SlideShare a Scribd company logo
1 of 57
Modal Analysis
Gub – LMS Engineering Services
Modal Analysis
Basic Theory
2 copyright LMS International - 2005
 Equation of motion:
 Applied to SDOF:
 Applied force?
 Pulse (transient)
 Harmonic function (steady state)
 Combination
SDOF System Theory
ground
m
c
k
x(t)
f(t)
spring force + damping force + applied force = mass X acceleration
F = m X a
3 copyright LMS International - 2005
ωn
k
m

2
2
1,2
*
1 1 1 1 1 1
*
1 1
1
*
1 1 1
( ) 1/
( )
( ) ( / ) ( / )
( /(2 )) ( /(2 ) ( / )
1/
( )
( ) ( ) 2
X p M
FRF H p
F p p C M p K M
C M C M K M
j j
A A M
H p A
p p j

     
  
  
 
   
   
  
 
System poles
Residue
Damping factor - damped
natural frequency
Un-damped natural frequency ( C=0)
Laplace domain
SDOF System Theory
SDOF System Theory
4 copyright LMS International - 2005
SDOF
Frequency response
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10
-1
10
0
10
1
β
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
20
40
60
80
100
120
140
160
180
degrees
90 degrees
β
Magnitude Phase
f f
x
F
5 copyright LMS International - 2005
SDOF
Frequency response
Magnitude Phase
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10
-1
10
0
10
1
10
2
zeta (z)
1%
2%
5%
10%
20%
50%
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
20
40
60
80
100
120
140
160
180
degrees
Zeta (z)
1%
2%
5%
10%
20%
50%
x
F
6 copyright LMS International - 2005
SDOF
Frequency response
 Magnitude & Phase  Real & Imaginary
0 2 4 6 8 10 12 14 16 18 20
10
-2
10
-1
10
0 Frequency Response Function
Frequency Hz
Log-Magnitude
0 2 4 6 8 10 12 14 16 18 20
-200
-150
-100
-50
0
Frequency Hz
Phase
0 2 4 6 8 10 12 14 16 18 20
-0.2
-0.1
0
0.1
0.2
Frequency Response Function
Frequency Hz
Real
Part
0 2 4 6 8 10 12 14 16 18 20
-0.4
-0.3
-0.2
-0.1
0
Frequency Hz
Imaginary
Part
x
F
x
F
7 copyright LMS International - 2005
Influence M, C, K
Stiffness K   resonance freq 1 
x
F
8 copyright LMS International - 2005
Influence M, C, K
Stiffness M   resonance freq 1 
x
F
9 copyright LMS International - 2005
Influence M, C, K
Stiffness C   amplitude  (resonance freq 1 )
x
F
10 copyright LMS International - 2005
SDOF
Frequency response
 Real vs. Imaginary
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
-0.35
-0.3
-0.25
-0.2
-0.15
-0.1
-0.05
0
Frequency Response Function
Real
Imaginary
11 copyright LMS International - 2005
SDOF
Frequency response
 FRF and system
parameters
0 2 4 6 8 10 12 14 16 18 20
10
-2
10
-1
10
0 Frequency Response Function
Frequency Hz
Log-Magnitude
0 2 4 6 8 10 12 14 16 18 20
-200
-150
-100
-50
0
Frequency Hz
Phase
damping controlled region
stiffness controlled region
mass controlled region
x
F
x
F
12 copyright LMS International - 2005
SDOF
Impulse Response
 FRF
 Inverse Fourier transform
= Impulse Response
 Poles
( )
( ) ( )
A A
H j
j j


  
 
( ) t t
h t Ae A e

  
 
* 2
, 1
n n d
j j
   z   z     
time [s]
amplitude
d
ω
/
π
2
time [s]
amplitude
d
ω
/
π
2
Amplitude
Time (s)
13 copyright LMS International - 2005
MDOF System Theory
ground
m 1
c
1
k
1
f
1
(t)
m 2
m n
ground
k
n+1
k
2
c
2
c
n+1
f
2
(t) f
n
(t)
x
1
(t) x
2
(t) x
n
(t)
14 copyright LMS International - 2005
MDOF System Theory
Equations of Motion
 Newton
 Applied to free body
 Assembled
 Shorthand notation
Free Body Diagram
m n
fn(t)
x
n
(t)
k
n+1
c
n+1
k
n
c
n
n
n
x
Forces mx


1 1 1 1 1 1
( ) ( ) ( ) ( ) ( )
n n n n n n n n n n n n n n n
k x x k x x c x x c x x f t m x
     
        
1 1 1 2 2 1 1 2 2 1
2 2 2 2 3 3 2 2 2 3 3 2
1 1
0 0 0 0
0 0
0 0 0 0 0 0
n n n n n n n n
m x c c c x k k k x
m x c c c c x k k k k x
m x c c x k k x
 
