SlideShare a Scribd company logo
1 of 6
Very Brief Highlights On Some Key Details: Vacuum-To-Vacuum Matrix In the Presence Of
Cubic Self Interaction
Roa, F. J. P.
Remarks: This draft is based on my answer notes dealing on some basic drills and workouts in
quantum field theory so the reader is highly encouraged to figure things out independently and
compare his results to the ones presented here.
Say we start at an initial time 𝑑 = 0 for a quantum mechanical description of a scalar particle in
the vacuum state |0⟩. With the application of the time evolution operator (teo) π‘ˆ1(𝑇) on the
given vacuum state we evolve this vacuum state into another state | πœ“βŸ© that is given at a later time
𝑑 = 𝑇 > 0.
(1)
|0⟩ β†’ | πœ“βŸ© = π‘ˆ1(𝑇)|0⟩
We take the projection of this evolved state on the vacuum state. Thus, getting the vacuum-to-
vacuum matrix
(2)
⟨0| π‘ˆ1(𝑇)|0⟩
for the probability amplitude that a particle initially in the vacuum state at an initial time will still
be in the vacuum state at a later time.
The time evolution operator (TEO)
(3)
π‘ˆ1 ( 𝑇) = π‘ˆ1 ( 𝑇,0) = 𝑒π‘₯𝑝 (βˆ’
𝑖
ℏ
∫ 𝑑𝑑 𝐻(𝑑)
𝑇
0
)
is given for a system Hamiltonian for scalar fields considered in this particular drill and this
Hamiltonian has implicit time dependence being a Hamiltonian H(J(t)) that is a functional of
time dependent source J(t). This Hamiltonian can be derived from the scalar field system
Lagrangian via Legendre transformation. However, we shall no longer give the details of such
transformation here.
In this prior set-up, we are not yet taking into account the self-interactions in our Lagrangian and
consequently, in our Hamiltonian so our initial matrix given by (2) is in the absence of the said
interactions. These self-interactions enter into the Lagrangian and Hamiltonian in the form of
potential functions and in my personal convenience, I don’t include in these functions the scalar
field mass terms as I put these mass terms already explicitly in the Lagrangian and Hamiltonian.
Without going into the details of how these self-interactions enter into the vacuum-to-vacuum
(VTV) matrix we will only give this VTV matrix here that comes with the presence of the said
interactions via potential operators
(4)
⟨0|π‘ˆ1(𝑇)𝑒π‘₯𝑝 (βˆ’
𝑖
ℏ
∫ 𝑑4 𝑦 𝑉(πœ‘Μ‚)
𝐡
𝐴 ) |0⟩|
𝐽=0
= 𝑒π‘₯𝑝 (βˆ’
𝑖
ℏ
∫ 𝑑4 𝑦 𝑉 (𝑖ℏ
𝛿
𝛿𝐽(𝑦)
)
𝐡
𝐴
) ⟨0| π‘ˆ1(𝑇)|0⟩|
𝐽=0
and in this particular drill we are considering cubic self- interaction in the form given by
(5)
𝑉[ πœ‘( π‘₯, 𝐽)] =
1
3!
𝑔(3) πœ‘3( π‘₯, 𝐽)
In this current presentation, I am also not going to dwell on the lengthy details to arrive at the
end results of this exercise but this more elaborate presentation will be done in future drafts.
The VTV matrix that includes the cubic self-interaction (5) is obtained upon the setting of all
sources to zero, J = 0. This matrix is given by
(6)
⟨0|π‘ˆ1(𝑇)𝑒π‘₯𝑝 (βˆ’
𝑖
ℏ
∫ 𝑑4 𝑦 𝑉(πœ‘Μ‚)
𝐡
𝐴 ) |0⟩|
𝐽=0
=
1
12
𝑔(3)
2
(𝑖ℏ)3 ∫ 𝑑4 𝑦 ′𝑑4 𝑦
𝐺(𝑦 β€² βˆ’ 𝑦)
(2πœ‹)2
𝐺( 𝑦 βˆ’ 𝑦 β€² )
(2πœ‹)2
𝐺(𝑦 β€² βˆ’ 𝑦)
(2πœ‹)2
𝐡
𝐴
+
1
8
𝑔(3)
2
(𝑖ℏ)3∫ 𝑑4 𝑦 ′𝑑4 𝑦
𝐺(𝑦 β€² βˆ’ 𝑦 β€²)
(2πœ‹)2
𝐺( 𝑦 β€² βˆ’ 𝑦 )
(2πœ‹)2
𝐺(𝑦 βˆ’ 𝑦)
(2πœ‹)2
𝐡
𝐴
In my personal convenience, I am used to writing the Green’s function as (for example)
(7)
𝐺( 𝑦 β€² βˆ’ 𝑦) =
1
(2πœ‹)2
∫ 𝑑4 π‘˜
𝑒 π‘–π‘˜ 𝜎(𝑦′ πœŽβˆ’ 𝑦 𝜎)
βˆ’π‘˜ πœ‡ π‘˜ πœ‡ + 𝑀2 + π‘–πœ–
where I have already inserted an imaginary part π‘–πœ– to shift the poles as contour integration will be
required afterwards. The Green’s functions in the matrix expression act as propagators.
The resulting matrix (6), upon the setting of J = 0, consists of two groups (aside from the term
