SlideShare a Scribd company logo
1 of 3
Download to read offline
First Order Calculations on Higgs Boson To Electron-Positron Decay
Roa, Ferdinand J.P.
Author’s remarks
This is exercise number one that attempts to calculate the decay of Higgs Boson into a pair of
electron and its anti-particle, the positron. The said calculations are done to the first order of the
coupling constant in the Yukawa interaction term for the Dirac fields and the Higgs boson field
contained in the Higgs Boson Lagrangian as outlined from a rudimentary 𝑆𝑈(2) × 𝑈(1)
construction. In this interaction term, the decay considered in this exercise is manifest as we split
up the Dirac fields into positive and negative energy modes in passing from classical fields into
quantum field operators.
We begin with an initial state |𝑖⟩ that we put as a one-particle Higgs boson state that we raise
from the vacuum. The Higgs boson we assume as a real scalar field and we raise such a Higgs
boson state from the vacuum with the creation bosonic operator 𝑎†
(𝑘
⃗ ) so that the mentioned
one-particle Higgs boson state is given
(1)
|𝑖⟩ = √(2𝜋)3√2𝑃(1)
0
𝑎†
(𝑃
⃗(1))|𝑣𝑎𝑐⟩
𝑃(1)
0
= 𝑃0
(𝑃
⃗(1))
Meanwhile, we also raise our final state |𝑓⟩ from the vacuum as a two-particle electron-positron
state
(2)
|𝑓⟩ = (√(2𝜋)3)2
√2𝑘(1)
0
√2𝑘(2)
0
𝑏𝛼 ′
†
(𝑘
⃗ (2))𝑑𝛽 ′
†
(𝑘
⃗ (1))|𝑣𝑎𝑐⟩
In (2), we raise the electron state from the vacuum in Fock space with the raising operator 𝑏𝛼 ′
†
that carries a spin index 𝛼 ′, while we raise an anti-electron state with the raising operator 𝑑𝛽 ′
†
that also carries a spin index 𝛽 ′. These operators have anti-commutation relations that satisfy
those constructed for the Dirac (Fermion) fields.
Given (2), we then obtain its Hermitian adjoint
(3)
⟨𝑓| = ⟨𝑣𝑎𝑐|𝑑𝛽 ′(𝑘
⃗ (1))𝑏𝛼 ′(𝑘
⃗ (2))√2𝑘(2)
0
√2𝑘(1)
0
(√(2𝜋)3)2
With the application of the time evolution operator (teo) 𝑈(𝜏, 𝜏0) we evolve the initial state by
(4)
|𝑖⟩ → |𝜑⟩ = 𝑈(𝜏, 𝜏0)|𝑖⟩
We resort to Dyson expansion for our teo however we consider only first order expansion with
respect to the interaction coupling constant. This Dyson expansion is given by (in Heaviside
units)
(5)
𝑈(𝜏, 𝜏0) = 1 + ∑ (−𝑖)𝑞
∫ 𝑑𝑡1
𝜏
𝜏0
𝑛
𝑞 = 1
∫ 𝑑𝑡2
𝑡1
𝜏0
∫ 𝑑𝑡3
𝑡2
𝜏0
⋯ ∫ 𝑑𝑡𝑞
𝑡𝑞−1
𝜏0
𝐻
̂(𝑡1)𝐻
̂(𝑡2)𝐻
̂(𝑡3) ⋯ 𝐻
̂(𝑡𝑞)
where the Hamiltonian operators 𝐻
̂ are time ordered for all time intervals
(6)
𝑡𝑞 ≤ 𝑡𝑞−1 ≤ ⋯ ≤ 𝑡2 ≤ 𝑡1 ≤ 𝑡
In this exercise since we are dealing only with first order calculations we need not worry about
time ordering and to first order expansion we have
(7)
𝑈(𝜏, 𝜏0) = 1 − 𝑖 ∫ 𝑑𝑡
𝜏
𝜏0
𝐻
̂(𝑡)
The time evolution of our initial state is taken in the interaction picture so, the Hamiltonian
involved here is an interaction Hamiltonian that we take as that due to the interaction of the
Higgs boson and the Dirac fields. Thus,
(8)
𝐻
̂(𝑡) = 𝐻
̂𝑖𝑛𝑡(𝑡) = 𝑦 ∫ 𝑑3
𝑥 𝜓
̅
̂ (𝑥)𝜓
̂(𝑥) 𝜂̂(𝑥)
So to first order we write (7) as
(9)
𝑈(𝜏, 𝜏0) = 1 − 𝑖 𝑦 ∫ 𝑑4
𝑥 𝜓
̅
̂ (𝑥)𝜓
̂(𝑥) 𝜂̂(𝑥)
∫ 𝑑4
𝑥 = ∫ 𝑑𝑡
𝜏
𝜏0
∫ 𝑑3
𝑥
All the field operators contained in (9) can be split up into the positive and negative energy
modes that shall come later.
To the first order, we then write the matrix for this decay process as
(10)
⟨𝑓|𝑈(𝜏, 𝜏0)|𝑖⟩ = ⋯ − 𝑖𝑦 ⟨𝑓| ∫ 𝑑4
𝑥 𝜓
̅
̂ (𝑥)𝜓
̂(𝑥) 𝜂̂(𝑥)|𝑖⟩
We then proceed to split up the field operators into the positive and negative energy modes.
(To be continued…)
References
[1]Baal, P., A COURSE IN FIELD THEORY
[2]Cardy, J., Introduction to Quantum Field Theory
[3]Gaberdiel, M., Gehrmann-De Ridder, A., Quantum Field Theory
[4]Ashok Das, Lectures on Quantum Field Theory, World Scientific Publishing Co. Pte. Ltd., 27,
Warren Street, Suite 401-402, Hackensack, NJ 07601
[5]W. Hollik, Quantum field theory and the Standard Model, arXiv:1012.3883v1 [hep-ph]