   
           
           
     
           
 
          
          
 
          
           
1
2
n
f
f
f
 
 
 

  
  
  
 
( ) ( ) ( ) ( )
M x t C x t K x t f t
  
15 copyright LMS International - 2005
MDOF
Physical Space vs. Modal Space
 Physical space
 Modal space
  
  
( ) ( ) ( ) ( )
T
i i i
m p t c p t k p t f t
     
   
     
     
ground
m1
c1
k1
f1(t)
m2 mn
ground
kn+1
k2
c2
cn+1
f2(t) fn(t)
x
1(t) x
2(t) x
n(t)
( ) ( ) ( ) ( )
M x t C x t K x t f t
  
Physical
Mass
Damping
Stiffness
Modal
Mass
Damping
Stiffness
mode 1
m1
c1
k1
p(t)
1
mode 2
m2
c2
k2
p(t)
2
mode n
mn
cn
kn
p(t)
n
16 copyright LMS International - 2005
2 1
( ) ( ) ( )
( ) [ ]
X p H p F p
H p p M pC K 

  
2
( ) ( ) ( )
p M pC K X p F p
  
MDOF
Transfer function
 Time-domain equation of motion
 Laplace domain
 Transfer Function
 Poles & residues
 Modal scaling factor
( ) ( ) ( ) ( )
M x t C x t K x t f t
  
*
*
1
( )
n
k k
k k k
A A
H p
p p

 
   

{ } T
k k k k
A Q
    
k
Q
Non-trivial
mathematics
17 copyright LMS International - 2005
MDOF
FRF
 Magnitude & Phase  Real & Imaginary
18 copyright LMS International - 2005
MDOF
Modal Decomposition
mode 1
m
1
c
1
k
1
p(t)
1
mode 1
m
1
c
1
k
1
p(t)
1
mode 1
m
1
c
1
k
1
p(t)
1
mode 2
m
2
c
2
k
2
p(t)
2
mode 2
m
2
c
2
k
2
p(t)
2
mode 2
m
2
c
2
k
2
p(t)
2
mode 3
m
3
c3
k
3
p(t)
3
mode 3
m
3
c3
k
3
p(t)
3
mode 3
m
3
c3
k
3
p(t)
3
*
,1 ,1
*
1 1
*
,2 ,2
*
2 2
*
,3 ,3
*
3 3
( )
pq pq
pq
pq pq
pq pq
A A
H j
j j
A A
j j
A A
j j
  
 
 
 
 
 
19 copyright LMS International - 2005
MDOF
Impulse Responses
 FRF
 Inverse Fourier transform
= Impulse Responses *
*
, ,
1
( ) k k
n
t t
pq pq k pq k
k
h t A e A e
 

 

*
, ,
*
1
( )
n
pq k pq k
pq
k k k
A A
H j
j j

  
   

20 copyright LMS International - 2005
Deformation at certain moment = linear
combination of mode shapes
Linear combination factors depend on input
forces, frequency, damping and mode
shape at input locations
Vibration
Response
Mode shapes
=
+ + + + ...
a1
x x x x
a2 a3 a4
Real structures
Modal decomposition
Modal Analysis
Gub – LMS Engineering Services
Modal Analysis
Parameter Estimation
22 copyright LMS International - 2005
Overview
1. Selection of method
2. Selection of measurements
3. Selection of frequency band
4. Selection of time block
5. Estimation of number of poles
6. Estimation of poles
7. Estimation of modal vectors
Modal Analysis Process
23 copyright LMS International - 2005
0.00 80.00
Hz
10.0e-6
0.10
Log
(
g/N
)
0.00 80.00
Linear
Hz
0.00 80.00
Hz
-180.00
180.00
Phase
°
0.00 6.00
s
-1.07
0.91
Real
(
g/N
)
Modal Parameter estimation
Frequency domain versus Time domain
Inverse
Fourier
transform
Frequency
domain
Time
domain
FRF IRF
*
*
1
( )
n
k k
k k k
A A
H
j j

  
 

*
*
1
( ) e e
n
k k
k k
k
t t
h t A A

 
 

{ } T
k k k k
A Q
     * 2
, 1
k k k k k k
j
   z   z 
24 copyright LMS International - 2005
Modal Parameter Estimation
SDOF vs. MDOF
SDOF
Methods
MDOF
methods
25 copyright LMS International - 2005
one global estimate for f
!Consistency of data is important!
Modal Parameter Estimation
Local vs. Global vs. Polyreference Estimates
f = 136.07 Hz
f = 135.74 Hz
Local Global Polyreference
Separation of
repeated poles!
26 copyright LMS International - 2005
Modal Parameter Estimation
Single Degree of Freedom Techniques
 FRF around (lightly-damped and not multiple) pole:
!Assumes at resonance only one mode is important!
 Method (Process)
 Find resonance frequencies
 Estimate residues
 Estimate damping ratios
*
*
1
( )
n
k k
k k k
A A
H
j j