with numerical 1) of relevant identical terms. These terms are as written in coordinate space.
Let us take the group of terms with the numerical factor
1
12
and write this in momentum space
(8)
∫ 𝑑4 𝑦 ′𝑑4 𝑦
𝐺(𝑦 β€² βˆ’ 𝑦)
(2πœ‹)2
𝐺( 𝑦 βˆ’ 𝑦 β€² )
(2πœ‹)2
𝐺(𝑦 β€² βˆ’ 𝑦)
(2πœ‹)2
𝐡
𝐴
=
1
(2πœ‹)4
∫ 𝑑4 π‘˜ ∫ 𝑑4 π‘˜ β€²βˆ« 𝑑4 π‘˜ β€²β€²
1
βˆ’π‘˜2 + 𝑀2 + π‘–πœ–
1
βˆ’π‘˜ β€²2 + 𝑀2 + π‘–πœ–
1
βˆ’π‘˜ β€²β€²2 + 𝑀2 + π‘–πœ–
𝛿4( π‘˜ βˆ’ π‘˜ β€²
+ π‘˜ β€²β€² ) 𝑦 β€² 𝛿4( π‘˜ βˆ’ π‘˜ β€² + π‘˜ β€²β€² ) 𝑦
The Dirac-delta functions in this expression represent vertices at the respective space-time points
𝑦 β€² and 𝑦. As indicated above there are three four-momentum integration variables with two
initial four-momentum vertices that we have just mentioned.
We can integrate over π‘˜ β€²β€² at the space-time point 𝑦 with a picking π‘˜ β€²β€² = k ’ – k so that we can
reduce (8) into
(9)
∫ 𝑑4 𝑦 ′𝑑4 𝑦
𝐺(𝑦 β€² βˆ’ 𝑦)
(2πœ‹)2
𝐺( 𝑦 βˆ’ 𝑦 β€² )
(2πœ‹)2
𝐺(𝑦 β€² βˆ’ 𝑦)
(2πœ‹)2
𝐡
𝐴
=
1
(2πœ‹)4
∫ 𝑑4 π‘˜ ∫ 𝑑4 π‘˜ β€²
1
βˆ’π‘˜2 + 𝑀2 + π‘–πœ–
1
βˆ’π‘˜ β€²2 + 𝑀2 + π‘–πœ–
1
βˆ’ (k ’ – k)
2
+ 𝑀2 + π‘–πœ–
𝛿4( π‘˜ βˆ’ π‘˜ β€²
+ k ’ – k ) 𝑦 β€²
In this result, we have not yet written the remaining Dirac-delta function with zero four-
momentum argument because we still have to integrate over the remaining four-momentum
variabes k ’ and k. Integrating further over k ’ at y ’ with pickings k ’ = k + k ’ – k = k ’ and
k’ – k = k’ – k, we will further write (9) in the following form ( noted (k ’ – k )2
= (k – k β€² )2
)
(10)
∫ 𝑑4 𝑦 ′𝑑4 𝑦
𝐺(𝑦 β€² βˆ’ 𝑦)
(2πœ‹)2
𝐺( 𝑦 βˆ’ 𝑦 β€² )
(2πœ‹)2
𝐺(𝑦 β€² βˆ’ 𝑦)
(2πœ‹)2
𝐡
𝐴
=
1
(2πœ‹)4
1
βˆ’π‘˜ β€²2 + 𝑀2 + π‘–πœ–
∫ 𝑑4 π‘˜
1
βˆ’π‘˜2 + 𝑀2 + π‘–πœ–
1
βˆ’ (k – k β€² )
2
+ 𝑀2 + π‘–πœ–
There is no longer a Dirac-delta function in (10) although we still have to integrate over the
remaining four-momentum variable k but we reserve this in future works as we will be dealing
with the type of integrals involved in dimensional regularization to include Feynman’s trick.
As written in coordinate space (8) can be depicted with the following Feynman graph
(Fig.1)
where at the spacetime point 𝑦 β€² is the Dirac-delta function 𝛿4( π‘˜ βˆ’ π‘˜ β€² + π‘˜ β€²β€² ) 𝑦 β€², while at the
spacetime point y the Dirac-delta function 𝛿4( π‘˜ βˆ’ π‘˜ β€² + π‘˜ β€²β€² ) 𝑦 . (Note the symmetric property of
the Dirac-delta function, 𝛿4(βˆ’π‘Ž) = 𝛿4( π‘Ž)). We also have the Fourier components of the
propagators
(11.1)
𝑔̃( π‘˜) =
1
βˆ’π‘˜2 + 𝑀2 + π‘–πœ–
(11.2)
𝑔̃( π‘˜ β€²) =
1
βˆ’π‘˜ β€²2 + 𝑀2 + π‘–πœ–
and
(11.3)
𝑔̃( π‘˜ β€²β€²) =
1
βˆ’π‘˜ β€²β€²2 + 𝑀2 + π‘–πœ–
In momentum space as given by (10), we have the corresponding Feynman graph
(Fig.2)
where
(12.1)
𝑔̃( π‘˜) =
1
βˆ’π‘˜2 + 𝑀2 + π‘–πœ–
(12.2)
𝑔̃( π‘˜ β€²) =
1
βˆ’π‘˜ β€²2 + 𝑀2 + π‘–πœ–
and
(12.3)
𝑔̃(k – k β€²) =
1
βˆ’ (k – k β€² )
2
+ 𝑀2 + π‘–πœ–
In (10), we are to recognize the four-momentum k as internal four-momentum and k’ as the
external four-momentum and such recognition enables us to construct the Feynman graph Fig.2.
Ref’s:
[1]W. Hollik, Quantum field theory and the Standard Model, arXiv:1012.3883v1 [hep-ph]
[2]Baal, P., A COURSE IN FIELD THEORY,
http://www.lorentz.leidenuniv.nl/~vanbaal/FTcourse.html
[3]’t Hooft, G., THE CONCEPTUAL BASIS OF QUANTUM FIELD THEORY,
http://www.phys.uu.nl/~thooft/
[4]Siegel, W., FIELDS, arXiv:hep-th/9912205 v2
[5]Wells, J. D., Lectures on Higgs Boson Physics in the Standard Model and Beyond,
arXiv:0909.4541v1
[6]Cardy, J., Introduction to Quantum Field Theory
[7]Gaberdiel, M., Gehrmann-De Ridder, A., Quantum Field Theory

