SlideShare a Scribd company logo
1 of 101
Polynomial Expressions
A mathematics expression is a calculation procedure written in
numbers, variables, and operation symbols.
Polynomial Expressions
Example A.
2 + 3x ๏ƒ 
A mathematics expression is a calculation procedure written in
numbers, variables, and operation symbols.
Polynomial Expressions
Example A.
2 + 3x ๏ƒ  โ€œthe sum of 2 and 3 times xโ€
A mathematics expression is a calculation procedure written in
numbers, variables, and operation symbols.
Polynomial Expressions
Example A.
2 + 3x ๏ƒ  โ€œthe sum of 2 and 3 times xโ€
4x2 โ€“ 5x
A mathematics expression is a calculation procedure written in
numbers, variables, and operation symbols.
Polynomial Expressions
Example A.
2 + 3x ๏ƒ  โ€œthe sum of 2 and 3 times xโ€
4x2 โ€“ 5x ๏ƒ  โ€œthe difference between 4 times the square of x
and 5 times xโ€
A mathematics expression is a calculation procedure written in
numbers, variables, and operation symbols.
Polynomial Expressions
Example A.
2 + 3x ๏ƒ  โ€œthe sum of 2 and 3 times xโ€
4x2 โ€“ 5x ๏ƒ  โ€œthe difference between 4 times the square of x
and 5 times xโ€
(3 โ€“ 2x)2
A mathematics expression is a calculation procedure written in
numbers, variables, and operation symbols.
Polynomial Expressions
Example A.
2 + 3x ๏ƒ  โ€œthe sum of 2 and 3 times xโ€
4x2 โ€“ 5x ๏ƒ  โ€œthe difference between 4 times the square of x
and 5 times xโ€
(3 โ€“ 2x)2 ๏ƒ  โ€œthe square of the difference of 3 and twice xโ€
A mathematics expression is a calculation procedure written in
numbers, variables, and operation symbols.
Polynomial Expressions
Example A.
2 + 3x ๏ƒ  โ€œthe sum of 2 and 3 times xโ€
4x2 โ€“ 5x ๏ƒ  โ€œthe difference between 4 times the square of x
and 5 times xโ€
(3 โ€“ 2x)2 ๏ƒ  โ€œthe square of the difference of 3 and twice xโ€
A mathematics expression is a calculation procedure written in
numbers, variables, and operation symbols.
An expression of the form #xN, where the exponent N is a
non-negative integer and # is a number, is called a monomial
(one-term).
Polynomial Expressions
Example A.
2 + 3x ๏ƒ  โ€œthe sum of 2 and 3 times xโ€
4x2 โ€“ 5x ๏ƒ  โ€œthe difference between 4 times the square of x
and 5 times xโ€
(3 โ€“ 2x)2 ๏ƒ  โ€œthe square of the difference of 3 and twice xโ€
A mathematics expression is a calculation procedure written in
numbers, variables, and operation symbols.
An expression of the form #xN, where the exponent N is a
non-negative integer and # is a number, is called a monomial
(one-term).
For example, 3x2, โ€“4x3, and 5x6 are monomials.
Polynomial Expressions
Example A.
2 + 3x ๏ƒ  โ€œthe sum of 2 and 3 times xโ€
4x2 โ€“ 5x ๏ƒ  โ€œthe difference between 4 times the square of x
and 5 times xโ€
(3 โ€“ 2x)2 ๏ƒ  โ€œthe square of the difference of 3 and twice xโ€
A mathematics expression is a calculation procedure written in
numbers, variables, and operation symbols.
Example B. Evaluate the monomials if y = โ€“4
a. 3y2
An expression of the form #xN, where the exponent N is a
non-negative integer and # is a number, is called a monomial
(one-term).
For example, 3x2, โ€“4x3, and 5x6 are monomials.
Polynomial Expressions
Example A.
2 + 3x ๏ƒ  โ€œthe sum of 2 and 3 times xโ€
4x2 โ€“ 5x ๏ƒ  โ€œthe difference between 4 times the square of x
and 5 times xโ€
(3 โ€“ 2x)2 ๏ƒ  โ€œthe square of the difference of 3 and twice xโ€
A mathematics expression is a calculation procedure written in
numbers, variables, and operation symbols.
Example B. Evaluate the monomials if y = โ€“4
a. 3y2
3y2 ๏ƒ  3(โ€“4)2
An expression of the form #xN, where the exponent N is a
non-negative integer and # is a number, is called a monomial
(one-term).
For example, 3x2, โ€“4x3, and 5x6 are monomials.
Polynomial Expressions
Example A.
2 + 3x ๏ƒ  โ€œthe sum of 2 and 3 times xโ€
4x2 โ€“ 5x ๏ƒ  โ€œthe difference between 4 times the square of x
and 5 times xโ€
(3 โ€“ 2x)2 ๏ƒ  โ€œthe square of the difference of 3 and twice xโ€
A mathematics expression is a calculation procedure written in
numbers, variables, and operation symbols.
Example B. Evaluate the monomials if y = โ€“4
a. 3y2
3y2 ๏ƒ  3(โ€“4)2
= 3(16) = 48
An expression of the form #xN, where the exponent N is a
non-negative integer and # is a number, is called a monomial
(one-term).
For example, 3x2, โ€“4x3, and 5x6 are monomials.
Polynomial Expressions
b. โ€“3y2 (y = โ€“4)
Polynomial Expressions
b. โ€“3y2 (y = โ€“4)
โ€“3y2 ๏ƒ  โ€“3(โ€“4)2
Polynomial Expressions
b. โ€“3y2 (y = โ€“4)
โ€“3y2 ๏ƒ  โ€“3(โ€“4)2
= โ€“3(16) = โ€“48.
Polynomial Expressions
b. โ€“3y2 (y = โ€“4)
โ€“3y2 ๏ƒ  โ€“3(โ€“4)2
= โ€“3(16) = โ€“48.
c. โ€“3y3
Polynomial Expressions
b. โ€“3y2 (y = โ€“4)
โ€“3y2 ๏ƒ  โ€“3(โ€“4)2
= โ€“3(16) = โ€“48.
c. โ€“3y3
โ€“3y3 ๏ƒ  โ€“ 3(โ€“4)3
Polynomial Expressions
b. โ€“3y2 (y = โ€“4)
โ€“3y2 ๏ƒ  โ€“3(โ€“4)2
= โ€“3(16) = โ€“48.
c. โ€“3y3
โ€“3y3 ๏ƒ  โ€“ 3(โ€“4)3
= โ€“ 3(โ€“64)
Polynomial Expressions
b. โ€“3y2 (y = โ€“4)
โ€“3y2 ๏ƒ  โ€“3(โ€“4)2
= โ€“3(16) = โ€“48.
c. โ€“3y3
โ€“3y3 ๏ƒ  โ€“ 3(โ€“4)3
= โ€“ 3(โ€“64) = 192
Polynomial Expressions
b. โ€“3y2 (y = โ€“4)
โ€“3y2 ๏ƒ  โ€“3(โ€“4)2
= โ€“3(16) = โ€“48.
c. โ€“3y3
โ€“3y3 ๏ƒ  โ€“ 3(โ€“4)3
= โ€“ 3(โ€“64) = 192
Polynomial Expressions
Polynomial Expressions
b. โ€“3y2 (y = โ€“4)
โ€“3y2 ๏ƒ  โ€“3(โ€“4)2
= โ€“3(16) = โ€“48.
c. โ€“3y3
โ€“3y3 ๏ƒ  โ€“ 3(โ€“4)3
= โ€“ 3(โ€“64) = 192
The sum of monomials are called polynomials (many-terms),
these are expressions of the form
#xN ยฑ #xN-1 ยฑ โ€ฆ ยฑ #x1 ยฑ #
where # can be any number.
Polynomial Expressions
Polynomial Expressions
b. โ€“3y2 (y = โ€“4)
โ€“3y2 ๏ƒ  โ€“3(โ€“4)2
= โ€“3(16) = โ€“48.
c. โ€“3y3
โ€“3y3 ๏ƒ  โ€“ 3(โ€“4)3
= โ€“ 3(โ€“64) = 192
The sum of monomials are called polynomials (many-terms),
these are expressions of the form
#xN ยฑ #xN-1 ยฑ โ€ฆ ยฑ #x1 ยฑ #
where # can be any number.
For example, 4x + 7,
Polynomial Expressions
Polynomial Expressions
b. โ€“3y2 (y = โ€“4)
โ€“3y2 ๏ƒ  โ€“3(โ€“4)2
= โ€“3(16) = โ€“48.
c. โ€“3y3
โ€“3y3 ๏ƒ  โ€“ 3(โ€“4)3
= โ€“ 3(โ€“64) = 192
The sum of monomials are called polynomials (many-terms),
these are expressions of the form
#xN ยฑ #xN-1 ยฑ โ€ฆ ยฑ #x1 ยฑ #
where # can be any number.
For example, 4x + 7, โ€“3x2 โ€“ 4x + 7,
Polynomial Expressions
Polynomial Expressions
b. โ€“3y2 (y = โ€“4)
โ€“3y2 ๏ƒ  โ€“3(โ€“4)2
= โ€“3(16) = โ€“48.
c. โ€“3y3
โ€“3y3 ๏ƒ  โ€“ 3(โ€“4)3
= โ€“ 3(โ€“64) = 192
The sum of monomials are called polynomials (many-terms),
these are expressions of the form
#xN ยฑ #xN-1 ยฑ โ€ฆ ยฑ #x1 ยฑ #
where # can be any number.
For example, 4x + 7, โ€“3x2 โ€“ 4x + 7, โ€“5x4 + 1 are polynomials,
Polynomial Expressions
Polynomial Expressions
b. โ€“3y2 (y = โ€“4)
โ€“3y2 ๏ƒ  โ€“3(โ€“4)2
= โ€“3(16) = โ€“48.
c. โ€“3y3
โ€“3y3 ๏ƒ  โ€“ 3(โ€“4)3
= โ€“ 3(โ€“64) = 192
The sum of monomials are called polynomials (many-terms),
these are expressions of the form
#xN ยฑ #xN-1 ยฑ โ€ฆ ยฑ #x1 ยฑ #
where # can be any number.
For example, 4x + 7, โ€“3x2 โ€“ 4x + 7, โ€“5x4 + 1 are polynomials,
x
1
is not a polynomial.whereas the expression
Polynomial Expressions
Polynomial Expressions
Example C. Evaluate the polynomial 4x2 โ€“ 3x3 if x = โ€“3.
Polynomial Expressions
Example C. Evaluate the polynomial 4x2 โ€“ 3x3 if x = โ€“3.
The polynomial 4x2 โ€“ 3x3 is the combination of two
monomials; 4x2 and โ€“3x3.
Polynomial Expressions
Example C. Evaluate the polynomial 4x2 โ€“ 3x3 if x = โ€“3.
The polynomial 4x2 โ€“ 3x3 is the combination of two
monomials; 4x2 and โ€“3x3. When evaluating the polynomial,
we evaluate each monomial then combine the results.
Polynomial Expressions
Example C. Evaluate the polynomial 4x2 โ€“ 3x3 if x = โ€“3.
The polynomial 4x2 โ€“ 3x3 is the combination of two
monomials; 4x2 and โ€“3x3. When evaluating the polynomial,
we evaluate each monomial then combine the results.
Set x = (โ€“3) in the expression,
Polynomial Expressions
Example C. Evaluate the polynomial 4x2 โ€“ 3x3 if x = โ€“3.
The polynomial 4x2 โ€“ 3x3 is the combination of two
monomials; 4x2 and โ€“3x3. When evaluating the polynomial,
we evaluate each monomial then combine the results.
Set x = (โ€“3) in the expression, we get
4(โ€“3)2 โ€“ 3(โ€“3)3
Polynomial Expressions
Example C. Evaluate the polynomial 4x2 โ€“ 3x3 if x = โ€“3.
The polynomial 4x2 โ€“ 3x3 is the combination of two
monomials; 4x2 and โ€“3x3. When evaluating the polynomial,
we evaluate each monomial then combine the results.
Set x = (โ€“3) in the expression, we get
4(โ€“3)2 โ€“ 3(โ€“3)3
= 4(9) โ€“ 3(โ€“27)
Polynomial Expressions
Example C. Evaluate the polynomial 4x2 โ€“ 3x3 if x = โ€“3.
The polynomial 4x2 โ€“ 3x3 is the combination of two
monomials; 4x2 and โ€“3x3. When evaluating the polynomial,
we evaluate each monomial then combine the results.
Set x = (โ€“3) in the expression, we get
4(โ€“3)2 โ€“ 3(โ€“3)3
= 4(9) โ€“ 3(โ€“27)
= 36 + 81
= 117
Polynomial Expressions
Example C. Evaluate the polynomial 4x2 โ€“ 3x3 if x = โ€“3.
The polynomial 4x2 โ€“ 3x3 is the combination of two
monomials; 4x2 and โ€“3x3. When evaluating the polynomial,
we evaluate each monomial then combine the results.
Set x = (โ€“3) in the expression, we get
4(โ€“3)2 โ€“ 3(โ€“3)3
= 4(9) โ€“ 3(โ€“27)
= 36 + 81
= 117
Given a polynomial, each monomial is called a term.
