SlideShare a Scribd company logo
1 of 12
Workouts #1 in Basic QFT
One Scalar Particle Scattering Into One Scalar Particle
Roa, F. J.P.
Let us suppose that a particle propagates from a spacetime region π‘₯ to some other spacetime
regionπ‘₯β€². (Cautionary remark: In this draft I use the word region to mean a point for the basic
reason that we perform Fourier integrations at those points that allow us to have integral
definitions of Dirac-delta functions.) As the particle enters the latter spacetime region it carries a
spatial momentum π‘˜βƒ— , then scatters as a scalar particle carrying a new spatial momentum π‘˜βƒ— β€². This
process is given with the following scattering matrix
(1)
βŸ¨π‘˜βƒ— β€²|π‘ˆ( π‘‡π‘œπ‘’π‘‘, 𝑇𝑖𝑛 )|π‘˜βƒ— ⟩ =
√2πœ”( π‘˜βƒ— β€²)
βˆšβ„
∫
𝑑3
π‘₯β€²
√(2πœ‹)3
π‘’βˆ’π‘–π‘˜βƒ— β€²βˆ™π‘₯β€²
√2πœ” ( π‘˜βƒ— )
βˆšβ„
∫
𝑑3
π‘₯
√(2πœ‹)3
𝑒 π‘–π‘˜βƒ— βˆ™π‘₯
(βˆ’
ℏ
𝑖
)
𝛿
𝛿𝐽( π‘₯β€²)
(
ℏ
𝑖
)
𝛿
𝛿𝐽(π‘₯)
⟨0| π‘ˆ(π‘‡π‘œπ‘’π‘‘, 𝑇𝑖𝑛 )|0⟩
This involves second order in the derivative operations with respect to sources J’s on the
vacuum-to-vacuum matrix
(2)
𝛿
𝛿𝐽( π‘₯β€²)
𝛿
𝛿𝐽(π‘₯)
⟨0| π‘ˆ(π‘‡π‘œπ‘’π‘‘, 𝑇𝑖𝑛 )|0⟩
where already in its factored form, this said matrix has the form
(3)
⟨0| π‘ˆ(π‘‡π‘œπ‘’π‘‘ , 𝑇𝑖𝑛 )|0⟩ = 𝑒π‘₯𝑝(βˆ’
𝑖
ℏ
( π‘‡π‘œπ‘’π‘‘ βˆ’ 𝑇𝑖𝑛) 𝐸0
0
) 𝑒𝑖 𝑆 𝑐 / ℏ
The form of the matrix (1) is a consequence following from path integration. However, we shall
no longer tackle the details of this path integration leading to the right-hand-side (rhs) of (1). It is
to be noticed in (3) that we have not yet normalized the resulting matrix (1) so the vacuum-to-
vacuum matrix (3) still carries the factor that involves the ground state energy 𝐸0
0
.
We can conveniently write out the vacuum-to-vacuum matrix explicitly as a Taylor/Maclaurin
expansion with
(4)
𝑒 𝑖 𝑆 𝑐 /ℏ = 1 +
𝑖
ℏ
𝑆 𝑐 + βˆ‘
1
𝑛!
(
𝑖
ℏ
)
𝑛
𝑆 𝐢
𝑛
∞
𝑛=2
As a basic recollection recall that in the case for a boson such as a scalar field (spin zero) in this
exercise, we can raise a one-particle state of certain spatial momentum π‘˜βƒ— from the vacuum state
with the application of bosonic creation operator π‘Žβ€ 
and such creation operation is given by
(5.1)
|π‘˜βƒ— ⟩ = π‘Žβ€ 
(π‘˜βƒ— )|0 ⟩
with its Hermitian adjoint
(5.2)
βŸ¨π‘˜βƒ— | = (|π‘˜βƒ— ⟩ )
†
= ⟨0| π‘Ž(π‘˜βƒ— )
We may think of (5.1) as the one-particle state at the initial time 𝑇𝑖𝑛 and evolve such state into
some other state at π‘‡π‘œπ‘’π‘‘ with the application of the time evolution operator π‘ˆ(π‘‡π‘œπ‘’π‘‘, 𝑇𝑖𝑛 ). The
projection of this evolved one-particle state on some other one-particle state |π‘˜βƒ— β€²βŸ© will give the
left-hand-side (lhs) of the scattering matrix (1), which bears a quantum field theory interpretation
of being associated with a probability that the one-particle state of momentum π‘˜βƒ— at an initial time
𝑇𝑖𝑛 can be found as a one-particle state of spatial momentum π‘˜βƒ— β€² at a later time π‘‡π‘œπ‘’π‘‘ . Note in here
that 𝑇𝑖𝑛 is in the initial spacetime region π‘₯, while π‘‡π‘œπ‘’π‘‘ is in the latter spacetime region π‘₯β€². This
matrix is then thought of as a scattering matrix that can be evaluated via path integration
resulting in (1).
In (1) we take note that we have two different spatial Fourier integrations, one over the spatial
region represented by π‘₯, while the other one with the spatial region of π‘₯β€². Each of these
integrations defines a Dirac-delta function at the spatial region of integration. That is, for
example
(6)
𝛿3
(π‘˜βƒ— Β± π‘˜βƒ— (𝑗)
)
π‘₯
= ∫
𝑑3
π‘₯
(2πœ‹)3
𝑒±𝑖(π‘˜βƒ— Β± π‘˜βƒ— (𝑗)
)βˆ™π‘₯
Ofcourse, such delta functions assume symmetric integral limits in those space regions where
these integrations are performed.
Note as to be explicit we have for the initial spacetime region π‘₯ = (π‘₯0
, π‘₯) and for the latter
spacetime region xβ€² = (π‘₯β€²0
, π‘₯β€²).
Of prior note also is the connected two-point function for scalars not a two-point function. This
is connected in the sense that it connects two sources J’s, each of which belongs to the two
different spacetime regions that act as end regions for the propagating scalar particle.
Such connected two-point function will simply be given by the scalar classical action as
expressed in the functional of the sources with a scalar Green’s function that plays the role of
propagator.
(7)
𝑆 𝑐 = βˆ’
1
2
1
(2πœ‹)2
∫ 𝑑4 𝑦 𝑑4 𝑦 β€² 𝐽( 𝑦) 𝐺( 𝑦 βˆ’ 𝑦 β€²) 𝐽(𝑦′) = βˆ’ 〈 𝐽 𝑦 𝐺𝑦𝑦′ 𝐽 𝑦′βŒͺ
For convenience we specify in notation that
(8)
𝛿𝐽(π‘₯) =
𝛿
𝛿𝐽(π‘₯)
𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) =
𝛿2
𝛿𝐽(π‘₯β€²)𝛿𝐽(π‘₯)
Then for (2) we write
(9)
𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) 𝑒 𝑖 𝑆 𝑐/ ℏ =
𝑖
ℏ
𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) 𝑆𝑐 +
1
2
(
𝑖
ℏ
)
2
𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) 𝑆 𝐢
2
+ βˆ‘
1
𝑛!
(
𝑖
ℏ
)
𝑛
𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) 𝑆 𝐢
𝑛
∞
𝑛=3
where to the first power of the connected two-point function we have (7), while to the second
power of this function we write as
(10.1)
𝑆 𝑐 = βˆ’
1
2
1
(2πœ‹)2
∫ 𝑑4 𝑦 𝑑4 𝑦 β€² 𝐽( 𝑦) 𝐺( 𝑦 βˆ’ 𝑦 β€²) 𝐽(𝑦′) = βˆ’ 〈 𝐽 𝑦 𝐺𝑦𝑦′ 𝐽 𝑦′βŒͺ
with
(10.2)
𝑆 𝐢
2
= (βˆ’1)(βˆ’1) 〈 𝐽 𝑦 𝐺𝑦𝑦′ 𝐽𝑦′βŒͺ1 〈 𝐽 𝑦 𝐺𝑦𝑦′ 𝐽 𝑦′βŒͺ
and
(10.3)
𝐺( π‘₯β€² βˆ’ π‘₯) =
βˆ’1
(2πœ‹)2
∫ 𝑑4 π‘˜
𝑒 π‘–π‘˜ 𝜎(π‘₯β€² πœŽβˆ’ π‘₯ 𝜎)
βˆ’π‘˜ πœ‡ π‘˜ πœ‡ + 𝑀2 + π‘–πœ–
The derivative operation via functional derivative in 3 + 1 spacetime
(10.4)
𝛿4( π‘₯ βˆ’ 𝑦) =
𝛿𝐽(π‘₯)
𝛿𝐽(𝑦)
The first order differentiation of (7) yields
(11.1)
𝛿𝐽(π‘₯) 𝑆𝑐 = βˆ’ 𝛿 𝐽(π‘₯)〈 𝐽 𝑦 𝐺𝑦𝑦′ 𝐽 𝑦′βŒͺ = βˆ’ (〈 𝐽 𝑦 𝐺𝑦π‘₯βŒͺ+ 〈 𝐺 π‘₯𝑦′ 𝐽 𝑦′βŒͺ)
= βˆ’
1
2
1
(2πœ‹)2
(∫ 𝑑4 𝑦 𝐽( 𝑦) 𝐺( 𝑦 βˆ’ π‘₯) + ∫ 𝑑4 𝑦′ 𝐺( π‘₯ βˆ’ 𝑦′) 𝐽(𝑦′) )
and with the setting of y = y’, this becomes
(11.2)
𝛿𝐽(π‘₯) 𝑆𝑐|
𝑦 = 𝑦′
= βˆ’(2)〈 𝐺π‘₯𝑦 𝐽 𝑦βŒͺ
In (11.2) we note
(11.3)
〈 𝐺π‘₯𝑦 𝐽 𝑦βŒͺ =
1
2
1
(2πœ‹)2
∫ 𝑑4 𝑦 𝐽( 𝑦) 𝐺( 𝑦 βˆ’ π‘₯)
and it is important to take note that the number inside the parenthesis (2) means the number of
terms originally involved in the first differentiation. Consequently, from (11.2) we have the
second order differentiation resulting as
(11.4)
𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) 𝑆𝑐 = βˆ’ (2)𝐺π‘₯β€²π‘₯
After carrying out the indicated differentiation in (9) and only up to second order in i/hbar, we
write (9) explicitly as
(12.1)
𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) 𝑒 𝑖 𝑆 𝑐 /ℏ
=
𝑖
ℏ
(βˆ’ (2) 𝐺 π‘₯β€² π‘₯) +
1
2
(
𝑖
ℏ
)
2
(2)(2)〈 𝐽 𝑦 𝐺 𝑦𝑦′ 𝐽 𝑦′βŒͺ 𝐺 π‘₯β€² π‘₯
+
1
2
(
𝑖
ℏ
)
2
(2)(2)(2)〈 𝐺π‘₯′𝑦′ 𝐽 𝑦′βŒͺ〈 𝐺π‘₯𝑦 𝐽 𝑦βŒͺ
The first major term of this consists two terms, the second major term four terms and the third
major term has eight terms. So (12.1) has a total of fourteen terms.
Taking note from (1) we perform the Fourier integrations involving the first major term in (12.1)
and these integrations are given by
(12.2)
∫
𝑑3
π‘₯β€²
√(2πœ‹)3
π‘’βˆ’π‘–π‘˜βƒ— β€²βˆ™π‘₯β€²
∫
𝑑3
π‘₯
√(2πœ‹)3
𝑒 π‘–π‘˜βƒ— βˆ™π‘₯
𝐺( π‘₯β€² βˆ’ π‘₯)
= βˆ’
1
(2πœ‹)2
∫ π‘‘π‘˜(2)
0
∫ 𝑑3
π‘˜βƒ—
(2) 𝑒 π‘–π‘˜(2)
0 ( π‘₯β€² 0
βˆ’ π‘₯0)
βˆ’π‘˜(2)
2
(π‘˜βƒ— (2)) + 𝑀2
+ π‘–πœ–
(2πœ‹)3
Γ— 𝛿3
(π‘˜βƒ— β€² + π‘˜βƒ— (2))
π‘₯β€²
𝛿3
(π‘˜βƒ— + π‘˜βƒ— (2))
π‘₯
where it is specified that to the space region π‘₯ β€² a vertex with the Dirac-delta function
(12.3)
𝛿3
(π‘˜βƒ— β€² + π‘˜βƒ— (2))
π‘₯β€²
and to the space region π‘₯ a vertex with its own Dirac-delta function
(12.4)
𝛿3
(π‘˜βƒ— + π‘˜βƒ— (2))
π‘₯
Clearly in (12.2) we initially see two vertices, one as already mentioned at the space region of π‘₯,
where we sum up two space momenta π‘˜βƒ— and π‘˜βƒ— (2) and the vertex at the space region of π‘₯ β€² where
π‘˜βƒ— β€² and π‘˜βƒ— (2) are summed up. Since it is indicated that we are to perform integration ove the π‘˜βƒ— (2)
vec momentum variable, the vertex at the initial space region will disappear as there will be
picking of π‘˜βƒ— (2) = βˆ’ π‘˜βƒ— . Given such picking, we have
(12.5)
π‘˜(2)
2
( π‘˜βƒ—βƒ— (2)) β†’ π‘˜(2)
2
(βˆ’π‘˜βƒ—βƒ— ) = ( π‘˜(2)
0 )
2
βˆ’ π‘˜βƒ—βƒ— βˆ™ π‘˜βƒ—βƒ—
and then just relabel π‘˜(2)
0
to π‘˜0
so that
(12.6)
π‘˜(2)
2
(βˆ’π‘˜βƒ—βƒ— ) = π‘˜ πœ‡ π‘˜ πœ‡ = ( π‘˜
0
)
2
βˆ’ π‘˜βƒ—βƒ— βˆ™ π‘˜βƒ—βƒ—
Thus, (12.2) further results to
(12.7)
∫
𝑑3
π‘₯β€²
√(2πœ‹)3
π‘’βˆ’π‘–π‘˜βƒ— β€²βˆ™π‘₯β€²
∫
𝑑3
π‘₯
√(2πœ‹)3
𝑒 π‘–π‘˜βƒ— βˆ™π‘₯
𝐺 π‘₯β€²
π‘₯
=
1
2(2πœ‹)
∫ 𝑑 π‘˜0
𝑒 π‘–π‘˜0 ( π‘₯β€² 0
βˆ’ π‘₯0)
( π‘˜0)2 βˆ’ ( π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2
+ π‘–πœ–)
𝛿3
(π‘˜βƒ— β€² βˆ’ π‘˜βƒ— )
π‘₯β€²
We have one more integration to perform and this is a contour integration on a complex z-plane.
In our convenience we will only choose the upper half-contour that encloses the complex pole
𝑧0 = 𝑏′ where
(12.8)
𝑏′
= √ π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2
+ π‘–πœ– β‰ˆ √ π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2
+
π‘–πœ–
2√ π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2
We will no longer dig into the details of such integration and simply write here the result. The
result in the limit as πœ– β†’ 0 is given by
(12.9)
π‘™π‘–π‘š πœ– β†’ 0 ∫ 𝑑 π‘˜0
∞
βˆ’βˆž
𝑒
π‘–π‘˜0( π‘₯β€² 0
βˆ’ π‘₯0)
( π‘˜0)2 βˆ’ ( π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2
+ π‘–πœ–)
=
π‘–πœ‹
πœ”(π‘˜βƒ— )
𝑒 π‘–π‘˜0( π‘₯β€² 0
βˆ’ π‘₯0)
at
(12.10)
π‘˜0
= πœ”(π‘˜βƒ— ) = √ π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2
Proceeding, we may write the scattering matrix up to a major third term only and having to note
that only the first major term is relevant upon the setting of all sources J’s to zero.
(13.1)
βŸ¨π‘˜βƒ— β€²|π‘ˆ( π‘‡π‘œπ‘’π‘‘, 𝑇𝑖𝑛 )|π‘˜βƒ— ⟩ = 1𝑠𝑑 + 2𝑛𝑑 + 3π‘Ÿπ‘‘ + β‹―
Given (12.9), we may write
(13.2)
1𝑠𝑑 = 𝑒π‘₯𝑝(βˆ’
𝑖
ℏ
( π‘‡π‘œπ‘’π‘‘ βˆ’ 𝑇𝑖𝑛) 𝐸0
0
) 𝑒 π‘–π‘˜0 ( π‘₯β€² 0
βˆ’ π‘₯0)
𝛿3
(π‘˜βƒ— β€² βˆ’ π‘˜βƒ— ) π‘₯β€²
This is associated with the Feynman diagram at the space region of π‘₯β€².
(Fig.1)
While for the other major terms in (13.1) we have
(13.3)
2𝑛𝑑 = βˆ’
𝑖
ℏ
〈 𝐽 𝑦
𝐺 𝑦𝑦′ 𝐽 𝑦′βŒͺ Γ— 1𝑠𝑑
and
(13.4)
3π‘Ÿπ‘‘ = βˆ’
1
ℏ
√ πœ”(π‘˜βƒ— β€²)√ πœ”(π‘˜βƒ— ) 23
∫
𝑑3
π‘₯β€²
√(2πœ‹)3
π‘’βˆ’π‘– π‘˜βƒ— β€²βˆ™π‘₯β€² 〈 𝐺 π‘₯β€²
𝑦′ 𝐽 𝑦′βŒͺ ∫
𝑑3
π‘₯
√(2πœ‹)3
𝑒 π‘–π‘˜βƒ— βˆ™π‘₯ 〈 𝐺 π‘₯𝑦 𝐽 𝑦
βŒͺ
As emphasized earlier, the only relevant terms (that are identical) in (13.1) are those that take the
form of the 1st. They are already independent of the sources J’s so these terms don’t vanish upon
the setting of these sources to zero. That is, they are the only terms that contribute to the
scattering process illustrated in this exercise when sources are made to vanish.
How about the 2nd and 3rd major terms in (13.1)?
For the 2nd major term, since this involves the product of the connected two-point function (7)
and (13.2), in coordinate space, it depicts simultaneously the propagation of the scalarfield
between two end spacetime points y and y’, where the propagator connects the two sources
located at these end spacetime points and the scattering process of the 1st. These two
simultaneous processes are independent of each other. However, this term is dependent on
sources and vanishes upon the setting of these sources to zero.
Regarding the 3rd term, in coordinate space we write one major component of it as
(13.5)
∫
𝑑3
π‘₯
√(2πœ‹)3
𝑒 𝑖 π‘˜βƒ— βˆ™π‘₯ 〈 𝐺 π‘₯𝑦 𝐽 𝑦
βŒͺ =
√(2πœ‹)3
2(2πœ‹)2
∫ 𝑑4
𝑦 𝐽(𝑦)∫
𝑑3
π‘₯
(2πœ‹)3
𝑒 π‘–π‘˜βƒ— βˆ™π‘₯
𝐺(𝑦 βˆ’ π‘₯)
The integration over the spacetime point/region of y involves the source J(y) and given the
Green’s function that acts as a propagator with a causality from spacetime y to spacetime x, the
said integration is just a Fourier transformation of the said source from coordinate space to
momentum space thus, obtaining the Fourier component of this source at the spacetime
point/region of y. Meanwhile, the other integration over the spatial region of π‘₯ implies a Fourier
integral definition of a Dirac-delta function 𝛿3
(π‘˜βƒ— + π‘˜βƒ— (1))
π‘₯
at the cited spatial region.
In momentum space, (13.5) is given by
(13.6)
∫
𝑑3
π‘₯
√(2πœ‹)3
𝑒 π‘–π‘˜βƒ— βˆ™π‘₯ 〈 𝐺 π‘₯𝑦 𝐽 𝑦
βŒͺ = βˆ’
√(2πœ‹)3
2(2πœ‹)2
∫
𝑑4
π‘˜(1) π‘’βˆ’ 𝑖 π‘˜(1)
0
π‘₯0
𝐽̃(βˆ’π‘˜(1)) 𝑦
βˆ’π‘˜ πœ‡
(1)
π‘˜(1)
πœ‡
+ 𝑀2
+ π‘–πœ–
𝛿3
(π‘˜βƒ— + π‘˜βƒ— (1))
π‘₯
𝛿3
(π‘˜βƒ— + π‘˜βƒ— (1))
π‘₯
= ∫
𝑑3
π‘₯
(2πœ‹)3
𝑒 𝑖( π‘˜βƒ— + π‘˜βƒ— (1)) βˆ™ π‘₯
