SlideShare a Scribd company logo
1 of 6
Download to read offline
First Order Calculations on Higgs Boson To Electron-Positron Decay
Roa, Ferdinand J.P.
Author’s remarks
This is exercise number one that attempts to calculate the decay of Higgs Boson into a pair of
electron and its anti-particle, the positron. The said calculations are done to the first order of the
coupling constant in the Yukawa interaction term for the Dirac fields and the Higgs boson field
contained in the Higgs Boson Lagrangian as outlined from a rudimentary π‘†π‘ˆ(2) Γ— π‘ˆ(1)
construction. In this interaction term, the decay considered in this exercise is manifest as we split
up the Dirac fields into positive and negative energy modes in passing from classical fields into
quantum field operators.
We begin with an initial state |π‘–βŸ© that we put as a one-particle Higgs boson state that we raise
from the vacuum. The Higgs boson we assume as a real scalar field and we raise such a Higgs
boson state from the vacuum with the creation bosonic operator π‘Žβ€ 
(π‘˜
βƒ— ) so that the mentioned
one-particle Higgs boson state is given
(1)
|π‘–βŸ© = √(2πœ‹)3√2𝑃(1)
0
π‘Žβ€ 
(𝑃
βƒ—(1))|π‘£π‘Žπ‘βŸ©
𝑃(1)
0
= 𝑃0
(𝑃
βƒ—(1))
Meanwhile, we also raise our final state |π‘“βŸ© from the vacuum as a two-particle electron-positron
state
(2)
|π‘“βŸ© = (√(2πœ‹)3)2
√2π‘˜(1)
0
√2π‘˜(2)
0
𝑏𝛼 β€²
†
(π‘˜
βƒ— (2))𝑑𝛽 β€²
†
(π‘˜
βƒ— (1))|π‘£π‘Žπ‘βŸ©
In (2), we raise the electron state from the vacuum in Fock space with the raising operator 𝑏𝛼 β€²
†
that carries a spin index 𝛼 β€², while we raise an anti-electron state with the raising operator 𝑑𝛽 β€²
†
that also carries a spin index 𝛽 β€². These operators have anti-commutation relations that satisfy
those constructed for the Dirac (Fermion) fields.
Given (2), we then obtain its Hermitian adjoint
(3)
βŸ¨π‘“| = βŸ¨π‘£π‘Žπ‘|𝑑𝛽 β€²(π‘˜
βƒ— (1))𝑏𝛼 β€²(π‘˜
βƒ— (2))√2π‘˜(2)
0
√2π‘˜(1)
0
(√(2πœ‹)3)2
With the application of the time evolution operator (teo) π‘ˆ(𝜏, 𝜏0) we evolve the initial state by
(4)
|π‘–βŸ© β†’ |πœ‘βŸ© = π‘ˆ(𝜏, 𝜏0)|π‘–βŸ©
We resort to Dyson expansion for our teo however we consider only first order expansion with
respect to the interaction coupling constant. This Dyson expansion is given by (in Heaviside
units)
(5)
π‘ˆ(𝜏, 𝜏0) = 1 + βˆ‘ (βˆ’π‘–)π‘ž
∫ 𝑑𝑑1
𝜏
𝜏0
𝑛
π‘ž = 1
∫ 𝑑𝑑2
𝑑1
𝜏0
∫ 𝑑𝑑3
𝑑2
𝜏0
β‹― ∫ π‘‘π‘‘π‘ž
π‘‘π‘žβˆ’1
𝜏0
𝐻
Μ‚(𝑑1)𝐻
Μ‚(𝑑2)𝐻
Μ‚(𝑑3) β‹― 𝐻
Μ‚(π‘‘π‘ž)
where the Hamiltonian operators 𝐻
Μ‚ are time ordered for all time intervals
(6)
π‘‘π‘ž ≀ π‘‘π‘žβˆ’1 ≀ β‹― ≀ 𝑑2 ≀ 𝑑1 ≀ 𝜏
In this exercise since we are dealing only with first order calculations we need not worry about
time ordering and to first order expansion we have
(7)
π‘ˆ(𝜏, 𝜏0) = 1 βˆ’ 𝑖 ∫ 𝑑𝑑
𝜏
𝜏0
𝐻
Μ‚(𝑑)
The time evolution of our initial state is taken in the interaction picture so, the Hamiltonian
involved here is an interaction Hamiltonian that we take as that due to the interaction of the
Higgs boson and the Dirac fields. Thus,
(8)
𝐻
Μ‚(𝑑) = 𝐻
̂𝑖𝑛𝑑(𝑑) = 𝑦 ∫ 𝑑3
π‘₯ πœ“
Μ…
Μ‚ (π‘₯)πœ“
Μ‚(π‘₯) πœ‚Μ‚(π‘₯)
So to first order we write (7) as
(9)
π‘ˆ(𝜏, 𝜏0) = 1 βˆ’ 𝑖 𝑦 ∫ 𝑑4
π‘₯ πœ“
Μ…
Μ‚ (π‘₯)πœ“
Μ‚(π‘₯) πœ‚Μ‚(π‘₯)
∫ 𝑑4
π‘₯ = ∫ 𝑑𝑑
𝜏
𝜏0
∫ 𝑑3
π‘₯
π‘₯ = (π‘₯0
= 𝑑; π‘₯)
All the field operators contained in (9) can be split up into the positive and negative energy
modes that shall come later.
To the first order, we then write the matrix for this decay process as