Polynomial Expressions
Example C. Evaluate the polynomial 4x2 โ€“ 3x3 if x = โ€“3.
The polynomial 4x2 โ€“ 3x3 is the combination of two
monomials; 4x2 and โ€“3x3. When evaluating the polynomial,
we evaluate each monomial then combine the results.
Set x = (โ€“3) in the expression, we get
4(โ€“3)2 โ€“ 3(โ€“3)3
= 4(9) โ€“ 3(โ€“27)
= 36 + 81
= 117
Given a polynomial, each monomial is called a term.
#xN ยฑ #xN-1 ยฑ โ€ฆ ยฑ #x ยฑ #
terms
Polynomial Expressions
Example C. Evaluate the polynomial 4x2 โ€“ 3x3 if x = โ€“3.
The polynomial 4x2 โ€“ 3x3 is the combination of two
monomials; 4x2 and โ€“3x3. When evaluating the polynomial,
we evaluate each monomial then combine the results.
Set x = (โ€“3) in the expression, we get
4(โ€“3)2 โ€“ 3(โ€“3)3
= 4(9) โ€“ 3(โ€“27)
= 36 + 81
= 117
Given a polynomial, each monomial is called a term.
#xN ยฑ #xN-1 ยฑ โ€ฆ ยฑ #x ยฑ #
terms
Therefore the polynomial โ€“3x2 โ€“ 4x + 7 has 3 terms,
โ€“3x2 , โ€“4x and + 7.
Polynomial Expressions
Each term is addressed by the variable part.
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2,
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x,
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x,
and the number term or the constant term is 7.
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term.
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of โ€“3x2 is โ€“3 .
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of โ€“3x2 is โ€“3 .
Operations with Polynomials
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of โ€“3x2 is โ€“3 .
Terms with the same variable part are called like-terms.
Operations with Polynomials
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of โ€“3x2 is โ€“3 .
Terms with the same variable part are called like-terms.
Like-terms may be combined.
Operations with Polynomials
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of โ€“3x2 is โ€“3 .
Terms with the same variable part are called like-terms.
Like-terms may be combined.
For example, 4x + 5x = 9x
Operations with Polynomials
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of โ€“3x2 is โ€“3 .
Terms with the same variable part are called like-terms.
Like-terms may be combined.
For example, 4x + 5x = 9x and 3x2 โ€“ 5x2 = โ€“2x2.
Operations with Polynomials
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of โ€“3x2 is โ€“3 .
Terms with the same variable part are called like-terms.
Like-terms may be combined.
For example, 4x + 5x = 9x and 3x2 โ€“ 5x2 = โ€“2x2.
Unlike terms may not be combined.
Operations with Polynomials
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of โ€“3x2 is โ€“3 .
Terms with the same variable part are called like-terms.
Like-terms may be combined.
For example, 4x + 5x = 9x and 3x2 โ€“ 5x2 = โ€“2x2.
Unlike terms may not be combined. So x + x2 stays as x + x2.
Operations with Polynomials
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of โ€“3x2 is โ€“3 .
Terms with the same variable part are called like-terms.
Like-terms may be combined.
For example, 4x + 5x = 9x and 3x2 โ€“ 5x2 = โ€“2x2.
Unlike terms may not be combined. So x + x2 stays as x + x2.
Note that we write 1xN as xN , โ€“1xN as โ€“xN.
Operations with Polynomials
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of โ€“3x2 is โ€“3 .
Terms with the same variable part are called like-terms.
Like-terms may be combined.
For example, 4x + 5x = 9x and 3x2 โ€“ 5x2 = โ€“2x2.
Unlike terms may not be combined. So x + x2 stays as x + x2.
Note that we write 1xN as xN , โ€“1xN as โ€“xN.
When multiplying a number with a term, we multiply it with the
coefficient.
Operations with Polynomials
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of โ€“3x2 is โ€“3 .
Terms with the same variable part are called like-terms.
Like-terms may be combined.
For example, 4x + 5x = 9x and 3x2 โ€“ 5x2 = โ€“2x2.
Unlike terms may not be combined. So x + x2 stays as x + x2.
Note that we write 1xN as xN , โ€“1xN as โ€“xN.
When multiplying a number with a term, we multiply it with the
coefficient. Hence, 3(5x) = (3*5)x
Operations with Polynomials
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of โ€“3x2 is โ€“3 .
Terms with the same variable part are called like-terms.
Like-terms may be combined.
For example, 4x + 5x = 9x and 3x2 โ€“ 5x2 = โ€“2x2.
Unlike terms may not be combined. So x + x2 stays as x + x2.
Note that we write 1xN as xN , โ€“1xN as โ€“xN.
When multiplying a number with a term, we multiply it with the
coefficient. Hence, 3(5x) = (3*5)x =15x,
Operations with Polynomials
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of โ€“3x2 is โ€“3 .
Terms with the same variable part are called like-terms.
Like-terms may be combined.
For example, 4x + 5x = 9x and 3x2 โ€“ 5x2 = โ€“2x2.
Unlike terms may not be combined. So x + x2 stays as x + x2.
Note that we write 1xN as xN , โ€“1xN as โ€“xN.
When multiplying a number with a term, we multiply it with the
coefficient. Hence, 3(5x) = (3*5)x =15x,
and โ€“2(โ€“4x) = (โ€“2)(โ€“4)x = 8x.
Operations with Polynomials
Polynomial Expressions
Each term is addressed by the variable part. Hence the
x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x,
and the number term or the constant term is 7.
The number in front of a term is called the coefficient of that
term. So the coefficient of โ€“3x2 is โ€“3 .
Terms with the same variable part are called like-terms.
Like-terms may be combined.
For example, 4x + 5x = 9x and 3x2 โ€“ 5x2 = โ€“2x2.
Unlike terms may not be combined. So x + x2 stays as x + x2.
Note that we write 1xN as xN , โ€“1xN as โ€“xN.
When multiplying a number with a term, we multiply it with the
coefficient. Hence, 3(5x) = (3*5)x =15x,
and โ€“2(โ€“4x) = (โ€“2)(โ€“4)x = 8x.
Operations with Polynomials
When multiplying a number with a polynomial, we may
expand using the distributive law: A(B ยฑ C) = AB ยฑ AC.
Polynomial Expressions
Example D. Expand and simplify.
Polynomial Operations
Example D. Expand and simplify.
a. 3(2x โ€“ 4) + 2(4 โ€“ 5x)
Polynomial Operations
Example D. Expand and simplify.
a. 3(2x โ€“ 4) + 2(4 โ€“ 5x)
= 6x โ€“ 12
Polynomial Operations
Example D. Expand and simplify.
a. 3(2x โ€“ 4) + 2(4 โ€“ 5x)
= 6x โ€“ 12 + 8 โ€“ 10x
Polynomial Operations
Example D. Expand and simplify.
a. 3(2x โ€“ 4) + 2(4 โ€“ 5x)
= 6x โ€“ 12 + 8 โ€“ 10x
= โ€“4x โ€“ 4
Polynomial Operations
Example D. Expand and simplify.
a. 3(2x โ€“ 4) + 2(4 โ€“ 5x)
= 6x โ€“ 12 + 8 โ€“ 10x
= โ€“4x โ€“ 4
b. โ€“3(x2 โ€“ 3x + 5) โ€“ 2(โ€“x2 โ€“ 4x โ€“ 6)
Polynomial Operations
Example D. Expand and simplify.
a. 3(2x โ€“ 4) + 2(4 โ€“ 5x)
= 6x โ€“ 12 + 8 โ€“ 10x
= โ€“4x โ€“ 4
b. โ€“3(x2 โ€“ 3x + 5) โ€“ 2(โ€“x2 โ€“ 4x โ€“ 6)
= โ€“3x2 + 9x โ€“ 15
Polynomial Operations
Example D. Expand and simplify.
a. 3(2x โ€“ 4) + 2(4 โ€“ 5x)
= 6x โ€“ 12 + 8 โ€“ 10x
= โ€“4x โ€“ 4
b. โ€“3(x2 โ€“ 3x + 5) โ€“ 2(โ€“x2 โ€“ 4x โ€“ 6)
= โ€“3x2 + 9x โ€“ 15 + 2x2 + 8x +12
Polynomial Operations
Example D. Expand and simplify.
a. 3(2x โ€“ 4) + 2(4 โ€“ 5x)
= 6x โ€“ 12 + 8 โ€“ 10x
= โ€“4x โ€“ 4
b. โ€“3(x2 โ€“ 3x + 5) โ€“ 2(โ€“x2 โ€“ 4x โ€“ 6)
= โ€“3x2 + 9x โ€“ 15 + 2x2 + 8x +12
= โ€“x2 + 17x โ€“ 3
Polynomial Operations
Example D. Expand and simplify.
a. 3(2x โ€“ 4) + 2(4 โ€“ 5x)
= 6x โ€“ 12 + 8 โ€“ 10x
= โ€“4x โ€“ 4
b. โ€“3(x2 โ€“ 3x + 5) โ€“ 2(โ€“x2 โ€“ 4x โ€“ 6)
= โ€“3x2 + 9x โ€“ 15 + 2x2 + 8x +12
= โ€“x2 + 17x โ€“ 3
Polynomial Operations
When multiply a term with another term, we multiply the
coefficient with the coefficient and the variable with the
variable.
Example D. Expand and simplify.
a. 3(2x โ€“ 4) + 2(4 โ€“ 5x)
= 6x โ€“ 12 + 8 โ€“ 10x
= โ€“4x โ€“ 4
b. โ€“3(x2 โ€“ 3x + 5) โ€“ 2(โ€“x2 โ€“ 4x โ€“ 6)
= โ€“3x2 + 9x โ€“ 15 + 2x2 + 8x +12
= โ€“x2 + 17x โ€“ 3
Polynomial Operations
When multiply a term with another term, we multiply the
coefficient with the coefficient and the variable with the
variable.
Example E.
a. (3x2)(2x3) =
b. 3x2(โ€“4x) =
c. 3x2(2x3 โ€“ 4x)
=
Example D. Expand and simplify.
a. 3(2x โ€“ 4) + 2(4 โ€“ 5x)
= 6x โ€“ 12 + 8 โ€“ 10x
= โ€“4x โ€“ 4
b. โ€“3(x2 โ€“ 3x + 5) โ€“ 2(โ€“x2 โ€“ 4x โ€“ 6)
= โ€“3x2 + 9x โ€“ 15 + 2x2 + 8x +12
= โ€“x2 + 17x โ€“ 3
Polynomial Operations
When multiply a term with another term, we multiply the
coefficient with the coefficient and the variable with the
variable.
Example E.
a. (3x2)(2x3) = 3*2x2x3
b. 3x2(โ€“4x) =
c. 3x2(2x3 โ€“ 4x)
=
Example D. Expand and simplify.
a. 3(2x โ€“ 4) + 2(4 โ€“ 5x)
= 6x โ€“ 12 + 8 โ€“ 10x
= โ€“4x โ€“ 4
b. โ€“3(x2 โ€“ 3x + 5) โ€“ 2(โ€“x2 โ€“ 4x โ€“ 6)
= โ€“3x2 + 9x โ€“ 15 + 2x2 + 8x +12
= โ€“x2 + 17x โ€“ 3
Polynomial Operations
When multiply a term with another term, we multiply the
coefficient with the coefficient and the variable with the
variable.
Example E.
a. (3x2)(2x3) = 3*2x2x3 = 6x5
b. 3x2(โ€“4x) =
c. 3x2(2x3 โ€“ 4x)
=
Example D. Expand and simplify.
a. 3(2x โ€“ 4) + 2(4 โ€“ 5x)
= 6x โ€“ 12 + 8 โ€“ 10x
= โ€“4x โ€“ 4
b. โ€“3(x2 โ€“ 3x + 5) โ€“ 2(โ€“x2 โ€“ 4x โ€“ 6)
= โ€“3x2 + 9x โ€“ 15 + 2x2 + 8x +12
= โ€“x2 + 17x โ€“ 3
Polynomial Operations
When multiply a term with another term, we multiply the
coefficient with the coefficient and the variable with the
variable.
Example E.
a. (3x2)(2x3) = 3*2x2x3 = 6x5