The remaining major component of 3rd term can be likewise written as
(13.7)
∫
𝑑3
π‘₯ β€²
√(2πœ‹)3
π‘’βˆ’ 𝑖 π‘˜βƒ— β€²
βˆ™ π‘₯ β€²
〈 𝐺 π‘₯ β€² 𝑦 β€² 𝐽 𝑦′
βŒͺ =
√(2πœ‹)3
2(2πœ‹)2
∫ 𝑑4
𝑦′
𝐽(𝑦′
)∫
𝑑3
π‘₯β€²
(2πœ‹)3
π‘’βˆ’ 𝑖 π‘˜βƒ— β€²
βˆ™ π‘₯β€²
𝐺(𝑦′
βˆ’ π‘₯β€²
)
The integration over the spacetime point/region of y’ involves the source J(y’) and given the
Green’s function that acts as a propagator with a causality from spacetime y’ to spacetime x’, the
said integration is just a Fourier transformation of the said source from coordinate space to
momentum space thus, obtaining the Fourier component of this source at the spacetime
point/region of y’. Meanwhile, the other integration over the spatial region of π‘₯β€²
implies a
Fourier integral definition of a Dirac-delta function at the cited spatial region.
In momentum space, (13.7) is given by
(13.8)
∫
𝑑3
π‘₯ β€²
√(2πœ‹)3
π‘’βˆ’ π‘–π‘˜βƒ— β€²
βˆ™ π‘₯ β€²
〈 𝐺 π‘₯ β€² 𝑦 β€² 𝐽 𝑦′
βŒͺ
= βˆ’
√(2πœ‹)3
2(2πœ‹)2
∫
𝑑4
π‘˜ β€²(1) π‘’βˆ’ 𝑖 π‘˜ β€² (1)
0
π‘₯ β€² 0
𝐽̃(βˆ’π‘˜ β€² (1)) 𝑦 β€²
βˆ’π‘˜β€²
πœ‡
(1)
π‘˜β€²
(1)
πœ‡
+ 𝑀2
+ π‘–πœ–
𝛿3
(π‘˜βƒ— β€²
βˆ’ π‘˜βƒ— β€² (1))
π‘₯β€²
𝛿3
(π‘˜βƒ— β€²
βˆ’ π‘˜βƒ— β€² (1))
π‘₯β€² = ∫
𝑑3
π‘₯β€²
(2πœ‹)3
π‘’βˆ’ 𝑖( π‘˜βƒ— β€²
βˆ’ π‘˜βƒ— β€²
(1)) βˆ™ π‘₯β€²
As a whole what does this 3rd term signify? Taking (13.5) and (13.7) altogether, there are two
separate propagations of the scalar field starting at two different initial spacetime points and
ending up to scatter at two different spatial points. The scalar field propagating in (13.5) starts at
the spacetime point y, then propagates towards the spatial point of π‘₯, carrying the spatial
momentum π‘˜βƒ— (1) and then it scatters at this point carrying the spatial momentum π‘˜βƒ— . For this said
scalar field, the spatial point of π‘₯ is where the scattering vertex is. At this scattering vertex
spatial momenta π‘˜βƒ— and π‘˜βƒ— (1) are summed up to zero and in turn implies a picking π‘˜βƒ— (1) = βˆ’π‘˜βƒ—
over the integration variable π‘˜βƒ— (1). Meanwhile, the scalar field propagating in (13.7) starts at the
spacetime point y’, then propagates towards the spatial point of π‘₯β€²
, carrying the spatial
momentum π‘˜βƒ— β€²
(1) and then it scatters at this point carrying the spatial momentum π‘˜βƒ— β€²
. For this said
scalar field, the spatial point of π‘₯β€²
is where the scattering vertex is. At this scattering vertex
spatial momenta π‘˜βƒ— β€²
and π‘˜βƒ— β€²
(1) are summed up to zero and in turn implies a picking π‘˜βƒ— β€²
(1) = π‘˜βƒ— β€²
over the integration variable π‘˜βƒ— β€²
(1). So in view of the 3rd term, there are two different scattering
vertices (processes), one at the spatial point of π‘₯ and the other one at π‘₯β€²
and that the scatterings at
these vertices may not be simultaneous, one may happen earlier than the other. However, these
scatterings depend on the presence of their corresponding sources at two different initial
spacetime points.
Basic derivations
In this later portion of the draft let us attempt to dig into the basic details and derivations that
lead us to the form of the scattering matrix (1).
We start with the field operator given for the scalar field (spin 0 boson)
(14.1)
πœ‘Μ‚( π‘₯) =
1
√𝐿3
βˆ‘
βˆšβ„
√2πœ”(π‘˜βƒ— )
(𝑒 π‘–π‘˜βƒ— β‹… π‘₯
π‘Ž(π‘˜βƒ— ) + π‘’βˆ’ 𝑖 π‘˜βƒ— β‹… π‘₯
π‘Žβ€ 
(π‘˜βƒ— ))
π‘˜βƒ—
In here we shall be reminded that spatial momentum vector 𝑝 is related to the wave number
vector π‘˜βƒ— via de Broglie’s hypothesis, 𝑝 = β„π‘˜βƒ— , where |π‘˜βƒ— | = 2πœ‹/πœ†. To make things momentarily
convenient, we resort to the Heaviside units (𝑐 = ℏ = 1 ) so that 𝑝 = π‘˜βƒ— and reinsert the
appropriate values of the constants involved whenever required at the end of calculations
although I still retain ℏ in some expressions like in the above. (So for loose convenience we refer
to π‘˜βƒ— as spatial momentum.) Also we must take note that in my own personal convenient notation
I usually write the equivalence
(14.2)
1
√𝐿3
βˆ‘
π‘˜βƒ—
≑ ∫
𝑑3
π‘˜βƒ—
√(2πœ‹)3
We also like to re-emphasize (5.1) here that we can raise a one-particle state |π‘˜βƒ— ⟩ of spatial
momentum π‘˜βƒ— from the vacuum state by the application of the raising operator on the vacuum
state |0 ⟩
|π‘˜βƒ— ⟩ = π‘Žβ€ 
(π‘˜βƒ— )|0 ⟩
with its Hermitian adjoint given by (5.2)
βŸ¨π‘˜βƒ— | = (|π‘˜βƒ— ⟩ )
†
= ⟨0| π‘Ž(π‘˜βƒ— )
In here, annihilating a vacuum state means π‘Ž(π‘˜βƒ— )|0 ⟩ = 0. We can use these in the application of
the field operator (14.1) on the vacuum state to obtain
(14.3)
πœ‘Μ‚( π‘₯)|0 ⟩ =
1
√𝐿3
βˆ‘
βˆšβ„
√2πœ”(π‘˜βƒ— )
π‘’βˆ’ 𝑖 π‘˜βƒ— β‹… π‘₯
|π‘˜βƒ— ⟩
π‘˜βƒ—
also along its Hermitian adjoint
(14.4)
⟨0| πœ‘Μ‚( π‘₯) = ⟨0| πœ‘Μ‚β€ ( π‘₯) =
1
√𝐿3
βˆ‘
βˆšβ„
√2πœ”(π‘˜βƒ— )
𝑒 π‘–π‘˜βƒ— β‹… π‘₯
βŸ¨π‘˜βƒ— |
π‘˜βƒ—
In the above expression, we have a loose definition of a Hermitian field operator that depends on
the spatial coordinates π‘₯
(14.5)
πœ‘Μ‚( π‘₯) = πœ‘Μ‚β€ ( π‘₯)
although this is already apparent in (14.1).
Proceeding, we evolve the vacuum state
(15.1)
|0 ⟩ β†’ π‘ˆ(𝑇)|0 ⟩
and obtain the projection of this state vector on the state vector (14.3) in terms (14.4) to get
(15.2)
⟨0| πœ‘Μ‚( π‘₯) π‘ˆ(𝑇)|0⟩ =
1
√𝐿3
βˆ‘
βˆšβ„
√2πœ”(π‘˜βƒ— )
𝑒 π‘–π‘˜βƒ— β‹… π‘₯
βŸ¨π‘˜βƒ— |π‘ˆ(𝑇)|0⟩
π‘˜βƒ—
From here we take note that the given field operator in the expression does not evolve with time
but we can perform a similarity transformation on this operator so that in the Heisenberg picture
this operator can have time-dependence.
(16.1)
πœ‘Μ‚( π‘₯) = πœ‘Μ‚( 𝑇, π‘₯) = π‘ˆβ€ ( 𝑇) πœ‘Μ‚ ( π‘₯) π‘ˆ(𝑇)
from which we also take note of
(16.2)
πœ‘Μ‚ ( π‘₯) π‘ˆ( 𝑇) = π‘ˆ( 𝑇) πœ‘Μ‚( π‘₯)
whereby we make use of the following very important unitary property of the time evolution
operator π‘ˆ( 𝑇)
(16.3)
π‘ˆβ€ ( 𝑑) π‘ˆ( 𝑑) = π‘ˆ( 𝑑) π‘ˆβ€ ( 𝑑) = π‘ˆ( 𝑑, 𝑑) = 1
π‘ˆ(𝑑𝑖, 𝑑𝑗) = π‘ˆ(𝑑𝑖, 𝑑 π‘˜)π‘ˆ(𝑑 π‘˜, 𝑑𝑗)
References
[1]Baal, P., A COURSE IN FIELD THEORY
[2]Cardy, J., Introduction to Quantum Field Theory
[3]Gaberdiel, M., Gehrmann-De Ridder, A., Quantum Field Theory
One particle to_onepartlce_scattering_18052020

