SlideShare a Scribd company logo
1 of 23
Download to read offline
Property, Performance, and Life of Today's Large-format
Electrochemical Capacitors
John R. Miller a,b, Sue M. Butler a, David M. Ryan c, and Seana McNeal c
a

JME, Inc., 23500 Mercantile Road, Suite L, Beachwood, OH 44122

b

Great Lakes Energy Institute, Case Western Reserve University, Cleveland Ohio 44106
c

Air Force Research Laboratory, Wright Patterson Air Force Base, Dayton, OH USA

JME

2013 ECCAP Symposium

Slide 1
June 25, 26, 2013 Strasbourg, France
Evaluate today’s large electrochemical capacitors
for use in a high-power, high-rate cyclic application

Power

Objective:

TTime (s)
im
e

2

Approach: Purchase and evaluate cells

JME

•
•
•
•
•
•

Six technologies selected, 12-cell of each type
Initial two-terminal electrical response
Property distribution characterization
Constant-voltage aging at elevated temperature
Thermal performance characterization
Response to credible abuse
Slide 2
Six Capacitor Technologies in Study
Manufacturer

Origin

Design

Electrolyte

Cell Form Factor

Maxwell

USA

symmetric C-C

acetonitrile

right cylinder

Ioxus

USA

symmetric C-C

acetonitrile

right cylinder

Nippon ChemiCon

Japan

symmetric C-C

carbonate

right cylinder

JM Energy

Japan

asymmetric (LIC)

carbonate

prismatic

Yunasko

Ukraine

symmetric C-C

acetonitrile

prismatic

BatsCap

France

symmetric C-C

acetonitrile

right cylinder

JME

Slide 3
Electrochemical Capacitor Cells in this Study

Maxwell—US
2.7 V 3000 F

JM Energy-Japan
3.8 V 1100 F

JME

Ioxus—US
2.7 V 3000 F

Yunasko—Ukraine
2.7 V, 1200 F
Slide 4

Nippon Chemi-Con
DXE 2.5 V 1100 F

BatsCap—France
2.7 V, 1200 F
Initial Properties
Manufacturer

Published Ratings

Stored
Energy*
(Wh/kg)

Measured DC
Resistance**
(µΩ
µΩ)
µΩ

Device
Response
Time*** (s)

Maxwell

3000 F, 2.7 V

4.5

229

0.7

Ioxus

3000 F, 2.7 V

4.3

231

0.7

Nippon
Chemicon

1100 F, 2.5 V

2.8

883

1.1

JM Energy

1100 F, 3.8 V
(2.2 V min)

10.1

2080

2.3

Yunasko

1200 F, 2.7 V

4.0

158

0.2

BatsCap

1200 F, 2.7 V

4.0

327

0.4

• Calculated based on rated capacitance and voltage window between rated V and
half-rated V with JM Energy measured over full voltage window
** Measured via current-interrupt method (5 second delay)– average of all 12 cells
*** Product of DC resistance and capacitance value

JME

Slide 5
Maxwell 3000 F Cells
Electrochemical Impedence Spectroscopy
NyQuist Representation- Maxwell capacitors
-0.001

- Imaginary (ohm)

-0.0008

Equivalent series resistance
(ESR ) is the intersection
with the real axis
~150 µΩ

-0.0006

-0.0004

-0.0002

(Data for 15 cells shown)

0
0

JME

0.0002

Slide 6

0.0004
0.0006
Real (ohm)

0.0008

0.001
Yunasko 1200 F Cells
Electrochemical Impedence Spectroscopy
NyQuist Representation - Yunasko Capacitors
-0.0005
-0.00045

- Imaginary (ohm)

-0.0004

Equivalent series resistance
(ESR ) is the intersection
with the real axis
< 100 µΩ

-0.00035
-0.0003

No porous electrode
behavior shown

-0.00025
-0.0002
-0.00015
-0.0001
-0.00005

(Data for 12 cells shown)

0
0

0.0001

0.0002

0.0003

Real (ohm)

JME

Slide 7

0.0004

0.0005
Initial Complex-Plane Impedance Plot
-0.003

Ioxus

- Imaginary (ohms)

-0.0025

Maxwell

-0.002

Yunasko
Batscap

-0.0015

NCC

-0.001

JM Energy
-0.0005
0

JME

0

0.0005 0.001

0.0015 0.002

Real (ohms)
Slide 8

0.0025 0.003
Gamry Reference 3000
Cell voltage at 0.75•VRated
Bode Representation
Phase Angle Comparison

Ioxus 11d

-90

Phase Angle (degrees)

Maxwell 13
-75

Yunasko 1

-60

Batscap 1
NCC 3c

-45
-30

JM Energy 12

Response
of these three
technologies is
very similar

-15
0
0.001

JME

0.01

0.1

Frequency (Hz)
Slide 9

1

10
Constant-current Discharge Capacitance
3500
3000
Maxwell 3000 F

Capacitance (F)

2500

Ioxus 3000 F
Nippon Chemicon 1100 F

2000

JM Energy 1200 F
Yunasko 1200 F

1500
1000
500
0
1

JME

10

100
Discharge Time (s)
Slide 10

1000
EQUIVALENT CIRCUIT MODELS
(25 oC)

Technology
IOXUS
Maxwell
BatsCap
Nippon Chemi-Con
JM Energy
Yunasko

L1(µH)
µ

R1 (mΩ)
Ω

C1 (F)

R2 (mΩ )
Ω

C2 (F)