b. 3x2(โ€“4x) = 3(โ€“4)x2x = โ€“12x3
c. 3x2(2x3 โ€“ 4x)
=
Example D. Expand and simplify.
a. 3(2x โ€“ 4) + 2(4 โ€“ 5x)
= 6x โ€“ 12 + 8 โ€“ 10x
= โ€“4x โ€“ 4
b. โ€“3(x2 โ€“ 3x + 5) โ€“ 2(โ€“x2 โ€“ 4x โ€“ 6)
= โ€“3x2 + 9x โ€“ 15 + 2x2 + 8x +12
= โ€“x2 + 17x โ€“ 3
Polynomial Operations
When multiply a term with another term, we multiply the
coefficient with the coefficient and the variable with the
variable.
Example E.
a. (3x2)(2x3) = 3*2x2x3 = 6x5
b. 3x2(โ€“4x) = 3(โ€“4)x2x = โ€“12x3
c. 3x2(2x3 โ€“ 4x) distribute
= 6x5 โ€“ 12x3
To multiply two polynomials, we may multiply each term of one
polynomial against other polynomial then expand and simplify.
Polynomial Operations
To multiply two polynomials, we may multiply each term of one
polynomial against other polynomial then expand and simplify.
Polynomial Operations
Example F.
a. (3x + 2)(2x โ€“ 1)
To multiply two polynomials, we may multiply each term of one
polynomial against other polynomial then expand and simplify.
Polynomial Operations
Example F.
= 3x(2x โ€“ 1) + 2(2x โ€“ 1)
a. (3x + 2)(2x โ€“ 1)
To multiply two polynomials, we may multiply each term of one
polynomial against other polynomial then expand and simplify.
Polynomial Operations
Example F.
= 3x(2x โ€“ 1) + 2(2x โ€“ 1)
= 6x2 โ€“ 3x + 4x โ€“ 2
a. (3x + 2)(2x โ€“ 1)
To multiply two polynomials, we may multiply each term of one
polynomial against other polynomial then expand and simplify.
Polynomial Operations
Example F.
= 3x(2x โ€“ 1) + 2(2x โ€“ 1)
= 6x2 โ€“ 3x + 4x โ€“ 2
= 6x2 + x โ€“ 2
a. (3x + 2)(2x โ€“ 1)
To multiply two polynomials, we may multiply each term of one
polynomial against other polynomial then expand and simplify.
Polynomial Operations
Example F.
b. (2x โ€“ 1)(2x2 + 3x โ€“4)
= 3x(2x โ€“ 1) + 2(2x โ€“ 1)
= 6x2 โ€“ 3x + 4x โ€“ 2
= 6x2 + x โ€“ 2
a. (3x + 2)(2x โ€“ 1)
To multiply two polynomials, we may multiply each term of one
polynomial against other polynomial then expand and simplify.
Polynomial Operations
Example F.
b. (2x โ€“ 1)(2x2 + 3x โ€“4)
= 3x(2x โ€“ 1) + 2(2x โ€“ 1)
= 6x2 โ€“ 3x + 4x โ€“ 2
= 6x2 + x โ€“ 2
= 2x(2x2 + 3x โ€“4) โ€“1(2x2 + 3x โ€“ 4)
a. (3x + 2)(2x โ€“ 1)
To multiply two polynomials, we may multiply each term of one
polynomial against other polynomial then expand and simplify.
Polynomial Operations
Example F.
b. (2x โ€“ 1)(2x2 + 3x โ€“4)
= 3x(2x โ€“ 1) + 2(2x โ€“ 1)
= 6x2 โ€“ 3x + 4x โ€“ 2
= 6x2 + x โ€“ 2
= 2x(2x2 + 3x โ€“4) โ€“1(2x2 + 3x โ€“ 4)
= 4x3 + 6x2 โ€“ 8x โ€“ 2x2 โ€“ 3x + 4
a. (3x + 2)(2x โ€“ 1)
To multiply two polynomials, we may multiply each term of one
polynomial against other polynomial then expand and simplify.
Polynomial Operations
Example F.
b. (2x โ€“ 1)(2x2 + 3x โ€“4)
= 3x(2x โ€“ 1) + 2(2x โ€“ 1)
= 6x2 โ€“ 3x + 4x โ€“ 2
= 6x2 + x โ€“ 2
= 2x(2x2 + 3x โ€“4) โ€“1(2x2 + 3x โ€“ 4)
= 4x3 + 6x2 โ€“ 8x โ€“ 2x2 โ€“ 3x + 4
= 4x3 + 4x2 โ€“ 11x + 4
a. (3x + 2)(2x โ€“ 1)
To multiply two polynomials, we may multiply each term of one
polynomial against other polynomial then expand and simplify.
Polynomial Operations
Example F.
b. (2x โ€“ 1)(2x2 + 3x โ€“4)
= 3x(2x โ€“ 1) + 2(2x โ€“ 1)
= 6x2 โ€“ 3x + 4x โ€“ 2
= 6x2 + x โ€“ 2
= 2x(2x2 + 3x โ€“4) โ€“1(2x2 + 3x โ€“ 4)
= 4x3 + 6x2 โ€“ 8x โ€“ 2x2 โ€“ 3x + 4
= 4x3 + 4x2 โ€“ 11x + 4
a. (3x + 2)(2x โ€“ 1)
Note that if we did (2x โ€“ 1)(3x + 2) or (2x2 + 3x โ€“4)(2x โ€“ 1)
instead, we get the same answers. (Check this.)
To multiply two polynomials, we may multiply each term of one
polynomial against other polynomial then expand and simplify.
Polynomial Operations
Example F.
b. (2x โ€“ 1)(2x2 + 3x โ€“4)
= 3x(2x โ€“ 1) + 2(2x โ€“ 1)
= 6x2 โ€“ 3x + 4x โ€“ 2
= 6x2 + x โ€“ 2
= 2x(2x2 + 3x โ€“4) โ€“1(2x2 + 3x โ€“ 4)
= 4x3 + 6x2 โ€“ 8x โ€“ 2x2 โ€“ 3x + 4
= 4x3 + 4x2 โ€“ 11x + 4
a. (3x + 2)(2x โ€“ 1)
Note that if we did (2x โ€“ 1)(3x + 2) or (2x2 + 3x โ€“4)(2x โ€“ 1)
instead, we get the same answers. (Check this.)
Fact. If P and Q are two polynomials then PQ โ‰ก QP.
To multiply two polynomials, we may multiply each term of one
polynomial against other polynomial then expand and simplify.
Polynomial Operations
Example F.
b. (2x โ€“ 1)(2x2 + 3x โ€“4)
= 3x(2x โ€“ 1) + 2(2x โ€“ 1)
= 6x2 โ€“ 3x + 4x โ€“ 2
= 6x2 + x โ€“ 2
= 2x(2x2 + 3x โ€“4) โ€“1(2x2 + 3x โ€“ 4)
= 4x3 + 6x2 โ€“ 8x โ€“ 2x2 โ€“ 3x + 4
= 4x3 + 4x2 โ€“ 11x + 4
a. (3x + 2)(2x โ€“ 1)
Note that if we did (2x โ€“ 1)(3x + 2) or (2x2 + 3x โ€“4)(2x โ€“ 1)
instead, we get the same answers. (Check this.)
Fact. If P and Q are two polynomials then PQ โ‰ก QP.
A shorter way to multiply is to bypass the 2nd step and use the
general distributive law.
General Distributive Rule:
Polynomial Operations
General Distributive Rule:
(A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..)
Polynomial Operations
General Distributive Rule:
(A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..)
= Aa ยฑ Ab ยฑ Ac ..
Polynomial Operations
General Distributive Rule:
(A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..)
= Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..
Polynomial Operations
General Distributive Rule:
(A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..)
= Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc ..
Polynomial Operations
General Distributive Rule:
(A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..)
= Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc ..
Example G. Expand
a. (x + 3)(x โ€“ 4)
Polynomial Operations
General Distributive Rule:
(A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..)
= Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc ..
Example G. Expand
a. (x + 3)(x โ€“ 4)
= x2
Polynomial Operations
General Distributive Rule:
(A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..)
= Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc ..
Example G. Expand
a. (x + 3)(x โ€“ 4)
= x2 โ€“ 4x
Polynomial Operations
General Distributive Rule:
(A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..)
= Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc ..
Example G. Expand
a. (x + 3)(x โ€“ 4)
= x2 โ€“ 4x + 3x
Polynomial Operations
General Distributive Rule:
(A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..)
= Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc ..
Example G. Expand
a. (x + 3)(x โ€“ 4)
= x2 โ€“ 4x + 3x โ€“ 12
Polynomial Operations
General Distributive Rule:
(A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..)
= Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc ..
Example G. Expand
a. (x + 3)(x โ€“ 4)
= x2 โ€“ 4x + 3x โ€“ 12 simplify
= x2 โ€“ x โ€“ 12
Polynomial Operations
General Distributive Rule:
(A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..)
= Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc ..
Example G. Expand
a. (x + 3)(x โ€“ 4)
= x2 โ€“ 4x + 3x โ€“ 12 simplify
= x2 โ€“ x โ€“ 12
b. (x โ€“ 3)(x2 โ€“ 2x โ€“ 2)
Polynomial Operations
General Distributive Rule:
(A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..)
= Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc ..
Example G. Expand
a. (x + 3)(x โ€“ 4)
= x2 โ€“ 4x + 3x โ€“ 12 simplify
= x2 โ€“ x โ€“ 12
b. (x โ€“ 3)(x2 โ€“ 2x โ€“ 2)
Polynomial Operations
= x3
General Distributive Rule:
(A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..)
= Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc ..
Example G. Expand
a. (x + 3)(x โ€“ 4)
= x2 โ€“ 4x + 3x โ€“ 12 simplify
= x2 โ€“ x โ€“ 12
b. (x โ€“ 3)(x2 โ€“ 2x โ€“ 2)
Polynomial Operations
= x3 โ€“ 2x2
General Distributive Rule:
(A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..)
= Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc ..
Example G. Expand
a. (x + 3)(x โ€“ 4)
= x2 โ€“ 4x + 3x โ€“ 12 simplify
= x2 โ€“ x โ€“ 12
b. (x โ€“ 3)(x2 โ€“ 2x โ€“ 2)
Polynomial Operations
= x3 โ€“ 2x2 โ€“ 2x
General Distributive Rule:
(A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..)
= Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc ..
Example G. Expand
a. (x + 3)(x โ€“ 4)
= x2 โ€“ 4x + 3x โ€“ 12 simplify
= x2 โ€“ x โ€“ 12
b. (x โ€“ 3)(x2 โ€“ 2x โ€“ 2)
Polynomial Operations
= x3 โ€“ 2x2 โ€“ 2x โ€“ 3x2
General Distributive Rule:
(A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..)
= Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc ..
Example G. Expand
a. (x + 3)(x โ€“ 4)
= x2 โ€“ 4x + 3x โ€“ 12 simplify
= x2 โ€“ x โ€“ 12
b. (x โ€“ 3)(x2 โ€“ 2x โ€“ 2)
Polynomial Operations
= x3 โ€“ 2x2 โ€“ 2x โ€“ 3x2 + 6x
General Distributive Rule:
(A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..)
= Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc ..
Example G. Expand
a. (x + 3)(x โ€“ 4)
= x2 โ€“ 4x + 3x โ€“ 12 simplify
= x2 โ€“ x โ€“ 12
b. (x โ€“ 3)(x2 โ€“ 2x โ€“ 2)
Polynomial Operations
= x3 โ€“ 2x2 โ€“ 2x โ€“ 3x2 + 6x + 6
General Distributive Rule:
(A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..)
= Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc ..
Example G. Expand
a. (x + 3)(x โ€“ 4)
= x2 โ€“ 4x + 3x โ€“ 12 simplify
= x2 โ€“ x โ€“ 12
b. (x โ€“ 3)(x2 โ€“ 2x โ€“ 2)
Polynomial Operations
= x3 โ€“ 2x2 โ€“ 2x โ€“ 3x2 + 6x + 6
= x3โ€“ 5x2 + 4x + 6
We will address the division operation of polynomials later-
after we understand more about the multiplication operation.