More Related Content

What's hot

The klein gordon field in two-dimensional rindler space-time 200920ver-display
The klein gordon field in two-dimensional rindler space-time 200920ver-displayThe klein gordon field in two-dimensional rindler space-time 200920ver-display
The klein gordon field in two-dimensional rindler space-time 200920ver-displayfoxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-time 14072020
The klein gordon field in two-dimensional rindler space-time  14072020The klein gordon field in two-dimensional rindler space-time  14072020
The klein gordon field in two-dimensional rindler space-time 14072020foxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...foxtrot jp R
Β 
Very brief highlights on some key details 2
Very brief highlights on some key details 2Very brief highlights on some key details 2
Very brief highlights on some key details 2foxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-timeforss
The klein gordon field in two-dimensional rindler space-timeforssThe klein gordon field in two-dimensional rindler space-timeforss
The klein gordon field in two-dimensional rindler space-timeforssfoxtrot jp R
Β 
Very brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrdVery brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrdfoxtrot jp R
Β 
Summerp62016update3 slideshare sqd
Summerp62016update3 slideshare   sqdSummerp62016update3 slideshare   sqd
Summerp62016update3 slideshare sqdfoxtrot jp R
Β 
Summerp62016update3 slideshare sqrdver2
Summerp62016update3 slideshare   sqrdver2Summerp62016update3 slideshare   sqrdver2
Summerp62016update3 slideshare sqrdver2foxtrot jp R
Β 
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsRotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsSolo Hermelin
Β 
Hawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _securedHawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _securedfoxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-time - smcprt
The klein gordon field in two-dimensional rindler space-time - smcprtThe klein gordon field in two-dimensional rindler space-time - smcprt
The klein gordon field in two-dimensional rindler space-time - smcprtfoxtrot jp R
Β 
Summerp62016update2 slideshare sqd
Summerp62016update2 slideshare  sqdSummerp62016update2 slideshare  sqd
Summerp62016update2 slideshare sqdfoxtrot jp R
Β 
Fieldtheoryhighlights2015 setbb
Fieldtheoryhighlights2015 setbbFieldtheoryhighlights2015 setbb
Fieldtheoryhighlights2015 setbbfoxtrot jp R
Β 
2 backlash simulation
2 backlash simulation2 backlash simulation
2 backlash simulationSolo Hermelin
Β 
Dealinggreensfncsolft sqrd
Dealinggreensfncsolft  sqrdDealinggreensfncsolft  sqrd
Dealinggreensfncsolft sqrdfoxtrot jp R
Β 
Parallel tansport sssqrd
Parallel tansport sssqrdParallel tansport sssqrd
Parallel tansport sssqrdfoxtrot jp R
Β 
Outgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghpOutgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghpfoxtrot jp R
Β 
3 recursive bayesian estimation
3  recursive bayesian estimation3  recursive bayesian estimation
3 recursive bayesian estimationSolo Hermelin
Β 
Approximate Methods
Approximate MethodsApproximate Methods
Approximate MethodsTeja Ande
Β 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachSolo Hermelin
Β 

What's hot (20)

The klein gordon field in two-dimensional rindler space-time 200920ver-display
The klein gordon field in two-dimensional rindler space-time 200920ver-displayThe klein gordon field in two-dimensional rindler space-time 200920ver-display
The klein gordon field in two-dimensional rindler space-time 200920ver-display
Β 
The klein gordon field in two-dimensional rindler space-time 14072020
The klein gordon field in two-dimensional rindler space-time  14072020The klein gordon field in two-dimensional rindler space-time  14072020
The klein gordon field in two-dimensional rindler space-time 14072020
Β 
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...
Β 
Very brief highlights on some key details 2
Very brief highlights on some key details 2Very brief highlights on some key details 2
Very brief highlights on some key details 2
Β 
The klein gordon field in two-dimensional rindler space-timeforss
The klein gordon field in two-dimensional rindler space-timeforssThe klein gordon field in two-dimensional rindler space-timeforss
The klein gordon field in two-dimensional rindler space-timeforss
Β 
Very brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrdVery brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrd
Β 
Summerp62016update3 slideshare sqd
Summerp62016update3 slideshare   sqdSummerp62016update3 slideshare   sqd
Summerp62016update3 slideshare sqd
Β 
Summerp62016update3 slideshare sqrdver2
Summerp62016update3 slideshare   sqrdver2Summerp62016update3 slideshare   sqrdver2
Summerp62016update3 slideshare sqrdver2
Β 
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsRotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Β 
Hawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _securedHawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _secured
Β 
The klein gordon field in two-dimensional rindler space-time - smcprt
The klein gordon field in two-dimensional rindler space-time - smcprtThe klein gordon field in two-dimensional rindler space-time - smcprt
The klein gordon field in two-dimensional rindler space-time - smcprt
Β 
Summerp62016update2 slideshare sqd
Summerp62016update2 slideshare  sqdSummerp62016update2 slideshare  sqd
Summerp62016update2 slideshare sqd
Β 
Fieldtheoryhighlights2015 setbb
Fieldtheoryhighlights2015 setbbFieldtheoryhighlights2015 setbb
Fieldtheoryhighlights2015 setbb
Β 
2 backlash simulation
2 backlash simulation2 backlash simulation
2 backlash simulation
Β 
Dealinggreensfncsolft sqrd
Dealinggreensfncsolft  sqrdDealinggreensfncsolft  sqrd
Dealinggreensfncsolft sqrd
Β 
Parallel tansport sssqrd
Parallel tansport sssqrdParallel tansport sssqrd
Parallel tansport sssqrd
Β 
Outgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghpOutgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghp
Β 
3 recursive bayesian estimation
3  recursive bayesian estimation3  recursive bayesian estimation
3 recursive bayesian estimation
Β 
Approximate Methods
Approximate MethodsApproximate Methods
Approximate Methods
Β 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization Approach
Β 