0.11
0.16
0.15
0.07
0.10
0.03

0.16
0.17
0.25
0.43
1.00
0.10

900
1000
270
190
240
1070

0.10
0.11
0.19
0.36
0.51
--

2100
2200
720
1000
680
--

Only the Yunasko technology can be accurately modeled using one time constant

JME

Slide 11
Reliability Study
(as June 24, 2013)

Manufacturer

Aging hours

Maxwell

5900

Ioxus

5900

4 cells at Vmax

Nippon ChemiCon

5900

and

JM Energy

5700

Yunasko

5800

BatsCap

5450

JME

CONSTANT VOLTAGE (2 levels)

5 cells at Vmax - 0.1 V
age at
maximum rated temperature

Slide 12
Three Groups of Capacitors Shown
Mounted in Aging Chamber

Constant T at constant voltage
(no cycling involved)
perform periodic measurements

JME

Slide 13
AGING RESULTS
2.7 V
2.6 V

10
0
-10
-20
-30
-40
-50
-60

300 A discharge

-70

20
Change in Capacitance (%)

Change in Capacitance (%)

Ioxus 3000 F Aging study - Change in Capacitance

Maxwell 3000 F Aging - Change in Capacitance

20

-80

10
0
-10
-20
-30
-40
2.7 V, 65 C
2.6 V, 65 C

-50
-60

300 A discharge

-70
-80

0

1000

2000

3000

4000

5000

6000

0

1000

2000

Time (hours)

Maxwell 3000 F Aging study - Change in
Resistance

2.7 V
2.6 V

700
600

5000

6000

900

300 A discharge

800

Change in Resistance (%)

Change in Resistance (%)

900

4000

Ioxus 3000 F Aging study - Change in Resistance

1000

1000

3000
Time (hours)

500
400
300
200
100

800

2.7 V, 65 C
2.6 V, 65 C

700
600

300 A discharge

500
400
300
200
100

0
0

1000

JME

2000

3000

4000

5000

6000

0
0

Time (hours)

Slide 14

1000

2000

3000
4000
Time (hours)

5000

65o C

6000
AGING RESULTS
65 C

10

20

2.7 VV
2.5
2.6 VV
2.4

0

Change in Capacitance (%)

Change in Capacitance (%)

Batscap 1200 F Aging study - Change in Capacitance

NCC 1200 F Aging study - Change in Capacitance

20

-10
-20
-30
-40
-50
-60
-70

150 A discharge

-80

2.7 V
2.6 V

10
0

150 A discharge

-10
-20
-30
-40
-50
lost electrolyte
due to JME error

-60
-70
-80

0

1000

2000

3000

4000

5000

6000

0

1000

2000

Time (hours)

Change in Resistance (%)

800

6000

2.7 V
2.6 V

900

150 A discharge

700

5000

1000

2.7 VV
2.5
2.4
2.6 VV

900

4000

Batscap 1200 F Aging study - Change in Resistance

NCC 1200 F Aging study - Change in Resistance
Change in Resistance (%)

1000

3000
Time (hours)

600
500
400
300
200

800
lost electrolyte
(due to JME error)

700
600

150 A discharge

500
400
300
200
100

100

0

0
0

1000

JME

2000

3000

4000

5000

6000

Time (hours)

Slide 15

0

1000

2000

3000
4000
Time (hours)

5000

65o C

6000
AGING RESULTS
Yunasko 1200 F Aging - Change in Capacitance

JM Energy 1100 F Aging study - Change in Capacitance

20

5

10

Change in Capacitance (%)

Change in Capacitance (%)

10
0
-5
-10
-15

3.8 V
3.7 V

-20
-25

150 A discharge

-30
-35

0
-10
-20
-30
-40

2.7 V
2.6 V

-50

150 A discharge

-60

-40
0

1000

2000

3000
4000
Time (hours)

5000

-80

6000

0

1000

JM Energy 1200 F Aging study - Change in Resistance

Change in Resistance (%)

300

150 A discharge
200
100
0
-100
0

1000

JME

2000

3000
4000
Time (hours)

65o C

5000

6000

3000

4000

5000

6000

Yunasko 1200 F Aging - Change in Resistance

5000

3.8 V
3.7 V

2000

Time (hours)

400
Change in Resistance (%)

Electrolyte leakage at seal

-70

2.7 V
2.6 V

4000

Electrolyte leakage at seal

150 A discharge

3000
2000
1000
0
-1000

Slide 16

0

1000

2000

3000
4000
Time (hours)

5000

60o C

6000
Maxwell 3000 F Cells
Normal Distribution
Normal Probability Distribution
-0.003

0.04

Mean,S
163.5
1404.
315.2

-0.002

-0.0015

-0.001
2.7 V

Initial

0.03
Relative Number

density

- Imaginary (ohm)

-0.0025

Initial
2.6 V, 5670 hours
2.7 V, 5670 hours

0.02
0.01

5670 hours 2.7 V, 65

-0.0005

0

0
0
0.0005
o
5670 hours 2.6 V, 65 C

JME

0.001

0.0015

0.002

0.0025 0.003
Real (ohm)

0

500 1000 1500 2000 2500

x

ESR (microOhm)
Slide 17
Ioxus 3000 F Cells
Initial and after 5742 hours of aging

NormalNormal Distribution
Probability Distribution
(X 0.001)
Initial
o C
24
2.6 V, 65

-0.003

-0.0025

Relative Number

-0.002

density

- Imaginary (ohm)

2.7 V, 65o C

-0.0015

-0.001

20
Initial
2.6 V, 5742 hours
2.7 V, 5742 hours

16
12
8
4

-0.0005

0
0
0

0.0005

JME

0.001

0.0015

Real (ohm)

