SlideShare a Scribd company logo
1 of 8
Workouts #1 in Basic QFT
One Scalar Particle Scattering Into One Scalar Particle
Roa, F. J.P.
Let us suppose that a particle propagates from a spacetime region π‘₯ to some other spacetime
regionπ‘₯β€². (Cautionary remark: In this draft I use the word region to mean a point for the basic
reason that we perform Fourier integrations at those points that allow us to have integral
definitions of Dirac-delta functions.) As the particle enters the latter spacetime region it carries a
spatial momentumπ‘˜βƒ— , then scatters as a scalar particle carrying a new spatial momentumπ‘˜βƒ— β€². This
process is given with the following scattering matrix
(1)
βŸ¨π‘˜βƒ— β€²|π‘ˆ( π‘‡π‘œπ‘’π‘‘, 𝑇𝑖𝑛 )|π‘˜βƒ— ⟩ =
√2πœ”( π‘˜βƒ— β€²)
βˆšβ„
∫
𝑑3
π‘₯β€²
√(2πœ‹)3
π‘’βˆ’π‘–π‘˜βƒ— β€²βˆ™π‘₯β€²
√2πœ” ( π‘˜βƒ— )
βˆšβ„
∫
𝑑3
π‘₯
√(2πœ‹)3
𝑒 π‘–π‘˜βƒ— βˆ™π‘₯
(βˆ’
ℏ
𝑖
)
𝛿
𝛿𝐽( π‘₯β€²)
(
ℏ
𝑖
)
𝛿
𝛿𝐽(π‘₯)
⟨0| π‘ˆ(π‘‡π‘œπ‘’π‘‘, 𝑇𝑖𝑛 )|0⟩
This involves second order in the derivative operations with respect to sources J’s on the
vacuum-to-vacuum matrix
(2)
𝛿
𝛿𝐽( π‘₯β€²)
𝛿
𝛿𝐽(π‘₯)
⟨0| π‘ˆ(π‘‡π‘œπ‘’π‘‘, 𝑇𝑖𝑛 )|0⟩
where already in its factored form, this said matrix has the form
(3)
⟨0| π‘ˆ(π‘‡π‘œπ‘’π‘‘ , 𝑇𝑖𝑛 )|0⟩ = 𝑒π‘₯𝑝(βˆ’
𝑖
ℏ
( π‘‡π‘œπ‘’π‘‘ βˆ’ 𝑇𝑖𝑛) 𝐸0
0
) 𝑒𝑖 𝑆 𝑐 / ℏ
The form of the matrix (1) is a consequence following from path integration. However, we shall
no longer tackle the details of this path integration leading to the right-hand-side (rhs) of (1). It is
to be noticed in (3) that we have not yet normalized the resulting matrix (1) so the vacuum-to-
vacuum matrix (3) still carries the factor that involves the ground state energy 𝐸0
0
.
We can conveniently write out the vacuum-to-vacuum matrix explicitly as a Taylor/Maclaurin
expansion with
(4)
𝑒 𝑖 𝑆 𝑐 /ℏ = 1 +
𝑖
ℏ
𝑆 𝑐 + βˆ‘
1
𝑛!
(
𝑖
ℏ
)
𝑛
𝑆 𝐢
𝑛
∞
𝑛=2
As a basic recollection recall that in the case for a boson such as a scalar field in this exercise, we
can raise a one-particle state of certain spatial momentum π‘˜βƒ— from the vacuum state with the
application of bosonic creation operator π‘Žβ€ 
and such creation operation is given by
(5.1)
|π‘˜βƒ— ⟩ = π‘Žβ€ 
(π‘˜βƒ— )|0 ⟩
with its Hermitian adjoint
(5.2)
βŸ¨π‘˜βƒ— | = (|π‘˜βƒ— ⟩ )
†
= ⟨0| π‘Ž(π‘˜βƒ— )
We may think of (5.1) as the one-particle state at the initial time 𝑇𝑖𝑛 and evolve such state into
some other state at π‘‡π‘œπ‘’π‘‘ with the application of the time evolution operator π‘ˆ(π‘‡π‘œπ‘’π‘‘, 𝑇𝑖𝑛 ). The
projection of this evolved one-particle state on some other one-particle state |π‘˜βƒ— β€²βŸ© will give the
left-hand-side (lhs) of the scattering matrix (1), which bears a quantum field theory interpretation
of being associated with a probability that the one-particle state of momentum π‘˜βƒ— at an initial time
𝑇𝑖𝑛 can be found as a one-particle state of spatial momentum π‘˜βƒ— β€² at a later time π‘‡π‘œπ‘’π‘‘ . Note in here
that 𝑇𝑖𝑛 is in the initial spacetime region π‘₯, while π‘‡π‘œπ‘’π‘‘ is in the latter spacetime region π‘₯β€². This
matrix is then thought of as a scattering matrix that can be evaluated via path integration
resulting in (1).
In (1) we take note that we have two different spatial Fourier integrations, one over the spatial
region represented by π‘₯, while the other one with the spatial region of π‘₯β€². Each of these
integrations defines a Dirac-delta function at the spatial region of integration. That is, for