(10)
βŸ¨π‘“|π‘ˆ(𝜏, 𝜏0)|π‘–βŸ© = βŸ¨π‘“|1 βˆ’ 𝑖 𝑦 ∫ 𝑑4
π‘₯ πœ“
Μ…
Μ‚ (π‘₯)πœ“
Μ‚(π‘₯) πœ‚Μ‚(π‘₯)|π‘–βŸ©
= β‹― βˆ’ 𝑖𝑦 βŸ¨π‘“| ∫ 𝑑4
π‘₯ πœ“
Μ…
Μ‚ (π‘₯)πœ“
Μ‚(π‘₯) πœ‚Μ‚(π‘₯)|π‘–βŸ©
In this expansion of the matrix βŸ¨π‘“|π‘ˆ(𝜏, 𝜏0)|π‘–βŸ©, we have left out the term
(11)
βŸ¨π‘“|π‘–βŸ©
and this is reserved for later discussions. However, an expert reader can already calculate what
this term is upon noting the initial and final state vectors given by (1) and (2), respectively.
We then proceed to split up the field operators into the positive and negative energy modes.
The Higgs boson πœ‚ that is identified here as a real scalar field goes with a corresponding bosonic
field operator in the form given by
(12.1)
πœ‚Μ‚(π‘₯) = ∫ 𝑑𝑉(𝑃
βƒ— ) (π‘’βˆ’π‘–π‘ƒπ‘₯
π‘Ž(𝑃
βƒ— ) + 𝑒𝑖𝑃π‘₯
π‘Žβ€ 
(𝑃
βƒ— ) )
where in short hand we have
(12.2)
∫ 𝑑𝑉(𝑃
βƒ— ) = ∫
𝑑3
𝑃
βƒ—
√(2πœ‹)3
1
√2𝑃0
𝑃0
= 𝑃0
(𝑃
βƒ— )
𝑃π‘₯ = 𝑃0
π‘₯0
βˆ’ 𝑃
βƒ— β‹… π‘₯
π‘šπ‘’π‘‘π‘Ÿπ‘–π‘ π‘ π‘–π‘”π‘›π‘Žπ‘‘π‘’π‘Ÿπ‘’ = βˆ’2
In (12.1) we take
(12.3)
πœ‚Μ‚+(π‘₯) = ∫ 𝑑𝑉(𝑃
βƒ— ) π‘’βˆ’π‘–π‘ƒπ‘₯
π‘Ž(𝑃
βƒ— )
as the field operator in the positive energy mode, while in the negative energy mode we have
(12.4)
πœ‚Μ‚βˆ’(π‘₯) = ∫ 𝑑𝑉(𝑃
βƒ— ) 𝑒𝑖𝑃π‘₯
π‘Žβ€ 
(𝑃
βƒ— )
We operate on the initial state vector (1) with the given field operator for the Higgs boson
(12.5)
πœ‚Μ‚(π‘₯)|π‘–βŸ© = ∫
𝑑3
𝑃
βƒ—
√(2πœ‹)3
1
√2𝑃0
√(2πœ‹)3 √2𝑃(1)
0
(π‘’βˆ’π‘–π‘ƒπ‘₯
π‘Ž(𝑃
βƒ— )π‘Žβ€ 
(𝑃
βƒ—(1))|π‘£π‘Žπ‘βŸ©
+ 𝑒𝑖𝑃π‘₯
π‘Žβ€ 
(𝑃
βƒ— )π‘Žβ€ 
(𝑃
βƒ—(1))|π‘£π‘Žπ‘βŸ© )
𝑃(1)
0
= 𝑃0
(𝑃
βƒ—(1))
In carrying out the indicated integrations over the spatial momenta 𝑃
βƒ— , we are to note the
following commutation relations built for bosonic fields
(12.6)
[π‘Ž(𝑃
βƒ— ), π‘Žβ€ 
(𝑃
βƒ—(1))] = 𝛿3
(𝑃
βƒ— βˆ’ 𝑃
βƒ—(1))
[π‘Žβ€ 
(𝑃
βƒ— ), π‘Žβ€ 
(𝑃
βƒ—(1))] = 0
[π‘Ž(𝑃
βƒ— ), π‘Ž(𝑃
βƒ—(1))] = 0
As for the definition of vacuum state vector we have it such that it satisfies the condition
(12.7)
π‘Ž(𝑃
βƒ—(𝑖))|π‘£π‘Žπ‘βŸ© = 0
and this leads to the vanishing vacuum expectation value of the double annihilation operator
π‘Ž(𝑃
βƒ—(1))π‘Ž(𝑃
βƒ— ),
(12.8)
βŸ¨π‘£π‘Žπ‘|π‘Ž(𝑃
βƒ—(1))π‘Ž(𝑃
βƒ— )|π‘£π‘Žπ‘βŸ© = 0
From this we get
(12.9)
βŸ¨π‘£π‘Žπ‘|π‘Žβ€ 
(𝑃
βƒ— ) π‘Žβ€ 
(𝑃
βƒ—(1))|π‘£π‘Žπ‘βŸ© = (βŸ¨π‘£π‘Žπ‘|π‘Ž(𝑃
βƒ—(1))π‘Ž(𝑃
βƒ— )|π‘£π‘Žπ‘βŸ© )
†
= 0
The first line of (12.6) stands to imply
(12.10)
π‘Ž(𝑃
βƒ— )π‘Žβ€ 
(𝑃
βƒ— (1))|π‘£π‘Žπ‘βŸ© = 𝛿3
(𝑃
βƒ— βˆ’ 𝑃
βƒ—(1))|π‘£π‘Žπ‘βŸ©
Noting all these together and after considering only the relevant term in (12.5), the integration
over the said spatial momenta yields
(12.11)
πœ‚Μ‚(π‘₯)|π‘–βŸ© = π‘’βˆ’π‘–π‘ƒ
βƒ— (1)π‘₯
|π‘£π‘Žπ‘βŸ©
where in integrating, we have the pickings
(12.12)
𝑃
βƒ— = 𝑃
βƒ—(1)
𝑃0
= 𝑃(1)
0
= 𝑃0
(𝑃
βƒ—(1))
𝑃 = 𝑃(1) = 𝑃(𝑃
βƒ—(1))
Given this result, we can now advance a little further from (10) to write
(12.13)
βŸ¨π‘“|π‘ˆ(𝜏, 𝜏0)|π‘–βŸ© = β‹― βˆ’ 𝑖𝑦 βŸ¨π‘“| ∫ 𝑑4
π‘₯ πœ“
Μ…
Μ‚ (π‘₯)πœ“
Μ‚(π‘₯)π‘’βˆ’π‘–π‘ƒ
βƒ— (1)π‘₯
|π‘£π‘Žπ‘βŸ©
(To be continued…)
References
[1]Baal, P., A COURSE IN FIELD THEORY
[2]Cardy, J., Introduction to Quantum Field Theory
[3]Gaberdiel, M., Gehrmann-De Ridder, A., Quantum Field Theory
[4]Ashok Das, Lectures on Quantum Field Theory, World Scientific Publishing Co. Pte. Ltd., 27,
Warren Street, Suite 401-402, Hackensack, NJ 07601
[5]W. Hollik, Quantum field theory and the Standard Model, arXiv:1012.3883v1 [hep-ph]

