SlideShare a Scribd company logo
1 of 21
Unit – IV: Numerical Techniques
•Zeroes of transcendental and polynomial equations using
•Bisection method,
•Regula-falsi method
•Newton-Raphson method,
• Rate of convergence.
• Interpolation:
• Finite differences,
•Newton’s forward and backward interpolation,
• Lagrange’s and Newton’s divided difference formula for
unequal intervals.
1
A root, r, of function f occurs when f(r) = 0.
For example:
f(x) = x2 – 2x – 3
has two roots at r = -1 and r = 3.
f(-1) = 1 + 2 – 3 = 0
f(3) = 9 – 6 – 3 = 0
We can also look at f in its factored form.
f(x) = x2 – 2x – 3 = (x + 1)(x – 3)
2
Bisection Method
Initial two values of x taken: x1=a & x2=b such that if y(a) is
+ve then y(b) is –ve. Then new value c=(a+b)/2
a bc
f(a)>0
f(b)<0
f(c)>0
If c is +ve, then replace the value of a by c. If c is –
ve, then replace the value of b by c.
Then continue to find the next value of c (End of
1st iteration) with c=(a+b)/2
Guaranteed to converge to a root if one exists
within these initial two values.
3
Regula Falsi
a bc
 
 
 
( ) ( )
( ) ( )
( ) ( )
( ) 0 ( )
0 ( )
( ) ( )
( )
( ) ( )
f a f b
y x f b x b
a b
f a f b
y c f b c b
a b
a b
f b c b
f a f b
f b a b
c b
f a f b

  


   


  


 

f(c)<0
4
Newton-Raphson Method
• Only one current guess of x .
• Consider some point x0.
– If we approximate f(x) as a line about x0, then we
can again solve for the root of the line.
0 0 0( ) ( )( ) ( )l x f x x x f x  
 Solving, leads to the following iteration:
0
1 0
0
1
( ) 0
( )
( )
( )
( )
i
i i
i
l x
f x
x x
f x
f x
x x
f x


 

 
 5
Unit – V: Numerical Techniques –II
•Solution of system of linear equations,
•Matrix Decomposition methods,
•Jacobi method,
• Gauss- Seidal method.
• Numerical differentiation,
•Numerical integration,
•Trapezoidal rule,
•Simpson’s one third and three-eight rules,
• Solution of ordinary differential equations (first
order,second order and simultaneous)
•by Euler’s, Picard’s and
• fourth-order Runge- Kutta methods.
6
Systems of Non-linear Equations
Consider the set of equations:
 
 
 
1 1 2
2 1 2
1 2
, , , 0
, , , 0
, , , 0
n
n
n n
f x x x
f x x x
f x x x



K
K
M
K
11 1 12 2 1 1
21 1 22 2 2 2
1 1 2 2
The system of equations:
N N
N N
N N NN N N
a T a T a T C
a T a T a T C
a T a T a T C
   
   
   
L
L
M M M M M
L
A total of N algebraic equations for the N nodal points and the system can be
expressed as a matrix formulation: [A][T]=[C]
11 12 1 1 1
21 22 2 2 2
1 2
= , ,
N
N
N N NN N N
a a a T C
a a a T C
where A T C
a a a T C
     
     
      
     
     
     
L
L
M M M M M M
L
7
8
Jacobi Iteration
nnnnnn
nn
nn
bxaxaxa
bxaxaxa
bxaxaxa







2211
22222121
11212111















0
0
2
0
1
0
nx
x
x
x

)(
1 0
1
0
2121
11
1
1 nn xaxab
a
x  






  

 

1
1 1
1 1 i
j
n
ij
k
jij
k
jiji
ii
k
i xaxab
a
x
)(
1 0
11
0
22
0
11
1
 nnnnnn
nn
n xaxaxab
a
x 
)(
1 0
2
0
323
0
1212
22
1
2 nn xaxaxab
a
x  
9
Gauss-Siedel Method
33
2321313
1
22
3231212
2
11
3132121
1
a
xaxab
x
a
xaxab
x
a
xaxab
x






3333232131
2323222121
1313212111
bxaxaxa
bxaxaxa
bxaxaxa




Now we can start the solution process by choosing
guesses for the x’s. A simple way to obtain initial
guesses is to assume that they are zero. These zeros
can be substituted into x1 equation to calculate a
new x1=b1/a11.
10
Gauss-Seidel (GS) iteration
nnnnnn
nn
nn
bxaxaxa
bxaxaxa
bxaxaxa