example
(6)
𝛿3
(π‘˜βƒ— Β± π‘˜βƒ— (𝑗)
)
π‘₯
= ∫
𝑑3
π‘₯
(2πœ‹)3
𝑒±𝑖(π‘˜βƒ— Β± π‘˜βƒ— (𝑗)
)βˆ™π‘₯
Ofcourse, such delta functions assume symmetric integral limits in those space regions where
these integrations are performed.
Note as to be explicit we have for the initial spacetime region π‘₯ = (π‘₯0
, π‘₯) and for the latter
spacetime region xβ€² = (π‘₯β€²0
, π‘₯β€²).
Of prior note also is the connected two-point function for scalars not a two-point function. This
is connected in the sense that it connects two sources J’s, each of which belongs to the two
different spacetime regions that act as end regions for the propagating scalar particle.
Such connected two-point function will simply be given by the scalar classical action as
expressed in the functional of the sources with a scalar Green’s function that plays the role of
propagator.
(7)
𝑆 𝑐 = βˆ’
1
2
1
(2πœ‹)2
∫ 𝑑4 𝑦 𝑑4 𝑦 β€² 𝐽( 𝑦) 𝐺( 𝑦 βˆ’ 𝑦 β€²) 𝐽(𝑦′) = βˆ’ 〈 𝐽 𝑦 𝐺𝑦𝑦′ 𝐽 𝑦′βŒͺ
For convenience we specify in notation that
(8)
𝛿𝐽(π‘₯) =
𝛿
𝛿𝐽(π‘₯)
𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) =
𝛿2
𝛿𝐽(π‘₯β€²)𝛿𝐽(π‘₯)
Then for (2) we write
(9)
𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) 𝑒 𝑖 𝑆 𝑐/ ℏ =
𝑖
ℏ
𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) 𝑆𝑐 +
1
2
(
𝑖
ℏ
)
2
𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) 𝑆 𝐢
2
+ βˆ‘
1
𝑛!
(
𝑖
ℏ
)
𝑛
𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) 𝑆 𝐢
𝑛
∞
𝑛=3
where to the first power of the connected two-point function we have (7), while to the second
power of this function we write as
(10.1)
𝑆 𝑐 = βˆ’
1
2
1
(2πœ‹)2
∫ 𝑑4 𝑦 𝑑4 𝑦 β€² 𝐽( 𝑦) 𝐺( 𝑦 βˆ’ 𝑦 β€²) 𝐽(𝑦′) = βˆ’ 〈 𝐽 𝑦 𝐺𝑦𝑦′ 𝐽 𝑦′βŒͺ
with
(10.2)
𝑆 𝐢
2
= (βˆ’1)(βˆ’1) 〈 𝐽 𝑦 𝐺𝑦𝑦′ 𝐽𝑦′βŒͺ1 〈 𝐽 𝑦 𝐺𝑦𝑦′ 𝐽 𝑦′βŒͺ
and
(10.3)
𝐺( π‘₯β€² βˆ’ π‘₯) =
βˆ’1
(2πœ‹)2
∫ 𝑑4 π‘˜
𝑒 π‘–π‘˜ 𝜎(π‘₯β€² πœŽβˆ’ π‘₯ 𝜎)
βˆ’π‘˜ πœ‡ π‘˜ πœ‡ + 𝑀2 + π‘–πœ–
The derivative operation via functional derivative in 3 + 1 spacetime
(10.4)
𝛿4( π‘₯ βˆ’ 𝑦) =
𝛿𝐽(π‘₯)
𝛿𝐽(𝑦)
The first order differentiation of (7) yields
(11.1)
𝛿𝐽(π‘₯) 𝑆𝑐 = βˆ’ 𝛿 𝐽(π‘₯)〈 𝐽 𝑦 𝐺𝑦𝑦′ 𝐽 𝑦′βŒͺ = βˆ’ (〈 𝐽 𝑦 𝐺𝑦π‘₯βŒͺ+ 〈 𝐺 π‘₯𝑦′ 𝐽 𝑦′βŒͺ)
= βˆ’
1
2
1
(2πœ‹)2
(∫ 𝑑4 𝑦 𝐽( 𝑦) 𝐺( 𝑦 βˆ’ π‘₯) + ∫ 𝑑4 𝑦′ 𝐺( π‘₯ βˆ’ 𝑦′) 𝐽(𝑦′) )
and with the setting of y = y’, this becomes
(11.2)
𝛿𝐽(π‘₯) 𝑆𝑐|
𝑦 = 𝑦′
= βˆ’(2)〈 𝐺π‘₯𝑦 𝐽 𝑦βŒͺ
In (11.2) we note
(11.3)
〈 𝐺π‘₯𝑦 𝐽 𝑦βŒͺ =
1
2
1
(2πœ‹)2
∫ 𝑑4 𝑦 𝐽( 𝑦) 𝐺( 𝑦 βˆ’ π‘₯)
and it is important to take note that the number inside the parenthesis (2) means the number of
terms originally involved in the first differentiation. Consequently, from (11.2) we have the
second order differentiation resulting as
(11.4)
𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) 𝑆𝑐 = βˆ’ (2)𝐺π‘₯β€²π‘₯
After carrying out the indicated differentiation in (9) and only up to second order in i/hbar, we
write (9) explicitly as
(12.1)
𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) 𝑒 𝑖 𝑆 𝑐 /ℏ
=
𝑖
ℏ
(βˆ’ (2) 𝐺 π‘₯β€² π‘₯) +
1
2
(
𝑖
ℏ
)
2
(2)(2)〈 𝐽 𝑦 𝐺 𝑦𝑦′ 𝐽 𝑦′βŒͺ 𝐺 π‘₯β€² π‘₯
+
1
2
(
𝑖
ℏ
)
2
(2)(2)(2)〈 𝐺π‘₯′𝑦′ 𝐽 𝑦′βŒͺ〈 𝐺π‘₯𝑦 𝐽 𝑦βŒͺ
The first major term of this consists two terms, the second major term four terms and the third
major term has eight terms. So (12.1) has a total of fourteen terms.
Taking note from (1) we perform the Fourier integrations involving the first major term in (12.1)
and these integrations are given by
(12.2)
∫
𝑑3
π‘₯β€²
√(2πœ‹)3
π‘’βˆ’π‘–π‘˜βƒ— β€²βˆ™π‘₯β€²