  
 
 ( ) k k
k
k k k k
A A
H
j
  
   z 
27 copyright LMS International - 2005
Modal Parameter Estimation
Single Degree of Freedom Techniques
• Estimation of resonance
frequencies
• Peak Picking
• Circle fit
• Very simple to use, BUT
limited applicability
• Well-separated
modes
• Very low damping
• Interesting when strong
mass loading effects
28 copyright LMS International - 2005
Modal Parameter Estimation
SDOF – Estimation of Damping
 Half-power bandwidth method

3 dB
1 2
z
 



2 1
2
29 copyright LMS International - 2005
3D FRF & Circle Fit
-10
0
10
20
30
40
50
-0.1
0
0.1
0.2
0.3
-0.1
-0.05
0
0.05
0.1
0.15
0.2
0.25
Imag
Real
Freq
30 copyright LMS International - 2005
Modal Parameter Estimation - MDOF
Complex Mode Indicator Function (CMIF)
 The rank of the FRF matrix at a certain frequency depends on the number of modes having a
significant contribution at that frequency
E.g. around (lightly-damped and not multiple) pole
 Numerical tool to asses the rank of a matrix
Singular Value Decomposition (SVD)
* *
*
1
{ } { }
( )
T H
n
k k k k k k
k k k
Q Q
H
j j

       
  
 

( ) { } T
k k k
H     
Rank = 1, since column vector * row vector
( ) ( ) ( ) ( )
H
H U V
     
31 copyright LMS International - 2005
( ) ( ) ( ) ( )
H
H U V
     
Modal Parameter Estimation - MDOF
Complex Mode Indicator Function (CMIF)
 SVD of FRF @ all spectral lines
CMIF =
Singular values as
a function of
frequency
(diagonals of )
( )
 
Double pole
32 copyright LMS International - 2005
Modal Parameter Estimation - MDOF
Complex Mode Indicator Function (CMIF)
 Cada-X: estimation of complete set of
modal parameters
 Test.Lab: “mode indicator”, background of
stabilization diagram
33 copyright LMS International - 2005
Overview
1. Selection of method
2. Selection of measurements
3. Selection of frequency band
4. Selection of time block
5. Estimation of number of poles
6. Estimation of poles
7. Estimation of modal vectors
Modal Analysis Process
34 copyright LMS International - 2005
How many modes to estimate?
 Major problem in modal parameter estimation
What is the model order?
How many modes to curve-fit?
 Solutions
Sum of frequency response functions
Mode indicator functions
Stabilisation diagram
(Error chart)
*
*
1
( )
n
k k
k k k
A A
H
j j

  
 

0.00 80.00
Hz
10.0e-6
0.10
Log
(
(m/s2)/N
)
22.56 41.19
35 copyright LMS International - 2005
How many modes to estimate?
Mode indicator functions
 “Sum” of FRFs
 Multivariant mode indicator function (MvMIF)
 Complex mode indicator function (CMIF)
22.00 42.00
Linear
Hz
4.73e-3
0.09
Log
(
)
22.00 42.00
Linear
Hz
22.00 42.00
Hz
-180.00
180.00
Phase
°
22.00 42.00
Hz
0.00
1.00
Real
/
22.00 42.00
Hz
1.01e-3
1.00
Log
/
36 copyright LMS International - 2005
Stability
: new
: freq
: damp + freq
: part. vector + freq
: all
o
f
d
v
s
How many modes to estimate?
Stabilisation diagram
 Try a whole range of model orders
 Compare modal parameters at current order with
previous order
*
*
1
( )
n
k k
k k k
A A
H
j j

  
 

n
37 copyright LMS International - 2005
How many modes to estimate?
Stabilisation diagram
Model order problem shifted to problem of separating
true from computational poles?
!Difficulty: Avoid Computational Modes!
38 copyright LMS International - 2005
Frequency-Domain Curve-Fitting
 Pole-residue models not directly used
 Non-linear optimisation problem
 Right matrix-fraction model
 Can be linearised
Poles & participation factors
Mode shapes
    
     
"
)
(
)
(
)
(
)
(
)
(
)
(
"
)
(
)
(
)
(
0
0
1
1
0
0
1
1
1














































j
j
j
j
j
j
A
B
H
p
p
p
p
p
p
p
p


 
r

 
r

Quotes have been introduced because
the ratio notation is normally not used
for matrices in the denominator
*
*
  