2211
22222121
11212111















0
0
2
0
1
0
nx
x
x
x







  

 

1
1 1
11 1 i
j
n
ij
k
jij
k
jiji
ii
k
i xaxab
a
x
)(
1 0
1
0
2121
11
1
1 nn xaxab
a
x  
)(
1 1
11
1
22
1
11
1
 nnnnnn
nn
n xaxaxab
a
x 
)(
1 0
2
0
323
1
1212
22
1
2 nn xaxaxab
a
x  
Use the latest
update
11
Difference between the Gauss-Seidel and the Jacobi iterative methods
The Gauss-Seidel method The Jacobi iteration method
Example
Solve the following system of equations using (a) the Jacobi methos, (b) the
Gauss Seidel iteration method.
4 2 11
2 0 3
2 4 16
X Y Z
X Y Z
X Y Z
  
   
  
,
* ,
(a) Jacobi method: use initial guess X0=Y0=Z0=1,
stop when maxXk-Xk-1,Yk-Yk-1,Zk-Zk-1  0.1
First iteration:
X1= (11/4) - (1/2)Y0 - (1/4)Z0 = 2
Y1= (3/2) + (1/2)X0 = 2
Z1= 4 - (1/2) X0 - (1/4)Y0 = 13/4
Reorganize into new form:
X =
11
4
-
1
2
Y -
1
4
Z
Y =
3
2
+
1
2
X + 0 * Z
Z = 4 -
1
2
X -
1
4
Y
4 2 1 11
1 2 0 3
2 1 4 16
X
Y
Z
     
      
     
          
12
Second iteration: use the iterated values X1=2, Y1=2, Z1=13/4
X2 = (11/4) - (1/2)Y1 - (1/4)Z1 = 15/16
Y2 = (3/2) + (1/2)X1 = 5/2
Z2 = 4 - (1/2) X1 - (1/4)Y1 = 5/2
Final solution [1.014, 2.02, 2.996] Exact solution [1, 2, 3]
5 4 5 4 5 4
Converging Process:
13 15 5 5 7 63 93 133 31 393
[1,1,1], 2,2, , , , , , , , , ,
4 16 2 2 8 32 32 128 16 128
519 517 767
, , . Stop the iteration when
512 256 256
max , , 0.1X X Y Y Z Z
       
              
 
  
   
13
14
Example (cont.)
(b) Gauss-Seidel iteration: Substitute the iterated values into
the iterative process immediately after they are computed.
0 0 0
1 0 0
1 1
1 1 1
Use initial guess X 1
11 1 1 3 1 1 1
, , 4
4 2 4 2 2 2 4
11 1 1
First iteration: X = ( ) ( ) 2
4 2 4
3 1 3 1 5
(2)
2 2 2 2 2
1 1 1 1 5 19
4 4 (2)
2 4 2 4 2 8
5 19
Converging process: [1,1,1], 2, ,
2 8
Y Z
X Y Z Y X Z X Y
Y Z
Y X
Z X Y
  
       
  
    
 
       
 


29 125 783 1033 4095 24541
, , , , , ,
32 64 256 1024 2048 8192
The iterated solution [1.009, 1.9995, 2.996] and it converges faster
    
         
Immediate substitution
15
Numerical Differentiation: [Find dy/dx or f’(x)]
Forward Difference
Backward Difference
h
hxfhxf
xf
2
)()(
)(

Central Difference
h
hxfhxf
xf
2
)()(
)(


h
xfhxf
xf
)()(
)(


3-points Difference Formulas (More Accurate )
h
xfhxfhxf
xf
2
)(3)(4)2(
)(

Forward Difference :
Backward Difference:
h
xfhxfhxf
xf
2
)()(4)2(3
)(


2-Points Difference Formulas
16
Example:
Find estimates for the derivative with the data
set given to the right. We notice the x values are
evenly spaced.
Two-Point Estimates:
i xi yi
1 3 1
2 5 4
3 7 3
2
1
57
43
)5('
2
3
35
14
)3('









f
f
2
1
57
43
)7('
2
3
35
14
)5('









f
f
Forward Backward
2
1
4
2
37
13
)5(' 


f
Central
Three Point Estimates:
2
5
4
10
37
)1(3)4(43
)3(' 


f
2
3
4
6
37
)1(1)4(4)3(3
)7('






f
Forward Backward
  1
4
4
1)4(23
2
1
)5('' 2


f
Second Derivative (h=2)
17
Simpson’s 1/3rd rule
n
n
n
nn
b
a
n
b
a
xaxaxaaxf
dxxfdxxfI