∫
𝑑3
π‘₯
√(2πœ‹)3
𝑒 π‘–π‘˜βƒ— βˆ™π‘₯
𝐺( π‘₯β€² βˆ’ π‘₯)
= βˆ’
1
(2πœ‹)2
∫ π‘‘π‘˜(2)
0
∫ 𝑑3
π‘˜βƒ—
(2) 𝑒
π‘–π‘˜(2)
0 ( π‘₯β€² 0
βˆ’ π‘₯0)
βˆ’π‘˜(2)
2
(π‘˜βƒ— (2)) + 𝑀2
+ π‘–πœ–
(2πœ‹)3
Γ— 𝛿3
(π‘˜βƒ— β€² + π‘˜βƒ— (2))
π‘₯β€²
𝛿3
(π‘˜βƒ— + π‘˜βƒ— (2))
π‘₯
where it is specified that to the space region π‘₯ β€² a vertex with the Dirac-delta function
(12.3)
𝛿3
(π‘˜βƒ— β€² + π‘˜βƒ— (2))
π‘₯β€²
and to the space region π‘₯ a vertex with its own Dirac-delta function
(12.4)
𝛿3
(π‘˜βƒ— + π‘˜βƒ— (2))
π‘₯
Clearly in (12.2) we initially see two vertices, one as already mentioned at the space region of π‘₯,
where we sum up two space momenta π‘˜βƒ— and π‘˜βƒ— (2) and the vertex at the space region of π‘₯ β€² where
π‘˜βƒ— β€² and π‘˜βƒ— (2) are summed up. Since it is indicated that we are to perform integration ove the π‘˜βƒ— (2)
vec momentum variable, the vertex at the initial space region will disappear as there will be
picking of π‘˜βƒ— (2) = βˆ’ π‘˜βƒ— . Given such picking, we have
(12.5)
π‘˜(2)
2
( π‘˜βƒ—βƒ— (2)) β†’ π‘˜(2)
2
(βˆ’π‘˜βƒ—βƒ— ) = ( π‘˜(2)
0 )
2
βˆ’ π‘˜βƒ—βƒ— βˆ™ π‘˜βƒ—βƒ—
and then just relabel π‘˜(2)
0
to π‘˜0
so that
(12.6)
π‘˜(2)
2
(βˆ’π‘˜βƒ—βƒ— ) = π‘˜ πœ‡ π‘˜ πœ‡ = ( π‘˜
0
)
2
βˆ’ π‘˜βƒ—βƒ— βˆ™ π‘˜βƒ—βƒ—
Thus, (12.2) further results to
(12.7)
∫
𝑑3
π‘₯β€²
√(2πœ‹)3
π‘’βˆ’π‘–π‘˜βƒ— β€²βˆ™π‘₯β€²
∫
𝑑3
π‘₯
√(2πœ‹)3
𝑒 π‘–π‘˜βƒ— βˆ™π‘₯
𝐺 π‘₯β€²
π‘₯
=
1
2(2πœ‹)4
∫ 𝑑 π‘˜0
𝑒
π‘–π‘˜0 ( π‘₯β€² 0
βˆ’ π‘₯0)
( π‘˜0)2 βˆ’ ( π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2
+ π‘–πœ–)
𝛿3
(π‘˜βƒ— β€² βˆ’ π‘˜βƒ— )
π‘₯β€²
We have one more integration to perform and this is a contour integration on a complex z-plane.
In our convenience we will only choose the upper half-contour that encloses the complex pole
𝑧0 = 𝑏′ where
(12.8)
𝑏′
= √ π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2
+ π‘–πœ– β‰ˆ √ π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2
+
π‘–πœ–
2√ π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2
We will no longer dig into the details of such integration and simply write here the result. The
result in the limit as πœ– β†’ 0 is given by
(12.9)
π‘™π‘–π‘š πœ– β†’ 0 ∫ 𝑑 π‘˜0
∞
βˆ’βˆž
𝑒
π‘–π‘˜0( π‘₯β€² 0
βˆ’ π‘₯0)
( π‘˜0)2 βˆ’ ( π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2
+ π‘–πœ–)
=
π‘–πœ‹
πœ”(π‘˜βƒ— )
𝑒
π‘–π‘˜0 ( π‘₯β€² 0
βˆ’ π‘₯0)
at
(12.10)
π‘˜0
= πœ”(π‘˜βƒ— ) = √ π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2
Proceeding, we may write the scattering matrix up to a major third term only and having to note
that only the first major term is relevant upon the setting of all sources J’s to zero.
(13.1)
βŸ¨π‘˜βƒ— β€²|π‘ˆ( π‘‡π‘œπ‘’π‘‘, 𝑇𝑖𝑛 )|π‘˜βƒ— ⟩ = 1𝑠𝑑 + 2𝑛𝑑 + 3π‘Ÿπ‘‘ + β‹―
Given (12.9), we may write
(13.2)
1𝑠𝑑 = 𝑒π‘₯𝑝(βˆ’
𝑖
ℏ
( π‘‡π‘œπ‘’π‘‘ βˆ’ 𝑇𝑖𝑛) 𝐸0
0
) 𝑒
π‘–π‘˜0( π‘₯β€² 0
βˆ’ π‘₯0)
𝛿3
(π‘˜βƒ— β€² βˆ’ π‘˜βƒ— )
π‘₯β€²
This is associated with the Feynman diagram at the space region of π‘₯β€².
(Fig.1)
While for the other major terms in (13.1) we have
(13.3)
2𝑛𝑑 = βˆ’
𝑖
ℏ
〈 𝐽 𝑦
𝐺 𝑦𝑦′ 𝐽 𝑦′βŒͺ Γ— 1𝑠𝑑
and
(13.4)
3π‘Ÿπ‘‘ = βˆ’
1
ℏ
√ πœ”(π‘˜βƒ— β€²)√ πœ”(π‘˜βƒ— ) 23
∫
𝑑3
π‘₯β€²
√(2πœ‹)3
π‘’βˆ’π‘– π‘˜βƒ— β€²βˆ™π‘₯β€² 〈 𝐺 π‘₯β€²
𝑦′ 𝐽 𝑦′βŒͺ ∫
𝑑3
π‘₯
√(2πœ‹)3
𝑒 π‘–π‘˜βƒ— βˆ™π‘₯ 〈 𝐺 π‘₯𝑦 𝐽 𝑦
βŒͺ
References
[1]Baal, P., A COURSE IN FIELD THEORY
[2]Cardy, J., Introduction to Quantum Field Theory
[3]Gaberdiel, M., Gehrmann-De Ridder, A., Quantum Field Theory
Basic QFT Workout #1