More Related Content

What's hot

1.5 algebraic and elementary functions
1.5 algebraic and elementary functions1.5 algebraic and elementary functions
1.5 algebraic and elementary functions
math265
ย 
1.3 sign charts and inequalities
1.3 sign charts and inequalities1.3 sign charts and inequalities
1.3 sign charts and inequalities
math123c
ย 
1.2 review on algebra 2-sign charts and inequalities
1.2 review on algebra 2-sign charts and inequalities1.2 review on algebra 2-sign charts and inequalities
1.2 review on algebra 2-sign charts and inequalities
math265
ย 
1.3 solving equations
1.3 solving equations1.3 solving equations
1.3 solving equations
math260
ย 
1.1 review on algebra 1
1.1 review on algebra 11.1 review on algebra 1
1.1 review on algebra 1
math265
ย 
4 3polynomial expressions
4 3polynomial expressions4 3polynomial expressions
4 3polynomial expressions
math123a
ย 
1.2 algebraic expressions
1.2 algebraic expressions1.2 algebraic expressions
1.2 algebraic expressions
math260
ย 
1.6 sign charts and inequalities i
1.6 sign charts and inequalities i1.6 sign charts and inequalities i
1.6 sign charts and inequalities i
math260
ย 
5.2 arithmetic sequences and sums
5.2 arithmetic sequences and sums5.2 arithmetic sequences and sums
5.2 arithmetic sequences and sums
math260
ย 
1.4 review on log exp-functions
1.4 review on log exp-functions1.4 review on log exp-functions
1.4 review on log exp-functions
math265
ย 
2 2linear equations i
2 2linear equations i2 2linear equations i
2 2linear equations i
math123a
ย 
2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions
math260
ย 
2.1 reviews of exponents and the power functions
2.1 reviews of exponents and the power functions2.1 reviews of exponents and the power functions
2.1 reviews of exponents and the power functions
math123c
ย 
4 5 fractional exponents
4 5 fractional exponents4 5 fractional exponents
4 5 fractional exponents
math123b
ย 

What's hot (20)

1.5 algebraic and elementary functions
1.5 algebraic and elementary functions1.5 algebraic and elementary functions
1.5 algebraic and elementary functions
ย 
1.3 sign charts and inequalities
1.3 sign charts and inequalities1.3 sign charts and inequalities
1.3 sign charts and inequalities
ย 
1.2 review on algebra 2-sign charts and inequalities
1.2 review on algebra 2-sign charts and inequalities1.2 review on algebra 2-sign charts and inequalities
1.2 review on algebra 2-sign charts and inequalities
ย 
1.3 solving equations
1.3 solving equations1.3 solving equations
1.3 solving equations
ย 
1.1 review on algebra 1
1.1 review on algebra 11.1 review on algebra 1
1.1 review on algebra 1
ย 
3 algebraic expressions y
3 algebraic expressions y3 algebraic expressions y
3 algebraic expressions y
ย 
55 inequalities and comparative statements
55 inequalities and comparative statements55 inequalities and comparative statements
55 inequalities and comparative statements
ย 
43literal equations
43literal equations43literal equations
43literal equations
ย 
4 3polynomial expressions
4 3polynomial expressions4 3polynomial expressions
4 3polynomial expressions
ย 
1.2 algebraic expressions
1.2 algebraic expressions1.2 algebraic expressions
1.2 algebraic expressions
ย 
1.6 sign charts and inequalities i
1.6 sign charts and inequalities i1.6 sign charts and inequalities i
1.6 sign charts and inequalities i
ย 
57 graphing lines from linear equations
57 graphing lines from linear equations57 graphing lines from linear equations
57 graphing lines from linear equations
ย 
5.2 arithmetic sequences and sums
5.2 arithmetic sequences and sums5.2 arithmetic sequences and sums
5.2 arithmetic sequences and sums
ย 
1.4 review on log exp-functions
1.4 review on log exp-functions1.4 review on log exp-functions
1.4 review on log exp-functions
ย 
2 2linear equations i
2 2linear equations i2 2linear equations i
2 2linear equations i
ย 
2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions
ย 
2.1 reviews of exponents and the power functions
2.1 reviews of exponents and the power functions2.1 reviews of exponents and the power functions
2.1 reviews of exponents and the power functions
ย 
4 5 fractional exponents
4 5 fractional exponents4 5 fractional exponents
4 5 fractional exponents
ย 
8 inequalities and sign charts x
8 inequalities and sign charts x8 inequalities and sign charts x
8 inequalities and sign charts x
ย 
24 variables and evaluation
24 variables and evaluation24 variables and evaluation
24 variables and evaluation
ย 

Viewers also liked

BenSuroLetter (1)
BenSuroLetter (1)BenSuroLetter (1)
BenSuroLetter (1)
Ben Suro
ย 
Exposiciรณn: Semejanzas y Diferencias entre Word y Writer; Imprimir Hoja de Ca...
Exposiciรณn: Semejanzas y Diferencias entre Word y Writer; Imprimir Hoja de Ca...Exposiciรณn: Semejanzas y Diferencias entre Word y Writer; Imprimir Hoja de Ca...
Exposiciรณn: Semejanzas y Diferencias entre Word y Writer; Imprimir Hoja de Ca...
Alex Jonathan Yagloa
ย 
Data Encoding
Data EncodingData Encoding
Data Encoding
Luka M G
ย 
Kasih seorang ibu
Kasih seorang ibuKasih seorang ibu
Kasih seorang ibu
nugroho nugroho
ย 

Viewers also liked (20)

Polynomial division
Polynomial divisionPolynomial division
Polynomial division
ย 
Surat cinta
Surat cintaSurat cinta
Surat cinta
ย 
48 factoring out the gcf and the grouping method
48 factoring out the gcf and the grouping method48 factoring out the gcf and the grouping method
48 factoring out the gcf and the grouping method
ย 
Racun kebaikan
Racun kebaikanRacun kebaikan
Racun kebaikan
ย 
Politicas gubernamentales venezolanas
Politicas gubernamentales venezolanasPoliticas gubernamentales venezolanas
Politicas gubernamentales venezolanas
ย 
Cert IV in Government
Cert IV in GovernmentCert IV in Government
Cert IV in Government
ย 
BenSuroLetter (1)
BenSuroLetter (1)BenSuroLetter (1)
BenSuroLetter (1)
ย 
45scientific notation
45scientific notation45scientific notation
45scientific notation
ย 
47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulas47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulas
ย 
Exposiciรณn: Semejanzas y Diferencias entre Word y Writer; Imprimir Hoja de Ca...
Exposiciรณn: Semejanzas y Diferencias entre Word y Writer; Imprimir Hoja de Ca...Exposiciรณn: Semejanzas y Diferencias entre Word y Writer; Imprimir Hoja de Ca...
Exposiciรณn: Semejanzas y Diferencias entre Word y Writer; Imprimir Hoja de Ca...
ย 
Presentation on cyclic redundancy check (crc)
Presentation on cyclic redundancy check (crc)Presentation on cyclic redundancy check (crc)
Presentation on cyclic redundancy check (crc)
ย 
Maths polynomials 9th
Maths polynomials 9thMaths polynomials 9th
Maths polynomials 9th
ย 
Data Encoding
Data EncodingData Encoding
Data Encoding
ย 
polynomials class 9th
polynomials class 9thpolynomials class 9th
polynomials class 9th
ย 
Polynomials
PolynomialsPolynomials
Polynomials
ย 
Neurociencia e storytelling
Neurociencia e storytellingNeurociencia e storytelling
Neurociencia e storytelling
ย 
Kasih seorang ibu
Kasih seorang ibuKasih seorang ibu
Kasih seorang ibu
ย 
Penjara semu
Penjara semuPenjara semu
Penjara semu
ย 
The Credit Crunch
The Credit CrunchThe Credit Crunch
The Credit Crunch
ย 
Mencari kebahagiaan
Mencari kebahagiaanMencari kebahagiaan
Mencari kebahagiaan
ย 