Similar to One particle to_onepartlce_scattering_18052020

Higgsbosontoelectron positron decay_dsply
Higgsbosontoelectron positron decay_dsplyHiggsbosontoelectron positron decay_dsply
Higgsbosontoelectron positron decay_dsplyfoxtrot jp R
Β 
Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18foxtrot jp R
Β 
Dealinggreensfncsolft sqrd(10 5-2k16)
Dealinggreensfncsolft   sqrd(10 5-2k16)Dealinggreensfncsolft   sqrd(10 5-2k16)
Dealinggreensfncsolft sqrd(10 5-2k16)foxtrot jp R
Β 
Dealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbDealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbfoxtrot jp R
Β 
Dealinggreensfncsolft
DealinggreensfncsolftDealinggreensfncsolft
Dealinggreensfncsolftfoxtrot jp R
Β 
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsplyfoxtrot jp R
Β 
Outgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrdOutgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrdfoxtrot jp R
Β 
Parallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrdParallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrdfoxtrot jp R
Β 
Parallel tansportsqrdaa
Parallel tansportsqrdaaParallel tansportsqrdaa
Parallel tansportsqrdaafoxtrot jp R
Β 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mappinginventionjournals
Β 
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplayfoxtrot jp R
Β 
Fieldtheoryhighlights2015 setb
Fieldtheoryhighlights2015 setbFieldtheoryhighlights2015 setb
Fieldtheoryhighlights2015 setbfoxtrot jp R
Β 
Higgsbosontoelectron positron decay14042021_dsply
Higgsbosontoelectron positron decay14042021_dsplyHiggsbosontoelectron positron decay14042021_dsply
Higgsbosontoelectron positron decay14042021_dsplyfoxtrot jp R
Β 
Outgoing ingoingkleingordon
Outgoing ingoingkleingordonOutgoing ingoingkleingordon
Outgoing ingoingkleingordonfoxtrot jp R
Β 
Outgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsOutgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsfoxtrot jp R
Β 
A Class of Polynomials Associated with Differential Operator and with a Gener...
A Class of Polynomials Associated with Differential Operator and with a Gener...A Class of Polynomials Associated with Differential Operator and with a Gener...
A Class of Polynomials Associated with Differential Operator and with a Gener...iosrjce
Β 

Similar to One particle to_onepartlce_scattering_18052020 (18)

Higgsbosontoelectron positron decay_dsply
Higgsbosontoelectron positron decay_dsplyHiggsbosontoelectron positron decay_dsply
Higgsbosontoelectron positron decay_dsply
Β 
Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18
Β 
Dealinggreensfncsolft sqrd(10 5-2k16)
Dealinggreensfncsolft   sqrd(10 5-2k16)Dealinggreensfncsolft   sqrd(10 5-2k16)
Dealinggreensfncsolft sqrd(10 5-2k16)
Β 
Dealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbDealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdb
Β 
Dealinggreensfncsolft
DealinggreensfncsolftDealinggreensfncsolft
Dealinggreensfncsolft
Β 
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
Β 
Outgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrdOutgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrd
Β 
Bhdpis1
Bhdpis1Bhdpis1
Bhdpis1
Β 
Parallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrdParallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrd
Β 
Parallel tansportsqrdaa
Parallel tansportsqrdaaParallel tansportsqrdaa
Parallel tansportsqrdaa
Β 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Β 
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
Β 
lec23.ppt
lec23.pptlec23.ppt
lec23.ppt
Β 
Fieldtheoryhighlights2015 setb
Fieldtheoryhighlights2015 setbFieldtheoryhighlights2015 setb
Fieldtheoryhighlights2015 setb
Β 
Higgsbosontoelectron positron decay14042021_dsply
Higgsbosontoelectron positron decay14042021_dsplyHiggsbosontoelectron positron decay14042021_dsply
Higgsbosontoelectron positron decay14042021_dsply
Β 
Outgoing ingoingkleingordon
Outgoing ingoingkleingordonOutgoing ingoingkleingordon
Outgoing ingoingkleingordon
Β 
Outgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsOutgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julups
Β 
A Class of Polynomials Associated with Differential Operator and with a Gener...
A Class of Polynomials Associated with Differential Operator and with a Gener...A Class of Polynomials Associated with Differential Operator and with a Gener...
A Class of Polynomials Associated with Differential Operator and with a Gener...
Β 

Recently uploaded

User Guide: Orionβ„’ Weather Station (Columbia Weather Systems)
User Guide: Orionβ„’ Weather Station (Columbia Weather Systems)User Guide: Orionβ„’ Weather Station (Columbia Weather Systems)
User Guide: Orionβ„’ Weather Station (Columbia Weather Systems)Columbia Weather Systems
Β 
User Guide: Magellan MXβ„’ Weather Station
User Guide: Magellan MXβ„’ Weather StationUser Guide: Magellan MXβ„’ Weather Station
User Guide: Magellan MXβ„’ Weather StationColumbia Weather Systems
Β 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringPrajakta Shinde
Β 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
Β 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
Β 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxMurugaveni B
Β 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingNetHelix
Β 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxmalonesandreagweneth
Β 
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”soniya singh
Β 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptArshadWarsi13
Β 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -INandakishor Bhaurao Deshmukh
Β 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxpriyankatabhane
Β 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024AyushiRastogi48
Β 
User Guide: Pulsarβ„’ Weather Station (Columbia Weather Systems)
User Guide: Pulsarβ„’ Weather Station (Columbia Weather Systems)User Guide: Pulsarβ„’ Weather Station (Columbia Weather Systems)
User Guide: Pulsarβ„’ Weather Station (Columbia Weather Systems)Columbia Weather Systems
Β 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)riyaescorts54
Β 
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.Call Girls in Munirka Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.aasikanpl
Β 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
Β 
preservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxpreservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxnoordubaliya2003
Β 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensorsonawaneprad
Β 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
Β 

Recently uploaded (20)

User Guide: Orionβ„’ Weather Station (Columbia Weather Systems)
User Guide: Orionβ„’ Weather Station (Columbia Weather Systems)User Guide: Orionβ„’ Weather Station (Columbia Weather Systems)
User Guide: Orionβ„’ Weather Station (Columbia Weather Systems)
Β 
User Guide: Magellan MXβ„’ Weather Station
User Guide: Magellan MXβ„’ Weather StationUser Guide: Magellan MXβ„’ Weather Station
User Guide: Magellan MXβ„’ Weather Station
Β 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical Engineering
Β 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
Β 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
Β 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
Β 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Β 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
Β 
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”
Β 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.ppt
Β 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
Β 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Β 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024
Β 
User Guide: Pulsarβ„’ Weather Station (Columbia Weather Systems)
User Guide: Pulsarβ„’ Weather Station (Columbia Weather Systems)User Guide: Pulsarβ„’ Weather Station (Columbia Weather Systems)
User Guide: Pulsarβ„’ Weather Station (Columbia Weather Systems)
Β 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
Β 
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.Call Girls in Munirka Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Β 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
Β 
preservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxpreservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptx
Β 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensor
Β 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Β 