More Related Content

What's hot

The klein gordon field in two-dimensional rindler space-time 200920ver-display
The klein gordon field in two-dimensional rindler space-time 200920ver-displayThe klein gordon field in two-dimensional rindler space-time 200920ver-display
The klein gordon field in two-dimensional rindler space-time 200920ver-displayfoxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-time 14072020
The klein gordon field in two-dimensional rindler space-time  14072020The klein gordon field in two-dimensional rindler space-time  14072020
The klein gordon field in two-dimensional rindler space-time 14072020foxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...foxtrot jp R
Β 
Very brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrdVery brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrdfoxtrot jp R
Β 
Very brief highlights on some key details 2
Very brief highlights on some key details 2Very brief highlights on some key details 2
Very brief highlights on some key details 2foxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-timeforss
The klein gordon field in two-dimensional rindler space-timeforssThe klein gordon field in two-dimensional rindler space-timeforss
The klein gordon field in two-dimensional rindler space-timeforssfoxtrot jp R
Β 
Summerp62016update3 slideshare sqd
Summerp62016update3 slideshare   sqdSummerp62016update3 slideshare   sqd
Summerp62016update3 slideshare sqdfoxtrot jp R
Β 
Summerp62016update3 slideshare sqrdver2
Summerp62016update3 slideshare   sqrdver2Summerp62016update3 slideshare   sqrdver2
Summerp62016update3 slideshare sqrdver2foxtrot jp R
Β 
Hawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _securedHawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _securedfoxtrot jp R
Β 
Summerp62016update2 slideshare sqd
Summerp62016update2 slideshare  sqdSummerp62016update2 slideshare  sqd
Summerp62016update2 slideshare sqdfoxtrot jp R
Β 
Dealinggreensfncsolft sqrd
Dealinggreensfncsolft  sqrdDealinggreensfncsolft  sqrd
Dealinggreensfncsolft sqrdfoxtrot jp R
Β 
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsRotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsSolo Hermelin
Β 
Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18foxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-time - smcprt
The klein gordon field in two-dimensional rindler space-time - smcprtThe klein gordon field in two-dimensional rindler space-time - smcprt
The klein gordon field in two-dimensional rindler space-time - smcprtfoxtrot jp R
Β 
Sweeping discussions on dirac field1 update3 sqrd
Sweeping discussions on dirac field1 update3   sqrdSweeping discussions on dirac field1 update3   sqrd
Sweeping discussions on dirac field1 update3 sqrdfoxtrot jp R
Β 
Dealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbDealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbfoxtrot jp R
Β 
Dealinggreensfncsolft
DealinggreensfncsolftDealinggreensfncsolft
Dealinggreensfncsolftfoxtrot jp R
Β 
Dealinggreensfncsolft sqrd(10 5-2k16)
Dealinggreensfncsolft   sqrd(10 5-2k16)Dealinggreensfncsolft   sqrd(10 5-2k16)
Dealinggreensfncsolft sqrd(10 5-2k16)foxtrot jp R
Β 
Parallel tansport sssqrd
Parallel tansport sssqrdParallel tansport sssqrd
Parallel tansport sssqrdfoxtrot jp R
Β 
2 backlash simulation
2 backlash simulation2 backlash simulation
2 backlash simulationSolo Hermelin
Β 

What's hot (20)

The klein gordon field in two-dimensional rindler space-time 200920ver-display
The klein gordon field in two-dimensional rindler space-time 200920ver-displayThe klein gordon field in two-dimensional rindler space-time 200920ver-display
The klein gordon field in two-dimensional rindler space-time 200920ver-display
Β 
The klein gordon field in two-dimensional rindler space-time 14072020
The klein gordon field in two-dimensional rindler space-time  14072020The klein gordon field in two-dimensional rindler space-time  14072020
The klein gordon field in two-dimensional rindler space-time 14072020
Β 
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...
Β 
Very brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrdVery brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrd
Β 
Very brief highlights on some key details 2
Very brief highlights on some key details 2Very brief highlights on some key details 2
Very brief highlights on some key details 2
Β 
The klein gordon field in two-dimensional rindler space-timeforss
The klein gordon field in two-dimensional rindler space-timeforssThe klein gordon field in two-dimensional rindler space-timeforss
The klein gordon field in two-dimensional rindler space-timeforss
Β 
Summerp62016update3 slideshare sqd
Summerp62016update3 slideshare   sqdSummerp62016update3 slideshare   sqd
Summerp62016update3 slideshare sqd
Β 
Summerp62016update3 slideshare sqrdver2
Summerp62016update3 slideshare   sqrdver2Summerp62016update3 slideshare   sqrdver2
Summerp62016update3 slideshare sqrdver2
Β 
Hawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _securedHawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _secured
Β 
Summerp62016update2 slideshare sqd
Summerp62016update2 slideshare  sqdSummerp62016update2 slideshare  sqd
Summerp62016update2 slideshare sqd
Β 
Dealinggreensfncsolft sqrd
Dealinggreensfncsolft  sqrdDealinggreensfncsolft  sqrd
Dealinggreensfncsolft sqrd
Β 
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsRotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Β 
Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18
Β 
The klein gordon field in two-dimensional rindler space-time - smcprt
The klein gordon field in two-dimensional rindler space-time - smcprtThe klein gordon field in two-dimensional rindler space-time - smcprt
The klein gordon field in two-dimensional rindler space-time - smcprt
Β 
Sweeping discussions on dirac field1 update3 sqrd
Sweeping discussions on dirac field1 update3   sqrdSweeping discussions on dirac field1 update3   sqrd
Sweeping discussions on dirac field1 update3 sqrd
Β 
Dealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbDealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdb
Β 
Dealinggreensfncsolft
DealinggreensfncsolftDealinggreensfncsolft
Dealinggreensfncsolft
Β 
Dealinggreensfncsolft sqrd(10 5-2k16)
Dealinggreensfncsolft   sqrd(10 5-2k16)Dealinggreensfncsolft   sqrd(10 5-2k16)
Dealinggreensfncsolft sqrd(10 5-2k16)
Β 
Parallel tansport sssqrd
Parallel tansport sssqrdParallel tansport sssqrd
Parallel tansport sssqrd
Β 
2 backlash simulation
2 backlash simulation2 backlash simulation
2 backlash simulation
Β 