More Related Content

What's hot

One particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpyOne particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpyfoxtrot jp R
Β 
Dealinggreensfncsolft sqrd
Dealinggreensfncsolft  sqrdDealinggreensfncsolft  sqrd
Dealinggreensfncsolft sqrdfoxtrot jp R
Β 
One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020foxtrot jp R
Β 
One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1foxtrot jp R
Β 
Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016foxtrot jp R
Β 
Dealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbDealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbfoxtrot jp R
Β 
Mathandphysicspart6subpart1 draftbacc
Mathandphysicspart6subpart1 draftbaccMathandphysicspart6subpart1 draftbacc
Mathandphysicspart6subpart1 draftbaccfoxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-time - smcprt
The klein gordon field in two-dimensional rindler space-time - smcprtThe klein gordon field in two-dimensional rindler space-time - smcprt
The klein gordon field in two-dimensional rindler space-time - smcprtfoxtrot jp R
Β 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserTony Yen
Β 
The klein gordon field in two-dimensional rindler space-time 200920ver-display
The klein gordon field in two-dimensional rindler space-time 200920ver-displayThe klein gordon field in two-dimensional rindler space-time 200920ver-display
The klein gordon field in two-dimensional rindler space-time 200920ver-displayfoxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-timeforss
The klein gordon field in two-dimensional rindler space-timeforssThe klein gordon field in two-dimensional rindler space-timeforss
The klein gordon field in two-dimensional rindler space-timeforssfoxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...foxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-time 14072020
The klein gordon field in two-dimensional rindler space-time  14072020The klein gordon field in two-dimensional rindler space-time  14072020
The klein gordon field in two-dimensional rindler space-time 14072020foxtrot jp R
Β 
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsplyfoxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-time 16052020
The klein gordon field in two-dimensional rindler space-time 16052020The klein gordon field in two-dimensional rindler space-time 16052020
The klein gordon field in two-dimensional rindler space-time 16052020foxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220foxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-time 04232020updts
The klein gordon field in two-dimensional rindler space-time  04232020updtsThe klein gordon field in two-dimensional rindler space-time  04232020updts
The klein gordon field in two-dimensional rindler space-time 04232020updtsfoxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-time 23052020-sqrd
The klein gordon field in two-dimensional rindler space-time  23052020-sqrdThe klein gordon field in two-dimensional rindler space-time  23052020-sqrd
The klein gordon field in two-dimensional rindler space-time 23052020-sqrdfoxtrot jp R
Β 
Hawkinrad a sourceasd
Hawkinrad a sourceasdHawkinrad a sourceasd
Hawkinrad a sourceasdfoxtrot jp R
Β 