1
110)(
)()(

Trapezoidal rule
 
2
)()(4)(
3
210
ab
hxfxfxf
h
I





















1
1
0
12110
)(2)()(
2
2
)()(
2
)()(
2
)()(
n
i
in
nn
xfxfxf
n
ab
I
xfxf
h
xfxf
h
xfxf
hI 
 )()(3)(3)(
8
3
3210 xfxfxfxf
h
I Simpson’s 3/8th rule 3
ab
h


1818
Example 21.7
2
)()(
2
)()(
2
)()( 121
2
10
1
nn
n
xfxf
h
xfxf
h
xfxf
hI





 

x f(x) x f(x)
0.0 0.2 0.44 2.842
0.12 1.309 0.54 3.507
0.22 1.305 0.64 3.181
0.32 1.743 0.70 2.363
0.36 2.074 0.80 0.232
0.40 2.456
594.112975.01307.00905.0
2
363.2232.0
10.0
2
181.3363.0
06.0
2
309.1305.1
10.0
2
2.0309.1
12.0










I
Data for
f(x)= 0.2+25x-200x2+675x3-900x4+400x5
Using Trapezoidal Rule
19
Example:   x
xexf  Find the approximate value of  2f 
1.9 12.703199
2.0 14.778112
2.1 17.148957
2.2 19.855030
x  xf
with 10.h
Using the 1st Three-point formula:
   

 032310.22855030.19
148957.174778112.143
2.0
1
)2.2()1.2(4)2(3
1.02
1
2




 ffff
        hxfhxfxf
h
xf 243
2
1
0000 
Using the 2nd Three-point formula:
   
 
228790.22
703199.12148957.17
2.0
1
)9.1()1.2(
1.02
1
2




 fff
The exact value of   22.167168:is2f 
      hxfhxf
h
xf  000
2
1
20
by dividing the interval into 20 subintervals.Find 
π
sin
0
(x)dx
20210
20
20
20
.....,,,,,
π
π





k
k
khax
n
ab
h
n
k
 
   
9958861
20
20
40
2
2
19
1
1
10
.
πsin
π
sinsin
π
)()()sin(
π


























k
n
k
k
k
bfxfaf
h
dxx
 
0000062
20
12
4
20
2
20
60
10
1
9
10
.
)πsin(
π)(
sin
π
sinsin
π
)sin(
π









 















k
k
k
k
dxx
By Simpson’s Rule
By Trapizoidal Rule
Example-2
21
Numerical Solutions for Partial Differential
Equations by 4th order Runga-Kutta Method
hkkkkyy ii )22(
6
1
43211 
),(
)
2
1
,
2
1
(
)
2
1
,
2
1
(
),(
34
23
12
1
hkyhxfk
hkyhxfk
hkyhxfk
yxfk
where
ii
ii
ii
ii




Consider
Exact Solution
Initial condition :
Step size :
2
tx
dt
dx

t2
22 ettx 
  10 x
1.0h       
 
 
    
  104829.122
6
109499.0104988.1,1.01.0,
104988.02/.1,05.01.0
2
1
,
2
1
10475.005.1,05.01.0
2
1
,
2
1
1.0011.01,01.0,
432101
34
223
12
2
1





























kkkk
h
xx
fkxhtfhhk
kfkxhtfhhk
fkxhtfhhk
fxtfhhk

More Related Content

What's hot

Bracketing or closed methods
Bracketing or closed methodsBracketing or closed methods
Bracketing or closed methodsandrushow
 
Numerical Method Analysis: Algebraic and Transcendental Equations (Non-Linear)
Numerical Method Analysis: Algebraic and Transcendental Equations (Non-Linear)Numerical Method Analysis: Algebraic and Transcendental Equations (Non-Linear)
Numerical Method Analysis: Algebraic and Transcendental Equations (Non-Linear)Minhas Kamal
 
Regula Falsi (False position) Method
Regula Falsi (False position) MethodRegula Falsi (False position) Method
Regula Falsi (False position) MethodIsaac Yowetu
 
Bisection method in maths 4
Bisection method in maths 4Bisection method in maths 4
Bisection method in maths 4Vaidik Trivedi
 