Similar to Basic QFT Workout #1

Higgsbosontoelectron positron decay_dsply
Higgsbosontoelectron positron decay_dsplyHiggsbosontoelectron positron decay_dsply
Higgsbosontoelectron positron decay_dsplyfoxtrot jp R
Β 
Outgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrdOutgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrdfoxtrot jp R
Β 
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsplyfoxtrot jp R
Β 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mappinginventionjournals
Β 
Outgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghpOutgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghpfoxtrot jp R
Β 
Parallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrdParallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrdfoxtrot jp R
Β 
Fieldtheoryhighlights2015 setbb
Fieldtheoryhighlights2015 setbbFieldtheoryhighlights2015 setbb
Fieldtheoryhighlights2015 setbbfoxtrot jp R
Β 
Parallel tansportsqrdaa
Parallel tansportsqrdaaParallel tansportsqrdaa
Parallel tansportsqrdaafoxtrot jp R
Β 
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplayfoxtrot jp R
Β 
Fieldtheoryhighlights2015 setb
Fieldtheoryhighlights2015 setbFieldtheoryhighlights2015 setb
Fieldtheoryhighlights2015 setbfoxtrot jp R
Β 
Higgsbosontoelectron positron decay14042021_dsply
Higgsbosontoelectron positron decay14042021_dsplyHiggsbosontoelectron positron decay14042021_dsply
Higgsbosontoelectron positron decay14042021_dsplyfoxtrot jp R
Β 
Outgoing ingoingkleingordon
Outgoing ingoingkleingordonOutgoing ingoingkleingordon
Outgoing ingoingkleingordonfoxtrot jp R
Β 
Outgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsOutgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsfoxtrot jp R
Β 

Similar to Basic QFT Workout #1 (16)

Higgsbosontoelectron positron decay_dsply
Higgsbosontoelectron positron decay_dsplyHiggsbosontoelectron positron decay_dsply
Higgsbosontoelectron positron decay_dsply
Β 
Outgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrdOutgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrd
Β 
Bhdpis1
Bhdpis1Bhdpis1
Bhdpis1
Β 
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
Β 
lec23.ppt
lec23.pptlec23.ppt
lec23.ppt
Β 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Β 
Outgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghpOutgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghp
Β 
Parallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrdParallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrd
Β 
Fieldtheoryhighlights2015 setbb
Fieldtheoryhighlights2015 setbbFieldtheoryhighlights2015 setbb
Fieldtheoryhighlights2015 setbb
Β 
Parallel tansportsqrdaa
Parallel tansportsqrdaaParallel tansportsqrdaa
Parallel tansportsqrdaa
Β 
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
Β 
Fieldtheoryhighlights2015 setb
Fieldtheoryhighlights2015 setbFieldtheoryhighlights2015 setb
Fieldtheoryhighlights2015 setb
Β 
Higgsbosontoelectron positron decay14042021_dsply
Higgsbosontoelectron positron decay14042021_dsplyHiggsbosontoelectron positron decay14042021_dsply
Higgsbosontoelectron positron decay14042021_dsply
Β 
Outgoing ingoingkleingordon
Outgoing ingoingkleingordonOutgoing ingoingkleingordon
Outgoing ingoingkleingordon
Β 
Outgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsOutgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julups
Β 
lec21.ppt
lec21.pptlec21.ppt
lec21.ppt
Β 

Recently uploaded

LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxmalonesandreagweneth
Β 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPirithiRaju
Β 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptArshadWarsi13
Β 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPirithiRaju
Β 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
Β 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -INandakishor Bhaurao Deshmukh
Β 
Best Call Girls In Sector 29 Gurgaon❀️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❀️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❀️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❀️8860477959 EscorTs Service In 24/7 Delh...lizamodels9
Β 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
Β 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
Β 
User Guide: Magellan MXβ„’ Weather Station
User Guide: Magellan MXβ„’ Weather StationUser Guide: Magellan MXβ„’ Weather Station
User Guide: Magellan MXβ„’ Weather StationColumbia Weather Systems
Β 
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”soniya singh
Β 
User Guide: Orionβ„’ Weather Station (Columbia Weather Systems)
User Guide: Orionβ„’ Weather Station (Columbia Weather Systems)User Guide: Orionβ„’ Weather Station (Columbia Weather Systems)
User Guide: Orionβ„’ Weather Station (Columbia Weather Systems)Columbia Weather Systems
Β 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
Β 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
Β 
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptxSulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptxnoordubaliya2003
Β 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trssuser06f238
Β 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxpriyankatabhane
Β 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
Β 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensorsonawaneprad
Β 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPirithiRaju
Β 

Recently uploaded (20)

LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
Β 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Β 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.ppt
Β 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Β 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
Β 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
Β 
Best Call Girls In Sector 29 Gurgaon❀️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❀️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❀️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❀️8860477959 EscorTs Service In 24/7 Delh...
Β 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Β 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Β 
User Guide: Magellan MXβ„’ Weather Station
User Guide: Magellan MXβ„’ Weather StationUser Guide: Magellan MXβ„’ Weather Station
User Guide: Magellan MXβ„’ Weather Station
Β 
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”
Β 
User Guide: Orionβ„’ Weather Station (Columbia Weather Systems)
User Guide: Orionβ„’ Weather Station (Columbia Weather Systems)User Guide: Orionβ„’ Weather Station (Columbia Weather Systems)
User Guide: Orionβ„’ Weather Station (Columbia Weather Systems)
Β 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
Β 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
Β 
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptxSulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
Β 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 tr
Β 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Β 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Β 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensor
Β 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Β 