More Related Content

What's hot

Passivity-based control of rigid-body manipulator
Passivity-based control of rigid-body manipulatorPassivity-based control of rigid-body manipulator
Passivity-based control of rigid-body manipulatorHancheol Choi
 
Work and energy part a
Work and energy part aWork and energy part a
Work and energy part aAngelo Aquino
 
Outgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrdOutgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrdfoxtrot jp R
 
Higgs inflation
Higgs inflationHiggs inflation
Higgs inflationOUSEPHCJ
 
Outgoing ingoingkleingordon spvmforminit_proceedfrom
Outgoing ingoingkleingordon spvmforminit_proceedfromOutgoing ingoingkleingordon spvmforminit_proceedfrom
Outgoing ingoingkleingordon spvmforminit_proceedfromfoxtrot jp R
 
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18foxtrot jp R
 
Trialdraftsppformat dimen test1
Trialdraftsppformat dimen   test1Trialdraftsppformat dimen   test1
Trialdraftsppformat dimen test1foxtrot jp R
 
Outgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghpOutgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghpfoxtrot jp R
 
Chapter 8 principle of virtual work
Chapter 8 principle of virtual workChapter 8 principle of virtual work
Chapter 8 principle of virtual workramana4uiitm
 
Outgoing ingoingkleingordon
Outgoing ingoingkleingordonOutgoing ingoingkleingordon
Outgoing ingoingkleingordonfoxtrot jp R
 
Outgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsOutgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsfoxtrot jp R
 
Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016foxtrot jp R
 
De Alembert’s Principle and Generalized Force, a technical discourse on Class...
De Alembert’s Principle and Generalized Force, a technical discourse on Class...De Alembert’s Principle and Generalized Force, a technical discourse on Class...
De Alembert’s Principle and Generalized Force, a technical discourse on Class...Manmohan Dash
 
Work energy theorem summary 7 may 2015
Work energy theorem summary 7 may 2015Work energy theorem summary 7 may 2015
Work energy theorem summary 7 may 2015Mphiriseni Khwanda
 
[Review] contact model fusion
[Review] contact model fusion[Review] contact model fusion
[Review] contact model fusionHancheol Choi
 
One particle to_onepartlce_scattering_sqrd
One particle to_onepartlce_scattering_sqrdOne particle to_onepartlce_scattering_sqrd
One particle to_onepartlce_scattering_sqrdfoxtrot jp R
 

What's hot (20)