Similar to 46polynomial expressions

Hari narayan class 9-a
Hari narayan class 9-aHari narayan class 9-a
Hari narayan class 9-a
Kartik Kumar
ย 
4 4polynomial operations
4 4polynomial operations4 4polynomial operations
4 4polynomial operations
math123a
ย 
Project in math
Project in mathProject in math
Project in math
samuel balia
ย 
Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1
jennytuazon01630
ย 
CLASS X MATHS Polynomials
CLASS X MATHS  PolynomialsCLASS X MATHS  Polynomials
CLASS X MATHS Polynomials
Rc Os
ย 

Similar to 46polynomial expressions (20)

1 polynomial expressions x
1 polynomial expressions x1 polynomial expressions x
1 polynomial expressions x
ย 
Chapter 1
Chapter 1Chapter 1
Chapter 1
ย 
Hari narayan class 9-a
Hari narayan class 9-aHari narayan class 9-a
Hari narayan class 9-a
ย 
Multiplication of algebraic expressions
Multiplication of algebraic expressionsMultiplication of algebraic expressions
Multiplication of algebraic expressions
ย 
1050 text-bop
1050 text-bop1050 text-bop
1050 text-bop
ย 
Algebra
AlgebraAlgebra
Algebra
ย 
Polynomial- Maths project
Polynomial- Maths projectPolynomial- Maths project
Polynomial- Maths project
ย 
Advanced algebra
Advanced algebraAdvanced algebra
Advanced algebra
ย 
4 4polynomial operations
4 4polynomial operations4 4polynomial operations
4 4polynomial operations
ย 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomials
ย 
Polynomials
PolynomialsPolynomials
Polynomials
ย 
factoring trinomials the ac method and making lists
factoring trinomials  the ac method and making listsfactoring trinomials  the ac method and making lists
factoring trinomials the ac method and making lists
ย 
Project in math BY:Samuel Vasquez Balia
Project in math BY:Samuel Vasquez BaliaProject in math BY:Samuel Vasquez Balia
Project in math BY:Samuel Vasquez Balia
ย 
Project in math
Project in mathProject in math
Project in math
ย 
Algebraic Simplification and evaluation
Algebraic Simplification and evaluationAlgebraic Simplification and evaluation
Algebraic Simplification and evaluation
ย 
Polynomials
PolynomialsPolynomials
Polynomials
ย 
Algebraic identities
Algebraic identitiesAlgebraic identities
Algebraic identities
ย 
Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1
ย 
CLASS X MATHS Polynomials
CLASS X MATHS  PolynomialsCLASS X MATHS  Polynomials
CLASS X MATHS Polynomials
ย 
Polynomial
PolynomialPolynomial
Polynomial
ย 

More from alg1testreview

More from alg1testreview (20)

56 system of linear equations
56 system of linear equations56 system of linear equations
56 system of linear equations
ย 
55 addition and subtraction of rational expressions
55 addition and subtraction of rational expressions 55 addition and subtraction of rational expressions
55 addition and subtraction of rational expressions
ย 
54 the least common multiple
54 the least common multiple54 the least common multiple
54 the least common multiple
ย 
53 multiplication and division of rational expressions
53 multiplication and division of rational expressions53 multiplication and division of rational expressions
53 multiplication and division of rational expressions
ย 
52 rational expressions
52 rational expressions52 rational expressions
52 rational expressions
ย 
51 basic shapes and formulas
51 basic shapes and formulas51 basic shapes and formulas
51 basic shapes and formulas
ย 
41 expressions
41 expressions41 expressions
41 expressions
ย 
59 constructing linea equations of lines
59 constructing linea equations of lines59 constructing linea equations of lines
59 constructing linea equations of lines
ย 
58 slopes of lines
58 slopes of lines58 slopes of lines
58 slopes of lines
ย 
56 the rectangular coordinate system
56 the rectangular coordinate system56 the rectangular coordinate system
56 the rectangular coordinate system
ย 
54 the number line
54 the number line54 the number line
54 the number line
ย 
53 pythagorean theorem and square roots
53 pythagorean theorem and square roots53 pythagorean theorem and square roots
53 pythagorean theorem and square roots
ย 
52 about triangles
52 about triangles52 about triangles
52 about triangles
ย 
50 solving equations by factoring
50 solving equations by factoring50 solving equations by factoring
50 solving equations by factoring
ย 
51 ratio-proportion
51 ratio-proportion51 ratio-proportion
51 ratio-proportion
ย 
49 factoring trinomials the ac method and making lists
49 factoring trinomials  the ac method and making lists49 factoring trinomials  the ac method and making lists
49 factoring trinomials the ac method and making lists
ย 
42 linear equations
42 linear equations42 linear equations
42 linear equations
ย 
33 percentages
33 percentages33 percentages
33 percentages
ย 
31 decimals, addition and subtraction of decimals
31 decimals, addition and subtraction of decimals31 decimals, addition and subtraction of decimals
31 decimals, addition and subtraction of decimals
ย 
34 conversion between decimals, fractions and percentages
34 conversion between decimals, fractions and percentages34 conversion between decimals, fractions and percentages
34 conversion between decimals, fractions and percentages
ย 

Recently uploaded

Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
EADTU
ย 

Recently uploaded (20)

Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
ย 
Model Attribute _rec_name in the Odoo 17
Model Attribute _rec_name in the Odoo 17Model Attribute _rec_name in the Odoo 17
Model Attribute _rec_name in the Odoo 17
ย 
Tatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsTatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf arts
ย 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
ย 
Play hard learn harder: The Serious Business of Play
Play hard learn harder:  The Serious Business of PlayPlay hard learn harder:  The Serious Business of Play
Play hard learn harder: The Serious Business of Play
ย 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
ย 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
ย 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
ย 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
ย 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.ppt
ย 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
ย 
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdf
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdfUGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdf
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdf
ย 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
ย 
Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111
ย 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
ย 
OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...
ย 
Introduction to TechSoupโ€™s Digital Marketing Services and Use Cases
Introduction to TechSoupโ€™s Digital Marketing  Services and Use CasesIntroduction to TechSoupโ€™s Digital Marketing  Services and Use Cases
Introduction to TechSoupโ€™s Digital Marketing Services and Use Cases
ย 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
ย 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
ย 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
ย 