0.002

0.0025

0.003

Slide 18

0

200

400

600

800 1000 1200

ESR (microOhm)
x
Nippon Chemi-Con 1100F Capacitor
(X 0.001)
24

-0.002

Initial
2.4 V, 65o C
2.5 V, 65o C

-0.0018

-0.0014

16

Relative Number

- Imaginary (ohm)

-0.0016

2.4 V, 5612 hours
2.5 V, 5612 hours

20

-0.0012

12

-0.001
-0.0008
-0.0006
-0.0004

8
4

-0.0002
0
0

0.0005

0.001

Real (ohm)

0.0015

0.002

0
580

630

680

730

ESR (microOhm)

JME

Slide 19

780

830
Yunasko 1200F Capacitor
Electrochemical Impedence Spectroscopy
NyQuist Representation - Yunasko Capacitors
-0.0008

Initial
2.6 V 5720 hours
2.7 V, 5720 hours

-0.0007

- Imaginary (ohm)

-0.0006
-0.0005
-0.0004
-0.0003
-0.0002
-0.0001
0
0

JME

0.0002

0.0004

Real (ohm)

Slide 20

0.0006

0.0008
JM Energy 1100F Capacitor
Normal Probability Distribution – JM Energy ESR
(X 10000)
5

Initial
3.7 V, 5595 hours
3.8 V, 5595 hours

Relative Number

4

3

2

1

0
7

8

9

10

ESR (10-4 Ohm)

JME

Slide 21

11

12

13
(X 0.0001)
Summary Results
• All capacitors demonstrate extremely high power performance
• JM Energy technology has highest energy density but with
largest characteristic response time
• Yunasko technology is by far the most powerful (smallest τ)
• Nippon Chemi-Con technology (with PC electrolyte) has
identical phase angle behavior to ACN electrolyte cells
•

Capacitors show long life--no catastrophic failures after 5500 hr
at maximum rated voltage and maximum rated temperature
—aging study continues

• Thermal performance and abuse testing is scheduled

JME

Slide 22
“Power System Efficiency Improvements Achieved by Adding Energy Storage”
John R. Miller, David M. Ryan, and Seana McNeal,
Proceedings of the 45th Power Sources Conference, paper 15.1, pp 235-238 (June 2012).

JME

Slide 23

More Related Content

What's hot

Analysis and Modeling of Transformerless Photovoltaic Inverter Systems
Analysis and Modeling of Transformerless Photovoltaic Inverter SystemsAnalysis and Modeling of Transformerless Photovoltaic Inverter Systems
Analysis and Modeling of Transformerless Photovoltaic Inverter SystemsIJMER
 
Superconductors
SuperconductorsSuperconductors
Superconductorsrohitpce
 
Supercapacitor Typical Applications
Supercapacitor Typical ApplicationsSupercapacitor Typical Applications
Supercapacitor Typical ApplicationsMatrix Electrónica
 
Supercapacitor
SupercapacitorSupercapacitor
SupercapacitorSaleem Mir
 
A study on modelling and simulation of photovoltaic cells
A study on modelling and simulation of photovoltaic cellsA study on modelling and simulation of photovoltaic cells
A study on modelling and simulation of photovoltaic cellseSAT Publishing House
 
Introduction to supercapacitors
Introduction to supercapacitors  Introduction to supercapacitors
Introduction to supercapacitors ANANDHU THAMPI
 
Supercapacitor module applications for customers
Supercapacitor module applications for customersSupercapacitor module applications for customers
Supercapacitor module applications for customersillcap
 
Uday Presentation
Uday PresentationUday Presentation
Uday Presentationgirishav123
 
How Photovoltaic Cells Work, by Garret Erskine
How Photovoltaic Cells Work, by Garret ErskineHow Photovoltaic Cells Work, by Garret Erskine
How Photovoltaic Cells Work, by Garret ErskineGarret Erskine
 
SUPERJUNCTION IN Silicon Carbide Diodes
SUPERJUNCTION IN Silicon Carbide DiodesSUPERJUNCTION IN Silicon Carbide Diodes
SUPERJUNCTION IN Silicon Carbide DiodesRichu Jose Cyriac
 
Axiom: Ensure Trouble-Free Supercapacitor Operation with Proper Component Sel...
Axiom: Ensure Trouble-Free Supercapacitor Operation with Proper Component Sel...Axiom: Ensure Trouble-Free Supercapacitor Operation with Proper Component Sel...
Axiom: Ensure Trouble-Free Supercapacitor Operation with Proper Component Sel...Avnet Electronics Marketing
 
Quality standards and specifications for GCRT PV
Quality standards and specifications for GCRT PVQuality standards and specifications for GCRT PV
Quality standards and specifications for GCRT PVArpo Mukherjee
 

What's hot (20)

Analysis and Modeling of Transformerless Photovoltaic Inverter Systems
Analysis and Modeling of Transformerless Photovoltaic Inverter SystemsAnalysis and Modeling of Transformerless Photovoltaic Inverter Systems
Analysis and Modeling of Transformerless Photovoltaic Inverter Systems
 
Moletronics
MoletronicsMoletronics
Moletronics
 
Superconductors
SuperconductorsSuperconductors
Superconductors
 
Renewable energy
Renewable energyRenewable energy
Renewable energy
 
Supercapacitor Typical Applications
Supercapacitor Typical ApplicationsSupercapacitor Typical Applications
Supercapacitor Typical Applications
 
Supercapacitor
SupercapacitorSupercapacitor
Supercapacitor
 
Supercapacitor
SupercapacitorSupercapacitor
Supercapacitor
 
A study on modelling and simulation of photovoltaic cells
A study on modelling and simulation of photovoltaic cellsA study on modelling and simulation of photovoltaic cells
A study on modelling and simulation of photovoltaic cells
 