More Related Content

What's hot

Dealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbDealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbfoxtrot jp R
Β 
Dealinggreensfncsolft
DealinggreensfncsolftDealinggreensfncsolft
Dealinggreensfncsolftfoxtrot jp R
Β 
Dealinggreensfncsolft sqrd(10 5-2k16)
Dealinggreensfncsolft   sqrd(10 5-2k16)Dealinggreensfncsolft   sqrd(10 5-2k16)
Dealinggreensfncsolft sqrd(10 5-2k16)foxtrot jp R
Β 
Sweeping discussions on dirac field1 update3 sqrd
Sweeping discussions on dirac field1 update3   sqrdSweeping discussions on dirac field1 update3   sqrd
Sweeping discussions on dirac field1 update3 sqrdfoxtrot jp R
Β 
Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016foxtrot jp R
Β 
Outgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghpOutgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghpfoxtrot jp R
Β 
Outgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsOutgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsfoxtrot jp R
Β 
Outgoing ingoingkleingordon
Outgoing ingoingkleingordonOutgoing ingoingkleingordon
Outgoing ingoingkleingordonfoxtrot jp R
Β 
One particle to_onepartlce_scattering_sqrd
One particle to_onepartlce_scattering_sqrdOne particle to_onepartlce_scattering_sqrd
One particle to_onepartlce_scattering_sqrdfoxtrot jp R
Β 
Sw2gr1 set a
Sw2gr1 set aSw2gr1 set a
Sw2gr1 set afoxtrot jp R
Β 
Stringhighlights2015
Stringhighlights2015Stringhighlights2015
Stringhighlights2015foxtrot jp R
Β 
Parallel tansport sssqrd
Parallel tansport sssqrdParallel tansport sssqrd
Parallel tansport sssqrdfoxtrot jp R
Β 
Trialdraftsppformat dimen test1
Trialdraftsppformat dimen   test1Trialdraftsppformat dimen   test1
Trialdraftsppformat dimen test1foxtrot jp R
Β 
One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1foxtrot jp R
Β 
One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020foxtrot jp R
Β 
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18foxtrot jp R
Β 
Outgoing ingoingkleingordon spvmforminit_proceedfrom
Outgoing ingoingkleingordon spvmforminit_proceedfromOutgoing ingoingkleingordon spvmforminit_proceedfrom
Outgoing ingoingkleingordon spvmforminit_proceedfromfoxtrot jp R
Β 
Hawkinrad a sourceasd
Hawkinrad a sourceasdHawkinrad a sourceasd
Hawkinrad a sourceasdfoxtrot jp R
Β 