 












n
i i
H
i
i
i
T
i
i
j
l
v
j
l
v
H
1
*
*
}
{
}
{
)
(
measured unknowns
measured unknowns
39 copyright LMS International - 2005
LMS PolyMAX
Linear Least Squares
 Right matrix-fraction model (z-domain)
 Linearisation
By minimising the error (in a linear least squares sense), the model
can be found from the data
 Algorithm optimisation
“Reduced Normal Equations”
 Problem size reduction (Final dimension
not related to the number of DOFs: very
large-size problems can be tackled)
 Memory and speed optimisation
    
     
"
"
)
(
)
(
)
(
0
0
1
1
0
0
1
1
1
z
z
z
z
z
z
A
B
H
p
p
p
p
p
p
p
p










































    
)
(
)
(
)
(
error 



 A
H
B
 
 
 
 
 
0
)
)
(
(
1
0



















p
H
M

  
)
(
,
)
( 
 B
A  
)
(
H
t
j
z


 e

40 copyright LMS International - 2005
LMS PolyMAX
Consequence of z-Domain Description
 Properties of z-domain model with real-valued coefficients
 Consequence: pole estimation close to borders of frequency band less accurate
-40 -20 0 20 40 60 80
10
-3
10
-2
10
-1
Magnitude
-40 -20 0 20 40 60 80
-200
0
200
f [Hz]
Phase
[deg]
Complex conjugated and mirrored
)
(
)
(
)
(
)
2
(
*










H
H
H
t
H
41 copyright LMS International - 2005
LMS PolyMAX
Implementation
• Step 1: reduced normal equations
• Establish reduced normal equations for maximum
model order
 
 
 
 
 
0
)
)
(
(
1
0



















p
H
M

42 copyright LMS International - 2005
• Step 1: reduced normal equations
• Establish reduced normal equations for maximum
model order
 
 
 
 
 
0
)
)
(
(
1
0



















p
H
M

LMS PolyMAX
Implementation
• Step 2: stabilisation diagram
• Compute poles
and participation
factors for the
model order range
• Select stable
modes
43 copyright LMS International - 2005
• Step 1: reduced normal equations
• Establish reduced normal equations for maximum
model order
 
 
 
 
 
0
)
)
(
(
1
0



















p
H
M

LMS PolyMAX
Implementation
• Step 2: stabilisation diagram
• Compute poles
and participation
factors for the
model order range
• Select stable
modes
• Step 3: mode shapes and residuals
• Least-Squares Frequency-Domain (LSFD) Method
      UR
LR
j
l
v
j
l
v
H
n
i i
H
i
i
i
T
i
i















 

2
1
*
*
)
(
Selected
from
stabilisation
diagram
unknowns
measured
44 copyright LMS International - 2005
Modal Parameter Estimation
Least Squares Frequency Domain (LSFD)
 Interpretation of stabilization diagram yields
poles (freq+damp) and participation factors
 Second step to estimate mode shapes and
residuals = LSFD
0.00 80.00
Linear
Hz
100e-9
1.00
Log
(
)
FRF BACK:125:-Y / RAIL:151:+Y
Synthesized FRF BACK:125:-Y/RAIL:151:+Y
Synthesized FRF BACK:125:-Y/RAIL:151:+Y
0.00 80.00
Linear
Hz
0.00 80.00
Hz
-180.00
180.00
Phase
°
Blue: without residuals
      UR
LR
j
l
v
j
l
v
H
n
k k
H
k
k
k
T
k
k















 