Introduction to supercapacitors
Introduction to supercapacitors  Introduction to supercapacitors
Introduction to supercapacitors
 
Supercapacitors in Transportation Applications
Supercapacitors in Transportation ApplicationsSupercapacitors in Transportation Applications
Supercapacitors in Transportation Applications
 
Project_Overview_Chernyavskiy
Project_Overview_ChernyavskiyProject_Overview_Chernyavskiy
Project_Overview_Chernyavskiy
 
A Seminar on Nuclear Battery
A Seminar on Nuclear BatteryA Seminar on Nuclear Battery
A Seminar on Nuclear Battery
 
Supercapacitor module applications for customers
Supercapacitor module applications for customersSupercapacitor module applications for customers
Supercapacitor module applications for customers
 
Uday Presentation
Uday PresentationUday Presentation
Uday Presentation
 
How Photovoltaic Cells Work, by Garret Erskine
How Photovoltaic Cells Work, by Garret ErskineHow Photovoltaic Cells Work, by Garret Erskine
How Photovoltaic Cells Work, by Garret Erskine
 
ultracapacitor
ultracapacitorultracapacitor
ultracapacitor
 
SUPERJUNCTION IN Silicon Carbide Diodes
SUPERJUNCTION IN Silicon Carbide DiodesSUPERJUNCTION IN Silicon Carbide Diodes
SUPERJUNCTION IN Silicon Carbide Diodes
 
Axiom: Ensure Trouble-Free Supercapacitor Operation with Proper Component Sel...
Axiom: Ensure Trouble-Free Supercapacitor Operation with Proper Component Sel...Axiom: Ensure Trouble-Free Supercapacitor Operation with Proper Component Sel...
Axiom: Ensure Trouble-Free Supercapacitor Operation with Proper Component Sel...
 
Nuclear battery
Nuclear batteryNuclear battery
Nuclear battery
 
Quality standards and specifications for GCRT PV
Quality standards and specifications for GCRT PVQuality standards and specifications for GCRT PV
Quality standards and specifications for GCRT PV
 

Similar to Miller eccap final_6-25-2013

Ferroresonance Conditions in Wind Parks
Ferroresonance Conditions in Wind Parks Ferroresonance Conditions in Wind Parks
Ferroresonance Conditions in Wind Parks Bérengère VIGNAUX
 
EEP301: Transducer and instrumentation
EEP301: Transducer and instrumentationEEP301: Transducer and instrumentation
EEP301: Transducer and instrumentationUmang Gupta
 
Modeling and Simulation of a Photovoltaic Field for 13 KW
Modeling and Simulation of a Photovoltaic Field for 13 KW Modeling and Simulation of a Photovoltaic Field for 13 KW
Modeling and Simulation of a Photovoltaic Field for 13 KW IJECEIAES
 
ACC_2014_Yasha_Parvini
ACC_2014_Yasha_ParviniACC_2014_Yasha_Parvini
ACC_2014_Yasha_ParviniYasha Parvini
 
Emmvee Crystal Off-grid Module:
Emmvee Crystal Off-grid Module:Emmvee Crystal Off-grid Module:
Emmvee Crystal Off-grid Module:Emmvee India
 
2015_Amanda_Arst_Science-Research-Paper
2015_Amanda_Arst_Science-Research-Paper2015_Amanda_Arst_Science-Research-Paper
2015_Amanda_Arst_Science-Research-PaperAmanda Arst
 
Original transistor PNP MJE253 MJE253G JE253G 253G TO 225 New
Original transistor PNP MJE253 MJE253G JE253G 253G TO 225 NewOriginal transistor PNP MJE253 MJE253G JE253G 253G TO 225 New
Original transistor PNP MJE253 MJE253G JE253G 253G TO 225 NewAUTHELECTRONIC
 
Original transistor NPN MJE243 MJE243G JE243G TO 225 New
Original transistor NPN MJE243 MJE243G JE243G TO 225 NewOriginal transistor NPN MJE243 MJE243G JE243G TO 225 New
Original transistor NPN MJE243 MJE243G JE243G TO 225 Newauthelectroniccom
 
Original Mosfet AOD5B60D D5B60D 600V 5A TO-252 New
Original Mosfet AOD5B60D D5B60D 600V 5A TO-252 NewOriginal Mosfet AOD5B60D D5B60D 600V 5A TO-252 New
Original Mosfet AOD5B60D D5B60D 600V 5A TO-252 NewAUTHELECTRONIC
 
SINGLE-DIODE AND TWO-DIODE PV CELL MODELING USING MATLAB FOR STUDYING CHARACT...
SINGLE-DIODE AND TWO-DIODE PV CELL MODELING USING MATLAB FOR STUDYING CHARACT...SINGLE-DIODE AND TWO-DIODE PV CELL MODELING USING MATLAB FOR STUDYING CHARACT...
SINGLE-DIODE AND TWO-DIODE PV CELL MODELING USING MATLAB FOR STUDYING CHARACT...ecij
 
Simulation and Experimental Verification of Single-Phase Pwm Boost -Rectifier...
Simulation and Experimental Verification of Single-Phase Pwm Boost -Rectifier...Simulation and Experimental Verification of Single-Phase Pwm Boost -Rectifier...
Simulation and Experimental Verification of Single-Phase Pwm Boost -Rectifier...IRJET Journal
 