One particle to_onepartlce_scattering_18052020

  • 1. Workouts #1 in Basic QFT One Scalar Particle Scattering Into One Scalar Particle Roa, F. J.P. Let us suppose that a particle propagates from a spacetime region π‘₯ to some other spacetime regionπ‘₯β€². (Cautionary remark: In this draft I use the word region to mean a point for the basic reason that we perform Fourier integrations at those points that allow us to have integral definitions of Dirac-delta functions.) As the particle enters the latter spacetime region it carries a spatial momentum π‘˜βƒ— , then scatters as a scalar particle carrying a new spatial momentum π‘˜βƒ— β€². This process is given with the following scattering matrix (1) βŸ¨π‘˜βƒ— β€²|π‘ˆ( π‘‡π‘œπ‘’π‘‘, 𝑇𝑖𝑛 )|π‘˜βƒ— ⟩ = √2πœ”( π‘˜βƒ— β€²) βˆšβ„ ∫ 𝑑3 π‘₯β€² √(2πœ‹)3 π‘’βˆ’π‘–π‘˜βƒ— β€²βˆ™π‘₯β€² √2πœ” ( π‘˜βƒ— ) βˆšβ„ ∫ 𝑑3 π‘₯ √(2πœ‹)3 𝑒 π‘–π‘˜βƒ— βˆ™π‘₯ (βˆ’ ℏ 𝑖 ) 𝛿 𝛿𝐽( π‘₯β€²) ( ℏ 𝑖 ) 𝛿 𝛿𝐽(π‘₯) ⟨0| π‘ˆ(π‘‡π‘œπ‘’π‘‘, 𝑇𝑖𝑛 )|0⟩ This involves second order in the derivative operations with respect to sources J’s on the vacuum-to-vacuum matrix (2) 𝛿 𝛿𝐽( π‘₯β€²) 𝛿 𝛿𝐽(π‘₯) ⟨0| π‘ˆ(π‘‡π‘œπ‘’π‘‘, 𝑇𝑖𝑛 )|0⟩ where already in its factored form, this said matrix has the form (3) ⟨0| π‘ˆ(π‘‡π‘œπ‘’π‘‘ , 𝑇𝑖𝑛 )|0⟩ = 𝑒π‘₯𝑝(βˆ’ 𝑖 ℏ ( π‘‡π‘œπ‘’π‘‘ βˆ’ 𝑇𝑖𝑛) 𝐸0 0 ) 𝑒𝑖 𝑆 𝑐 / ℏ The form of the matrix (1) is a consequence following from path integration. However, we shall no longer tackle the details of this path integration leading to the right-hand-side (rhs) of (1). It is to be noticed in (3) that we have not yet normalized the resulting matrix (1) so the vacuum-to- vacuum matrix (3) still carries the factor that involves the ground state energy 𝐸0 0 . We can conveniently write out the vacuum-to-vacuum matrix explicitly as a Taylor/Maclaurin expansion with (4) 𝑒 𝑖 𝑆 𝑐 /ℏ = 1 + 𝑖 ℏ 𝑆 𝑐 + βˆ‘ 1 𝑛! ( 𝑖 ℏ ) 𝑛 𝑆 𝐢 𝑛 ∞ 𝑛=2
  • 2. As a basic recollection recall that in the case for a boson such as a scalar field (spin zero) in this exercise, we can raise a one-particle state of certain spatial momentum π‘˜βƒ— from the vacuum state with the application of bosonic creation operator π‘Žβ€  and such creation operation is given by (5.1) |π‘˜βƒ— ⟩ = π‘Žβ€  (π‘˜βƒ— )|0 ⟩ with its Hermitian adjoint (5.2) βŸ¨π‘˜βƒ— | = (|π‘˜βƒ— ⟩ ) † = ⟨0| π‘Ž(π‘˜βƒ— ) We may think of (5.1) as the one-particle state at the initial time 𝑇𝑖𝑛 and evolve such state into some other state at π‘‡π‘œπ‘’π‘‘ with the application of the time evolution operator π‘ˆ(π‘‡π‘œπ‘’π‘‘, 𝑇𝑖𝑛 ). The projection of this evolved one-particle state on some other one-particle state |π‘˜βƒ— β€²βŸ© will give the left-hand-side (lhs) of the scattering matrix (1), which bears a quantum field theory interpretation of being associated with a probability that the one-particle state of momentum π‘˜βƒ— at an initial time 𝑇𝑖𝑛 can be found as a one-particle state of spatial momentum π‘˜βƒ— β€² at a later time π‘‡π‘œπ‘’π‘‘ . Note in here that 𝑇𝑖𝑛 is in the initial spacetime region π‘₯, while π‘‡π‘œπ‘’π‘‘ is in the latter spacetime region π‘₯β€². This matrix is then thought of as a scattering matrix that can be evaluated via path integration resulting in (1). In (1) we take note that we have two different spatial Fourier integrations, one over the spatial region represented by π‘₯, while the other one with the spatial region of π‘₯β€². Each of these integrations defines a Dirac-delta function at the spatial region of integration. That is, for example (6) 𝛿3 (π‘˜βƒ— Β± π‘˜βƒ— (𝑗) ) π‘₯ = ∫ 𝑑3 π‘₯ (2πœ‹)3 𝑒±𝑖(π‘˜βƒ— Β± π‘˜βƒ— (𝑗) )βˆ™π‘₯ Ofcourse, such delta functions assume symmetric integral limits in those space regions where these integrations are performed. Note as to be explicit we have for the initial spacetime region π‘₯ = (π‘₯0 , π‘₯) and for the latter spacetime region xβ€² = (π‘₯β€²0 , π‘₯β€²). Of prior note also is the connected two-point function for scalars not a two-point function. This is connected in the sense that it connects two sources J’s, each of which belongs to the two different spacetime regions that act as end regions for the propagating scalar particle. Such connected two-point function will simply be given by the scalar classical action as expressed in the functional of the sources with a scalar Green’s function that plays the role of propagator.
  • 3. (7) 𝑆 𝑐 = βˆ’ 1 2 1 (2πœ‹)2 ∫ 𝑑4 𝑦 𝑑4 𝑦 β€² 𝐽( 𝑦) 𝐺( 𝑦 βˆ’ 𝑦 β€²) 𝐽(𝑦′) = βˆ’ 〈 𝐽 𝑦 𝐺𝑦𝑦′ 𝐽 𝑦′βŒͺ For convenience we specify in notation that (8) 𝛿𝐽(π‘₯) = 𝛿 𝛿𝐽(π‘₯) 𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) = 𝛿2 𝛿𝐽(π‘₯β€²)𝛿𝐽(π‘₯) Then for (2) we write (9) 𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) 𝑒 𝑖 𝑆 𝑐/ ℏ = 𝑖 ℏ 𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) 𝑆𝑐 + 1 2 ( 𝑖 ℏ ) 2 𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) 𝑆 𝐢 2 + βˆ‘ 1 𝑛! ( 𝑖 ℏ ) 𝑛 𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) 𝑆 𝐢 𝑛 ∞ 𝑛=3 where to the first power of the connected two-point function we have (7), while to the second power of this function we write as (10.1) 𝑆 𝑐 = βˆ’ 1 2 1 (2πœ‹)2 ∫ 𝑑4 𝑦 𝑑4 𝑦 β€² 𝐽( 𝑦) 𝐺( 𝑦 βˆ’ 𝑦 β€²) 𝐽(𝑦′) = βˆ’ 〈 𝐽 𝑦 𝐺𝑦𝑦′ 𝐽 𝑦′βŒͺ with (10.2) 𝑆 𝐢 2 = (βˆ’1)(βˆ’1) 〈 𝐽 𝑦 𝐺𝑦𝑦′ 𝐽𝑦′βŒͺ1 〈 𝐽 𝑦 𝐺𝑦𝑦′ 𝐽 𝑦′βŒͺ and (10.3) 𝐺( π‘₯β€² βˆ’ π‘₯) = βˆ’1 (2πœ‹)2 ∫ 𝑑4 π‘˜ 𝑒 π‘–π‘˜ 𝜎(π‘₯β€² πœŽβˆ’ π‘₯ 𝜎) βˆ’π‘˜ πœ‡ π‘˜ πœ‡ + 𝑀2 + π‘–πœ– The derivative operation via functional derivative in 3 + 1 spacetime (10.4) 𝛿4( π‘₯ βˆ’ 𝑦) = 𝛿𝐽(π‘₯) 𝛿𝐽(𝑦) The first order differentiation of (7) yields