2
1
*
*
)
(
Selected
from
stabilisation
diagram
unknowns
measured
45 copyright LMS International - 2005
Example
Porsche 911 Targa Carrera 4
 Full vehicle
Heavily damped
 Excitation
4 shakers
 CMIF
Complex mode indicator function
46 copyright LMS International - 2005
Example
Porsche 911 Targa Carrera 4 - Stabilisation
LSCE (least squares complex exponential)
47 copyright LMS International - 2005
FDPI (frequency domain direct parameter)
Example
Porsche 911 Targa Carrera 4 - Stabilisation
48 copyright LMS International - 2005
PolyMAX (Z-domain estimation)
Example
Porsche 911 Targa Carrera 4 - Stabilisation
49 copyright LMS International - 2005
 Satellite
Very lightly damped
 Excitation
5 shakers
 CMIF
Example
Radar sat
50 copyright LMS International - 2005
 “Textbook” stabilisation
 Analysis in one single
range possible with
PolyMAX
 Classical methods: only
possible through sub-
ranges
Successful identification of many closely-spaced local modes
Example
Radar sat - Stabilisation
Modal Analysis
Gub – LMS Engineering Services
Modal Analysis
Validation
52 copyright LMS International - 2005
Validation
 Synthesis of FRFs
 Plot and animate mode shapes
 MAC matrix
 Mode participation
 Mode colinearity
 Mode complexity
 …
0.00 80.00
Linear
Hz
10.0e-6
1.00
Log
(
(m/s2)/N
)
FRF BACK:125:-Y / FRNT:15:+Z
Synthesized FRF BACK:125:-Y/FRNT:15:+Z
0.00 80.00
Linear
Hz
0.00 80.00
Hz
-180.00
180.00
Phase
°
53 copyright LMS International - 2005
Porsche 911 Targa Carrera 4
PolyMAX FRF Synthesis
3.50 30.00
Linear
Hz
100e-6
10.0e-3
Log
(
g/N
)
FRF moto:9:+Z/karo:1:+Z
3.50 30.00
Linear
Hz
3.50 30.00
Hz
-180.00
180.00
Phase
°
FRF moto:9:+Z/karo:1:+Z
3.50 30.00
Linear
Hz
10.0e-6
10.0e-3
Log
(
g/N
)
FRF moto:9:+Z/karo:25:+Z
3.50 30.00
Linear
Hz
3.50 30.00
Hz
-180.00
180.00
Phase
°
FRF moto:9:+Z/karo:25:+Z
3.50 30.00
Linear
Hz
10.0e-6
10.0e-3
Log
(
g/N
)
FRF moto:9:+Z/moto:2:+Z
3.50 30.00
Linear
Hz
3.50 30.00
Hz
-180.00
180.00
Phase
°
FRF moto:9:+Z/moto:2:+Z
3.50 30.00
Linear
Hz
10.0e-6
10.0e-3
Log
(
g/N
)
FRF moto:9:+Z/moto:15:+Z
3.50 30.00
Linear
Hz
3.50 30.00
Hz
-180.00
180.00
Phase
°
FRF moto:9:+Z/moto:15:+Z
54 copyright LMS International - 2005
MAC Matrix
Spatial Aliasing
 PZL-Sokol Helicopter
MAC
55 copyright LMS International - 2005
Validation
Mode Complexity and Mode Participation
Mode Frequency MPC (%) MP(%)
FRNT:15:+Z
MP(%)
RAIL:151:+Y
MP(%)
1 26.996 Hz 99.968 65.783 100.000 23.634
2 27.346 Hz 99.903 100.000 2.688 1.768
3 31.555 Hz 99.954 100.000 51.330 12.264
4 34.538 Hz 99.778 100.000 5.110 12.763
5 35.948 Hz 99.906 100.000 12.841 11.651
6 37.872 Hz 99.871 100.000 27.591 12.127
7 49.369 Hz 99.950 100.000 32.962 9.651
8 52.728 Hz 99.308 100.000 21.333 1.047
9 53.432 Hz 99.541 100.000 10.176 0.514
10 54.058 Hz 96.061 88.338 100.000 7.671
11 54.902 Hz 99.439 27.366 100.000 1.806
12 55.349 Hz 98.500 18.353 100.000 2.671
13 58.430 Hz 98.395 100.000 63.563 2.433
Vertical shaker
Horizontal shaker
Vertical
shaker
Horizontal
shaker
56 copyright LMS International - 2005
Validation
Mode Colinearity
 Plot mode shape in complex
plane
Thank you !

More Related Content

What's hot

Lecture 4 ME 176 2 Mathematical Modeling
Lecture 4 ME 176 2 Mathematical ModelingLecture 4 ME 176 2 Mathematical Modeling
Lecture 4 ME 176 2 Mathematical Modeling
Leonides De Ocampo
 
Z-transform and Its Inverse.ppt
Z-transform and Its Inverse.pptZ-transform and Its Inverse.ppt
Z-transform and Its Inverse.ppt
Nahi20
 
6528794 estudio-de-fallas-comunes-en-rodamientos-rigidos-de-una-hilera-de-bol...
6528794 estudio-de-fallas-comunes-en-rodamientos-rigidos-de-una-hilera-de-bol...6528794 estudio-de-fallas-comunes-en-rodamientos-rigidos-de-una-hilera-de-bol...
6528794 estudio-de-fallas-comunes-en-rodamientos-rigidos-de-una-hilera-de-bol...
Roberto Ortega
 
Slides capteurs partie 1
Slides capteurs partie 1Slides capteurs partie 1
Slides capteurs partie 1
zinoha
 

What's hot (20)

Energy methods for damped systems
Energy methods for damped systemsEnergy methods for damped systems
Energy methods for damped systems
 
Lecture Notes on Adaptive Signal Processing-1.pdf
Lecture Notes on Adaptive Signal Processing-1.pdfLecture Notes on Adaptive Signal Processing-1.pdf
Lecture Notes on Adaptive Signal Processing-1.pdf
 
Lecture 4 ME 176 2 Mathematical Modeling
Lecture 4 ME 176 2 Mathematical ModelingLecture 4 ME 176 2 Mathematical Modeling
Lecture 4 ME 176 2 Mathematical Modeling
 