Roots of equations
Roots of equations Roots of equations
Roots of equations shopnohinami
 
Regulafalsi_bydinesh
Regulafalsi_bydineshRegulafalsi_bydinesh
Regulafalsi_bydineshDinesh Kumar
 
6.3 evaluating-and-graphing-polynomila-functions
6.3 evaluating-and-graphing-polynomila-functions6.3 evaluating-and-graphing-polynomila-functions
6.3 evaluating-and-graphing-polynomila-functionsmorrobea
 
3.3 Zeros of Polynomial Functions
3.3 Zeros of Polynomial Functions3.3 Zeros of Polynomial Functions
3.3 Zeros of Polynomial Functionssmiller5
 
Presentation on application of numerical method in our life
Presentation on application of numerical method in our lifePresentation on application of numerical method in our life
Presentation on application of numerical method in our lifeManish Kumar Singh
 
Introduction to Functions
Introduction to FunctionsIntroduction to Functions
Introduction to FunctionsMelanie Loslo
 
Mac2311 study guide-tcm6-49721
Mac2311 study guide-tcm6-49721Mac2311 study guide-tcm6-49721
Mac2311 study guide-tcm6-49721Glicerio Gavilan
 

What's hot (18)

bisection method
bisection methodbisection method
bisection method
 
Bracketing or closed methods
Bracketing or closed methodsBracketing or closed methods
Bracketing or closed methods
 
Numerical Method Analysis: Algebraic and Transcendental Equations (Non-Linear)
Numerical Method Analysis: Algebraic and Transcendental Equations (Non-Linear)Numerical Method Analysis: Algebraic and Transcendental Equations (Non-Linear)
Numerical Method Analysis: Algebraic and Transcendental Equations (Non-Linear)
 
Regula Falsi (False position) Method
Regula Falsi (False position) MethodRegula Falsi (False position) Method
Regula Falsi (False position) Method
 
Bisection and fixed point method
Bisection and fixed point methodBisection and fixed point method
Bisection and fixed point method
 
Bisection method in maths 4
Bisection method in maths 4Bisection method in maths 4
Bisection method in maths 4
 
Roots of equations
Roots of equations Roots of equations
Roots of equations
 
Presentation aust final
Presentation aust finalPresentation aust final
Presentation aust final
 
Numerical method (curve fitting)
Numerical method (curve fitting)Numerical method (curve fitting)
Numerical method (curve fitting)
 
Bisection method
Bisection methodBisection method
Bisection method
 
Bisection
BisectionBisection
Bisection
 
Regulafalsi_bydinesh
Regulafalsi_bydineshRegulafalsi_bydinesh
Regulafalsi_bydinesh
 
6.3 evaluating-and-graphing-polynomila-functions
6.3 evaluating-and-graphing-polynomila-functions6.3 evaluating-and-graphing-polynomila-functions
6.3 evaluating-and-graphing-polynomila-functions
 
Numerical analysis ppt
Numerical analysis pptNumerical analysis ppt
Numerical analysis ppt
 
3.3 Zeros of Polynomial Functions
3.3 Zeros of Polynomial Functions3.3 Zeros of Polynomial Functions
3.3 Zeros of Polynomial Functions
 
Presentation on application of numerical method in our life
Presentation on application of numerical method in our lifePresentation on application of numerical method in our life
Presentation on application of numerical method in our life
 
Introduction to Functions
Introduction to FunctionsIntroduction to Functions
Introduction to Functions
 
Mac2311 study guide-tcm6-49721
Mac2311 study guide-tcm6-49721Mac2311 study guide-tcm6-49721
Mac2311 study guide-tcm6-49721
 

Viewers also liked

Trabajo de informática
Trabajo de informáticaTrabajo de informática
Trabajo de informáticanathalia borja
 
computer numerical control
computer numerical controlcomputer numerical control
computer numerical controlLalrin Muani
 
Newton's forward difference
Newton's forward differenceNewton's forward difference
Newton's forward differenceRaj Parekh
 
numericai matmatic matlab uygulamalar ali abdullah
numericai matmatic  matlab  uygulamalar ali abdullahnumericai matmatic  matlab  uygulamalar ali abdullah
numericai matmatic matlab uygulamalar ali abdullahAli Abdullah
 
System of linear algebriac equations nsm
System of linear algebriac equations nsmSystem of linear algebriac equations nsm
System of linear algebriac equations nsmRahul Narang
 