Passivity-based control of rigid-body manipulator
Passivity-based control of rigid-body manipulatorPassivity-based control of rigid-body manipulator
Passivity-based control of rigid-body manipulator
 
Work and energy part a
Work and energy part aWork and energy part a
Work and energy part a
 
Outgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrdOutgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrd
 
Higgs inflation
Higgs inflationHiggs inflation
Higgs inflation
 
Outgoing ingoingkleingordon spvmforminit_proceedfrom
Outgoing ingoingkleingordon spvmforminit_proceedfromOutgoing ingoingkleingordon spvmforminit_proceedfrom
Outgoing ingoingkleingordon spvmforminit_proceedfrom
 
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18
 
Trialdraftsppformat dimen test1
Trialdraftsppformat dimen   test1Trialdraftsppformat dimen   test1
Trialdraftsppformat dimen test1
 
Outgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghpOutgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghp
 
Work and energy
Work and energyWork and energy
Work and energy
 
Chapter 8 principle of virtual work
Chapter 8 principle of virtual workChapter 8 principle of virtual work
Chapter 8 principle of virtual work
 
Outgoing ingoingkleingordon
Outgoing ingoingkleingordonOutgoing ingoingkleingordon
Outgoing ingoingkleingordon
 
Outgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsOutgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julups
 
Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016
 
De Alembert’s Principle and Generalized Force, a technical discourse on Class...
De Alembert’s Principle and Generalized Force, a technical discourse on Class...De Alembert’s Principle and Generalized Force, a technical discourse on Class...
De Alembert’s Principle and Generalized Force, a technical discourse on Class...
 
GR analysis techniques
GR analysis techniquesGR analysis techniques
GR analysis techniques
 
Work & Energy
Work & EnergyWork & Energy
Work & Energy
 
Work energy theorem summary 7 may 2015
Work energy theorem summary 7 may 2015Work energy theorem summary 7 may 2015
Work energy theorem summary 7 may 2015
 
Work and energy
Work and energyWork and energy
Work and energy
 
[Review] contact model fusion
[Review] contact model fusion[Review] contact model fusion
[Review] contact model fusion
 
One particle to_onepartlce_scattering_sqrd
One particle to_onepartlce_scattering_sqrdOne particle to_onepartlce_scattering_sqrd
One particle to_onepartlce_scattering_sqrd
 

Similar to Higgsbosontoelectron positron decay14042021_dsply

One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020foxtrot jp R
 
One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1foxtrot jp R
 
One particle to_onepartlce_scattering_12082020_fordisplay
One particle to_onepartlce_scattering_12082020_fordisplayOne particle to_onepartlce_scattering_12082020_fordisplay
One particle to_onepartlce_scattering_12082020_fordisplayfoxtrot jp R
 
One particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpyOne particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpyfoxtrot jp R
 
Conformal Boundary conditions
Conformal Boundary conditionsConformal Boundary conditions
Conformal Boundary conditionsHassaan Saleem
 
Certain Generalized Birecurrent Tensors In 퐊
Certain Generalized Birecurrent Tensors In 퐊 Certain Generalized Birecurrent Tensors In 퐊
Certain Generalized Birecurrent Tensors In 퐊 inventionjournals
 
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsplyfoxtrot jp R
 
Maxwell's formulation - differential forms on euclidean space
Maxwell's formulation  - differential forms on euclidean spaceMaxwell's formulation  - differential forms on euclidean space
Maxwell's formulation - differential forms on euclidean spacegreentask
 
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplayfoxtrot jp R
 
Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Hassaan Saleem
 
Dealinggreensfncsolft sqrd
Dealinggreensfncsolft  sqrdDealinggreensfncsolft  sqrd
Dealinggreensfncsolft sqrdfoxtrot jp R
 
Magnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptxMagnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptxHassaan Saleem
 
Dealinggreensfncsolft sqrd(10 5-2k16)
Dealinggreensfncsolft   sqrd(10 5-2k16)Dealinggreensfncsolft   sqrd(10 5-2k16)
Dealinggreensfncsolft sqrd(10 5-2k16)foxtrot jp R
 
Dealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbDealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbfoxtrot jp R
 
