielson ARPA -E Cell Pack Level Specific Energy (Wh/kg)
  • 35. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Do batteries have the potential to rival the energy density of gasoline powered vehicles on a system level? Courtesy: Dave Danielson ARPA -E System level including electric motors Specific Energy (Wh/kg)
  • 36. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Do batteries have the potential to rival the energy density of gasoline powered vehicles on a system level? Yes Courtesy: Dave Danielson ARPA -E Factor engine and gas weight and Carnot efficiency Specific Energy (Wh/kg)
  • 37. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) FACT: Batteries have the potential to rival the energy density of gasoline powered vehicles on a system level Courtesy: Dave Danielson ARPA -E Specific Energy (Wh/kg)
  • 38. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Widespread Adoption of EV’s Requires RANGE and COST Parity with Internal Combustion Engine (ICE) Vehicles COST: ICE Cost Benchmark ~ 24¢/mile RANGE: 250+ mile range needed to eliminate “range anxiety” In Battery terms the critical factors are: • The battery pack price ($/kWh) (cost) • The battery pack energy (kWh) (range) • The battery pack specific energy (Wh/kg) (weight) Courtesy: Dave Danielson ARPA -E
  • 39. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Widespread Adoption of EV’s Requires RANGE and COST Parity with Internal Combustion Engine Vehicles COST: ICE Cost Benchmark ~ 24¢/mile RANGE: 250+ mile range needed to eliminate “range anxiety” Ba#ery Pack Cost ($/kWh) Discounted Vehicle Cost per Mile 600 (0.22) (0.27) (0.32) (0.37) (0.42) (0.47) (0.52) 500 (0.21) (0.25) (0.29) (0.34) (0.38) (0.42) (0.46) 400 (0.20) (0.24) (0.27) (0.30) (0.34) (0.37) (0.40) 300 (0.19) (0.22) (0.24) (0.27) (0.29) (0.32) (0.34) 250 (0.19) (0.21) (0.23) (0.25) (0.27) (0.29) (0.32) 200 (0.19) (0.20) (0.22) (0.24) (0.25) (0.27) (0.29) 150 (0.18) (0.19) (0.21) (0.22) (0.23) (0.24) (0.26) Vehicle Range (mi) 50 100 150 200 250 300 350 Pack Energy (kWh) 13 25 38 50 63 75 88 Courtesy: Dave Danielson ARPA -E
  • 40. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Widespread Adoption of EV’s Requires RANGE and COST Parity with Internal Combustion Engine Vehicles COST: ICE Cost Benchmark ~ 24¢/mile RANGE: 250+ mile range needed to eliminate “range anxiety” Ba#ery Pack Cost ($/kWh) Discounted Vehicle Cost per Mile 600 (0.22) (0.27) (0.32) (0.37) (0.42) (0.47) (0.52) 500 (0.21) (0.25) (0.29) (0.34) (0.38) (0.42) (0.46) 400 (0.20) (0.24) (0.27) (0.30) (0.34) (0.37) (0.40) 300 (0.19) (0.22) (0.24) (0.27) (0.29) (0.32) (0.34) 250 (0.19) (0.21) (0.23) (0.25) (0.27) (0.29) (0.32) 200 (0.19) (0.20) (0.22) (0.24) (0.25) (0.27) (0.29) 150 (0.18) (0.19) (0.21) (0.22) (0.23) (0.24) (0.26) Vehicle Range (mi) 50 100 150 200 250 300 350 Pack Energy (kWh) 13 25 38 50 63 75 88 Now Courtesy: Dave Danielson ARPA -E
  • 41. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Widespread Adoption of EV’s Requires RANGE and COST Parity with Internal Combustion Engine Vehicles COST: ICE Cost Benchmark ~ 24¢/mile RANGE: 250+ mile range needed to eliminate “range anxiety” Ba#ery Pack Cost ($/kWh) Discounted Vehicle Cost per Mile 600 (0.22) (0.27) (0.32) (0.37) (0.42) (0.47) (0.52) 500 (0.21) (0.25) (0.29) (0.34) (0.38) (0.42) (0.46) 400 (0.20) (0.24) (0.27) (0.30) (0.34) (0.37) (0.40) 300 (0.19) (0.22) (0.24) (0.27) (0.29) (0.32) (0.34) 250 (0.19) (0.21) (0.23) (0.25) (0.27) (0.29) (0.32) 200 (0.19) (0.20) (0.22) (0.24) (0.25) (0.27) (0.29) 150 (0.18) (0.19) (0.21) (0.22) (0.23) (0.24) (0.26) Vehicle Range (mi) 50 100 150 200 250 300 350 Pack Energy (kWh) 13 25 38 50 63 75 88 Now Large EV Penetration Courtesy: Dave Danielson ARPA -E