46polynomial expressions

  • 2. A mathematics expression is a calculation procedure written in numbers, variables, and operation symbols. Polynomial Expressions
  • 3. Example A. 2 + 3x ๏ƒ  A mathematics expression is a calculation procedure written in numbers, variables, and operation symbols. Polynomial Expressions
  • 4. Example A. 2 + 3x ๏ƒ  โ€œthe sum of 2 and 3 times xโ€ A mathematics expression is a calculation procedure written in numbers, variables, and operation symbols. Polynomial Expressions
  • 5. Example A. 2 + 3x ๏ƒ  โ€œthe sum of 2 and 3 times xโ€ 4x2 โ€“ 5x A mathematics expression is a calculation procedure written in numbers, variables, and operation symbols. Polynomial Expressions
  • 6. Example A. 2 + 3x ๏ƒ  โ€œthe sum of 2 and 3 times xโ€ 4x2 โ€“ 5x ๏ƒ  โ€œthe difference between 4 times the square of x and 5 times xโ€ A mathematics expression is a calculation procedure written in numbers, variables, and operation symbols. Polynomial Expressions
  • 7. Example A. 2 + 3x ๏ƒ  โ€œthe sum of 2 and 3 times xโ€ 4x2 โ€“ 5x ๏ƒ  โ€œthe difference between 4 times the square of x and 5 times xโ€ (3 โ€“ 2x)2 A mathematics expression is a calculation procedure written in numbers, variables, and operation symbols. Polynomial Expressions
  • 8. Example A. 2 + 3x ๏ƒ  โ€œthe sum of 2 and 3 times xโ€ 4x2 โ€“ 5x ๏ƒ  โ€œthe difference between 4 times the square of x and 5 times xโ€ (3 โ€“ 2x)2 ๏ƒ  โ€œthe square of the difference of 3 and twice xโ€ A mathematics expression is a calculation procedure written in numbers, variables, and operation symbols. Polynomial Expressions
  • 9. Example A. 2 + 3x ๏ƒ  โ€œthe sum of 2 and 3 times xโ€ 4x2 โ€“ 5x ๏ƒ  โ€œthe difference between 4 times the square of x and 5 times xโ€ (3 โ€“ 2x)2 ๏ƒ  โ€œthe square of the difference of 3 and twice xโ€ A mathematics expression is a calculation procedure written in numbers, variables, and operation symbols. An expression of the form #xN, where the exponent N is a non-negative integer and # is a number, is called a monomial (one-term). Polynomial Expressions
  • 10. Example A. 2 + 3x ๏ƒ  โ€œthe sum of 2 and 3 times xโ€ 4x2 โ€“ 5x ๏ƒ  โ€œthe difference between 4 times the square of x and 5 times xโ€ (3 โ€“ 2x)2 ๏ƒ  โ€œthe square of the difference of 3 and twice xโ€ A mathematics expression is a calculation procedure written in numbers, variables, and operation symbols. An expression of the form #xN, where the exponent N is a non-negative integer and # is a number, is called a monomial (one-term). For example, 3x2, โ€“4x3, and 5x6 are monomials. Polynomial Expressions
  • 11. Example A. 2 + 3x ๏ƒ  โ€œthe sum of 2 and 3 times xโ€ 4x2 โ€“ 5x ๏ƒ  โ€œthe difference between 4 times the square of x and 5 times xโ€ (3 โ€“ 2x)2 ๏ƒ  โ€œthe square of the difference of 3 and twice xโ€ A mathematics expression is a calculation procedure written in numbers, variables, and operation symbols. Example B. Evaluate the monomials if y = โ€“4 a. 3y2 An expression of the form #xN, where the exponent N is a non-negative integer and # is a number, is called a monomial (one-term). For example, 3x2, โ€“4x3, and 5x6 are monomials. Polynomial Expressions
  • 12. Example A. 2 + 3x ๏ƒ  โ€œthe sum of 2 and 3 times xโ€ 4x2 โ€“ 5x ๏ƒ  โ€œthe difference between 4 times the square of x and 5 times xโ€ (3 โ€“ 2x)2 ๏ƒ  โ€œthe square of the difference of 3 and twice xโ€ A mathematics expression is a calculation procedure written in numbers, variables, and operation symbols. Example B. Evaluate the monomials if y = โ€“4 a. 3y2 3y2 ๏ƒ  3(โ€“4)2 An expression of the form #xN, where the exponent N is a non-negative integer and # is a number, is called a monomial (one-term). For example, 3x2, โ€“4x3, and 5x6 are monomials. Polynomial Expressions
  • 13. Example A. 2 + 3x ๏ƒ  โ€œthe sum of 2 and 3 times xโ€ 4x2 โ€“ 5x ๏ƒ  โ€œthe difference between 4 times the square of x and 5 times xโ€ (3 โ€“ 2x)2 ๏ƒ  โ€œthe square of the difference of 3 and twice xโ€ A mathematics expression is a calculation procedure written in numbers, variables, and operation symbols. Example B. Evaluate the monomials if y = โ€“4 a. 3y2 3y2 ๏ƒ  3(โ€“4)2 = 3(16) = 48 An expression of the form #xN, where the exponent N is a non-negative integer and # is a number, is called a monomial (one-term). For example, 3x2, โ€“4x3, and 5x6 are monomials. Polynomial Expressions
  • 14. b. โ€“3y2 (y = โ€“4) Polynomial Expressions
  • 15. b. โ€“3y2 (y = โ€“4) โ€“3y2 ๏ƒ  โ€“3(โ€“4)2 Polynomial Expressions
  • 16. b. โ€“3y2 (y = โ€“4) โ€“3y2 ๏ƒ  โ€“3(โ€“4)2 = โ€“3(16) = โ€“48. Polynomial Expressions
  • 17. b. โ€“3y2 (y = โ€“4) โ€“3y2 ๏ƒ  โ€“3(โ€“4)2 = โ€“3(16) = โ€“48. c. โ€“3y3 Polynomial Expressions
  • 18. b. โ€“3y2 (y = โ€“4) โ€“3y2 ๏ƒ  โ€“3(โ€“4)2 = โ€“3(16) = โ€“48. c. โ€“3y3 โ€“3y3 ๏ƒ  โ€“ 3(โ€“4)3 Polynomial Expressions
  • 19. b. โ€“3y2 (y = โ€“4) โ€“3y2 ๏ƒ  โ€“3(โ€“4)2 = โ€“3(16) = โ€“48. c. โ€“3y3 โ€“3y3 ๏ƒ  โ€“ 3(โ€“4)3 = โ€“ 3(โ€“64) Polynomial Expressions
  • 20. b. โ€“3y2 (y = โ€“4) โ€“3y2 ๏ƒ  โ€“3(โ€“4)2 = โ€“3(16) = โ€“48. c. โ€“3y3 โ€“3y3 ๏ƒ  โ€“ 3(โ€“4)3 = โ€“ 3(โ€“64) = 192 Polynomial Expressions
  • 21. b. โ€“3y2 (y = โ€“4) โ€“3y2 ๏ƒ  โ€“3(โ€“4)2 = โ€“3(16) = โ€“48. c. โ€“3y3 โ€“3y3 ๏ƒ  โ€“ 3(โ€“4)3 = โ€“ 3(โ€“64) = 192 Polynomial Expressions Polynomial Expressions
  • 22. b. โ€“3y2 (y = โ€“4) โ€“3y2 ๏ƒ  โ€“3(โ€“4)2 = โ€“3(16) = โ€“48. c. โ€“3y3 โ€“3y3 ๏ƒ  โ€“ 3(โ€“4)3 = โ€“ 3(โ€“64) = 192 The sum of monomials are called polynomials (many-terms), these are expressions of the form #xN ยฑ #xN-1 ยฑ โ€ฆ ยฑ #x1 ยฑ # where # can be any number. Polynomial Expressions Polynomial Expressions
  • 23. b. โ€“3y2 (y = โ€“4) โ€“3y2 ๏ƒ  โ€“3(โ€“4)2 = โ€“3(16) = โ€“48. c. โ€“3y3 โ€“3y3 ๏ƒ  โ€“ 3(โ€“4)3 = โ€“ 3(โ€“64) = 192 The sum of monomials are called polynomials (many-terms), these are expressions of the form #xN ยฑ #xN-1 ยฑ โ€ฆ ยฑ #x1 ยฑ # where # can be any number. For example, 4x + 7, Polynomial Expressions Polynomial Expressions
  • 24. b. โ€“3y2 (y = โ€“4) โ€“3y2 ๏ƒ  โ€“3(โ€“4)2 = โ€“3(16) = โ€“48. c. โ€“3y3 โ€“3y3 ๏ƒ  โ€“ 3(โ€“4)3 = โ€“ 3(โ€“64) = 192 The sum of monomials are called polynomials (many-terms), these are expressions of the form #xN ยฑ #xN-1 ยฑ โ€ฆ ยฑ #x1 ยฑ # where # can be any number. For example, 4x + 7, โ€“3x2 โ€“ 4x + 7, Polynomial Expressions Polynomial Expressions
  • 25. b. โ€“3y2 (y = โ€“4) โ€“3y2 ๏ƒ  โ€“3(โ€“4)2 = โ€“3(16) = โ€“48. c. โ€“3y3 โ€“3y3 ๏ƒ  โ€“ 3(โ€“4)3 = โ€“ 3(โ€“64) = 192 The sum of monomials are called polynomials (many-terms), these are expressions of the form #xN ยฑ #xN-1 ยฑ โ€ฆ ยฑ #x1 ยฑ # where # can be any number. For example, 4x + 7, โ€“3x2 โ€“ 4x + 7, โ€“5x4 + 1 are polynomials, Polynomial Expressions Polynomial Expressions
  • 26. b. โ€“3y2 (y = โ€“4) โ€“3y2 ๏ƒ  โ€“3(โ€“4)2 = โ€“3(16) = โ€“48. c. โ€“3y3 โ€“3y3 ๏ƒ  โ€“ 3(โ€“4)3 = โ€“ 3(โ€“64) = 192 The sum of monomials are called polynomials (many-terms), these are expressions of the form #xN ยฑ #xN-1 ยฑ โ€ฆ ยฑ #x1 ยฑ # where # can be any number. For example, 4x + 7, โ€“3x2 โ€“ 4x + 7, โ€“5x4 + 1 are polynomials, x 1 is not a polynomial.whereas the expression Polynomial Expressions Polynomial Expressions
  • 27. Example C. Evaluate the polynomial 4x2 โ€“ 3x3 if x = โ€“3. Polynomial Expressions
  • 28. Example C. Evaluate the polynomial 4x2 โ€“ 3x3 if x = โ€“3. The polynomial 4x2 โ€“ 3x3 is the combination of two monomials; 4x2 and โ€“3x3. Polynomial Expressions
  • 29. Example C. Evaluate the polynomial 4x2 โ€“ 3x3 if x = โ€“3. The polynomial 4x2 โ€“ 3x3 is the combination of two monomials; 4x2 and โ€“3x3. When evaluating the polynomial, we evaluate each monomial then combine the results. Polynomial Expressions
  • 30. Example C. Evaluate the polynomial 4x2 โ€“ 3x3 if x = โ€“3. The polynomial 4x2 โ€“ 3x3 is the combination of two monomials; 4x2 and โ€“3x3. When evaluating the polynomial, we evaluate each monomial then combine the results. Set x = (โ€“3) in the expression, Polynomial Expressions
  • 31. Example C. Evaluate the polynomial 4x2 โ€“ 3x3 if x = โ€“3. The polynomial 4x2 โ€“ 3x3 is the combination of two monomials; 4x2 and โ€“3x3. When evaluating the polynomial, we evaluate each monomial then combine the results. Set x = (โ€“3) in the expression, we get 4(โ€“3)2 โ€“ 3(โ€“3)3 Polynomial Expressions
  • 32. Example C. Evaluate the polynomial 4x2 โ€“ 3x3 if x = โ€“3. The polynomial 4x2 โ€“ 3x3 is the combination of two monomials; 4x2 and โ€“3x3. When evaluating the polynomial, we evaluate each monomial then combine the results. Set x = (โ€“3) in the expression, we get 4(โ€“3)2 โ€“ 3(โ€“3)3 = 4(9) โ€“ 3(โ€“27) Polynomial Expressions
  • 33. Example C. Evaluate the polynomial 4x2 โ€“ 3x3 if x = โ€“3. The polynomial 4x2 โ€“ 3x3 is the combination of two monomials; 4x2 and โ€“3x3. When evaluating the polynomial, we evaluate each monomial then combine the results. Set x = (โ€“3) in the expression, we get 4(โ€“3)2 โ€“ 3(โ€“3)3 = 4(9) โ€“ 3(โ€“27) = 36 + 81 = 117 Polynomial Expressions
  • 34. Example C. Evaluate the polynomial 4x2 โ€“ 3x3 if x = โ€“3. The polynomial 4x2 โ€“ 3x3 is the combination of two monomials; 4x2 and โ€“3x3. When evaluating the polynomial, we evaluate each monomial then combine the results. Set x = (โ€“3) in the expression, we get 4(โ€“3)2 โ€“ 3(โ€“3)3 = 4(9) โ€“ 3(โ€“27) = 36 + 81 = 117 Given a polynomial, each monomial is called a term. Polynomial Expressions
  • 35. Example C. Evaluate the polynomial 4x2 โ€“ 3x3 if x = โ€“3. The polynomial 4x2 โ€“ 3x3 is the combination of two monomials; 4x2 and โ€“3x3. When evaluating the polynomial, we evaluate each monomial then combine the results. Set x = (โ€“3) in the expression, we get 4(โ€“3)2 โ€“ 3(โ€“3)3 = 4(9) โ€“ 3(โ€“27) = 36 + 81 = 117 Given a polynomial, each monomial is called a term. #xN ยฑ #xN-1 ยฑ โ€ฆ ยฑ #x ยฑ # terms Polynomial Expressions