Basic QFT Workout #1

  • 1. Workouts #1 in Basic QFT One Scalar Particle Scattering Into One Scalar Particle Roa, F. J.P. Let us suppose that a particle propagates from a spacetime region π‘₯ to some other spacetime regionπ‘₯β€². (Cautionary remark: In this draft I use the word region to mean a point for the basic reason that we perform Fourier integrations at those points that allow us to have integral definitions of Dirac-delta functions.) As the particle enters the latter spacetime region it carries a spatial momentumπ‘˜βƒ— , then scatters as a scalar particle carrying a new spatial momentumπ‘˜βƒ— β€². This process is given with the following scattering matrix (1) βŸ¨π‘˜βƒ— β€²|π‘ˆ( π‘‡π‘œπ‘’π‘‘, 𝑇𝑖𝑛 )|π‘˜βƒ— ⟩ = √2πœ”( π‘˜βƒ— β€²) βˆšβ„ ∫ 𝑑3 π‘₯β€² √(2πœ‹)3 π‘’βˆ’π‘–π‘˜βƒ— β€²βˆ™π‘₯β€² √2πœ” ( π‘˜βƒ— ) βˆšβ„ ∫ 𝑑3 π‘₯ √(2πœ‹)3 𝑒 π‘–π‘˜βƒ— βˆ™π‘₯ (βˆ’ ℏ 𝑖 ) 𝛿 𝛿𝐽( π‘₯β€²) ( ℏ 𝑖 ) 𝛿 𝛿𝐽(π‘₯) ⟨0| π‘ˆ(π‘‡π‘œπ‘’π‘‘, 𝑇𝑖𝑛 )|0⟩ This involves second order in the derivative operations with respect to sources J’s on the vacuum-to-vacuum matrix (2) 𝛿 𝛿𝐽( π‘₯β€²) 𝛿 𝛿𝐽(π‘₯) ⟨0| π‘ˆ(π‘‡π‘œπ‘’π‘‘, 𝑇𝑖𝑛 )|0⟩ where already in its factored form, this said matrix has the form (3) ⟨0| π‘ˆ(π‘‡π‘œπ‘’π‘‘ , 𝑇𝑖𝑛 )|0⟩ = 𝑒π‘₯𝑝(βˆ’ 𝑖 ℏ ( π‘‡π‘œπ‘’π‘‘ βˆ’ 𝑇𝑖𝑛) 𝐸0 0 ) 𝑒𝑖 𝑆 𝑐 / ℏ The form of the matrix (1) is a consequence following from path integration. However, we shall no longer tackle the details of this path integration leading to the right-hand-side (rhs) of (1). It is to be noticed in (3) that we have not yet normalized the resulting matrix (1) so the vacuum-to- vacuum matrix (3) still carries the factor that involves the ground state energy 𝐸0 0 . We can conveniently write out the vacuum-to-vacuum matrix explicitly as a Taylor/Maclaurin expansion with (4) 𝑒 𝑖 𝑆 𝑐 /ℏ = 1 + 𝑖 ℏ 𝑆 𝑐 + βˆ‘ 1 𝑛! ( 𝑖 ℏ ) 𝑛 𝑆 𝐢 𝑛 ∞ 𝑛=2
  • 2. As a basic recollection recall that in the case for a boson such as a scalar field in this exercise, we can raise a one-particle state of certain spatial momentum π‘˜βƒ— from the vacuum state with the application of bosonic creation operator π‘Žβ€  and such creation operation is given by (5.1) |π‘˜βƒ— ⟩ = π‘Žβ€  (π‘˜βƒ— )|0 ⟩ with its Hermitian adjoint (5.2) βŸ¨π‘˜βƒ— | = (|π‘˜βƒ— ⟩ ) † = ⟨0| π‘Ž(π‘˜βƒ— ) We may think of (5.1) as the one-particle state at the initial time 𝑇𝑖𝑛 and evolve such state into some other state at π‘‡π‘œπ‘’π‘‘ with the application of the time evolution operator π‘ˆ(π‘‡π‘œπ‘’π‘‘, 𝑇𝑖𝑛 ). The projection of this evolved one-particle state on some other one-particle state |π‘˜βƒ— β€²βŸ© will give the left-hand-side (lhs) of the scattering matrix (1), which bears a quantum field theory interpretation of being associated with a probability that the one-particle state of momentum π‘˜βƒ— at an initial time 𝑇𝑖𝑛 can be found as a one-particle state of spatial momentum π‘˜βƒ— β€² at a later time π‘‡π‘œπ‘’π‘‘ . Note in here that 𝑇𝑖𝑛 is in the initial spacetime region π‘₯, while π‘‡π‘œπ‘’π‘‘ is in the latter spacetime region π‘₯β€². This matrix is then thought of as a scattering matrix that can be evaluated via path integration resulting in (1). In (1) we take note that we have two different spatial Fourier integrations, one over the spatial region represented by π‘₯, while the other one with the spatial region of π‘₯β€². Each of these integrations defines a Dirac-delta function at the spatial region of