  • 4. (11.1) 𝛿𝐽(π‘₯) 𝑆𝑐 = βˆ’ 𝛿 𝐽(π‘₯)〈 𝐽 𝑦 𝐺𝑦𝑦′ 𝐽 𝑦′βŒͺ = βˆ’ (〈 𝐽 𝑦 𝐺𝑦π‘₯βŒͺ+ 〈 𝐺 π‘₯𝑦′ 𝐽 𝑦′βŒͺ) = βˆ’ 1 2 1 (2πœ‹)2 (∫ 𝑑4 𝑦 𝐽( 𝑦) 𝐺( 𝑦 βˆ’ π‘₯) + ∫ 𝑑4 𝑦′ 𝐺( π‘₯ βˆ’ 𝑦′) 𝐽(𝑦′) ) and with the setting of y = y’, this becomes (11.2) 𝛿𝐽(π‘₯) 𝑆𝑐| 𝑦 = 𝑦′ = βˆ’(2)〈 𝐺π‘₯𝑦 𝐽 𝑦βŒͺ In (11.2) we note (11.3) 〈 𝐺π‘₯𝑦 𝐽 𝑦βŒͺ = 1 2 1 (2πœ‹)2 ∫ 𝑑4 𝑦 𝐽( 𝑦) 𝐺( 𝑦 βˆ’ π‘₯) and it is important to take note that the number inside the parenthesis (2) means the number of terms originally involved in the first differentiation. Consequently, from (11.2) we have the second order differentiation resulting as (11.4) 𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) 𝑆𝑐 = βˆ’ (2)𝐺π‘₯β€²π‘₯ After carrying out the indicated differentiation in (9) and only up to second order in i/hbar, we write (9) explicitly as (12.1) 𝛿𝐽(π‘₯β€²) 𝛿𝐽(π‘₯) 𝑒 𝑖 𝑆 𝑐 /ℏ = 𝑖 ℏ (βˆ’ (2) 𝐺 π‘₯β€² π‘₯) + 1 2 ( 𝑖 ℏ ) 2 (2)(2)〈 𝐽 𝑦 𝐺 𝑦𝑦′ 𝐽 𝑦′βŒͺ 𝐺 π‘₯β€² π‘₯ + 1 2 ( 𝑖 ℏ ) 2 (2)(2)(2)〈 𝐺π‘₯′𝑦′ 𝐽 𝑦′βŒͺ〈 𝐺π‘₯𝑦 𝐽 𝑦βŒͺ The first major term of this consists two terms, the second major term four terms and the third major term has eight terms. So (12.1) has a total of fourteen terms. Taking note from (1) we perform the Fourier integrations involving the first major term in (12.1) and these integrations are given by (12.2)
  • 5. ∫ 𝑑3 π‘₯β€² √(2πœ‹)3 π‘’βˆ’π‘–π‘˜βƒ— β€²βˆ™π‘₯β€² ∫ 𝑑3 π‘₯ √(2πœ‹)3 𝑒 π‘–π‘˜βƒ— βˆ™π‘₯ 𝐺( π‘₯β€² βˆ’ π‘₯) = βˆ’ 1 (2πœ‹)2 ∫ π‘‘π‘˜(2) 0 ∫ 𝑑3 π‘˜βƒ— (2) 𝑒 π‘–π‘˜(2) 0 ( π‘₯β€² 0 βˆ’ π‘₯0) βˆ’π‘˜(2) 2 (π‘˜βƒ— (2)) + 𝑀2 + π‘–πœ– (2πœ‹)3 Γ— 𝛿3 (π‘˜βƒ— β€² + π‘˜βƒ— (2)) π‘₯β€² 𝛿3 (π‘˜βƒ— + π‘˜βƒ— (2)) π‘₯ where it is specified that to the space region π‘₯ β€² a vertex with the Dirac-delta function (12.3) 𝛿3 (π‘˜βƒ— β€² + π‘˜βƒ— (2)) π‘₯β€² and to the space region π‘₯ a vertex with its own Dirac-delta function (12.4) 𝛿3 (π‘˜βƒ— + π‘˜βƒ— (2)) π‘₯ Clearly in (12.2) we initially see two vertices, one as already mentioned at the space region of π‘₯, where we sum up two space momenta π‘˜βƒ— and π‘˜βƒ— (2) and the vertex at the space region of π‘₯ β€² where π‘˜βƒ— β€² and π‘˜βƒ— (2) are summed up. Since it is indicated that we are to perform integration ove the π‘˜βƒ— (2) vec momentum variable, the vertex at the initial space region will disappear as there will be picking of π‘˜βƒ— (2) = βˆ’ π‘˜βƒ— . Given such picking, we have (12.5) π‘˜(2) 2 ( π‘˜βƒ—βƒ— (2)) β†’ π‘˜(2) 2 (βˆ’π‘˜βƒ—βƒ— ) = ( π‘˜(2) 0 ) 2 βˆ’ π‘˜βƒ—βƒ— βˆ™ π‘˜βƒ—βƒ— and then just relabel π‘˜(2) 0 to π‘˜0 so that (12.6) π‘˜(2) 2 (βˆ’π‘˜βƒ—βƒ— ) = π‘˜ πœ‡ π‘˜ πœ‡ = ( π‘˜ 0 ) 2 βˆ’ π‘˜βƒ—βƒ— βˆ™ π‘˜βƒ—βƒ— Thus, (12.2) further results to (12.7) ∫ 𝑑3 π‘₯β€² √(2πœ‹)3 π‘’βˆ’π‘–π‘˜βƒ— β€²βˆ™π‘₯β€² ∫ 𝑑3 π‘₯ √(2πœ‹)3 𝑒 π‘–π‘˜βƒ— βˆ™π‘₯ 𝐺 π‘₯β€² π‘₯ = 1 2(2πœ‹) ∫ 𝑑 π‘˜0 𝑒 π‘–π‘˜0 ( π‘₯β€² 0 βˆ’ π‘₯0) ( π‘˜0)2 βˆ’ ( π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2 + π‘–πœ–) 𝛿3 (π‘˜βƒ— β€² βˆ’ π‘˜βƒ— ) π‘₯β€²
  • 6. We have one more integration to perform and this is a contour integration on a complex z-plane. In our convenience we will only choose the upper half-contour that encloses the complex pole 𝑧0 = 𝑏′ where (12.8) 𝑏′ = √ π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2 + π‘–πœ– β‰ˆ √ π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2 + π‘–πœ– 2√ π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2 We will no longer dig into the details of such integration and simply write here the result. The result in the limit as πœ– β†’ 0 is given by (12.9) π‘™π‘–π‘š πœ– β†’ 0 ∫ 𝑑 π‘˜0 ∞ βˆ’βˆž 𝑒 π‘–π‘˜0( π‘₯β€² 0 βˆ’ π‘₯0) ( π‘˜0)2 βˆ’ ( π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2 + π‘–πœ–) = π‘–πœ‹ πœ”(π‘˜βƒ— ) 𝑒 π‘–π‘˜0( π‘₯β€² 0 βˆ’ π‘₯0) at (12.10) π‘˜0 = πœ”(π‘˜βƒ— ) = √ π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2 Proceeding, we may write the scattering matrix up to a major third term only and having to note that only the first major term is relevant upon the setting of all sources J’s to zero. (13.1) βŸ¨π‘˜βƒ— β€²|π‘ˆ( π‘‡π‘œπ‘’π‘‘, 𝑇𝑖𝑛 )|π‘˜βƒ— ⟩ = 1𝑠𝑑 + 2𝑛𝑑 + 3π‘Ÿπ‘‘ + β‹― Given (12.9), we may write (13.2) 1𝑠𝑑 = 𝑒π‘₯𝑝(βˆ’ 𝑖 ℏ ( π‘‡π‘œπ‘’π‘‘ βˆ’ 𝑇𝑖𝑛) 𝐸0 0 ) 𝑒 π‘–π‘˜0 ( π‘₯β€² 0 βˆ’ π‘₯0) 𝛿3 (π‘˜βƒ— β€² βˆ’ π‘˜βƒ— ) π‘₯β€² This is associated with the Feynman diagram at the space region of π‘₯β€². (Fig.1)
  • 7. While for the other major terms in (13.1) we have (13.3) 2𝑛𝑑 = βˆ’ 𝑖 ℏ 〈 𝐽 𝑦 𝐺 𝑦𝑦′ 𝐽 𝑦′βŒͺ Γ— 1𝑠𝑑 and (13.4) 3π‘Ÿπ‘‘ = βˆ’ 1 ℏ √ πœ”(π‘˜βƒ— β€²)√ πœ”(π‘˜βƒ— ) 23 ∫ 𝑑3 π‘₯β€² √(2πœ‹)3 π‘’βˆ’π‘– π‘˜βƒ— β€²βˆ™π‘₯β€² 〈 𝐺 π‘₯β€² 𝑦′ 𝐽 𝑦′βŒͺ ∫ 𝑑3 π‘₯ √(2πœ‹)3 𝑒 π‘–π‘˜βƒ— βˆ™π‘₯ 〈 𝐺 π‘₯𝑦 𝐽 𝑦 βŒͺ As emphasized earlier, the only relevant terms (that are identical) in (13.1) are those that take the form of the 1st. They are already independent of the sources J’s so these terms don’t vanish upon the setting of these sources to zero. That is, they are the only terms that contribute to the scattering process illustrated in this exercise when sources are made to vanish. How about the 2nd and 3rd major terms in (13.1)? For the 2nd major term, since this involves the product of the connected two-point function (7) and (13.2), in coordinate space, it depicts simultaneously the propagation of the scalarfield between two end spacetime points y and y’, where the propagator connects the two sources located at these end spacetime points and the scattering process of the 1st. These two simultaneous processes are independent of each other. However, this term is dependent on sources and vanishes upon the setting of these sources to zero. Regarding the 3rd term, in coordinate space we write one major component of it as (13.5) ∫ 𝑑3 π‘₯ √(2πœ‹)3 𝑒 𝑖 π‘˜βƒ— βˆ™π‘₯ 〈 𝐺 π‘₯𝑦 𝐽 𝑦 βŒͺ = √(2πœ‹)3 2(2πœ‹)2 ∫ 𝑑4 𝑦 𝐽(𝑦)∫ 𝑑3 π‘₯ (2πœ‹)3 𝑒 π‘–π‘˜βƒ— βˆ™π‘₯ 𝐺(𝑦 βˆ’ π‘₯) The integration over the spacetime point/region of y involves the source J(y) and given the Green’s function that acts as a propagator with a causality from spacetime y to spacetime x, the