Programmable Logic Controller | Ladder Logic diagrams| Block diagram | I/O Mo...
Programmable Logic Controller | Ladder Logic diagrams| Block diagram | I/O Mo...Programmable Logic Controller | Ladder Logic diagrams| Block diagram | I/O Mo...
Programmable Logic Controller | Ladder Logic diagrams| Block diagram | I/O Mo...
 
time response analysis
time response analysistime response analysis
time response analysis
 
Signals and systems ch1
Signals and systems ch1Signals and systems ch1
Signals and systems ch1
 
GROUP1_INSTRU-SENSORS-CALI_FEEDBACK.pptx
GROUP1_INSTRU-SENSORS-CALI_FEEDBACK.pptxGROUP1_INSTRU-SENSORS-CALI_FEEDBACK.pptx
GROUP1_INSTRU-SENSORS-CALI_FEEDBACK.pptx
 
DSP_FOEHU - Lec 02 - Frequency Domain Analysis of Signals and Systems
DSP_FOEHU - Lec 02 - Frequency Domain Analysis of Signals and SystemsDSP_FOEHU - Lec 02 - Frequency Domain Analysis of Signals and Systems
DSP_FOEHU - Lec 02 - Frequency Domain Analysis of Signals and Systems
 
EC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformEC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transform
 
Lecture 14 15-time_domain_analysis_of_2nd_order_systems
Lecture 14 15-time_domain_analysis_of_2nd_order_systemsLecture 14 15-time_domain_analysis_of_2nd_order_systems
Lecture 14 15-time_domain_analysis_of_2nd_order_systems
 
Z-transform and Its Inverse.ppt
Z-transform and Its Inverse.pptZ-transform and Its Inverse.ppt
Z-transform and Its Inverse.ppt
 
Cours vibration 2016 prat
Cours vibration 2016 pratCours vibration 2016 prat
Cours vibration 2016 prat
 
Lecture No:1 Signals & Systems
Lecture No:1 Signals & SystemsLecture No:1 Signals & Systems
Lecture No:1 Signals & Systems
 
6528794 estudio-de-fallas-comunes-en-rodamientos-rigidos-de-una-hilera-de-bol...
6528794 estudio-de-fallas-comunes-en-rodamientos-rigidos-de-una-hilera-de-bol...6528794 estudio-de-fallas-comunes-en-rodamientos-rigidos-de-una-hilera-de-bol...
6528794 estudio-de-fallas-comunes-en-rodamientos-rigidos-de-una-hilera-de-bol...
 
Slides capteurs partie 1
Slides capteurs partie 1Slides capteurs partie 1
Slides capteurs partie 1
 
Modelisation systemes 1ddl
Modelisation systemes 1ddlModelisation systemes 1ddl
Modelisation systemes 1ddl
 
Quelques exemples de calcul d'incertitudes (GUM et GUMS1)
Quelques exemples de calcul d'incertitudes (GUM et GUMS1)Quelques exemples de calcul d'incertitudes (GUM et GUMS1)
Quelques exemples de calcul d'incertitudes (GUM et GUMS1)
 
Anfis.rpi04
Anfis.rpi04Anfis.rpi04
Anfis.rpi04
 
2. classification of signals
2. classification of signals 2. classification of signals
2. classification of signals
 
Unit 4 frequency response-Bode plot
Unit 4 frequency response-Bode plotUnit 4 frequency response-Bode plot
Unit 4 frequency response-Bode plot
 

Similar to Modal Analysis Basic Theory

Parallel Interference Cancellation in beyond 3G multi-user and multi-antenna ...
Parallel Interference Cancellation in beyond 3G multi-user and multi-antenna ...Parallel Interference Cancellation in beyond 3G multi-user and multi-antenna ...
Parallel Interference Cancellation in beyond 3G multi-user and multi-antenna ...
David Sabater Dinter
 
Sampling and Reconstruction (Online Learning).pptx
Sampling and Reconstruction (Online Learning).pptxSampling and Reconstruction (Online Learning).pptx
Sampling and Reconstruction (Online Learning).pptx
HamzaJaved306957
 
WE3.L09 - DIRECT ESTIMATION OF FARADAY ROTATION AND OTHER SYSTEM DISTORTION P...
WE3.L09 - DIRECT ESTIMATION OF FARADAY ROTATION AND OTHER SYSTEM DISTORTION P...WE3.L09 - DIRECT ESTIMATION OF FARADAY ROTATION AND OTHER SYSTEM DISTORTION P...
WE3.L09 - DIRECT ESTIMATION OF FARADAY ROTATION AND OTHER SYSTEM DISTORTION P...
grssieee
 

Similar to Modal Analysis Basic Theory (20)

ACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docxACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docx
 