  • 36. Example C. Evaluate the polynomial 4x2 โ€“ 3x3 if x = โ€“3. The polynomial 4x2 โ€“ 3x3 is the combination of two monomials; 4x2 and โ€“3x3. When evaluating the polynomial, we evaluate each monomial then combine the results. Set x = (โ€“3) in the expression, we get 4(โ€“3)2 โ€“ 3(โ€“3)3 = 4(9) โ€“ 3(โ€“27) = 36 + 81 = 117 Given a polynomial, each monomial is called a term. #xN ยฑ #xN-1 ยฑ โ€ฆ ยฑ #x ยฑ # terms Therefore the polynomial โ€“3x2 โ€“ 4x + 7 has 3 terms, โ€“3x2 , โ€“4x and + 7. Polynomial Expressions
  • 37. Each term is addressed by the variable part. Polynomial Expressions
  • 38. Each term is addressed by the variable part. Hence the x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, Polynomial Expressions
  • 39. Each term is addressed by the variable part. Hence the x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x, Polynomial Expressions
  • 40. Each term is addressed by the variable part. Hence the x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x, and the number term or the constant term is 7. Polynomial Expressions
  • 41. Each term is addressed by the variable part. Hence the x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. Polynomial Expressions
  • 42. Each term is addressed by the variable part. Hence the x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of โ€“3x2 is โ€“3 . Polynomial Expressions
  • 43. Each term is addressed by the variable part. Hence the x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of โ€“3x2 is โ€“3 . Operations with Polynomials Polynomial Expressions
  • 44. Each term is addressed by the variable part. Hence the x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of โ€“3x2 is โ€“3 . Terms with the same variable part are called like-terms. Operations with Polynomials Polynomial Expressions
  • 45. Each term is addressed by the variable part. Hence the x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of โ€“3x2 is โ€“3 . Terms with the same variable part are called like-terms. Like-terms may be combined. Operations with Polynomials Polynomial Expressions
  • 46. Each term is addressed by the variable part. Hence the x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of โ€“3x2 is โ€“3 . Terms with the same variable part are called like-terms. Like-terms may be combined. For example, 4x + 5x = 9x Operations with Polynomials Polynomial Expressions
  • 47. Each term is addressed by the variable part. Hence the x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of โ€“3x2 is โ€“3 . Terms with the same variable part are called like-terms. Like-terms may be combined. For example, 4x + 5x = 9x and 3x2 โ€“ 5x2 = โ€“2x2. Operations with Polynomials Polynomial Expressions
  • 48. Each term is addressed by the variable part. Hence the x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of โ€“3x2 is โ€“3 . Terms with the same variable part are called like-terms. Like-terms may be combined. For example, 4x + 5x = 9x and 3x2 โ€“ 5x2 = โ€“2x2. Unlike terms may not be combined. Operations with Polynomials Polynomial Expressions
  • 49. Each term is addressed by the variable part. Hence the x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of โ€“3x2 is โ€“3 . Terms with the same variable part are called like-terms. Like-terms may be combined. For example, 4x + 5x = 9x and 3x2 โ€“ 5x2 = โ€“2x2. Unlike terms may not be combined. So x + x2 stays as x + x2. Operations with Polynomials Polynomial Expressions
  • 50. Each term is addressed by the variable part. Hence the x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of โ€“3x2 is โ€“3 . Terms with the same variable part are called like-terms. Like-terms may be combined. For example, 4x + 5x = 9x and 3x2 โ€“ 5x2 = โ€“2x2. Unlike terms may not be combined. So x + x2 stays as x + x2. Note that we write 1xN as xN , โ€“1xN as โ€“xN. Operations with Polynomials Polynomial Expressions
  • 51. Each term is addressed by the variable part. Hence the x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of โ€“3x2 is โ€“3 . Terms with the same variable part are called like-terms. Like-terms may be combined. For example, 4x + 5x = 9x and 3x2 โ€“ 5x2 = โ€“2x2. Unlike terms may not be combined. So x + x2 stays as x + x2. Note that we write 1xN as xN , โ€“1xN as โ€“xN. When multiplying a number with a term, we multiply it with the coefficient. Operations with Polynomials Polynomial Expressions
  • 52. Each term is addressed by the variable part. Hence the x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of โ€“3x2 is โ€“3 . Terms with the same variable part are called like-terms. Like-terms may be combined. For example, 4x + 5x = 9x and 3x2 โ€“ 5x2 = โ€“2x2. Unlike terms may not be combined. So x + x2 stays as x + x2. Note that we write 1xN as xN , โ€“1xN as โ€“xN. When multiplying a number with a term, we multiply it with the coefficient. Hence, 3(5x) = (3*5)x Operations with Polynomials Polynomial Expressions
  • 53. Each term is addressed by the variable part. Hence the x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of โ€“3x2 is โ€“3 . Terms with the same variable part are called like-terms. Like-terms may be combined. For example, 4x + 5x = 9x and 3x2 โ€“ 5x2 = โ€“2x2. Unlike terms may not be combined. So x + x2 stays as x + x2. Note that we write 1xN as xN , โ€“1xN as โ€“xN. When multiplying a number with a term, we multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x, Operations with Polynomials Polynomial Expressions
  • 54. Each term is addressed by the variable part. Hence the x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of โ€“3x2 is โ€“3 . Terms with the same variable part are called like-terms. Like-terms may be combined. For example, 4x + 5x = 9x and 3x2 โ€“ 5x2 = โ€“2x2. Unlike terms may not be combined. So x + x2 stays as x + x2. Note that we write 1xN as xN , โ€“1xN as โ€“xN. When multiplying a number with a term, we multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x, and โ€“2(โ€“4x) = (โ€“2)(โ€“4)x = 8x. Operations with Polynomials Polynomial Expressions
  • 55. Each term is addressed by the variable part. Hence the x2-term of the โ€“3x2 โ€“ 4x + 7 is โ€“3x2, the x-term is โ€“4x, and the number term or the constant term is 7. The number in front of a term is called the coefficient of that term. So the coefficient of โ€“3x2 is โ€“3 . Terms with the same variable part are called like-terms. Like-terms may be combined. For example, 4x + 5x = 9x and 3x2 โ€“ 5x2 = โ€“2x2. Unlike terms may not be combined. So x + x2 stays as x + x2. Note that we write 1xN as xN , โ€“1xN as โ€“xN. When multiplying a number with a term, we multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x, and โ€“2(โ€“4x) = (โ€“2)(โ€“4)x = 8x. Operations with Polynomials When multiplying a number with a polynomial, we may expand using the distributive law: A(B ยฑ C) = AB ยฑ AC. Polynomial Expressions
  • 56. Example D. Expand and simplify. Polynomial Operations
  • 57. Example D. Expand and simplify. a. 3(2x โ€“ 4) + 2(4 โ€“ 5x) Polynomial Operations
  • 58. Example D. Expand and simplify. a. 3(2x โ€“ 4) + 2(4 โ€“ 5x) = 6x โ€“ 12 Polynomial Operations
  • 59. Example D. Expand and simplify. a. 3(2x โ€“ 4) + 2(4 โ€“ 5x) = 6x โ€“ 12 + 8 โ€“ 10x Polynomial Operations
  • 60. Example D. Expand and simplify. a. 3(2x โ€“ 4) + 2(4 โ€“ 5x) = 6x โ€“ 12 + 8 โ€“ 10x = โ€“4x โ€“ 4 Polynomial Operations
  • 61. Example D. Expand and simplify. a. 3(2x โ€“ 4) + 2(4 โ€“ 5x) = 6x โ€“ 12 + 8 โ€“ 10x = โ€“4x โ€“ 4 b. โ€“3(x2 โ€“ 3x + 5) โ€“ 2(โ€“x2 โ€“ 4x โ€“ 6) Polynomial Operations
  • 62. Example D. Expand and simplify. a. 3(2x โ€“ 4) + 2(4 โ€“ 5x) = 6x โ€“ 12 + 8 โ€“ 10x = โ€“4x โ€“ 4 b. โ€“3(x2 โ€“ 3x + 5) โ€“ 2(โ€“x2 โ€“ 4x โ€“ 6) = โ€“3x2 + 9x โ€“ 15 Polynomial Operations
  • 63. Example D. Expand and simplify. a. 3(2x โ€“ 4) + 2(4 โ€“ 5x) = 6x โ€“ 12 + 8 โ€“ 10x = โ€“4x โ€“ 4 b. โ€“3(x2 โ€“ 3x + 5) โ€“ 2(โ€“x2 โ€“ 4x โ€“ 6) = โ€“3x2 + 9x โ€“ 15 + 2x2 + 8x +12 Polynomial Operations
  • 64. Example D. Expand and simplify. a. 3(2x โ€“ 4) + 2(4 โ€“ 5x) = 6x โ€“ 12 + 8 โ€“ 10x = โ€“4x โ€“ 4 b. โ€“3(x2 โ€“ 3x + 5) โ€“ 2(โ€“x2 โ€“ 4x โ€“ 6) = โ€“3x2 + 9x โ€“ 15 + 2x2 + 8x +12 = โ€“x2 + 17x โ€“ 3 Polynomial Operations
  • 65. Example D. Expand and simplify. a. 3(2x โ€“ 4) + 2(4 โ€“ 5x) = 6x โ€“ 12 + 8 โ€“ 10x = โ€“4x โ€“ 4 b. โ€“3(x2 โ€“ 3x + 5) โ€“ 2(โ€“x2 โ€“ 4x โ€“ 6) = โ€“3x2 + 9x โ€“ 15 + 2x2 + 8x +12 = โ€“x2 + 17x โ€“ 3 Polynomial Operations When multiply a term with another term, we multiply the coefficient with the coefficient and the variable with the variable.
  • 66. Example D. Expand and simplify. a. 3(2x โ€“ 4) + 2(4 โ€“ 5x) = 6x โ€“ 12 + 8 โ€“ 10x = โ€“4x โ€“ 4 b. โ€“3(x2 โ€“ 3x + 5) โ€“ 2(โ€“x2 โ€“ 4x โ€“ 6) = โ€“3x2 + 9x โ€“ 15 + 2x2 + 8x +12 = โ€“x2 + 17x โ€“ 3 Polynomial Operations When multiply a term with another term, we multiply the coefficient with the coefficient and the variable with the variable. Example E. a. (3x2)(2x3) = b. 3x2(โ€“4x) = c. 3x2(2x3 โ€“ 4x) =
  • 67. Example D. Expand and simplify. a. 3(2x โ€“ 4) + 2(4 โ€“ 5x) = 6x โ€“ 12 + 8 โ€“ 10x = โ€“4x โ€“ 4 b. โ€“3(x2 โ€“ 3x + 5) โ€“ 2(โ€“x2 โ€“ 4x โ€“ 6) = โ€“3x2 + 9x โ€“ 15 + 2x2 + 8x +12 = โ€“x2 + 17x โ€“ 3 Polynomial Operations When multiply a term with another term, we multiply the coefficient with the coefficient and the variable with the variable. Example E. a. (3x2)(2x3) = 3*2x2x3 b. 3x2(โ€“4x) = c. 3x2(2x3 โ€“ 4x) =
  • 68. Example D. Expand and simplify. a. 3(2x โ€“ 4) + 2(4 โ€“ 5x) = 6x โ€“ 12 + 8 โ€“ 10x = โ€“4x โ€“ 4 b. โ€“3(x2 โ€“ 3x + 5) โ€“ 2(โ€“x2 โ€“ 4x โ€“ 6) = โ€“3x2 + 9x โ€“ 15 + 2x2 + 8x +12 = โ€“x2 + 17x โ€“ 3 Polynomial Operations When multiply a term with another term, we multiply the coefficient with the coefficient and the variable with the variable. Example E. a. (3x2)(2x3) = 3*2x2x3 = 6x5 b. 3x2(โ€“4x) = c. 3x2(2x3 โ€“ 4x) =