Original IGBT IKB06N60T K06T60 06T60 06N60 6N60 TO-263 New Infineon
Original IGBT IKB06N60T K06T60 06T60 06N60 6N60 TO-263 New InfineonOriginal IGBT IKB06N60T K06T60 06T60 06N60 6N60 TO-263 New Infineon
Original IGBT IKB06N60T K06T60 06T60 06N60 6N60 TO-263 New InfineonAUTHELECTRONIC
 
Design of Isolated DC Solar Powered Microgrid with Storage System
Design of Isolated DC Solar Powered Microgrid with Storage SystemDesign of Isolated DC Solar Powered Microgrid with Storage System
Design of Isolated DC Solar Powered Microgrid with Storage SystemIRJET Journal
 
Power Electronics Lab Manual Spring 2017
Power Electronics Lab Manual Spring 2017Power Electronics Lab Manual Spring 2017
Power Electronics Lab Manual Spring 2017Zeeshan Ahmed
 

Similar to Miller eccap final_6-25-2013 (20)

Iceeot
IceeotIceeot
Iceeot
 
electric spring
electric springelectric spring
electric spring
 
Ferroresonance Conditions in Wind Parks
Ferroresonance Conditions in Wind Parks Ferroresonance Conditions in Wind Parks
Ferroresonance Conditions in Wind Parks
 
EEP301: Transducer and instrumentation
EEP301: Transducer and instrumentationEEP301: Transducer and instrumentation
EEP301: Transducer and instrumentation
 
Amerisolar AS6M30 250W
Amerisolar AS6M30 250WAmerisolar AS6M30 250W
Amerisolar AS6M30 250W
 
Modeling and Simulation of a Photovoltaic Field for 13 KW
Modeling and Simulation of a Photovoltaic Field for 13 KW Modeling and Simulation of a Photovoltaic Field for 13 KW
Modeling and Simulation of a Photovoltaic Field for 13 KW
 
Catalog Feeo Solar
Catalog Feeo SolarCatalog Feeo Solar
Catalog Feeo Solar
 
F1103024661
F1103024661F1103024661
F1103024661
 
ACC_2014_Yasha_Parvini
ACC_2014_Yasha_ParviniACC_2014_Yasha_Parvini
ACC_2014_Yasha_Parvini
 
Emmvee Crystal Off-grid Module:
Emmvee Crystal Off-grid Module:Emmvee Crystal Off-grid Module:
Emmvee Crystal Off-grid Module:
 
2015_Amanda_Arst_Science-Research-Paper
2015_Amanda_Arst_Science-Research-Paper2015_Amanda_Arst_Science-Research-Paper
2015_Amanda_Arst_Science-Research-Paper
 
Original transistor PNP MJE253 MJE253G JE253G 253G TO 225 New
Original transistor PNP MJE253 MJE253G JE253G 253G TO 225 NewOriginal transistor PNP MJE253 MJE253G JE253G 253G TO 225 New
Original transistor PNP MJE253 MJE253G JE253G 253G TO 225 New
 
Original transistor NPN MJE243 MJE243G JE243G TO 225 New
Original transistor NPN MJE243 MJE243G JE243G TO 225 NewOriginal transistor NPN MJE243 MJE243G JE243G TO 225 New
Original transistor NPN MJE243 MJE243G JE243G TO 225 New
 
Original Mosfet AOD5B60D D5B60D 600V 5A TO-252 New
Original Mosfet AOD5B60D D5B60D 600V 5A TO-252 NewOriginal Mosfet AOD5B60D D5B60D 600V 5A TO-252 New
Original Mosfet AOD5B60D D5B60D 600V 5A TO-252 New
 
SINGLE-DIODE AND TWO-DIODE PV CELL MODELING USING MATLAB FOR STUDYING CHARACT...
SINGLE-DIODE AND TWO-DIODE PV CELL MODELING USING MATLAB FOR STUDYING CHARACT...SINGLE-DIODE AND TWO-DIODE PV CELL MODELING USING MATLAB FOR STUDYING CHARACT...
SINGLE-DIODE AND TWO-DIODE PV CELL MODELING USING MATLAB FOR STUDYING CHARACT...
 
Simulation and Experimental Verification of Single-Phase Pwm Boost -Rectifier...
Simulation and Experimental Verification of Single-Phase Pwm Boost -Rectifier...Simulation and Experimental Verification of Single-Phase Pwm Boost -Rectifier...
Simulation and Experimental Verification of Single-Phase Pwm Boost -Rectifier...
 
Original IGBT IKB06N60T K06T60 06T60 06N60 6N60 TO-263 New Infineon
Original IGBT IKB06N60T K06T60 06T60 06N60 6N60 TO-263 New InfineonOriginal IGBT IKB06N60T K06T60 06T60 06N60 6N60 TO-263 New Infineon
Original IGBT IKB06N60T K06T60 06T60 06N60 6N60 TO-263 New Infineon
 
Design of Isolated DC Solar Powered Microgrid with Storage System
Design of Isolated DC Solar Powered Microgrid with Storage SystemDesign of Isolated DC Solar Powered Microgrid with Storage System
Design of Isolated DC Solar Powered Microgrid with Storage System
 
Ijetcas14 643
Ijetcas14 643Ijetcas14 643
Ijetcas14 643
 
Power Electronics Lab Manual Spring 2017
Power Electronics Lab Manual Spring 2017Power Electronics Lab Manual Spring 2017
Power Electronics Lab Manual Spring 2017
 

More from Yunasko

Sergii tychyna for_wef_2018_aug3
Sergii tychyna for_wef_2018_aug3Sergii tychyna for_wef_2018_aug3
Sergii tychyna for_wef_2018_aug3Yunasko
 