  • 42. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Widespread Adoption of EV’s Requires RANGE and COST Parity with Internal Combustion Engine Vehicles COST: ICE Cost Benchmark ~ 24¢/mile RANGE: 250+ mile range needed to eliminate “range anxiety” Ba#ery Pack Cost ($/kWh) Discounted Vehicle Cost per Mile 600 (0.22) (0.27) (0.32) (0.37) (0.42) (0.47) (0.52) 500 (0.21) (0.25) (0.29) (0.34) (0.38) (0.42) (0.46) 400 (0.20) (0.24) (0.27) (0.30) (0.34) (0.37) (0.40) 300 (0.19) (0.22) (0.24) (0.27) (0.29) (0.32) (0.34) 250 (0.19) (0.21) (0.23) (0.25) (0.27) (0.29) (0.32) 200 (0.19) (0.20) (0.22) (0.24) (0.25) (0.27) (0.29) 150 (0.18) (0.19) (0.21) (0.22) (0.23) (0.24) (0.26) Vehicle Range (mi) 50 100 150 200 250 300 350 Pack Energy (kWh) 13 25 38 50 63 75 88 Now Large EV Penetration Courtesy: Dave Danielson ARPA -E
  • 43. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Widespread Adoption of EV’s Requires RANGE and COST Parity with Internal Combustion Engine Vehicles COST: ICE Cost Benchmark ~ 24¢/mile RANGE: 250+ mile range needed to eliminate “range anxiety” Ba#ery Pack Cost ($/kWh) Discounted Vehicle Cost per Mile 600 (0.22) (0.27) (0.32) (0.37) (0.42) (0.47) (0.52) 500 (0.21) (0.25) (0.29) (0.34) (0.38) (0.42) (0.46) 400 (0.20) (0.24) (0.27) (0.30) (0.34) (0.37) (0.40) 300 (0.19) (0.22) (0.24) (0.27) (0.29) (0.32) (0.34) 250 (0.19) (0.21) (0.23) (0.25) (0.27) (0.29) (0.32) 200 (0.19) (0.20) (0.22) (0.24) (0.25) (0.27) (0.29) 150 (0.18) (0.19) (0.21) (0.22) (0.23) (0.24) (0.26) Vehicle Range (mi) 50 100 150 200 250 300 350 Pack Energy (kWh) 13 25 38 50 63 75 88 Pack Specific Energy (Wh/kg) 42 83 125 167 208 250 292 Now Large EV Penetration Courtesy: Dave Danielson ARPA -E
  • 44. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) BEEST Program Targets System Energy (Wh/kg) 100 >200 Current BEEST 2x RANGE Courtesy: Dave Danielson ARPA -E System Cost (/kWh) $1,000 <$250 COST 4x • Cost needs to drop by 4X • Specific Energy needs to double
  • 45. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Outline • Battery History • Liquid vs. Solid-State Batteries • solid-state Li Ion Batteries – Companies • Battery Needs for Electric Vehicles – BEEST Program • Planar Energy • Conclusions
  • 46. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Solid-state Batteries and Cars • Clearly there is a need for high energy, high power, low mass, high cycle number batteries for automotive applications. • Solid-state batteries offer the potential for – High Energy (higher voltage cathodes possible) – High Power (large discharge rates possible) – Low Mass (less inert material) – High cycle number (10X cycle life of typical Liquid) • So why are they not being considered? – COST
  • 47. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) SOLID-STATE IS PROVEN - BUT DOES NOT SCALE $25 0.001Ah Courtesy: Scott Faris Planar Energy $25 for a 0.001Ah battery that meets specific needs is acceptable
  • 48. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) SOLID-STATE IS PROVEN - BUT DOES NOT SCALE Using current thin film technology the cost of a single 1.1Ah battery would be ~$15,000 One very expensive cell phone $25 0.001Ah 1.1 Ah Courtesy: Scott Faris Planar Energy
  • 49. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) SOLID-STATE IS PROVEN - BUT DOES NOT SCALE 1.1 Ah 20 Ah $25 0.001Ah Courtesy: Scott Faris Planar Energy Using current thin film technology the cost of a single 20Ah battery would be $100,000 A high range EV will require 800-1000 20Ah cells