What's hot (20)

One particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpyOne particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpy
Β 
Dealinggreensfncsolft sqrd
Dealinggreensfncsolft  sqrdDealinggreensfncsolft  sqrd
Dealinggreensfncsolft sqrd
Β 
One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020
Β 
One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1
Β 
Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016
Β 
Dealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbDealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdb
Β 
Mathandphysicspart6subpart1 draftbacc
Mathandphysicspart6subpart1 draftbaccMathandphysicspart6subpart1 draftbacc
Mathandphysicspart6subpart1 draftbacc
Β 
The klein gordon field in two-dimensional rindler space-time - smcprt
The klein gordon field in two-dimensional rindler space-time - smcprtThe klein gordon field in two-dimensional rindler space-time - smcprt
The klein gordon field in two-dimensional rindler space-time - smcprt
Β 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenser
Β 
The klein gordon field in two-dimensional rindler space-time 200920ver-display
The klein gordon field in two-dimensional rindler space-time 200920ver-displayThe klein gordon field in two-dimensional rindler space-time 200920ver-display
The klein gordon field in two-dimensional rindler space-time 200920ver-display
Β 
The klein gordon field in two-dimensional rindler space-timeforss
The klein gordon field in two-dimensional rindler space-timeforssThe klein gordon field in two-dimensional rindler space-timeforss
The klein gordon field in two-dimensional rindler space-timeforss
Β 
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...
Β 
The klein gordon field in two-dimensional rindler space-time 14072020
The klein gordon field in two-dimensional rindler space-time  14072020The klein gordon field in two-dimensional rindler space-time  14072020
The klein gordon field in two-dimensional rindler space-time 14072020
Β 
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
Β 
The klein gordon field in two-dimensional rindler space-time 16052020
The klein gordon field in two-dimensional rindler space-time 16052020The klein gordon field in two-dimensional rindler space-time 16052020
The klein gordon field in two-dimensional rindler space-time 16052020
Β 
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
Β 
The klein gordon field in two-dimensional rindler space-time 04232020updts
The klein gordon field in two-dimensional rindler space-time  04232020updtsThe klein gordon field in two-dimensional rindler space-time  04232020updts
The klein gordon field in two-dimensional rindler space-time 04232020updts
Β 
The klein gordon field in two-dimensional rindler space-time 23052020-sqrd
The klein gordon field in two-dimensional rindler space-time  23052020-sqrdThe klein gordon field in two-dimensional rindler space-time  23052020-sqrd
The klein gordon field in two-dimensional rindler space-time 23052020-sqrd
Β 
Bhdpis1
Bhdpis1Bhdpis1
Bhdpis1
Β 
Hawkinrad a sourceasd
Hawkinrad a sourceasdHawkinrad a sourceasd
Hawkinrad a sourceasd
Β 