Seismic presentation for Dip correction for convolution modelling
Seismic presentation for Dip correction for convolution modellingSeismic presentation for Dip correction for convolution modelling
Seismic presentation for Dip correction for convolution modelling
 
Parallel Interference Cancellation in beyond 3G multi-user and multi-antenna ...
Parallel Interference Cancellation in beyond 3G multi-user and multi-antenna ...Parallel Interference Cancellation in beyond 3G multi-user and multi-antenna ...
Parallel Interference Cancellation in beyond 3G multi-user and multi-antenna ...
 
time response
time responsetime response
time response
 
Ray : modeling dynamic systems
Ray : modeling dynamic systemsRay : modeling dynamic systems
Ray : modeling dynamic systems
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
 
Sampling and Reconstruction (Online Learning).pptx
Sampling and Reconstruction (Online Learning).pptxSampling and Reconstruction (Online Learning).pptx
Sampling and Reconstruction (Online Learning).pptx
 
Pixel rf
Pixel rfPixel rf
Pixel rf
 
LTE Physical Layer Transmission Mode Selection Over MIMO Scattering Channels
LTE Physical Layer Transmission Mode Selection Over MIMO Scattering ChannelsLTE Physical Layer Transmission Mode Selection Over MIMO Scattering Channels
LTE Physical Layer Transmission Mode Selection Over MIMO Scattering Channels
 
frequency responce.ppt
frequency responce.pptfrequency responce.ppt
frequency responce.ppt
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing
 
Filter-Type Fault Detection and Exclusion (FDE) on Multi-Frequency GNSS Receiver
Filter-Type Fault Detection and Exclusion (FDE) on Multi-Frequency GNSS ReceiverFilter-Type Fault Detection and Exclusion (FDE) on Multi-Frequency GNSS Receiver
Filter-Type Fault Detection and Exclusion (FDE) on Multi-Frequency GNSS Receiver
 
eecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfeecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdf
 
A Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB SimulinkA Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB Simulink
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF Transceivers
 
WE3.L09 - DIRECT ESTIMATION OF FARADAY ROTATION AND OTHER SYSTEM DISTORTION P...
WE3.L09 - DIRECT ESTIMATION OF FARADAY ROTATION AND OTHER SYSTEM DISTORTION P...WE3.L09 - DIRECT ESTIMATION OF FARADAY ROTATION AND OTHER SYSTEM DISTORTION P...
WE3.L09 - DIRECT ESTIMATION OF FARADAY ROTATION AND OTHER SYSTEM DISTORTION P...
 
Frequency Modulation.ppt
Frequency Modulation.pptFrequency Modulation.ppt
Frequency Modulation.ppt
 
Introduction to OFDM.ppt
Introduction to  OFDM.pptIntroduction to  OFDM.ppt
Introduction to OFDM.ppt
 
Actuator Constrained Optimal Control of Formations Near the Libration Points
Actuator Constrained Optimal Control of Formations Near the Libration PointsActuator Constrained Optimal Control of Formations Near the Libration Points
Actuator Constrained Optimal Control of Formations Near the Libration Points
 

Recently uploaded

"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
mphochane1998
 
Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptx
hublikarsn
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
jaanualu31
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 

Recently uploaded (20)

HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdf
 
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesLinux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Memory Interfacing of 8086 with DMA 8257
Memory Interfacing of 8086 with DMA 8257Memory Interfacing of 8086 with DMA 8257
Memory Interfacing of 8086 with DMA 8257
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata Model
 
Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptx
 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptx
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptx
 
Augmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxAugmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptx
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 