  • 8. said integration is just a Fourier transformation of the said source from coordinate space to momentum space thus, obtaining the Fourier component of this source at the spacetime point/region of y. Meanwhile, the other integration over the spatial region of π‘₯ implies a Fourier integral definition of a Dirac-delta function 𝛿3 (π‘˜βƒ— + π‘˜βƒ— (1)) π‘₯ at the cited spatial region. In momentum space, (13.5) is given by (13.6) ∫ 𝑑3 π‘₯ √(2πœ‹)3 𝑒 π‘–π‘˜βƒ— βˆ™π‘₯ 〈 𝐺 π‘₯𝑦 𝐽 𝑦 βŒͺ = βˆ’ √(2πœ‹)3 2(2πœ‹)2 ∫ 𝑑4 π‘˜(1) π‘’βˆ’ 𝑖 π‘˜(1) 0 π‘₯0 𝐽̃(βˆ’π‘˜(1)) 𝑦 βˆ’π‘˜ πœ‡ (1) π‘˜(1) πœ‡ + 𝑀2 + π‘–πœ– 𝛿3 (π‘˜βƒ— + π‘˜βƒ— (1)) π‘₯ 𝛿3 (π‘˜βƒ— + π‘˜βƒ— (1)) π‘₯ = ∫ 𝑑3 π‘₯ (2πœ‹)3 𝑒 𝑖( π‘˜βƒ— + π‘˜βƒ— (1)) βˆ™ π‘₯ The remaining major component of 3rd term can be likewise written as (13.7) ∫ 𝑑3 π‘₯ β€² √(2πœ‹)3 π‘’βˆ’ 𝑖 π‘˜βƒ— β€² βˆ™ π‘₯ β€² 〈 𝐺 π‘₯ β€² 𝑦 β€² 𝐽 𝑦′ βŒͺ = √(2πœ‹)3 2(2πœ‹)2 ∫ 𝑑4 𝑦′ 𝐽(𝑦′ )∫ 𝑑3 π‘₯β€² (2πœ‹)3 π‘’βˆ’ 𝑖 π‘˜βƒ— β€² βˆ™ π‘₯β€² 𝐺(𝑦′ βˆ’ π‘₯β€² ) The integration over the spacetime point/region of y’ involves the source J(y’) and given the Green’s function that acts as a propagator with a causality from spacetime y’ to spacetime x’, the said integration is just a Fourier transformation of the said source from coordinate space to momentum space thus, obtaining the Fourier component of this source at the spacetime point/region of y’. Meanwhile, the other integration over the spatial region of π‘₯β€² implies a Fourier integral definition of a Dirac-delta function at the cited spatial region. In momentum space, (13.7) is given by (13.8) ∫ 𝑑3 π‘₯ β€² √(2πœ‹)3 π‘’βˆ’ π‘–π‘˜βƒ— β€² βˆ™ π‘₯ β€² 〈 𝐺 π‘₯ β€² 𝑦 β€² 𝐽 𝑦′ βŒͺ = βˆ’ √(2πœ‹)3 2(2πœ‹)2 ∫ 𝑑4 π‘˜ β€²(1) π‘’βˆ’ 𝑖 π‘˜ β€² (1) 0 π‘₯ β€² 0 𝐽̃(βˆ’π‘˜ β€² (1)) 𝑦 β€² βˆ’π‘˜β€² πœ‡ (1) π‘˜β€² (1) πœ‡ + 𝑀2 + π‘–πœ– 𝛿3 (π‘˜βƒ— β€² βˆ’ π‘˜βƒ— β€² (1)) π‘₯β€²
  • 9. 𝛿3 (π‘˜βƒ— β€² βˆ’ π‘˜βƒ— β€² (1)) π‘₯β€² = ∫ 𝑑3 π‘₯β€² (2πœ‹)3 π‘’βˆ’ 𝑖( π‘˜βƒ— β€² βˆ’ π‘˜βƒ— β€² (1)) βˆ™ π‘₯β€² As a whole what does this 3rd term signify? Taking (13.5) and (13.7) altogether, there are two separate propagations of the scalar field starting at two different initial spacetime points and ending up to scatter at two different spatial points. The scalar field propagating in (13.5) starts at the spacetime point y, then propagates towards the spatial point of π‘₯, carrying the spatial momentum π‘˜βƒ— (1) and then it scatters at this point carrying the spatial momentum π‘˜βƒ— . For this said scalar field, the spatial point of π‘₯ is where the scattering vertex is. At this scattering vertex spatial momenta π‘˜βƒ— and π‘˜βƒ— (1) are summed up to zero and in turn implies a picking π‘˜βƒ— (1) = βˆ’π‘˜βƒ— over the integration variable π‘˜βƒ— (1). Meanwhile, the scalar field propagating in (13.7) starts at the spacetime point y’, then propagates towards the spatial point of π‘₯β€² , carrying the spatial momentum π‘˜βƒ— β€² (1) and then it scatters at this point carrying the spatial momentum π‘˜βƒ— β€² . For this said scalar field, the spatial point of π‘₯β€² is where the scattering vertex is. At this scattering vertex spatial momenta π‘˜βƒ— β€² and π‘˜βƒ— β€² (1) are summed up to zero and in turn implies a picking π‘˜βƒ— β€² (1) = π‘˜βƒ— β€² over the integration variable π‘˜βƒ— β€² (1). So in view of the 3rd term, there are two different scattering vertices (processes), one at the spatial point of π‘₯ and the other one at π‘₯β€² and that the scatterings at these vertices may not be simultaneous, one may happen earlier than the other. However, these scatterings depend on the presence of their corresponding sources at two different initial spacetime points. Basic derivations In this later portion of the draft let us attempt to dig into the basic details and derivations that lead us to the form of the scattering matrix (1). We start with the field operator given for the scalar field (spin 0 boson) (14.1) πœ‘Μ‚( π‘₯) = 1 √𝐿3 βˆ‘ βˆšβ„ √2πœ”(π‘˜βƒ— ) (𝑒 π‘–π‘˜βƒ— β‹… π‘₯ π‘Ž(π‘˜βƒ— ) + π‘’βˆ’ 𝑖 π‘˜βƒ— β‹… π‘₯ π‘Žβ€  (π‘˜βƒ— )) π‘˜βƒ— In here we shall be reminded that spatial momentum vector 𝑝 is related to the wave number vector π‘˜βƒ— via de Broglie’s hypothesis, 𝑝 = β„π‘˜βƒ— , where |π‘˜βƒ— | = 2πœ‹/πœ†. To make things momentarily convenient, we resort to the Heaviside units (𝑐 = ℏ = 1 ) so that 𝑝 = π‘˜βƒ— and reinsert the appropriate values of the constants involved whenever required at the end of calculations although I still retain ℏ in some expressions like in the above. (So for loose convenience we refer to π‘˜βƒ— as spatial momentum.) Also we must take note that in my own personal convenient notation I usually write the equivalence (14.2)
  • 10. 1 √𝐿3 βˆ‘ π‘˜βƒ— ≑ ∫ 𝑑3 π‘˜βƒ— √(2πœ‹)3 We also like to re-emphasize (5.1) here that we can raise a one-particle state |π‘˜βƒ— ⟩ of spatial momentum π‘˜βƒ— from the vacuum state by the application of the raising operator on the vacuum state |0 ⟩ |π‘˜βƒ— ⟩ = π‘Žβ€  (π‘˜βƒ— )|0 ⟩ with its Hermitian adjoint given by (5.2) βŸ¨π‘˜βƒ— | = (|π‘˜βƒ— ⟩ ) † = ⟨0| π‘Ž(π‘˜βƒ— ) In here, annihilating a vacuum state means π‘Ž(π‘˜βƒ— )|0 ⟩ = 0. We can use these in the application of the field operator (14.1) on the vacuum state to obtain (14.3) πœ‘Μ‚( π‘₯)|0 ⟩ = 1 √𝐿3 βˆ‘ βˆšβ„ √2πœ”(π‘˜βƒ— ) π‘’βˆ’ 𝑖 π‘˜βƒ— β‹… π‘₯ |π‘˜βƒ— ⟩ π‘˜βƒ— also along its Hermitian adjoint (14.4) ⟨0| πœ‘Μ‚( π‘₯) = ⟨0| πœ‘Μ‚β€ ( π‘₯) = 1 √𝐿3 βˆ‘ βˆšβ„ √2πœ”(π‘˜βƒ— ) 𝑒 π‘–π‘˜βƒ— β‹… π‘₯ βŸ¨π‘˜βƒ— | π‘˜βƒ— In the above expression, we have a loose definition of a Hermitian field operator that depends on the spatial coordinates π‘₯ (14.5) πœ‘Μ‚( π‘₯) = πœ‘Μ‚β€ ( π‘₯) although this is already apparent in (14.1). Proceeding, we evolve the vacuum state (15.1) |0 ⟩ β†’ π‘ˆ(𝑇)|0 ⟩ and obtain the projection of this state vector on the state vector (14.3) in terms (14.4) to get (15.2)
  • 11. ⟨0| πœ‘Μ‚( π‘₯) π‘ˆ(𝑇)|0⟩ = 1 √𝐿3 βˆ‘ βˆšβ„ √2πœ”(π‘˜βƒ— ) 𝑒 π‘–π‘˜βƒ— β‹… π‘₯ βŸ¨π‘˜βƒ— |π‘ˆ(𝑇)|0⟩ π‘˜βƒ— From here we take note that the given field operator in the expression does not evolve with time but we can perform a similarity transformation on this operator so that in the Heisenberg picture this operator can have time-dependence. (16.1) πœ‘Μ‚( π‘₯) = πœ‘Μ‚( 𝑇, π‘₯) = π‘ˆβ€ ( 𝑇) πœ‘Μ‚ ( π‘₯) π‘ˆ(𝑇) from which we also take note of (16.2) πœ‘Μ‚ ( π‘₯) π‘ˆ( 𝑇) = π‘ˆ( 𝑇) πœ‘Μ‚( π‘₯) whereby we make use of the following very important unitary property of the time evolution operator π‘ˆ( 𝑇) (16.3) π‘ˆβ€ ( 𝑑) π‘ˆ( 𝑑) = π‘ˆ( 𝑑) π‘ˆβ€ ( 𝑑) = π‘ˆ( 𝑑, 𝑑) = 1 π‘ˆ(𝑑𝑖, 𝑑𝑗) = π‘ˆ(𝑑𝑖, 𝑑 π‘˜)π‘ˆ(𝑑 π‘˜, 𝑑𝑗) References [1]Baal, P., A COURSE IN FIELD THEORY [2]Cardy, J., Introduction to Quantum Field Theory [3]Gaberdiel, M., Gehrmann-De Ridder, A., Quantum Field Theory