  • 50. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) UNDERLYING PROBLEM – MANUFACTURING & MATERIALS Electronic Grade Material Complex Equipment Simple Integrated Device THIN FILM SOLID-STATE APPROACH Traditional solid-state Battery Methodology Courtesy: Scott Faris Planar Energy The Cost Challenge
  • 51. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Cost Reduction • Avoid semiconductor grade chemicals – Develop process around inexpensive chemicals • Avoid Vacuum technologies – Slows Manufacturing – High Capital expense • Develop high throughput process – e.g. roll to roll
  • 52. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Planar Energy • Location: Florida Based • Status: VC funded, early Prototype development • Product: solid-state battery • Electrolyte: LiAlGaSPO4 • Capacity: 0.1Ah to 20 Ah cells • Additional features: • Recipient of one of the 10 ARPA E BEEST grants • Unique deposition process (SPEED) • High conductivity solid-state electrolyte • Aggressively pursuing thick cathodes for high capacity batteries Source: Scott Faris, Planar Energy
  • 53. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Planar Energy Deposition Approach
  • 54. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) VP SPEED Gen 3 Courtesy Planar Energy In Line Scalable Batch Pilot Growth Medium: deionized water Water soluble reagents and complexing agents prevent homogeneous nucleation in solution Heated substrate promotes growth only on hydrophilic surface Result: dense nanoscale grains
  • 55. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Si SSE TiN Rapid switching response of electrolyte High Ionic Conductivity Courtesy Planar Energy • SPEED produces self assembled coating • New Composition • Li Ion Conductivity 1 x 10-4S/cm vs. 10-6-10-7S/cm for LiPON 7 orders of magnitude difference in ionic and electronic conductivity
  • 56. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Key Challenges • Interfaces are always a challenge for solid-state systems – Accommodation of current flow across solid-solid interfaces • Thick cathodes essential for high energy cells – Must reduce impedance of thick cathode materials • New Deposition method and chemistries – Further optimization of the SPEED process – Further optimization of the new thio-LiSICON
  • 57. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Markets Products Mfg Scale Courtesy Planar Energy Goal is shipping 1-20Ah cells by 2014
  • 58. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) SOLID-STATE IS PROVEN - BUT DOES NOT SCALE “SPEED” greatly reduces the cost of manufacturing solid-state cells. 1.1 Ah 20 Ah $25 0.001Ah Forecast price using SPEED $5-10 Forecast price using SPEED $25-50 Courtesy Planar Energy
  • 59. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) BEEST Program Targets System Energy (Wh/kg) 100 >200 Current BEEST 2x RANGE Courtesy: Scott Faris Planar Energy System Cost (/kWh) $1,000 <$250 COST 4x Planar solid-state Batteries $250/kWh 400Wh/kg With new Electrolyte and SPEED process Planar believes it can meet the BEEST Targets with a solid- state battery
  • 60. Software and Analysis of Advanced Materials Processing Center (kjones@eng.ufl.edu) Conclusions • Liquid based Li Ion Batteries dominate the current market • Solid-state batteries offer intriguing opportunities for greatly increased cycle life, safety, and energy density • To date solid-state batteries have found application primarily in small milliamp hour batteries • With recent advances in electrolytes and processing technology, solid-state batteries are poised to contribute to the energy storage challenges on a much larger scale including transportation.