What's hot (19)

Dealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbDealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdb
Β 
Dealinggreensfncsolft
DealinggreensfncsolftDealinggreensfncsolft
Dealinggreensfncsolft
Β 
Dealinggreensfncsolft sqrd(10 5-2k16)
Dealinggreensfncsolft   sqrd(10 5-2k16)Dealinggreensfncsolft   sqrd(10 5-2k16)
Dealinggreensfncsolft sqrd(10 5-2k16)
Β 
Sweeping discussions on dirac field1 update3 sqrd
Sweeping discussions on dirac field1 update3   sqrdSweeping discussions on dirac field1 update3   sqrd
Sweeping discussions on dirac field1 update3 sqrd
Β 
Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016
Β 
Outgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghpOutgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghp
Β 
Outgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsOutgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julups
Β 
Outgoing ingoingkleingordon
Outgoing ingoingkleingordonOutgoing ingoingkleingordon
Outgoing ingoingkleingordon
Β 
One particle to_onepartlce_scattering_sqrd
One particle to_onepartlce_scattering_sqrdOne particle to_onepartlce_scattering_sqrd
One particle to_onepartlce_scattering_sqrd
Β 
Sw2gr1 sqrd
Sw2gr1   sqrdSw2gr1   sqrd
Sw2gr1 sqrd
Β 
Sw2gr1 set a
Sw2gr1 set aSw2gr1 set a
Sw2gr1 set a
Β 
Stringhighlights2015
Stringhighlights2015Stringhighlights2015
Stringhighlights2015
Β 
Parallel tansport sssqrd
Parallel tansport sssqrdParallel tansport sssqrd
Parallel tansport sssqrd
Β 
Trialdraftsppformat dimen test1
Trialdraftsppformat dimen   test1Trialdraftsppformat dimen   test1
Trialdraftsppformat dimen test1
Β 
One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1
Β 
One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020
Β 
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18
Β 
Outgoing ingoingkleingordon spvmforminit_proceedfrom
Outgoing ingoingkleingordon spvmforminit_proceedfromOutgoing ingoingkleingordon spvmforminit_proceedfrom
Outgoing ingoingkleingordon spvmforminit_proceedfrom
Β 
Hawkinrad a sourceasd
Hawkinrad a sourceasdHawkinrad a sourceasd
Hawkinrad a sourceasd
Β 