Cryptography for software engineers
Cryptography for software engineersCryptography for software engineers
Cryptography for software engineersJas Chhabra
 
Presentation on Numerical Method (Trapezoidal Method)
Presentation on Numerical Method (Trapezoidal Method)Presentation on Numerical Method (Trapezoidal Method)
Presentation on Numerical Method (Trapezoidal Method)Syed Ahmed Zaki
 
Network security & cryptography
Network security & cryptographyNetwork security & cryptography
Network security & cryptographyRahulprasad Yadav
 
interpolation
interpolationinterpolation
interpolation8laddu8
 
Newton’s Forward & backward interpolation
Newton’s Forward &  backward interpolation Newton’s Forward &  backward interpolation
Newton’s Forward & backward interpolation Meet Patel
 
Cryptography and network security
Cryptography and network securityCryptography and network security
Cryptography and network securitypatisa
 

Viewers also liked (15)

Trabajo de informática
Trabajo de informáticaTrabajo de informática
Trabajo de informática
 
computer numerical control
computer numerical controlcomputer numerical control
computer numerical control
 
Newton's forward difference
Newton's forward differenceNewton's forward difference
Newton's forward difference
 
numericai matmatic matlab uygulamalar ali abdullah
numericai matmatic  matlab  uygulamalar ali abdullahnumericai matmatic  matlab  uygulamalar ali abdullah
numericai matmatic matlab uygulamalar ali abdullah
 
System of linear algebriac equations nsm
System of linear algebriac equations nsmSystem of linear algebriac equations nsm
System of linear algebriac equations nsm
 
Cryptography for software engineers
Cryptography for software engineersCryptography for software engineers
Cryptography for software engineers
 
Presentation on Numerical Method (Trapezoidal Method)
Presentation on Numerical Method (Trapezoidal Method)Presentation on Numerical Method (Trapezoidal Method)
Presentation on Numerical Method (Trapezoidal Method)
 
Network security & cryptography
Network security & cryptographyNetwork security & cryptography
Network security & cryptography
 
Cryptography
CryptographyCryptography
Cryptography
 
interpolation
interpolationinterpolation
interpolation
 
cryptography
cryptographycryptography
cryptography
 
Newton’s Forward & backward interpolation
Newton’s Forward &  backward interpolation Newton’s Forward &  backward interpolation
Newton’s Forward & backward interpolation
 
Numerical method
Numerical methodNumerical method
Numerical method
 
Cryptography.ppt
Cryptography.pptCryptography.ppt
Cryptography.ppt
 
Cryptography and network security
Cryptography and network securityCryptography and network security
Cryptography and network security
 

Similar to Maths iii quick review by Dr Asish K Mukhopadhyay

Ch9-Gauss_Elimination4.pdf
Ch9-Gauss_Elimination4.pdfCh9-Gauss_Elimination4.pdf
Ch9-Gauss_Elimination4.pdfRahulUkhande
 
Lecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equationsLecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equationsHazel Joy Chong
 
Matlab lab manual
Matlab lab manualMatlab lab manual
Matlab lab manualnmahi96
 
Natural and Clamped Cubic Splines
Natural and Clamped Cubic SplinesNatural and Clamped Cubic Splines
Natural and Clamped Cubic SplinesMark Brandao
 
Jacobi and gauss-seidel
Jacobi and gauss-seidelJacobi and gauss-seidel
Jacobi and gauss-seidelarunsmm
 
Lecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etcLecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etcRiyandika Jastin
 
18-21 Principles of Least Squares.ppt
18-21 Principles of Least Squares.ppt18-21 Principles of Least Squares.ppt
18-21 Principles of Least Squares.pptBAGARAGAZAROMUALD2
 
Analytic Geometry Period 1
Analytic Geometry Period 1Analytic Geometry Period 1
Analytic Geometry Period 1ingroy
 
chapter1_part2.pdf
chapter1_part2.pdfchapter1_part2.pdf
chapter1_part2.pdfAliEb2
 
Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)asghar123456
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life OlooPundit
 
DIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptxDIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptxOchiriaEliasonyait
 

Similar to Maths iii quick review by Dr Asish K Mukhopadhyay (20)

Ch9-Gauss_Elimination4.pdf
Ch9-Gauss_Elimination4.pdfCh9-Gauss_Elimination4.pdf
Ch9-Gauss_Elimination4.pdf
 
Lecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equationsLecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equations
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Matlab lab manual
Matlab lab manualMatlab lab manual
Matlab lab manual
 
Natural and Clamped Cubic Splines
Natural and Clamped Cubic SplinesNatural and Clamped Cubic Splines
Natural and Clamped Cubic Splines
 
Calculo integral - Larson
Calculo integral - LarsonCalculo integral - Larson
Calculo integral - Larson
 
numerical.ppt
numerical.pptnumerical.ppt
numerical.ppt
 
Jacobi and gauss-seidel
Jacobi and gauss-seidelJacobi and gauss-seidel
Jacobi and gauss-seidel
 
Lecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etcLecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etc
 
Term paper
Term paperTerm paper
Term paper
 
18-21 Principles of Least Squares.ppt
18-21 Principles of Least Squares.ppt18-21 Principles of Least Squares.ppt
18-21 Principles of Least Squares.ppt
 
Analytic Geometry Period 1
Analytic Geometry Period 1Analytic Geometry Period 1
Analytic Geometry Period 1
 
NUMERICAL METHODS
NUMERICAL METHODSNUMERICAL METHODS
NUMERICAL METHODS
 
Mqm em
Mqm emMqm em
Mqm em
 
cursul 3.pdf
cursul 3.pdfcursul 3.pdf
cursul 3.pdf
 
chapter1_part2.pdf
chapter1_part2.pdfchapter1_part2.pdf
chapter1_part2.pdf
 
Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
 
DIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptxDIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptx
 
AJMS_389_22.pdf
AJMS_389_22.pdfAJMS_389_22.pdf
AJMS_389_22.pdf
 

Recently uploaded

Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptMAESTRELLAMesa2
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 

Recently uploaded (20)

Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.ppt
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 