Similar to VTV Matrix Cubic Self-Interaction

Fieldtheoryhighlights2015 setb
Fieldtheoryhighlights2015 setbFieldtheoryhighlights2015 setb
Fieldtheoryhighlights2015 setbfoxtrot jp R
Β 
Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18foxtrot jp R
Β 
Fieldtheoryhighlights2015 setbb
Fieldtheoryhighlights2015 setbbFieldtheoryhighlights2015 setbb
Fieldtheoryhighlights2015 setbbfoxtrot jp R
Β 
Dealinggreensfncsolft sqrd(10 5-2k16)
Dealinggreensfncsolft   sqrd(10 5-2k16)Dealinggreensfncsolft   sqrd(10 5-2k16)
Dealinggreensfncsolft sqrd(10 5-2k16)foxtrot jp R
Β 
Dealinggreensfncsolft
DealinggreensfncsolftDealinggreensfncsolft
Dealinggreensfncsolftfoxtrot jp R
Β 
Outgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrdOutgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrdfoxtrot jp R
Β 
A05330107
A05330107A05330107
A05330107IOSR-JEN
Β 
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplayfoxtrot jp R
Β 
Parallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrdParallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrdfoxtrot jp R
Β 
Outgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghpOutgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghpfoxtrot jp R
Β 
Higgsbosontoelectron positron decay_dsply
Higgsbosontoelectron positron decay_dsplyHiggsbosontoelectron positron decay_dsply
Higgsbosontoelectron positron decay_dsplyfoxtrot jp R
Β 
Parallel tansportsqrdaa
Parallel tansportsqrdaaParallel tansportsqrdaa
Parallel tansportsqrdaafoxtrot jp R
Β 
Outgoing ingoingkleingordon
Outgoing ingoingkleingordonOutgoing ingoingkleingordon
Outgoing ingoingkleingordonfoxtrot jp R
Β 
Outgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsOutgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsfoxtrot jp R
Β 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationRai University
Β 

Similar to VTV Matrix Cubic Self-Interaction (17)

Fieldtheoryhighlights2015 setb
Fieldtheoryhighlights2015 setbFieldtheoryhighlights2015 setb
Fieldtheoryhighlights2015 setb
Β 
Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18
Β 
Fieldtheoryhighlights2015 setbb
Fieldtheoryhighlights2015 setbbFieldtheoryhighlights2015 setbb
Fieldtheoryhighlights2015 setbb
Β 
Dealinggreensfncsolft sqrd(10 5-2k16)
Dealinggreensfncsolft   sqrd(10 5-2k16)Dealinggreensfncsolft   sqrd(10 5-2k16)
Dealinggreensfncsolft sqrd(10 5-2k16)
Β 
Dealinggreensfncsolft
DealinggreensfncsolftDealinggreensfncsolft
Dealinggreensfncsolft
Β 
Outgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrdOutgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrd
Β 
A05330107
A05330107A05330107
A05330107
Β 
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
Β 
lec21.ppt
lec21.pptlec21.ppt
lec21.ppt
Β 
Parallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrdParallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrd
Β 
lec14.ppt
lec14.pptlec14.ppt
lec14.ppt
Β 
Outgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghpOutgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghp
Β 
Higgsbosontoelectron positron decay_dsply
Higgsbosontoelectron positron decay_dsplyHiggsbosontoelectron positron decay_dsply
Higgsbosontoelectron positron decay_dsply
Β 
Parallel tansportsqrdaa
Parallel tansportsqrdaaParallel tansportsqrdaa
Parallel tansportsqrdaa
Β 
Outgoing ingoingkleingordon
Outgoing ingoingkleingordonOutgoing ingoingkleingordon
Outgoing ingoingkleingordon
Β 
Outgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsOutgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julups
Β 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiation
Β 

Recently uploaded

Call Girls in Hauz Khas Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Call Girls in Hauz Khas Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.Call Girls in Hauz Khas Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Call Girls in Hauz Khas Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.aasikanpl
Β 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
Β 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)DHURKADEVIBASKAR
Β 
Cytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptxCytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptxVarshiniMK
Β 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
Β 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
Β 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxmalonesandreagweneth
Β 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsHajira Mahmood
Β 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -INandakishor Bhaurao Deshmukh
Β 
Heredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of TraitsHeredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of TraitsCharlene Llagas
Β 
Welcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayWelcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayZachary Labe
Β 
Forest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantForest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantadityabhardwaj282
Β 
Temporomandibular joint Muscles of Mastication
Temporomandibular joint Muscles of MasticationTemporomandibular joint Muscles of Mastication
Temporomandibular joint Muscles of Masticationvidulajaib
Β 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫qfactory1
Β 
Gas_Laws_powerpoint_notes.ppt for grade 10
Gas_Laws_powerpoint_notes.ppt for grade 10Gas_Laws_powerpoint_notes.ppt for grade 10
Gas_Laws_powerpoint_notes.ppt for grade 10ROLANARIBATO3
Β 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentationtahreemzahra82
Β 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsssuserddc89b
Β 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxFarihaAbdulRasheed
Β 
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaDashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaPraksha3
Β 
insect anatomy and insect body wall and their physiology
insect anatomy and insect body wall and their  physiologyinsect anatomy and insect body wall and their  physiology
insect anatomy and insect body wall and their physiologyDrAnita Sharma
Β 