Similar to Higgsbosontoelectron positron decay_dsply

One particle to_onepartlce_scattering_12082020_fordisplay
One particle to_onepartlce_scattering_12082020_fordisplayOne particle to_onepartlce_scattering_12082020_fordisplay
One particle to_onepartlce_scattering_12082020_fordisplayfoxtrot jp R
Β 
One particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpyOne particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpyfoxtrot jp R
Β 
Conformal Boundary conditions
Conformal Boundary conditionsConformal Boundary conditions
Conformal Boundary conditionsHassaan Saleem
Β 
Very brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrdVery brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrdfoxtrot jp R
Β 
Very brief highlights on some key details 2
Very brief highlights on some key details 2Very brief highlights on some key details 2
Very brief highlights on some key details 2foxtrot jp R
Β 
Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18foxtrot jp R
Β 
Fieldtheoryhighlights2015 setbb
Fieldtheoryhighlights2015 setbbFieldtheoryhighlights2015 setbb
Fieldtheoryhighlights2015 setbbfoxtrot jp R
Β 
Certain Generalized Birecurrent Tensors In 퐊
Certain Generalized Birecurrent Tensors In 퐊 Certain Generalized Birecurrent Tensors In 퐊
Certain Generalized Birecurrent Tensors In 퐊 inventionjournals
Β 
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsplyfoxtrot jp R
Β 
Fieldtheoryhighlights2015 setb
Fieldtheoryhighlights2015 setbFieldtheoryhighlights2015 setb
Fieldtheoryhighlights2015 setbfoxtrot jp R
Β 
Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Hassaan Saleem
Β 
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplayfoxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-time 23052020-sqrd
The klein gordon field in two-dimensional rindler space-time  23052020-sqrdThe klein gordon field in two-dimensional rindler space-time  23052020-sqrd
The klein gordon field in two-dimensional rindler space-time 23052020-sqrdfoxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220foxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-time 16052020
The klein gordon field in two-dimensional rindler space-time 16052020The klein gordon field in two-dimensional rindler space-time 16052020
The klein gordon field in two-dimensional rindler space-time 16052020foxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-time 04232020updts
The klein gordon field in two-dimensional rindler space-time  04232020updtsThe klein gordon field in two-dimensional rindler space-time  04232020updts
The klein gordon field in two-dimensional rindler space-time 04232020updtsfoxtrot jp R
Β 
Parallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrdParallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrdfoxtrot jp R
Β 

Similar to Higgsbosontoelectron positron decay_dsply (20)

One particle to_onepartlce_scattering_12082020_fordisplay
One particle to_onepartlce_scattering_12082020_fordisplayOne particle to_onepartlce_scattering_12082020_fordisplay
One particle to_onepartlce_scattering_12082020_fordisplay
Β 
One particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpyOne particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpy
Β 
Conformal Boundary conditions
Conformal Boundary conditionsConformal Boundary conditions
Conformal Boundary conditions
Β 
Very brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrdVery brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrd
Β 
Very brief highlights on some key details 2
Very brief highlights on some key details 2Very brief highlights on some key details 2
Very brief highlights on some key details 2
Β 
Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18
Β 
lec14.ppt
lec14.pptlec14.ppt
lec14.ppt
Β 
lec23.ppt
lec23.pptlec23.ppt
lec23.ppt
Β 
Fieldtheoryhighlights2015 setbb
Fieldtheoryhighlights2015 setbbFieldtheoryhighlights2015 setbb
Fieldtheoryhighlights2015 setbb
Β 
Certain Generalized Birecurrent Tensors In 퐊
Certain Generalized Birecurrent Tensors In 퐊 Certain Generalized Birecurrent Tensors In 퐊
Certain Generalized Birecurrent Tensors In 퐊
Β 
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
Β 
Fieldtheoryhighlights2015 setb
Fieldtheoryhighlights2015 setbFieldtheoryhighlights2015 setb
Fieldtheoryhighlights2015 setb
Β 
Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)
Β 
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
Β 
The klein gordon field in two-dimensional rindler space-time 23052020-sqrd
The klein gordon field in two-dimensional rindler space-time  23052020-sqrdThe klein gordon field in two-dimensional rindler space-time  23052020-sqrd
The klein gordon field in two-dimensional rindler space-time 23052020-sqrd
Β 
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
Β 
The klein gordon field in two-dimensional rindler space-time 16052020
The klein gordon field in two-dimensional rindler space-time 16052020The klein gordon field in two-dimensional rindler space-time 16052020
The klein gordon field in two-dimensional rindler space-time 16052020
Β 
The klein gordon field in two-dimensional rindler space-time 04232020updts
The klein gordon field in two-dimensional rindler space-time  04232020updtsThe klein gordon field in two-dimensional rindler space-time  04232020updts
The klein gordon field in two-dimensional rindler space-time 04232020updts
Β 
Parallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrdParallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrd
Β 
Bhdpis1
Bhdpis1Bhdpis1
Bhdpis1
Β 

Recently uploaded

Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
Β 
preservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxpreservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxnoordubaliya2003
Β 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naJASISJULIANOELYNV
Β 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
Β 
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”soniya singh
Β 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxFarihaAbdulRasheed
Β 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxMurugaveni B
Β 
User Guide: Capricorn FLXβ„’ Weather Station
User Guide: Capricorn FLXβ„’ Weather StationUser Guide: Capricorn FLXβ„’ Weather Station
User Guide: Capricorn FLXβ„’ Weather StationColumbia Weather Systems
Β 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsssuserddc89b
Β 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxJorenAcuavera1
Β 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPirithiRaju
Β 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024AyushiRastogi48
Β 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPirithiRaju
Β 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
Β 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxpriyankatabhane
Β 
User Guide: Magellan MXβ„’ Weather Station
User Guide: Magellan MXβ„’ Weather StationUser Guide: Magellan MXβ„’ Weather Station
User Guide: Magellan MXβ„’ Weather StationColumbia Weather Systems
Β 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024innovationoecd
Β 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPirithiRaju
Β 
User Guide: Pulsarβ„’ Weather Station (Columbia Weather Systems)
User Guide: Pulsarβ„’ Weather Station (Columbia Weather Systems)User Guide: Pulsarβ„’ Weather Station (Columbia Weather Systems)
User Guide: Pulsarβ„’ Weather Station (Columbia Weather Systems)Columbia Weather Systems
Β 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfWildaNurAmalia2
Β 