Dealinggreensfncsolft
DealinggreensfncsolftDealinggreensfncsolft
Dealinggreensfncsolftfoxtrot jp R
 

Similar to Higgsbosontoelectron positron decay14042021_dsply (20)

One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020
 
One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1
 
One particle to_onepartlce_scattering_12082020_fordisplay
One particle to_onepartlce_scattering_12082020_fordisplayOne particle to_onepartlce_scattering_12082020_fordisplay
One particle to_onepartlce_scattering_12082020_fordisplay
 
One particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpyOne particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpy
 
lec23.ppt
lec23.pptlec23.ppt
lec23.ppt
 
M.Sc. Phy SII UIV Quantum Mechanics
M.Sc. Phy SII UIV Quantum MechanicsM.Sc. Phy SII UIV Quantum Mechanics
M.Sc. Phy SII UIV Quantum Mechanics
 
lec14.ppt
lec14.pptlec14.ppt
lec14.ppt
 
Conformal Boundary conditions
Conformal Boundary conditionsConformal Boundary conditions
Conformal Boundary conditions
 
Certain Generalized Birecurrent Tensors In 퐊
Certain Generalized Birecurrent Tensors In 퐊 Certain Generalized Birecurrent Tensors In 퐊
Certain Generalized Birecurrent Tensors In 퐊
 
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
 
Perturbation
PerturbationPerturbation
Perturbation
 
Maxwell's formulation - differential forms on euclidean space
Maxwell's formulation  - differential forms on euclidean spaceMaxwell's formulation  - differential forms on euclidean space
Maxwell's formulation - differential forms on euclidean space
 
Bhdpis1
Bhdpis1Bhdpis1
Bhdpis1
 
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
 
Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)
 
Dealinggreensfncsolft sqrd
Dealinggreensfncsolft  sqrdDealinggreensfncsolft  sqrd
Dealinggreensfncsolft sqrd
 
Magnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptxMagnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptx
 
Dealinggreensfncsolft sqrd(10 5-2k16)
Dealinggreensfncsolft   sqrd(10 5-2k16)Dealinggreensfncsolft   sqrd(10 5-2k16)
Dealinggreensfncsolft sqrd(10 5-2k16)
 
Dealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbDealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdb
 
Dealinggreensfncsolft
DealinggreensfncsolftDealinggreensfncsolft
Dealinggreensfncsolft
 

Recently uploaded

Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxBroad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxjana861314
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfSumit Kumar yadav
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PPRINCE C P
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPirithiRaju
 

Recently uploaded (20)

Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxBroad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdf
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 