Recently uploaded (20)

Call Girls in Hauz Khas Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Call Girls in Hauz Khas Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.Call Girls in Hauz Khas Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Call Girls in Hauz Khas Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Β 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Β 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)
Β 
Cytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptxCytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptx
Β 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
Β 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
Β 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
Β 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutions
Β 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
Β 
Heredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of TraitsHeredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of Traits
Β 
Welcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayWelcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work Day
Β 
Forest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantForest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are important
Β 
Temporomandibular joint Muscles of Mastication
Temporomandibular joint Muscles of MasticationTemporomandibular joint Muscles of Mastication
Temporomandibular joint Muscles of Mastication
Β 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫
Β 
Gas_Laws_powerpoint_notes.ppt for grade 10
Gas_Laws_powerpoint_notes.ppt for grade 10Gas_Laws_powerpoint_notes.ppt for grade 10
Gas_Laws_powerpoint_notes.ppt for grade 10
Β 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentation
Β 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physics
Β 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
Β 
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaDashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Β 
insect anatomy and insect body wall and their physiology
insect anatomy and insect body wall and their  physiologyinsect anatomy and insect body wall and their  physiology
insect anatomy and insect body wall and their physiology
Β 

VTV Matrix Cubic Self-Interaction

  • 1. Very Brief Highlights On Some Key Details: Vacuum-To-Vacuum Matrix In the Presence Of Cubic Self Interaction Roa, F. J. P. Remarks: This draft is based on my answer notes dealing on some basic drills and workouts in quantum field theory so the reader is highly encouraged to figure things out independently and compare his results to the ones presented here. Say we start at an initial time 𝑑 = 0 for a quantum mechanical description of a scalar particle in the vacuum state |0⟩. With the application of the time evolution operator (teo) π‘ˆ1(𝑇) on the given vacuum state we evolve this vacuum state into another state | πœ“βŸ© that is given at a later time 𝑑 = 𝑇 > 0. (1) |0⟩ β†’ | πœ“βŸ© = π‘ˆ1(𝑇)|0⟩ We take the projection of this evolved state on the vacuum state. Thus, getting the vacuum-to- vacuum matrix (2) ⟨0| π‘ˆ1(𝑇)|0⟩ for the probability amplitude that a