Recently uploaded (20)

Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Β 
preservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxpreservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptx
Β 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by na
Β 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Β 
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”
Β 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
Β 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
Β 
User Guide: Capricorn FLXβ„’ Weather Station
User Guide: Capricorn FLXβ„’ Weather StationUser Guide: Capricorn FLXβ„’ Weather Station
User Guide: Capricorn FLXβ„’ Weather Station
Β 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physics
Β 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptx
Β 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Β 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024
Β 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdf
Β 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Β 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Β 
User Guide: Magellan MXβ„’ Weather Station
User Guide: Magellan MXβ„’ Weather StationUser Guide: Magellan MXβ„’ Weather Station
User Guide: Magellan MXβ„’ Weather Station
Β 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024
Β 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Β 
User Guide: Pulsarβ„’ Weather Station (Columbia Weather Systems)
User Guide: Pulsarβ„’ Weather Station (Columbia Weather Systems)User Guide: Pulsarβ„’ Weather Station (Columbia Weather Systems)
User Guide: Pulsarβ„’ Weather Station (Columbia Weather Systems)
Β 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
Β 

Higgsbosontoelectron positron decay_dsply

  • 1. First Order Calculations on Higgs Boson To Electron-Positron Decay Roa, Ferdinand J.P. Author’s remarks This is exercise number one that attempts to calculate the decay of Higgs Boson into a pair of electron and its anti-particle, the positron. The said calculations are done to the first order of the coupling constant in the Yukawa interaction term for the Dirac fields and the Higgs boson field contained in the Higgs Boson Lagrangian as outlined from a rudimentary π‘†π‘ˆ(2) Γ— π‘ˆ(1) construction. In this interaction term, the decay considered in this exercise is manifest as we split up the Dirac fields into positive and negative energy modes in passing from classical fields into quantum field operators. We begin with an initial state |π‘–βŸ© that we put as a one-particle Higgs boson state that we raise from the vacuum. The Higgs boson we assume as a real scalar field and we raise such a Higgs boson state from the vacuum with the creation bosonic operator π‘Žβ€  (π‘˜ βƒ— ) so that the mentioned one-particle Higgs boson state is given (1) |π‘–βŸ© = √(2πœ‹)3√2𝑃(1) 0 π‘Žβ€  (𝑃 βƒ—(1))|π‘£π‘Žπ‘βŸ© 𝑃(1) 0 = 𝑃0 (𝑃 βƒ—(1)) Meanwhile, we also raise our final state |π‘“βŸ© from the vacuum as a two-particle electron-positron state (2) |π‘“βŸ© = (√(2πœ‹)3)2 √2π‘˜(1) 0 √2π‘˜(2) 0 𝑏𝛼 β€² † (π‘˜ βƒ— (2))𝑑𝛽 β€² † (π‘˜ βƒ— (1))|π‘£π‘Žπ‘βŸ© In (2), we raise the electron state from the vacuum in Fock space with the raising operator 𝑏𝛼 β€² † that carries a spin index 𝛼 β€², while we raise an anti-electron state with the raising operator 𝑑𝛽 β€² †
  • 2. that also carries a spin index 𝛽 β€². These operators have anti-commutation relations that satisfy those constructed for the Dirac (Fermion) fields. Given (2), we then obtain its Hermitian adjoint (3) βŸ¨π‘“| = βŸ¨π‘£π‘Žπ‘|𝑑𝛽 β€²(π‘˜ βƒ— (1))𝑏𝛼 β€²(π‘˜ βƒ— (2))√2π‘˜(2) 0 √2π‘˜(1) 0 (√(2πœ‹)3)2 With the application of the time evolution operator (teo) π‘ˆ(𝜏, 𝜏0) we evolve the initial state by (4) |π‘–βŸ© β†’ |πœ‘βŸ© = π‘ˆ(𝜏, 𝜏0)|π‘–βŸ© We resort to Dyson expansion for our teo however we consider only first order expansion with respect to the interaction coupling constant. This Dyson expansion is given by (in Heaviside units) (5) π‘ˆ(𝜏, 𝜏0) = 1 + βˆ‘ (βˆ’π‘–)π‘ž ∫ 𝑑𝑑1 𝜏 𝜏0 𝑛 π‘ž = 1 ∫ 𝑑𝑑2 𝑑1 𝜏0 ∫ 𝑑𝑑3 𝑑2 𝜏0 β‹― ∫ π‘‘π‘‘π‘ž π‘‘π‘žβˆ’1 𝜏0 𝐻 Μ‚(𝑑1)𝐻 Μ‚(𝑑2)𝐻 Μ‚(𝑑3) β‹― 𝐻 Μ‚(π‘‘π‘ž) where the Hamiltonian operators 𝐻 Μ‚ are time ordered for all time intervals (6) π‘‘π‘ž ≀ π‘‘π‘žβˆ’1 ≀ β‹― ≀ 𝑑2 ≀ 𝑑1 ≀ 𝜏 In this exercise since we are dealing only with first order calculations we need not worry about time ordering and to first order expansion we have (7) π‘ˆ(𝜏, 𝜏0) = 1 βˆ’ 𝑖 ∫ 𝑑𝑑 𝜏 𝜏0 𝐻 Μ‚(𝑑)
  • 3. The time evolution of our initial state is taken in the interaction picture so, the Hamiltonian involved here is an interaction Hamiltonian that we take as that due to the interaction of the Higgs boson and the Dirac fields. Thus, (8) 𝐻 Μ‚(𝑑) = 𝐻 ̂𝑖𝑛𝑑(𝑑) = 𝑦 ∫ 𝑑3 π‘₯ πœ“ Μ… Μ‚ (π‘₯)πœ“ Μ‚(π‘₯) πœ‚Μ‚(π‘₯) So to first order we write (7) as (9) π‘ˆ(𝜏, 𝜏0) = 1 βˆ’ 𝑖 𝑦 ∫ 𝑑4 π‘₯ πœ“ Μ… Μ‚ (π‘₯)πœ“ Μ‚(π‘₯) πœ‚Μ‚(π‘₯) ∫ 𝑑4 π‘₯ = ∫ 𝑑𝑑 𝜏 𝜏0 ∫ 𝑑3 π‘₯ π‘₯ = (π‘₯0 = 𝑑; π‘₯) All the field operators contained in (9) can be split up into the positive and negative energy modes that shall come later. To the first order, we then write the matrix for this decay process as (10) βŸ¨π‘“|π‘ˆ(𝜏, 𝜏0)|π‘–βŸ© = βŸ¨π‘“|1 βˆ’ 𝑖 𝑦 ∫ 𝑑4 π‘₯ πœ“ Μ… Μ‚ (π‘₯)πœ“ Μ‚(π‘₯) πœ‚Μ‚(π‘₯)|π‘–βŸ© = β‹― βˆ’ 𝑖𝑦 βŸ¨π‘“| ∫ 𝑑4 π‘₯ πœ“ Μ… Μ‚ (π‘₯)πœ“ Μ‚(π‘₯) πœ‚Μ‚(π‘₯)|π‘–βŸ© In this expansion of the matrix βŸ¨π‘“|π‘ˆ(𝜏, 𝜏0)|π‘–βŸ©, we have left out the term (11) βŸ¨π‘“|π‘–βŸ© and this is reserved for later discussions. However, an expert reader can already calculate what this term is upon noting the initial and final state vectors given by (1) and (2), respectively.