Maths iii quick review by Dr Asish K Mukhopadhyay

  • 1. Unit – IV: Numerical Techniques •Zeroes of transcendental and polynomial equations using •Bisection method, •Regula-falsi method •Newton-Raphson method, • Rate of convergence. • Interpolation: • Finite differences, •Newton’s forward and backward interpolation, • Lagrange’s and Newton’s divided difference formula for unequal intervals. 1
  • 2. A root, r, of function f occurs when f(r) = 0. For example: f(x) = x2 – 2x – 3 has two roots at r = -1 and r = 3. f(-1) = 1 + 2 – 3 = 0 f(3) = 9 – 6 – 3 = 0 We can also look at f in its factored form. f(x) = x2 – 2x – 3 = (x + 1)(x – 3) 2
  • 3. Bisection Method Initial two values of x taken: x1=a & x2=b such that if y(a) is +ve then y(b) is –ve. Then new value c=(a+b)/2 a bc f(a)>0 f(b)<0 f(c)>0 If c is +ve, then replace the value of a by c. If c is – ve, then replace the value of b by c. Then continue to find the next value of c (End of 1st iteration) with c=(a+b)/2 Guaranteed to converge to a root if one exists within these initial two values. 3
  • 4. Regula Falsi a bc       ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 ( ) 0 ( ) ( ) ( ) ( ) ( ) ( ) f a f b y x f b x b a b f a f b y c f b c b a b a b f b c b f a f b f b a b c b f a f b                     f(c)<0 4
  • 5. Newton-Raphson Method • Only one current guess of x . • Consider some point x0. – If we approximate f(x) as a line about x0, then we can again solve for the root of the line. 0 0 0( ) ( )( ) ( )l x f x x x f x    Solving, leads to the following iteration: 0 1 0 0 1 ( ) 0 ( ) ( ) ( ) ( ) i i i i l x f x x x f x f x x x f x         5
  • 6. Unit – V: Numerical Techniques –II •Solution of system of linear equations, •Matrix Decomposition methods, •Jacobi method, • Gauss- Seidal method. • Numerical differentiation, •Numerical integration, •Trapezoidal rule, •Simpson’s one third and three-eight rules, • Solution of ordinary differential equations (first order,second order and simultaneous) •by Euler’s, Picard’s and • fourth-order Runge- Kutta methods. 6
  • 7. Systems of Non-linear Equations Consider the set of equations:       1 1 2 2 1 2 1 2 , , , 0 , , , 0 , , , 0 n n n n f x x x f x x x f x x x    K K M K 11 1 12 2 1 1 21 1 22 2 2 2 1 1 2 2 The system of equations: N N N N N N NN N N a T a T a T C a T a T a T C a T a T a T C             L L M M M M M L A total of N algebraic equations for the N nodal points and the system can be expressed as a matrix formulation: [A][T]=[C] 11 12 1 1 1 21 22 2 2 2 1 2 = , , N N N N NN N N a a a T C a a a T C where A T C a a a T C                                      L L M M M M M M L 7
  • 8. 8 Jacobi Iteration nnnnnn nn nn bxaxaxa bxaxaxa bxaxaxa        2211 22222121 11212111                0 0 2 0 1 0 nx x x x  )( 1 0 1 0 2121 11 1 1 nn xaxab a x                1 1 1 1 1 i j n ij k jij k jiji ii k i xaxab a x )( 1 0 11 0 22 0 11 1  nnnnnn nn n xaxaxab a x  )( 1 0 2 0 323 0 1212 22 1 2 nn xaxaxab a x  
  • 9. 9 Gauss-Siedel Method 33 2321313 1 22 3231212 2 11 3132121 1 a xaxab x a xaxab x a xaxab x       3333232131 2323222121 1313212111 bxaxaxa bxaxaxa bxaxaxa     Now we can start the solution process by choosing guesses for the x’s. A simple way to obtain initial guesses is to assume that they are zero. These zeros can be substituted into x1 equation to calculate a new x1=b1/a11.
  • 10. 10 Gauss-Seidel (GS) iteration nnnnnn nn nn bxaxaxa bxaxaxa bxaxaxa        2211 22222121 11212111                0 0 2 0 1 0 nx x x x               1 1 1 11 1 i j n ij k jij k jiji ii k i xaxab a x )( 1 0 1 0 2121 11 1 1 nn xaxab a x   )( 1 1 11 1 22 1 11 1  nnnnnn nn n xaxaxab a x  )( 1 0 2 0 323 1 1212 22 1 2 nn xaxaxab a x   Use the latest update
  • 11. 11 Difference between the Gauss-Seidel and the Jacobi iterative methods The Gauss-Seidel method The Jacobi iteration method
  • 12. Example Solve the following system of equations using (a) the Jacobi methos, (b) the Gauss Seidel iteration method. 4 2 11 2 0 3 2 4 16 X Y Z X Y Z X Y Z           , * , (a) Jacobi method: use initial guess X0=Y0=Z0=1, stop when maxXk-Xk-1,Yk-Yk-1,Zk-Zk-1  0.1 First iteration: X1= (11/4) - (1/2)Y0 - (1/4)Z0 = 2 Y1= (3/2) + (1/2)X0 = 2 Z1= 4 - (1/2) X0 - (1/4)Y0 = 13/4 Reorganize into new form: X = 11 4 - 1 2 Y - 1 4 Z Y = 3 2 + 1 2 X + 0 * Z Z = 4 - 1 2 X - 1 4 Y 4 2 1 11 1 2 0 3 2 1 4 16 X Y Z                               12