particle initially in the vacuum state at an initial time will still be in the vacuum state at a later time. The time evolution operator (TEO) (3) π‘ˆ1 ( 𝑇) = π‘ˆ1 ( 𝑇,0) = 𝑒π‘₯𝑝 (βˆ’ 𝑖 ℏ ∫ 𝑑𝑑 𝐻(𝑑) 𝑇 0 ) is given for a system Hamiltonian for scalar fields considered in this particular drill and this Hamiltonian has implicit time dependence being a Hamiltonian H(J(t)) that is a functional of time dependent source J(t). This Hamiltonian can be derived from the scalar field system Lagrangian via Legendre transformation. However, we shall no longer give the details of such transformation here. In this prior set-up, we are not yet taking into account the self-interactions in our Lagrangian and consequently, in our Hamiltonian so our initial matrix given by (2) is in the absence of the said interactions. These self-interactions enter into the Lagrangian and Hamiltonian in the form of
  • 2. potential functions and in my personal convenience, I don’t include in these functions the scalar field mass terms as I put these mass terms already explicitly in the Lagrangian and Hamiltonian. Without going into the details of how these self-interactions enter into the vacuum-to-vacuum (VTV) matrix we will only give this VTV matrix here that comes with the presence of the said interactions via potential operators (4) ⟨0|π‘ˆ1(𝑇)𝑒π‘₯𝑝 (βˆ’ 𝑖 ℏ ∫ 𝑑4 𝑦 𝑉(πœ‘Μ‚) 𝐡 𝐴 ) |0⟩| 𝐽=0 = 𝑒π‘₯𝑝 (βˆ’ 𝑖 ℏ ∫ 𝑑4 𝑦 𝑉 (𝑖ℏ 𝛿 𝛿𝐽(𝑦) ) 𝐡 𝐴 ) ⟨0| π‘ˆ1(𝑇)|0⟩| 𝐽=0 and in this particular drill we are considering cubic self- interaction in the form given by (5) 𝑉[ πœ‘( π‘₯, 𝐽)] = 1 3! 𝑔(3) πœ‘3( π‘₯, 𝐽) In this current presentation, I am also not going to dwell on the lengthy details to arrive at the end results of this exercise but this more elaborate presentation will be done in future drafts. The VTV matrix that includes the cubic self-interaction (5) is obtained upon the setting of all sources to zero, J = 0. This matrix is given by (6) ⟨0|π‘ˆ1(𝑇)𝑒π‘₯𝑝 (βˆ’ 𝑖 ℏ ∫ 𝑑4 𝑦 𝑉(πœ‘Μ‚) 𝐡 𝐴 ) |0⟩| 𝐽=0 = 1 12 𝑔(3) 2 (𝑖ℏ)3 ∫ 𝑑4 𝑦 ′𝑑4 𝑦 𝐺(𝑦 β€² βˆ’ 𝑦) (2πœ‹)2 𝐺( 𝑦 βˆ’ 𝑦 β€² ) (2πœ‹)2 𝐺(𝑦 β€² βˆ’ 𝑦) (2πœ‹)2 𝐡 𝐴 + 1 8 𝑔(3) 2 (𝑖ℏ)3∫ 𝑑4 𝑦 ′𝑑4 𝑦 𝐺(𝑦 β€² βˆ’ 𝑦 β€²) (2πœ‹)2 𝐺( 𝑦 β€² βˆ’ 𝑦 ) (2πœ‹)2 𝐺(𝑦 βˆ’ 𝑦) (2πœ‹)2 𝐡 𝐴 In my personal convenience, I am used to writing the Green’s function as (for example) (7) 𝐺( 𝑦 β€² βˆ’ 𝑦) = 1 (2πœ‹)2 ∫ 𝑑4 π‘˜ 𝑒 π‘–π‘˜ 𝜎(𝑦′ πœŽβˆ’ 𝑦 𝜎) βˆ’π‘˜ πœ‡ π‘˜ πœ‡ + 𝑀2 + π‘–πœ– where I have already inserted an imaginary part π‘–πœ– to shift the poles as contour integration will be required afterwards. The Green’s functions in the matrix expression act as propagators.
  • 3. The resulting matrix (6), upon the setting of J = 0, consists of two groups (aside from the term with numerical 1) of relevant identical terms. These terms are as written in coordinate space. Let us take the group of terms with the numerical factor 1 12 and write this in momentum space (8) ∫ 𝑑4 𝑦 ′𝑑4 𝑦 𝐺(𝑦 β€² βˆ’ 𝑦) (2πœ‹)2 𝐺( 𝑦 βˆ’ 𝑦 β€² ) (2πœ‹)2 𝐺(𝑦 β€² βˆ’ 𝑦) (2πœ‹)2 𝐡 𝐴 = 1 (2πœ‹)4 ∫ 𝑑4 π‘˜ ∫ 𝑑4 π‘˜ β€²βˆ« 𝑑4 π‘˜ β€²β€² 1 βˆ’π‘˜2 + 𝑀2 + π‘–πœ– 1 βˆ’π‘˜ β€²2 + 𝑀2 + π‘–πœ– 1 βˆ’π‘˜ β€²β€²2 + 𝑀2 + π‘–πœ– 𝛿4( π‘˜ βˆ’ π‘˜ β€² + π‘˜ β€²β€² ) 𝑦 β€² 𝛿4( π‘˜ βˆ’ π‘˜ β€² + π‘˜ β€²β€² ) 𝑦 The Dirac-delta functions in this expression represent vertices at the respective space-time points 𝑦 β€² and 𝑦. As indicated above there are three four-momentum integration variables with two initial four-momentum vertices that we have just mentioned. We can integrate over π‘˜ β€²β€² at the space-time point 𝑦 with a picking π‘˜ β€²β€² = k ’ – k so that we can reduce (8) into (9) ∫ 𝑑4 𝑦 ′𝑑4 𝑦 𝐺(𝑦 β€² βˆ’ 𝑦) (2πœ‹)2 𝐺( 𝑦 βˆ’ 𝑦 β€² ) (2πœ‹)2 𝐺(𝑦 β€² βˆ’ 𝑦) (2πœ‹)2 𝐡 𝐴 = 1 (2πœ‹)4 ∫ 𝑑4 π‘˜ ∫ 𝑑4 π‘˜ β€² 1 βˆ’π‘˜2 + 𝑀2 + π‘–πœ– 1 βˆ’π‘˜ β€²2 + 𝑀2 + π‘–πœ– 1 βˆ’ (k ’ – k) 2 + 𝑀2 + π‘–πœ– 𝛿4( π‘˜ βˆ’ π‘˜ β€² + k ’ – k ) 𝑦 β€² In this result, we have not yet written the remaining Dirac-delta function with zero four- momentum argument because we still have to integrate over the remaining four-momentum variabes k ’ and k. Integrating further over k ’ at y ’ with pickings k ’ = k + k ’ – k = k ’ and k’ – k = k’ – k, we will further write (9) in the following form ( noted (k ’ – k )2 = (k – k β€² )2 ) (10) ∫ 𝑑4 𝑦 ′𝑑4 𝑦 𝐺(𝑦 β€² βˆ’ 𝑦) (2πœ‹)2 𝐺( 𝑦 βˆ’ 𝑦 β€² ) (2πœ‹)2 𝐺(𝑦 β€² βˆ’ 𝑦) (2πœ‹)2 𝐡 𝐴 = 1 (2πœ‹)4 1 βˆ’π‘˜ β€²2 + 𝑀2 + π‘–πœ– ∫ 𝑑4 π‘˜ 1 βˆ’π‘˜2 + 𝑀2 + π‘–πœ– 1 βˆ’ (k – k β€² ) 2 + 𝑀2 + π‘–πœ–
  • 4. There is no longer a Dirac-delta function in (10) although we still have to integrate over the remaining four-momentum variable k but we reserve this in future works as we will be dealing with the type of integrals involved in dimensional regularization to include Feynman’s trick. As written in coordinate space (8) can be depicted with the following Feynman graph (Fig.1) where at the spacetime point 𝑦 β€² is the Dirac-delta function 𝛿4( π‘˜ βˆ’ π‘˜ β€² + π‘˜ β€²β€² ) 𝑦 β€², while at the spacetime point y the Dirac-delta function 𝛿4( π‘˜ βˆ’ π‘˜ β€² + π‘˜ β€²β€² ) 𝑦 . (Note the symmetric property of the Dirac-delta function, 𝛿4(βˆ’π‘Ž) = 𝛿4( π‘Ž)). We also have the Fourier components of the propagators (11.1) 𝑔̃( π‘˜) = 1 βˆ’π‘˜2 + 𝑀2 + π‘–πœ– (11.2) 𝑔̃( π‘˜ β€²) = 1 βˆ’π‘˜ β€²2 + 𝑀2 + π‘–πœ– and (11.3) 𝑔̃( π‘˜ β€²β€²) = 1 βˆ’π‘˜ β€²β€²2 + 𝑀2 + π‘–πœ– In momentum space as given by (10), we have the corresponding Feynman graph (Fig.2)
  • 5. where (12.1) 𝑔̃( π‘˜) = 1 βˆ’π‘˜2 + 𝑀2 + π‘–πœ– (12.2) 𝑔̃( π‘˜ β€²) = 1 βˆ’π‘˜ β€²2 + 𝑀2 + π‘–πœ– and (12.3) 𝑔̃(k – k β€²) = 1 βˆ’ (k – k β€² ) 2 + 𝑀2 + π‘–πœ– In (10), we are to recognize the four-momentum k as internal four-momentum and k’ as the external four-momentum and such recognition enables us to construct the Feynman graph Fig.2. Ref’s: [1]W. Hollik, Quantum field theory and the Standard Model, arXiv:1012.3883v1 [hep-ph] [2]Baal, P., A COURSE IN FIELD THEORY, http://www.lorentz.leidenuniv.nl/~vanbaal/FTcourse.html [3]’t Hooft, G., THE CONCEPTUAL BASIS OF QUANTUM FIELD THEORY, http://www.phys.uu.nl/~thooft/ [4]Siegel, W., FIELDS, arXiv:hep-th/9912205 v2
  • 6. [5]Wells, J. D., Lectures on Higgs Boson Physics in the Standard Model and Beyond, arXiv:0909.4541v1 [6]Cardy, J., Introduction to Quantum Field Theory [7]Gaberdiel, M., Gehrmann-De Ridder, A., Quantum Field Theory