Vadym utkin for_wef_2018_aug3
Vadym utkin for_wef_2018_aug3Vadym utkin for_wef_2018_aug3
Vadym utkin for_wef_2018_aug3Yunasko
 
Eesat 2017 Yunasko by Sergii Tychina
Eesat 2017 Yunasko by Sergii TychinaEesat 2017 Yunasko by Sergii Tychina
Eesat 2017 Yunasko by Sergii TychinaYunasko
 
Yunasko expo2017 astana
Yunasko expo2017 astanaYunasko expo2017 astana
Yunasko expo2017 astanaYunasko
 
Pof17 yunasko
Pof17 yunaskoPof17 yunasko
Pof17 yunaskoYunasko
 
Yunasko cologne 6_oct2016_fin
Yunasko cologne 6_oct2016_finYunasko cologne 6_oct2016_fin
Yunasko cologne 6_oct2016_finYunasko
 
Yunasko presentation at Global Cleantech Summit 2016
Yunasko presentation at Global Cleantech Summit 2016Yunasko presentation at Global Cleantech Summit 2016
Yunasko presentation at Global Cleantech Summit 2016Yunasko
 
Yunasko arabian tech tour 2015
Yunasko arabian tech tour 2015Yunasko arabian tech tour 2015
Yunasko arabian tech tour 2015Yunasko
 
Naat batt yunasko_17-02-2015
Naat batt yunasko_17-02-2015Naat batt yunasko_17-02-2015
Naat batt yunasko_17-02-2015Yunasko
 
Aabc'15 paper
Aabc'15 paperAabc'15 paper
Aabc'15 paperYunasko
 
Yunasko frankfurt oct'14
Yunasko frankfurt oct'14Yunasko frankfurt oct'14
Yunasko frankfurt oct'14Yunasko
 
John miller test results
John miller test resultsJohn miller test results
John miller test resultsYunasko
 

More from Yunasko (12)

Sergii tychyna for_wef_2018_aug3
Sergii tychyna for_wef_2018_aug3Sergii tychyna for_wef_2018_aug3
Sergii tychyna for_wef_2018_aug3
 
Vadym utkin for_wef_2018_aug3
Vadym utkin for_wef_2018_aug3Vadym utkin for_wef_2018_aug3
Vadym utkin for_wef_2018_aug3
 
Eesat 2017 Yunasko by Sergii Tychina
Eesat 2017 Yunasko by Sergii TychinaEesat 2017 Yunasko by Sergii Tychina
Eesat 2017 Yunasko by Sergii Tychina
 
Yunasko expo2017 astana
Yunasko expo2017 astanaYunasko expo2017 astana
Yunasko expo2017 astana
 
Pof17 yunasko
Pof17 yunaskoPof17 yunasko
Pof17 yunasko
 
Yunasko cologne 6_oct2016_fin
Yunasko cologne 6_oct2016_finYunasko cologne 6_oct2016_fin
Yunasko cologne 6_oct2016_fin
 
Yunasko presentation at Global Cleantech Summit 2016
Yunasko presentation at Global Cleantech Summit 2016Yunasko presentation at Global Cleantech Summit 2016
Yunasko presentation at Global Cleantech Summit 2016
 
Yunasko arabian tech tour 2015
Yunasko arabian tech tour 2015Yunasko arabian tech tour 2015
Yunasko arabian tech tour 2015
 
Naat batt yunasko_17-02-2015
Naat batt yunasko_17-02-2015Naat batt yunasko_17-02-2015
Naat batt yunasko_17-02-2015
 
Aabc'15 paper
Aabc'15 paperAabc'15 paper
Aabc'15 paper
 
Yunasko frankfurt oct'14
Yunasko frankfurt oct'14Yunasko frankfurt oct'14
Yunasko frankfurt oct'14
 
John miller test results
John miller test resultsJohn miller test results
John miller test results
 

Recently uploaded

Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 

Recently uploaded (20)

Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 

Miller eccap final_6-25-2013

  • 1. Property, Performance, and Life of Today's Large-format Electrochemical Capacitors John R. Miller a,b, Sue M. Butler a, David M. Ryan c, and Seana McNeal c a JME, Inc., 23500 Mercantile Road, Suite L, Beachwood, OH 44122 b Great Lakes Energy Institute, Case Western Reserve University, Cleveland Ohio 44106 c Air Force Research Laboratory, Wright Patterson Air Force Base, Dayton, OH USA JME 2013 ECCAP Symposium Slide 1 June 25, 26, 2013 Strasbourg, France
  • 2. Evaluate today’s large electrochemical capacitors for use in a high-power, high-rate cyclic application Power Objective: TTime (s) im e 2 Approach: Purchase and evaluate cells JME • • • • • • Six technologies selected, 12-cell of each type Initial two-terminal electrical response Property distribution characterization Constant-voltage aging at elevated temperature Thermal performance characterization Response to credible abuse Slide 2
  • 3. Six Capacitor Technologies in Study Manufacturer Origin Design Electrolyte Cell Form Factor Maxwell USA symmetric C-C acetonitrile right cylinder Ioxus USA symmetric C-C acetonitrile right cylinder Nippon ChemiCon Japan symmetric C-C carbonate right cylinder JM Energy Japan asymmetric (LIC) carbonate prismatic Yunasko Ukraine symmetric C-C acetonitrile prismatic BatsCap France symmetric C-C acetonitrile right cylinder JME Slide 3
  • 4. Electrochemical Capacitor Cells in this Study Maxwell—US 2.7 V 3000 F JM Energy-Japan 3.8 V 1100 F JME Ioxus—US 2.7 V 3000 F Yunasko—Ukraine 2.7 V, 1200 F Slide 4 Nippon Chemi-Con DXE 2.5 V 1100 F BatsCap—France 2.7 V, 1200 F
  • 5. Initial Properties Manufacturer Published Ratings Stored Energy* (Wh/kg) Measured DC Resistance** (µΩ µΩ) µΩ Device Response Time*** (s) Maxwell 3000 F, 2.7 V 4.5 229 0.7 Ioxus 3000 F, 2.7 V 4.3 231 0.7 Nippon Chemicon 1100 F, 2.5 V 2.8 883 1.1 JM Energy 1100 F, 3.8 V (2.2 V min) 10.1 2080 2.3 Yunasko 1200 F, 2.7 V 4.0 158 0.2 BatsCap 1200 F, 2.7 V 4.0 327 0.4 • Calculated based on rated capacitance and voltage window between rated V and half-rated V with JM Energy measured over full voltage window ** Measured via current-interrupt method (5 second delay)– average of all 12 cells *** Product of DC resistance and capacitance value JME Slide 5
  • 6. Maxwell 3000 F Cells Electrochemical Impedence Spectroscopy NyQuist Representation- Maxwell capacitors -0.001 - Imaginary (ohm) -0.0008 Equivalent series resistance (ESR ) is the intersection with the real axis ~150 µΩ -0.0006 -0.0004 -0.0002 (Data for 15 cells shown) 0 0 JME 0.0002 Slide 6 0.0004 0.0006 Real (ohm) 0.0008 0.001
  • 7. Yunasko 1200 F Cells Electrochemical Impedence Spectroscopy NyQuist Representation - Yunasko Capacitors -0.0005 -0.00045 - Imaginary (ohm) -0.0004 Equivalent series resistance (ESR ) is the intersection with the real axis < 100 µΩ -0.00035 -0.0003 No porous electrode behavior shown -0.00025 -0.0002 -0.00015 -0.0001 -0.00005 (Data for 12 cells shown) 0 0 0.0001 0.0002 0.0003 Real (ohm) JME Slide 7 0.0004 0.0005
  • 8. Initial Complex-Plane Impedance Plot -0.003 Ioxus - Imaginary (ohms) -0.0025 Maxwell -0.002 Yunasko Batscap -0.0015 NCC -0.001 JM Energy -0.0005 0 JME 0 0.0005 0.001 0.0015 0.002 Real (ohms) Slide 8 0.0025 0.003 Gamry Reference 3000 Cell voltage at 0.75•VRated
  • 9. Bode Representation Phase Angle Comparison Ioxus 11d -90 Phase Angle (degrees) Maxwell 13 -75 Yunasko 1 -60 Batscap 1 NCC 3c -45 -30 JM Energy 12 Response of these three technologies is very similar -15 0 0.001 JME 0.01 0.1 Frequency (Hz) Slide 9 1 10
  • 10. Constant-current Discharge Capacitance 3500 3000 Maxwell 3000 F Capacitance (F) 2500 Ioxus 3000 F Nippon Chemicon 1100 F 2000 JM Energy 1200 F Yunasko 1200 F 1500 1000 500 0 1 JME 10 100 Discharge Time (s) Slide 10 1000
  • 11. EQUIVALENT CIRCUIT MODELS (25 oC) Technology IOXUS Maxwell BatsCap Nippon Chemi-Con JM Energy Yunasko L1(µH) µ R1 (mΩ) Ω C1 (F) R2 (mΩ ) Ω C2 (F) 0.11 0.16 0.15 0.07 0.10 0.03 0.16 0.17 0.25 0.43 1.00 0.10 900 1000 270 190 240 1070 0.10 0.11 0.19 0.36 0.51 -- 2100 2200 720 1000 680 -- Only the Yunasko technology can be accurately modeled using one time constant JME Slide 11
  • 12. Reliability Study (as June 24, 2013) Manufacturer Aging hours Maxwell 5900 Ioxus 5900 4 cells at Vmax Nippon ChemiCon 5900 and JM Energy 5700 Yunasko 5800 BatsCap 5450 JME CONSTANT VOLTAGE (2 levels) 5 cells at Vmax - 0.1 V age at maximum rated temperature Slide 12
  • 13. Three Groups of Capacitors Shown Mounted in Aging Chamber Constant T at constant voltage (no cycling involved) perform periodic measurements JME Slide 13