  • 4. We then proceed to split up the field operators into the positive and negative energy modes. The Higgs boson πœ‚ that is identified here as a real scalar field goes with a corresponding bosonic field operator in the form given by (12.1) πœ‚Μ‚(π‘₯) = ∫ 𝑑𝑉(𝑃 βƒ— ) (π‘’βˆ’π‘–π‘ƒπ‘₯ π‘Ž(𝑃 βƒ— ) + 𝑒𝑖𝑃π‘₯ π‘Žβ€  (𝑃 βƒ— ) ) where in short hand we have (12.2) ∫ 𝑑𝑉(𝑃 βƒ— ) = ∫ 𝑑3 𝑃 βƒ— √(2πœ‹)3 1 √2𝑃0 𝑃0 = 𝑃0 (𝑃 βƒ— ) 𝑃π‘₯ = 𝑃0 π‘₯0 βˆ’ 𝑃 βƒ— β‹… π‘₯ π‘šπ‘’π‘‘π‘Ÿπ‘–π‘ π‘ π‘–π‘”π‘›π‘Žπ‘‘π‘’π‘Ÿπ‘’ = βˆ’2 In (12.1) we take (12.3) πœ‚Μ‚+(π‘₯) = ∫ 𝑑𝑉(𝑃 βƒ— ) π‘’βˆ’π‘–π‘ƒπ‘₯ π‘Ž(𝑃 βƒ— ) as the field operator in the positive energy mode, while in the negative energy mode we have (12.4) πœ‚Μ‚βˆ’(π‘₯) = ∫ 𝑑𝑉(𝑃 βƒ— ) 𝑒𝑖𝑃π‘₯ π‘Žβ€  (𝑃 βƒ— ) We operate on the initial state vector (1) with the given field operator for the Higgs boson
  • 5. (12.5) πœ‚Μ‚(π‘₯)|π‘–βŸ© = ∫ 𝑑3 𝑃 βƒ— √(2πœ‹)3 1 √2𝑃0 √(2πœ‹)3 √2𝑃(1) 0 (π‘’βˆ’π‘–π‘ƒπ‘₯ π‘Ž(𝑃 βƒ— )π‘Žβ€  (𝑃 βƒ—(1))|π‘£π‘Žπ‘βŸ© + 𝑒𝑖𝑃π‘₯ π‘Žβ€  (𝑃 βƒ— )π‘Žβ€  (𝑃 βƒ—(1))|π‘£π‘Žπ‘βŸ© ) 𝑃(1) 0 = 𝑃0 (𝑃 βƒ—(1)) In carrying out the indicated integrations over the spatial momenta 𝑃 βƒ— , we are to note the following commutation relations built for bosonic fields (12.6) [π‘Ž(𝑃 βƒ— ), π‘Žβ€  (𝑃 βƒ—(1))] = 𝛿3 (𝑃 βƒ— βˆ’ 𝑃 βƒ—(1)) [π‘Žβ€  (𝑃 βƒ— ), π‘Žβ€  (𝑃 βƒ—(1))] = 0 [π‘Ž(𝑃 βƒ— ), π‘Ž(𝑃 βƒ—(1))] = 0 As for the definition of vacuum state vector we have it such that it satisfies the condition (12.7) π‘Ž(𝑃 βƒ—(𝑖))|π‘£π‘Žπ‘βŸ© = 0 and this leads to the vanishing vacuum expectation value of the double annihilation operator π‘Ž(𝑃 βƒ—(1))π‘Ž(𝑃 βƒ— ), (12.8) βŸ¨π‘£π‘Žπ‘|π‘Ž(𝑃 βƒ—(1))π‘Ž(𝑃 βƒ— )|π‘£π‘Žπ‘βŸ© = 0 From this we get (12.9) βŸ¨π‘£π‘Žπ‘|π‘Žβ€  (𝑃 βƒ— ) π‘Žβ€  (𝑃 βƒ—(1))|π‘£π‘Žπ‘βŸ© = (βŸ¨π‘£π‘Žπ‘|π‘Ž(𝑃 βƒ—(1))π‘Ž(𝑃 βƒ— )|π‘£π‘Žπ‘βŸ© ) † = 0
  • 6. The first line of (12.6) stands to imply (12.10) π‘Ž(𝑃 βƒ— )π‘Žβ€  (𝑃 βƒ— (1))|π‘£π‘Žπ‘βŸ© = 𝛿3 (𝑃 βƒ— βˆ’ 𝑃 βƒ—(1))|π‘£π‘Žπ‘βŸ© Noting all these together and after considering only the relevant term in (12.5), the integration over the said spatial momenta yields (12.11) πœ‚Μ‚(π‘₯)|π‘–βŸ© = π‘’βˆ’π‘–π‘ƒ βƒ— (1)π‘₯ |π‘£π‘Žπ‘βŸ© where in integrating, we have the pickings (12.12) 𝑃 βƒ— = 𝑃 βƒ—(1) 𝑃0 = 𝑃(1) 0 = 𝑃0 (𝑃 βƒ—(1)) 𝑃 = 𝑃(1) = 𝑃(𝑃 βƒ—(1)) Given this result, we can now advance a little further from (10) to write (12.13) βŸ¨π‘“|π‘ˆ(𝜏, 𝜏0)|π‘–βŸ© = β‹― βˆ’ 𝑖𝑦 βŸ¨π‘“| ∫ 𝑑4 π‘₯ πœ“ Μ… Μ‚ (π‘₯)πœ“ Μ‚(π‘₯)π‘’βˆ’π‘–π‘ƒ βƒ— (1)π‘₯ |π‘£π‘Žπ‘βŸ© (To be continued…) References [1]Baal, P., A COURSE IN FIELD THEORY [2]Cardy, J., Introduction to Quantum Field Theory [3]Gaberdiel, M., Gehrmann-De Ridder, A., Quantum Field Theory [4]Ashok Das, Lectures on Quantum Field Theory, World Scientific Publishing Co. Pte. Ltd., 27, Warren Street, Suite 401-402, Hackensack, NJ 07601 [5]W. Hollik, Quantum field theory and the Standard Model, arXiv:1012.3883v1 [hep-ph]