integration. That is, for example (6) 𝛿3 (π‘˜βƒ— Β± π‘˜βƒ— (𝑗) ) π‘₯ = ∫ 𝑑3 π‘₯ (2πœ‹)3 𝑒±𝑖(π‘˜βƒ— Β± π‘˜βƒ— (𝑗) )βˆ™π‘₯ Ofcourse, such delta functions assume symmetric integral limits in those space regions where these integrations are performed. Note as to be explicit we have for the initial spacetime region π‘₯ = (π‘₯0 , π‘₯) and for the latter spacetime region xβ€² = (π‘₯β€²0 , π‘₯β€²). Of prior note also is the connected two-point function for scalars not a two-point function. This is connected in the sense that it connects two sources J’s, each of which belongs to the two different spacetime regions that act as end regions for the propagating scalar particle. Such connected two-point function will simply be given by the scalar classical action as expressed in the functional of the sources with a scalar Green’s function that plays the role of propagator.
  • 3. (7) 𝑆 𝑐 = βˆ’ 1 2 1 (2πœ‹)2 ∫ 𝑑4 𝑦 𝑑4 𝑦 β€² 𝐽( 𝑦) 𝐺( 𝑦 βˆ’ 𝑦 β€²) 𝐽(𝑦′) = βˆ’ 〈 𝐽 𝑦 𝐺𝑦𝑦′ 𝐽 𝑦′βŒͺ For convenience we specify in notation that (8) 𝛿𝐽(π‘₯) = 𝛿 𝛿𝐽(π‘₯) 𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) = 𝛿2 𝛿𝐽(π‘₯β€²)𝛿𝐽(π‘₯) Then for (2) we write (9) 𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) 𝑒 𝑖 𝑆 𝑐/ ℏ = 𝑖 ℏ 𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) 𝑆𝑐 + 1 2 ( 𝑖 ℏ ) 2 𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) 𝑆 𝐢 2 + βˆ‘ 1 𝑛! ( 𝑖 ℏ ) 𝑛 𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) 𝑆 𝐢 𝑛 ∞ 𝑛=3 where to the first power of the connected two-point function we have (7), while to the second power of this function we write as (10.1) 𝑆 𝑐 = βˆ’ 1 2 1 (2πœ‹)2 ∫ 𝑑4 𝑦 𝑑4 𝑦 β€² 𝐽( 𝑦) 𝐺( 𝑦 βˆ’ 𝑦 β€²) 𝐽(𝑦′) = βˆ’ 〈 𝐽 𝑦 𝐺𝑦𝑦′ 𝐽 𝑦′βŒͺ with (10.2) 𝑆 𝐢 2 = (βˆ’1)(βˆ’1) 〈 𝐽 𝑦 𝐺𝑦𝑦′ 𝐽𝑦′βŒͺ1 〈 𝐽 𝑦 𝐺𝑦𝑦′ 𝐽 𝑦′βŒͺ and (10.3) 𝐺( π‘₯β€² βˆ’ π‘₯) = βˆ’1 (2πœ‹)2 ∫ 𝑑4 π‘˜ 𝑒 π‘–π‘˜ 𝜎(π‘₯β€² πœŽβˆ’ π‘₯ 𝜎) βˆ’π‘˜ πœ‡ π‘˜ πœ‡ + 𝑀2 + π‘–πœ– The derivative operation via functional derivative in 3 + 1 spacetime (10.4) 𝛿4( π‘₯ βˆ’ 𝑦) = 𝛿𝐽(π‘₯) 𝛿𝐽(𝑦) The first order differentiation of (7) yields
  • 4. (11.1) 𝛿𝐽(π‘₯) 𝑆𝑐 = βˆ’ 𝛿 𝐽(π‘₯)〈 𝐽 𝑦 𝐺𝑦𝑦′ 𝐽 𝑦′βŒͺ = βˆ’ (〈 𝐽 𝑦 𝐺𝑦π‘₯βŒͺ+ 〈 𝐺 π‘₯𝑦′ 𝐽 𝑦′βŒͺ) = βˆ’ 1 2 1 (2πœ‹)2 (∫ 𝑑4 𝑦 𝐽( 𝑦) 𝐺( 𝑦 βˆ’ π‘₯) + ∫ 𝑑4 𝑦′ 𝐺( π‘₯ βˆ’ 𝑦′) 𝐽(𝑦′) ) and with the setting of y = y’, this becomes (11.2) 𝛿𝐽(π‘₯) 𝑆𝑐| 𝑦 = 𝑦′ = βˆ’(2)〈 𝐺π‘₯𝑦 𝐽 𝑦βŒͺ In (11.2) we note (11.3) 〈 𝐺π‘₯𝑦 𝐽 𝑦βŒͺ = 1 2 1 (2πœ‹)2 ∫ 𝑑4 𝑦 𝐽( 𝑦) 𝐺( 𝑦 βˆ’ π‘₯) and it is important to take note that the number inside the parenthesis (2) means the number of terms originally involved in the first differentiation. Consequently, from (11.2) we have the second order differentiation resulting as (11.4) 𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) 𝑆𝑐 = βˆ’ (2)𝐺π‘₯β€²π‘₯ After carrying out the indicated differentiation in (9) and only up to second order in i/hbar, we write (9) explicitly as (12.1) 𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) 𝑒 𝑖 𝑆 𝑐 /ℏ = 𝑖 ℏ (βˆ’ (2) 𝐺 π‘₯β€² π‘₯) + 1 2 ( 𝑖 ℏ ) 2 (2)(2)〈 𝐽 𝑦 𝐺 𝑦𝑦′ 𝐽 𝑦′βŒͺ 𝐺 π‘₯β€² π‘₯ + 1 2 ( 𝑖 ℏ ) 2 (2)(2)(2)〈 𝐺π‘₯′𝑦′ 𝐽 𝑦′βŒͺ〈 𝐺π‘₯𝑦 𝐽 𝑦βŒͺ The first major term of this consists two terms, the second major term four terms and the third major term has eight terms. So (12.1) has a total of fourteen terms. Taking note from (1) we perform the Fourier integrations involving the first major term in (12.1) and these integrations are given by