  • 14. AGING RESULTS 2.7 V 2.6 V 10 0 -10 -20 -30 -40 -50 -60 300 A discharge -70 20 Change in Capacitance (%) Change in Capacitance (%) Ioxus 3000 F Aging study - Change in Capacitance Maxwell 3000 F Aging - Change in Capacitance 20 -80 10 0 -10 -20 -30 -40 2.7 V, 65 C 2.6 V, 65 C -50 -60 300 A discharge -70 -80 0 1000 2000 3000 4000 5000 6000 0 1000 2000 Time (hours) Maxwell 3000 F Aging study - Change in Resistance 2.7 V 2.6 V 700 600 5000 6000 900 300 A discharge 800 Change in Resistance (%) Change in Resistance (%) 900 4000 Ioxus 3000 F Aging study - Change in Resistance 1000 1000 3000 Time (hours) 500 400 300 200 100 800 2.7 V, 65 C 2.6 V, 65 C 700 600 300 A discharge 500 400 300 200 100 0 0 1000 JME 2000 3000 4000 5000 6000 0 0 Time (hours) Slide 14 1000 2000 3000 4000 Time (hours) 5000 65o C 6000
  • 15. AGING RESULTS 65 C 10 20 2.7 VV 2.5 2.6 VV 2.4 0 Change in Capacitance (%) Change in Capacitance (%) Batscap 1200 F Aging study - Change in Capacitance NCC 1200 F Aging study - Change in Capacitance 20 -10 -20 -30 -40 -50 -60 -70 150 A discharge -80 2.7 V 2.6 V 10 0 150 A discharge -10 -20 -30 -40 -50 lost electrolyte due to JME error -60 -70 -80 0 1000 2000 3000 4000 5000 6000 0 1000 2000 Time (hours) Change in Resistance (%) 800 6000 2.7 V 2.6 V 900 150 A discharge 700 5000 1000 2.7 VV 2.5 2.4 2.6 VV 900 4000 Batscap 1200 F Aging study - Change in Resistance NCC 1200 F Aging study - Change in Resistance Change in Resistance (%) 1000 3000 Time (hours) 600 500 400 300 200 800 lost electrolyte (due to JME error) 700 600 150 A discharge 500 400 300 200 100 100 0 0 0 1000 JME 2000 3000 4000 5000 6000 Time (hours) Slide 15 0 1000 2000 3000 4000 Time (hours) 5000 65o C 6000
  • 16. AGING RESULTS Yunasko 1200 F Aging - Change in Capacitance JM Energy 1100 F Aging study - Change in Capacitance 20 5 10 Change in Capacitance (%) Change in Capacitance (%) 10 0 -5 -10 -15 3.8 V 3.7 V -20 -25 150 A discharge -30 -35 0 -10 -20 -30 -40 2.7 V 2.6 V -50 150 A discharge -60 -40 0 1000 2000 3000 4000 Time (hours) 5000 -80 6000 0 1000 JM Energy 1200 F Aging study - Change in Resistance Change in Resistance (%) 300 150 A discharge 200 100 0 -100 0 1000 JME 2000 3000 4000 Time (hours) 65o C 5000 6000 3000 4000 5000 6000 Yunasko 1200 F Aging - Change in Resistance 5000 3.8 V 3.7 V 2000 Time (hours) 400 Change in Resistance (%) Electrolyte leakage at seal -70 2.7 V 2.6 V 4000 Electrolyte leakage at seal 150 A discharge 3000 2000 1000 0 -1000 Slide 16 0 1000 2000 3000 4000 Time (hours) 5000 60o C 6000
  • 17. Maxwell 3000 F Cells Normal Distribution Normal Probability Distribution -0.003 0.04 Mean,S 163.5 1404. 315.2 -0.002 -0.0015 -0.001 2.7 V Initial 0.03 Relative Number density - Imaginary (ohm) -0.0025 Initial 2.6 V, 5670 hours 2.7 V, 5670 hours 0.02 0.01 5670 hours 2.7 V, 65 -0.0005 0 0 0 0.0005 o 5670 hours 2.6 V, 65 C JME 0.001 0.0015 0.002 0.0025 0.003 Real (ohm) 0 500 1000 1500 2000 2500 x ESR (microOhm) Slide 17
  • 18. Ioxus 3000 F Cells Initial and after 5742 hours of aging NormalNormal Distribution Probability Distribution (X 0.001) Initial o C 24 2.6 V, 65 -0.003 -0.0025 Relative Number -0.002 density - Imaginary (ohm) 2.7 V, 65o C -0.0015 -0.001 20 Initial 2.6 V, 5742 hours 2.7 V, 5742 hours 16 12 8 4 -0.0005 0 0 0 0.0005 JME 0.001 0.0015 Real (ohm) 0.002 0.0025 0.003 Slide 18 0 200 400 600 800 1000 1200 ESR (microOhm) x
  • 19. Nippon Chemi-Con 1100F Capacitor (X 0.001) 24 -0.002 Initial 2.4 V, 65o C 2.5 V, 65o C -0.0018 -0.0014 16 Relative Number - Imaginary (ohm) -0.0016 2.4 V, 5612 hours 2.5 V, 5612 hours 20 -0.0012 12 -0.001 -0.0008 -0.0006 -0.0004 8 4 -0.0002 0 0 0.0005 0.001 Real (ohm) 0.0015 0.002 0 580 630 680 730 ESR (microOhm) JME Slide 19 780 830
  • 20. Yunasko 1200F Capacitor Electrochemical Impedence Spectroscopy NyQuist Representation - Yunasko Capacitors -0.0008 Initial 2.6 V 5720 hours 2.7 V, 5720 hours -0.0007 - Imaginary (ohm) -0.0006 -0.0005 -0.0004 -0.0003 -0.0002 -0.0001 0 0 JME 0.0002 0.0004 Real (ohm) Slide 20 0.0006 0.0008
  • 21. JM Energy 1100F Capacitor Normal Probability Distribution – JM Energy ESR (X 10000) 5 Initial 3.7 V, 5595 hours 3.8 V, 5595 hours Relative Number 4 3 2 1 0 7 8 9 10 ESR (10-4 Ohm) JME Slide 21 11 12 13 (X 0.0001)
  • 22. Summary Results • All capacitors demonstrate extremely high power performance • JM Energy technology has highest energy density but with largest characteristic response time • Yunasko technology is by far the most powerful (smallest τ) • Nippon Chemi-Con technology (with PC electrolyte) has identical phase angle behavior to ACN electrolyte cells • Capacitors show long life--no catastrophic failures after 5500 hr at maximum rated voltage and maximum rated temperature —aging study continues • Thermal performance and abuse testing is scheduled JME Slide 22
  • 23. “Power System Efficiency Improvements Achieved by Adding Energy Storage” John R. Miller, David M. Ryan, and Seana McNeal, Proceedings of the 45th Power Sources Conference, paper 15.1, pp 235-238 (June 2012). JME Slide 23