Higgsbosontoelectron positron decay14042021_dsply

  • 1. First Order Calculations on Higgs Boson To Electron-Positron Decay Roa, Ferdinand J.P. Author’s remarks This is exercise number one that attempts to calculate the decay of Higgs Boson into a pair of electron and its anti-particle, the positron. The said calculations are done to the first order of the coupling constant in the Yukawa interaction term for the Dirac fields and the Higgs boson field contained in the Higgs Boson Lagrangian as outlined from a rudimentary 𝑆𝑈(2) × 𝑈(1) construction. In this interaction term, the decay considered in this exercise is manifest as we split up the Dirac fields into positive and negative energy modes in passing from classical fields into quantum field operators. We begin with an initial state |𝑖⟩ that we put as a one-particle Higgs boson state that we raise from the vacuum. The Higgs boson we assume as a real scalar field and we raise such a Higgs boson state from the vacuum with the creation bosonic operator 𝑎† (𝑘 ⃗ ) so that the mentioned one-particle Higgs boson state is given (1) |𝑖⟩ = √(2𝜋)3√2𝑃(1) 0 𝑎† (𝑃 ⃗(1))|𝑣𝑎𝑐⟩ 𝑃(1) 0 = 𝑃0 (𝑃 ⃗(1)) Meanwhile, we also raise our final state |𝑓⟩ from the vacuum as a two-particle electron-positron state (2) |𝑓⟩ = (√(2𝜋)3)2 √2𝑘(1) 0 √2𝑘(2) 0 𝑏𝛼 ′ † (𝑘 ⃗ (2))𝑑𝛽 ′ † (𝑘 ⃗ (1))|𝑣𝑎𝑐⟩ In (2), we raise the electron state from the vacuum in Fock space with the raising operator 𝑏𝛼 ′ † that carries a spin index 𝛼 ′, while we raise an anti-electron state with the raising operator 𝑑𝛽 ′ †
  • 2. that also carries a spin index 𝛽 ′. These operators have anti-commutation relations that satisfy those constructed for the Dirac (Fermion) fields. Given (2), we then obtain its Hermitian adjoint (3) ⟨𝑓| = ⟨𝑣𝑎𝑐|𝑑𝛽 ′(𝑘 ⃗ (1))𝑏𝛼 ′(𝑘 ⃗ (2))√2𝑘(2) 0 √2𝑘(1) 0 (√(2𝜋)3)2 With the application of the time evolution operator (teo) 𝑈(𝜏, 𝜏0) we evolve the initial state by (4) |𝑖⟩ → |𝜑⟩ = 𝑈(𝜏, 𝜏0)|𝑖⟩ We resort to Dyson expansion for our teo however we consider only first order expansion with respect to the interaction coupling constant. This Dyson expansion is given by (in Heaviside units) (5) 𝑈(𝜏, 𝜏0) = 1 + ∑ (−𝑖)𝑞 ∫ 𝑑𝑡1 𝜏 𝜏0 𝑛 𝑞 = 1 ∫ 𝑑𝑡2 𝑡1 𝜏0 ∫ 𝑑𝑡3 𝑡2 𝜏0 ⋯ ∫ 𝑑𝑡𝑞 𝑡𝑞−1 𝜏0 𝐻 ̂(𝑡1)𝐻 ̂(𝑡2)𝐻 ̂(𝑡3) ⋯ 𝐻 ̂(𝑡𝑞) where the Hamiltonian operators 𝐻 ̂ are time ordered for all time intervals (6) 𝑡𝑞 ≤ 𝑡𝑞−1 ≤ ⋯ ≤ 𝑡2 ≤ 𝑡1 ≤ 𝑡 In this exercise since we are dealing only with first order calculations we need not worry about time ordering and to first order expansion we have (7) 𝑈(𝜏, 𝜏0) = 1 − 𝑖 ∫ 𝑑𝑡 𝜏 𝜏0 𝐻 ̂(𝑡)
  • 3. The time evolution of our initial state is taken in the interaction picture so, the Hamiltonian involved here is an interaction Hamiltonian that we take as that due to the interaction of the Higgs boson and the Dirac fields. Thus, (8) 𝐻 ̂(𝑡) = 𝐻 ̂𝑖𝑛𝑡(𝑡) = 𝑦 ∫ 𝑑3 𝑥 𝜓 ̅ ̂ (𝑥)𝜓 ̂(𝑥) 𝜂̂(𝑥) So to first order we write (7) as (9) 𝑈(𝜏, 𝜏0) = 1 − 𝑖 𝑦 ∫ 𝑑4 𝑥 𝜓 ̅ ̂ (𝑥)𝜓 ̂(𝑥) 𝜂̂(𝑥) ∫ 𝑑4 𝑥 = ∫ 𝑑𝑡 𝜏 𝜏0 ∫ 𝑑3 𝑥 All the field operators contained in (9) can be split up into the positive and negative energy modes that shall come later. To the first order, we then write the matrix for this decay process as (10) ⟨𝑓|𝑈(𝜏, 𝜏0)|𝑖⟩ = ⋯ − 𝑖𝑦 ⟨𝑓| ∫ 𝑑4 𝑥 𝜓 ̅ ̂ (𝑥)𝜓 ̂(𝑥) 𝜂̂(𝑥)|𝑖⟩ We then proceed to split up the field operators into the positive and negative energy modes. (To be continued…) References [1]Baal, P., A COURSE IN FIELD THEORY [2]Cardy, J., Introduction to Quantum Field Theory [3]Gaberdiel, M., Gehrmann-De Ridder, A., Quantum Field Theory [4]Ashok Das, Lectures on Quantum Field Theory, World Scientific Publishing Co. Pte. Ltd., 27, Warren Street, Suite 401-402, Hackensack, NJ 07601 [5]W. Hollik, Quantum field theory and the Standard Model, arXiv:1012.3883v1 [hep-ph]