  • 5. (12.2) ∫ 𝑑3 π‘₯β€² √(2πœ‹)3 π‘’βˆ’π‘–π‘˜βƒ— β€²βˆ™π‘₯β€² ∫ 𝑑3 π‘₯ √(2πœ‹)3 𝑒 π‘–π‘˜βƒ— βˆ™π‘₯ 𝐺( π‘₯β€² βˆ’ π‘₯) = βˆ’ 1 (2πœ‹)2 ∫ π‘‘π‘˜(2) 0 ∫ 𝑑3 π‘˜βƒ— (2) 𝑒 π‘–π‘˜(2) 0 ( π‘₯β€² 0 βˆ’ π‘₯0) βˆ’π‘˜(2) 2 (π‘˜βƒ— (2)) + 𝑀2 + π‘–πœ– (2πœ‹)3 Γ— 𝛿3 (π‘˜βƒ— β€² + π‘˜βƒ— (2)) π‘₯β€² 𝛿3 (π‘˜βƒ— + π‘˜βƒ— (2)) π‘₯ where it is specified that to the space region π‘₯ β€² a vertex with the Dirac-delta function (12.3) 𝛿3 (π‘˜βƒ— β€² + π‘˜βƒ— (2)) π‘₯β€² and to the space region π‘₯ a vertex with its own Dirac-delta function (12.4) 𝛿3 (π‘˜βƒ— + π‘˜βƒ— (2)) π‘₯ Clearly in (12.2) we initially see two vertices, one as already mentioned at the space region of π‘₯, where we sum up two space momenta π‘˜βƒ— and π‘˜βƒ— (2) and the vertex at the space region of π‘₯ β€² where π‘˜βƒ— β€² and π‘˜βƒ— (2) are summed up. Since it is indicated that we are to perform integration ove the π‘˜βƒ— (2) vec momentum variable, the vertex at the initial space region will disappear as there will be picking of π‘˜βƒ— (2) = βˆ’ π‘˜βƒ— . Given such picking, we have (12.5) π‘˜(2) 2 ( π‘˜βƒ—βƒ— (2)) β†’ π‘˜(2) 2 (βˆ’π‘˜βƒ—βƒ— ) = ( π‘˜(2) 0 ) 2 βˆ’ π‘˜βƒ—βƒ— βˆ™ π‘˜βƒ—βƒ— and then just relabel π‘˜(2) 0 to π‘˜0 so that (12.6) π‘˜(2) 2 (βˆ’π‘˜βƒ—βƒ— ) = π‘˜ πœ‡ π‘˜ πœ‡ = ( π‘˜ 0 ) 2 βˆ’ π‘˜βƒ—βƒ— βˆ™ π‘˜βƒ—βƒ— Thus, (12.2) further results to (12.7) ∫ 𝑑3 π‘₯β€² √(2πœ‹)3 π‘’βˆ’π‘–π‘˜βƒ— β€²βˆ™π‘₯β€² ∫ 𝑑3 π‘₯ √(2πœ‹)3 𝑒 π‘–π‘˜βƒ— βˆ™π‘₯ 𝐺 π‘₯β€² π‘₯ = 1 2(2πœ‹)4 ∫ 𝑑 π‘˜0 𝑒 π‘–π‘˜0 ( π‘₯β€² 0 βˆ’ π‘₯0) ( π‘˜0)2 βˆ’ ( π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2 + π‘–πœ–) 𝛿3 (π‘˜βƒ— β€² βˆ’ π‘˜βƒ— ) π‘₯β€²
  • 6. We have one more integration to perform and this is a contour integration on a complex z-plane. In our convenience we will only choose the upper half-contour that encloses the complex pole 𝑧0 = 𝑏′ where (12.8) 𝑏′ = √ π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2 + π‘–πœ– β‰ˆ √ π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2 + π‘–πœ– 2√ π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2 We will no longer dig into the details of such integration and simply write here the result. The result in the limit as πœ– β†’ 0 is given by (12.9) π‘™π‘–π‘š πœ– β†’ 0 ∫ 𝑑 π‘˜0 ∞ βˆ’βˆž 𝑒 π‘–π‘˜0( π‘₯β€² 0 βˆ’ π‘₯0) ( π‘˜0)2 βˆ’ ( π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2 + π‘–πœ–) = π‘–πœ‹ πœ”(π‘˜βƒ— ) 𝑒 π‘–π‘˜0 ( π‘₯β€² 0 βˆ’ π‘₯0) at (12.10) π‘˜0 = πœ”(π‘˜βƒ— ) = √ π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2 Proceeding, we may write the scattering matrix up to a major third term only and having to note that only the first major term is relevant upon the setting of all sources J’s to zero. (13.1) βŸ¨π‘˜βƒ— β€²|π‘ˆ( π‘‡π‘œπ‘’π‘‘, 𝑇𝑖𝑛 )|π‘˜βƒ— ⟩ = 1𝑠𝑑 + 2𝑛𝑑 + 3π‘Ÿπ‘‘ + β‹― Given (12.9), we may write (13.2) 1𝑠𝑑 = 𝑒π‘₯𝑝(βˆ’ 𝑖 ℏ ( π‘‡π‘œπ‘’π‘‘ βˆ’ 𝑇𝑖𝑛) 𝐸0 0 ) 𝑒 π‘–π‘˜0( π‘₯β€² 0 βˆ’ π‘₯0) 𝛿3 (π‘˜βƒ— β€² βˆ’ π‘˜βƒ— ) π‘₯β€² This is associated with the Feynman diagram at the space region of π‘₯β€².
  • 7. (Fig.1) While for the other major terms in (13.1) we have (13.3) 2𝑛𝑑 = βˆ’ 𝑖 ℏ 〈 𝐽 𝑦 𝐺 𝑦𝑦′ 𝐽 𝑦′βŒͺ Γ— 1𝑠𝑑 and (13.4) 3π‘Ÿπ‘‘ = βˆ’ 1 ℏ √ πœ”(π‘˜βƒ— β€²)√ πœ”(π‘˜βƒ— ) 23 ∫ 𝑑3 π‘₯β€² √(2πœ‹)3 π‘’βˆ’π‘– π‘˜βƒ— β€²βˆ™π‘₯β€² 〈 𝐺 π‘₯β€² 𝑦′ 𝐽 𝑦′βŒͺ ∫ 𝑑3 π‘₯ √(2πœ‹)3 𝑒 π‘–π‘˜βƒ— βˆ™π‘₯ 〈 𝐺 π‘₯𝑦 𝐽 𝑦 βŒͺ References [1]Baal, P., A COURSE IN FIELD THEORY [2]Cardy, J., Introduction to Quantum Field Theory [3]Gaberdiel, M., Gehrmann-De Ridder, A., Quantum Field Theory