  • 13. Second iteration: use the iterated values X1=2, Y1=2, Z1=13/4 X2 = (11/4) - (1/2)Y1 - (1/4)Z1 = 15/16 Y2 = (3/2) + (1/2)X1 = 5/2 Z2 = 4 - (1/2) X1 - (1/4)Y1 = 5/2 Final solution [1.014, 2.02, 2.996] Exact solution [1, 2, 3] 5 4 5 4 5 4 Converging Process: 13 15 5 5 7 63 93 133 31 393 [1,1,1], 2,2, , , , , , , , , , 4 16 2 2 8 32 32 128 16 128 519 517 767 , , . Stop the iteration when 512 256 256 max , , 0.1X X Y Y Z Z                                 13
  • 14. 14 Example (cont.) (b) Gauss-Seidel iteration: Substitute the iterated values into the iterative process immediately after they are computed. 0 0 0 1 0 0 1 1 1 1 1 Use initial guess X 1 11 1 1 3 1 1 1 , , 4 4 2 4 2 2 2 4 11 1 1 First iteration: X = ( ) ( ) 2 4 2 4 3 1 3 1 5 (2) 2 2 2 2 2 1 1 1 1 5 19 4 4 (2) 2 4 2 4 2 8 5 19 Converging process: [1,1,1], 2, , 2 8 Y Z X Y Z Y X Z X Y Y Z Y X Z X Y                                  29 125 783 1033 4095 24541 , , , , , , 32 64 256 1024 2048 8192 The iterated solution [1.009, 1.9995, 2.996] and it converges faster                Immediate substitution
  • 15. 15 Numerical Differentiation: [Find dy/dx or f’(x)] Forward Difference Backward Difference h hxfhxf xf 2 )()( )(  Central Difference h hxfhxf xf 2 )()( )(   h xfhxf xf )()( )(   3-points Difference Formulas (More Accurate ) h xfhxfhxf xf 2 )(3)(4)2( )(  Forward Difference : Backward Difference: h xfhxfhxf xf 2 )()(4)2(3 )(   2-Points Difference Formulas
  • 16. 16 Example: Find estimates for the derivative with the data set given to the right. We notice the x values are evenly spaced. Two-Point Estimates: i xi yi 1 3 1 2 5 4 3 7 3 2 1 57 43 )5(' 2 3 35 14 )3('          f f 2 1 57 43 )7(' 2 3 35 14 )5('          f f Forward Backward 2 1 4 2 37 13 )5('    f Central Three Point Estimates: 2 5 4 10 37 )1(3)4(43 )3('    f 2 3 4 6 37 )1(1)4(4)3(3 )7('       f Forward Backward   1 4 4 1)4(23 2 1 )5('' 2   f Second Derivative (h=2)
  • 17. 17 Simpson’s 1/3rd rule n n n nn b a n b a xaxaxaaxf dxxfdxxfI      1 110)( )()(  Trapezoidal rule   2 )()(4)( 3 210 ab hxfxfxf h I                      1 1 0 12110 )(2)()( 2 2 )()( 2 )()( 2 )()( n i in nn xfxfxf n ab I xfxf h xfxf h xfxf hI   )()(3)(3)( 8 3 3210 xfxfxfxf h I Simpson’s 3/8th rule 3 ab h  
  • 18. 1818 Example 21.7 2 )()( 2 )()( 2 )()( 121 2 10 1 nn n xfxf h xfxf h xfxf hI         x f(x) x f(x) 0.0 0.2 0.44 2.842 0.12 1.309 0.54 3.507 0.22 1.305 0.64 3.181 0.32 1.743 0.70 2.363 0.36 2.074 0.80 0.232 0.40 2.456 594.112975.01307.00905.0 2 363.2232.0 10.0 2 181.3363.0 06.0 2 309.1305.1 10.0 2 2.0309.1 12.0           I Data for f(x)= 0.2+25x-200x2+675x3-900x4+400x5 Using Trapezoidal Rule
  • 19. 19 Example:   x xexf  Find the approximate value of  2f  1.9 12.703199 2.0 14.778112 2.1 17.148957 2.2 19.855030 x  xf with 10.h Using the 1st Three-point formula:       032310.22855030.19 148957.174778112.143 2.0 1 )2.2()1.2(4)2(3 1.02 1 2      ffff         hxfhxfxf h xf 243 2 1 0000  Using the 2nd Three-point formula:       228790.22 703199.12148957.17 2.0 1 )9.1()1.2( 1.02 1 2      fff The exact value of   22.167168:is2f        hxfhxf h xf  000 2 1
  • 20. 20 by dividing the interval into 20 subintervals.Find  π sin 0 (x)dx 20210 20 20 20 .....,,,,, π π      k k khax n ab h n k       9958861 20 20 40 2 2 19 1 1 10 . πsin π sinsin π )()()sin( π                           k n k k k bfxfaf h dxx   0000062 20 12 4 20 2 20 60 10 1 9 10 . )πsin( π)( sin π sinsin π )sin( π                           k k k k dxx By Simpson’s Rule By Trapizoidal Rule Example-2
  • 21. 21 Numerical Solutions for Partial Differential Equations by 4th order Runga-Kutta Method hkkkkyy ii )22( 6 1 43211  ),( ) 2 1 , 2 1 ( ) 2 1 , 2 1 ( ),( 34 23 12 1 hkyhxfk hkyhxfk hkyhxfk yxfk where ii ii ii ii     Consider Exact Solution Initial condition : Step size : 2 tx dt dx  t2 22 ettx    10 x 1.0h                   104829.122 6 109499.0104988.1,1.01.0, 104988.02/.1,05.01.0 2 1 , 2 1 10475.005.1,05.01.0 2 1 , 2 1 1.0011.01,01.0, 432101 34 223 12 2 1                              kkkk h xx fkxhtfhhk kfkxhtfhhk fkxhtfhhk fxtfhhk