  • 69. Example D. Expand and simplify. a. 3(2x โ€“ 4) + 2(4 โ€“ 5x) = 6x โ€“ 12 + 8 โ€“ 10x = โ€“4x โ€“ 4 b. โ€“3(x2 โ€“ 3x + 5) โ€“ 2(โ€“x2 โ€“ 4x โ€“ 6) = โ€“3x2 + 9x โ€“ 15 + 2x2 + 8x +12 = โ€“x2 + 17x โ€“ 3 Polynomial Operations When multiply a term with another term, we multiply the coefficient with the coefficient and the variable with the variable. Example E. a. (3x2)(2x3) = 3*2x2x3 = 6x5 b. 3x2(โ€“4x) = 3(โ€“4)x2x = โ€“12x3 c. 3x2(2x3 โ€“ 4x) =
  • 70. Example D. Expand and simplify. a. 3(2x โ€“ 4) + 2(4 โ€“ 5x) = 6x โ€“ 12 + 8 โ€“ 10x = โ€“4x โ€“ 4 b. โ€“3(x2 โ€“ 3x + 5) โ€“ 2(โ€“x2 โ€“ 4x โ€“ 6) = โ€“3x2 + 9x โ€“ 15 + 2x2 + 8x +12 = โ€“x2 + 17x โ€“ 3 Polynomial Operations When multiply a term with another term, we multiply the coefficient with the coefficient and the variable with the variable. Example E. a. (3x2)(2x3) = 3*2x2x3 = 6x5 b. 3x2(โ€“4x) = 3(โ€“4)x2x = โ€“12x3 c. 3x2(2x3 โ€“ 4x) distribute = 6x5 โ€“ 12x3
  • 71. To multiply two polynomials, we may multiply each term of one polynomial against other polynomial then expand and simplify. Polynomial Operations
  • 72. To multiply two polynomials, we may multiply each term of one polynomial against other polynomial then expand and simplify. Polynomial Operations Example F. a. (3x + 2)(2x โ€“ 1)
  • 73. To multiply two polynomials, we may multiply each term of one polynomial against other polynomial then expand and simplify. Polynomial Operations Example F. = 3x(2x โ€“ 1) + 2(2x โ€“ 1) a. (3x + 2)(2x โ€“ 1)
  • 74. To multiply two polynomials, we may multiply each term of one polynomial against other polynomial then expand and simplify. Polynomial Operations Example F. = 3x(2x โ€“ 1) + 2(2x โ€“ 1) = 6x2 โ€“ 3x + 4x โ€“ 2 a. (3x + 2)(2x โ€“ 1)
  • 75. To multiply two polynomials, we may multiply each term of one polynomial against other polynomial then expand and simplify. Polynomial Operations Example F. = 3x(2x โ€“ 1) + 2(2x โ€“ 1) = 6x2 โ€“ 3x + 4x โ€“ 2 = 6x2 + x โ€“ 2 a. (3x + 2)(2x โ€“ 1)
  • 76. To multiply two polynomials, we may multiply each term of one polynomial against other polynomial then expand and simplify. Polynomial Operations Example F. b. (2x โ€“ 1)(2x2 + 3x โ€“4) = 3x(2x โ€“ 1) + 2(2x โ€“ 1) = 6x2 โ€“ 3x + 4x โ€“ 2 = 6x2 + x โ€“ 2 a. (3x + 2)(2x โ€“ 1)
  • 77. To multiply two polynomials, we may multiply each term of one polynomial against other polynomial then expand and simplify. Polynomial Operations Example F. b. (2x โ€“ 1)(2x2 + 3x โ€“4) = 3x(2x โ€“ 1) + 2(2x โ€“ 1) = 6x2 โ€“ 3x + 4x โ€“ 2 = 6x2 + x โ€“ 2 = 2x(2x2 + 3x โ€“4) โ€“1(2x2 + 3x โ€“ 4) a. (3x + 2)(2x โ€“ 1)
  • 78. To multiply two polynomials, we may multiply each term of one polynomial against other polynomial then expand and simplify. Polynomial Operations Example F. b. (2x โ€“ 1)(2x2 + 3x โ€“4) = 3x(2x โ€“ 1) + 2(2x โ€“ 1) = 6x2 โ€“ 3x + 4x โ€“ 2 = 6x2 + x โ€“ 2 = 2x(2x2 + 3x โ€“4) โ€“1(2x2 + 3x โ€“ 4) = 4x3 + 6x2 โ€“ 8x โ€“ 2x2 โ€“ 3x + 4 a. (3x + 2)(2x โ€“ 1)
  • 79. To multiply two polynomials, we may multiply each term of one polynomial against other polynomial then expand and simplify. Polynomial Operations Example F. b. (2x โ€“ 1)(2x2 + 3x โ€“4) = 3x(2x โ€“ 1) + 2(2x โ€“ 1) = 6x2 โ€“ 3x + 4x โ€“ 2 = 6x2 + x โ€“ 2 = 2x(2x2 + 3x โ€“4) โ€“1(2x2 + 3x โ€“ 4) = 4x3 + 6x2 โ€“ 8x โ€“ 2x2 โ€“ 3x + 4 = 4x3 + 4x2 โ€“ 11x + 4 a. (3x + 2)(2x โ€“ 1)
  • 80. To multiply two polynomials, we may multiply each term of one polynomial against other polynomial then expand and simplify. Polynomial Operations Example F. b. (2x โ€“ 1)(2x2 + 3x โ€“4) = 3x(2x โ€“ 1) + 2(2x โ€“ 1) = 6x2 โ€“ 3x + 4x โ€“ 2 = 6x2 + x โ€“ 2 = 2x(2x2 + 3x โ€“4) โ€“1(2x2 + 3x โ€“ 4) = 4x3 + 6x2 โ€“ 8x โ€“ 2x2 โ€“ 3x + 4 = 4x3 + 4x2 โ€“ 11x + 4 a. (3x + 2)(2x โ€“ 1) Note that if we did (2x โ€“ 1)(3x + 2) or (2x2 + 3x โ€“4)(2x โ€“ 1) instead, we get the same answers. (Check this.)
  • 81. To multiply two polynomials, we may multiply each term of one polynomial against other polynomial then expand and simplify. Polynomial Operations Example F. b. (2x โ€“ 1)(2x2 + 3x โ€“4) = 3x(2x โ€“ 1) + 2(2x โ€“ 1) = 6x2 โ€“ 3x + 4x โ€“ 2 = 6x2 + x โ€“ 2 = 2x(2x2 + 3x โ€“4) โ€“1(2x2 + 3x โ€“ 4) = 4x3 + 6x2 โ€“ 8x โ€“ 2x2 โ€“ 3x + 4 = 4x3 + 4x2 โ€“ 11x + 4 a. (3x + 2)(2x โ€“ 1) Note that if we did (2x โ€“ 1)(3x + 2) or (2x2 + 3x โ€“4)(2x โ€“ 1) instead, we get the same answers. (Check this.) Fact. If P and Q are two polynomials then PQ โ‰ก QP.
  • 82. To multiply two polynomials, we may multiply each term of one polynomial against other polynomial then expand and simplify. Polynomial Operations Example F. b. (2x โ€“ 1)(2x2 + 3x โ€“4) = 3x(2x โ€“ 1) + 2(2x โ€“ 1) = 6x2 โ€“ 3x + 4x โ€“ 2 = 6x2 + x โ€“ 2 = 2x(2x2 + 3x โ€“4) โ€“1(2x2 + 3x โ€“ 4) = 4x3 + 6x2 โ€“ 8x โ€“ 2x2 โ€“ 3x + 4 = 4x3 + 4x2 โ€“ 11x + 4 a. (3x + 2)(2x โ€“ 1) Note that if we did (2x โ€“ 1)(3x + 2) or (2x2 + 3x โ€“4)(2x โ€“ 1) instead, we get the same answers. (Check this.) Fact. If P and Q are two polynomials then PQ โ‰ก QP. A shorter way to multiply is to bypass the 2nd step and use the general distributive law.
  • 84. General Distributive Rule: (A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..) Polynomial Operations
  • 85. General Distributive Rule: (A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..) = Aa ยฑ Ab ยฑ Ac .. Polynomial Operations
  • 86. General Distributive Rule: (A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..) = Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc .. Polynomial Operations
  • 87. General Distributive Rule: (A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..) = Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc .. Polynomial Operations
  • 88. General Distributive Rule: (A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..) = Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc .. Example G. Expand a. (x + 3)(x โ€“ 4) Polynomial Operations
  • 89. General Distributive Rule: (A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..) = Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc .. Example G. Expand a. (x + 3)(x โ€“ 4) = x2 Polynomial Operations
  • 90. General Distributive Rule: (A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..) = Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc .. Example G. Expand a. (x + 3)(x โ€“ 4) = x2 โ€“ 4x Polynomial Operations
  • 91. General Distributive Rule: (A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..) = Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc .. Example G. Expand a. (x + 3)(x โ€“ 4) = x2 โ€“ 4x + 3x Polynomial Operations
  • 92. General Distributive Rule: (A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..) = Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc .. Example G. Expand a. (x + 3)(x โ€“ 4) = x2 โ€“ 4x + 3x โ€“ 12 Polynomial Operations
  • 93. General Distributive Rule: (A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..) = Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc .. Example G. Expand a. (x + 3)(x โ€“ 4) = x2 โ€“ 4x + 3x โ€“ 12 simplify = x2 โ€“ x โ€“ 12 Polynomial Operations
  • 94. General Distributive Rule: (A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..) = Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc .. Example G. Expand a. (x + 3)(x โ€“ 4) = x2 โ€“ 4x + 3x โ€“ 12 simplify = x2 โ€“ x โ€“ 12 b. (x โ€“ 3)(x2 โ€“ 2x โ€“ 2) Polynomial Operations
  • 95. General Distributive Rule: (A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..) = Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc .. Example G. Expand a. (x + 3)(x โ€“ 4) = x2 โ€“ 4x + 3x โ€“ 12 simplify = x2 โ€“ x โ€“ 12 b. (x โ€“ 3)(x2 โ€“ 2x โ€“ 2) Polynomial Operations = x3
  • 96. General Distributive Rule: (A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..) = Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc .. Example G. Expand a. (x + 3)(x โ€“ 4) = x2 โ€“ 4x + 3x โ€“ 12 simplify = x2 โ€“ x โ€“ 12 b. (x โ€“ 3)(x2 โ€“ 2x โ€“ 2) Polynomial Operations = x3 โ€“ 2x2
  • 97. General Distributive Rule: (A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..) = Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc .. Example G. Expand a. (x + 3)(x โ€“ 4) = x2 โ€“ 4x + 3x โ€“ 12 simplify = x2 โ€“ x โ€“ 12 b. (x โ€“ 3)(x2 โ€“ 2x โ€“ 2) Polynomial Operations = x3 โ€“ 2x2 โ€“ 2x
  • 98. General Distributive Rule: (A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..) = Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc .. Example G. Expand a. (x + 3)(x โ€“ 4) = x2 โ€“ 4x + 3x โ€“ 12 simplify = x2 โ€“ x โ€“ 12 b. (x โ€“ 3)(x2 โ€“ 2x โ€“ 2) Polynomial Operations = x3 โ€“ 2x2 โ€“ 2x โ€“ 3x2
  • 99. General Distributive Rule: (A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..) = Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc .. Example G. Expand a. (x + 3)(x โ€“ 4) = x2 โ€“ 4x + 3x โ€“ 12 simplify = x2 โ€“ x โ€“ 12 b. (x โ€“ 3)(x2 โ€“ 2x โ€“ 2) Polynomial Operations = x3 โ€“ 2x2 โ€“ 2x โ€“ 3x2 + 6x
  • 100. General Distributive Rule: (A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..) = Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc .. Example G. Expand a. (x + 3)(x โ€“ 4) = x2 โ€“ 4x + 3x โ€“ 12 simplify = x2 โ€“ x โ€“ 12 b. (x โ€“ 3)(x2 โ€“ 2x โ€“ 2) Polynomial Operations = x3 โ€“ 2x2 โ€“ 2x โ€“ 3x2 + 6x + 6
  • 101. General Distributive Rule: (A ยฑ B ยฑ C ยฑ ..)(a ยฑ b ยฑ c ..) = Aa ยฑ Ab ยฑ Ac ..ยฑ Ba ยฑ Bb ยฑ Bc ..ยฑCa ยฑ Cb ยฑ Cc .. Example G. Expand a. (x + 3)(x โ€“ 4) = x2 โ€“ 4x + 3x โ€“ 12 simplify = x2 โ€“ x โ€“ 12 b. (x โ€“ 3)(x2 โ€“ 2x โ€“ 2) Polynomial Operations = x3 โ€“ 2x2 โ€“ 2x โ€“ 3x2 + 6x + 6 = x3โ€“ 5x2 + 4x + 6 We will address the division operation of polynomials later- after we understand more about the multiplication operation.