Modal Analysis Basic Theory

  • 1. Modal Analysis Gub – LMS Engineering Services Modal Analysis Basic Theory
  • 2. 2 copyright LMS International - 2005  Equation of motion:  Applied to SDOF:  Applied force?  Pulse (transient)  Harmonic function (steady state)  Combination SDOF System Theory ground m c k x(t) f(t) spring force + damping force + applied force = mass X acceleration F = m X a
  • 3. 3 copyright LMS International - 2005 ωn k m  2 2 1,2 * 1 1 1 1 1 1 * 1 1 1 * 1 1 1 ( ) 1/ ( ) ( ) ( / ) ( / ) ( /(2 )) ( /(2 ) ( / ) 1/ ( ) ( ) ( ) 2 X p M FRF H p F p p C M p K M C M C M K M j j A A M H p A p p j                             System poles Residue Damping factor - damped natural frequency Un-damped natural frequency ( C=0) Laplace domain SDOF System Theory SDOF System Theory
  • 4. 4 copyright LMS International - 2005 SDOF Frequency response 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 10 -1 10 0 10 1 β 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 20 40 60 80 100 120 140 160 180 degrees 90 degrees β Magnitude Phase f f x F
  • 5. 5 copyright LMS International - 2005 SDOF Frequency response Magnitude Phase 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 10 -1 10 0 10 1 10 2 zeta (z) 1% 2% 5% 10% 20% 50% 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 20 40 60 80 100 120 140 160 180 degrees Zeta (z) 1% 2% 5% 10% 20% 50% x F
  • 6. 6 copyright LMS International - 2005 SDOF Frequency response  Magnitude & Phase  Real & Imaginary 0 2 4 6 8 10 12 14 16 18 20 10 -2 10 -1 10 0 Frequency Response Function Frequency Hz Log-Magnitude 0 2 4 6 8 10 12 14 16 18 20 -200 -150 -100 -50 0 Frequency Hz Phase 0 2 4 6 8 10 12 14 16 18 20 -0.2 -0.1 0 0.1 0.2 Frequency Response Function Frequency Hz Real Part 0 2 4 6 8 10 12 14 16 18 20 -0.4 -0.3 -0.2 -0.1 0 Frequency Hz Imaginary Part x F x F
  • 7. 7 copyright LMS International - 2005 Influence M, C, K Stiffness K   resonance freq 1  x F
  • 8. 8 copyright LMS International - 2005 Influence M, C, K Stiffness M   resonance freq 1  x F
  • 9. 9 copyright LMS International - 2005 Influence M, C, K Stiffness C   amplitude  (resonance freq 1 ) x F
  • 10. 10 copyright LMS International - 2005 SDOF Frequency response  Real vs. Imaginary -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 Frequency Response Function Real Imaginary
  • 11. 11 copyright LMS International - 2005 SDOF Frequency response  FRF and system parameters 0 2 4 6 8 10 12 14 16 18 20 10 -2 10 -1 10 0 Frequency Response Function Frequency Hz Log-Magnitude 0 2 4 6 8 10 12 14 16 18 20 -200 -150 -100 -50 0 Frequency Hz Phase damping controlled region stiffness controlled region mass controlled region x F x F
  • 12. 12 copyright LMS International - 2005 SDOF Impulse Response  FRF  Inverse Fourier transform = Impulse Response  Poles ( ) ( ) ( ) A A H j j j        ( ) t t h t Ae A e       * 2 , 1 n n d j j    z   z      time [s] amplitude d ω / π 2 time [s] amplitude d ω / π 2 Amplitude Time (s)
  • 13. 13 copyright LMS International - 2005 MDOF System Theory ground m 1 c 1 k 1 f 1 (t) m 2 m n ground k n+1 k 2 c 2 c n+1 f 2 (t) f n (t) x 1 (t) x 2 (t) x n (t)
  • 14. 14 copyright LMS International - 2005 MDOF System Theory Equations of Motion  Newton  Applied to free body  Assembled  Shorthand notation Free Body Diagram m n fn(t) x n (t) k n+1 c n+1 k n c n n n x Forces mx   1 1 1 1 1 1 ( ) ( ) ( ) ( ) ( ) n n n n n n n n n n n n n n n k x x k x x c x x c x x f t m x                1 1 1 2 2 1 1 2 2 1 2 2 2 2 3 3 2 2 2 3 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 n n n n n n n n m x c c c x k k k x m x c c c c x k k k k x m x c c x k k x                                                                                                  1 2 n f f f                   ( ) ( ) ( ) ( ) M x t C x t K x t f t   
  • 15. 15 copyright LMS International - 2005 MDOF Physical Space vs. Modal Space  Physical space  Modal space ( ) ( ) ( ) ( ) T i i i m p t c p t k p t f t                       ground m1 c1 k1 f1(t) m2 mn ground kn+1 k2 c2 cn+1 f2(t) fn(t) x 1(t) x 2(t) x n(t) ( ) ( ) ( ) ( ) M x t C x t K x t f t    Physical Mass Damping Stiffness Modal Mass Damping Stiffness mode 1 m1 c1 k1 p(t) 1 mode 2 m2 c2 k2 p(t) 2 mode n mn cn kn p(t) n
  • 16. 16 copyright LMS International - 2005 2 1 ( ) ( ) ( ) ( ) [ ] X p H p F p H p p M pC K      2 ( ) ( ) ( ) p M pC K X p F p    MDOF Transfer function  Time-domain equation of motion  Laplace domain  Transfer Function  Poles & residues  Modal scaling factor ( ) ( ) ( ) ( ) M x t C x t K x t f t    * * 1 ( ) n k k k k k A A H p p p         { } T k k k k A Q      k Q Non-trivial mathematics
  • 17. 17 copyright LMS International - 2005 MDOF FRF  Magnitude & Phase  Real & Imaginary
  • 18. 18 copyright LMS International - 2005 MDOF Modal Decomposition mode 1 m 1 c 1 k 1 p(t) 1 mode 1 m 1 c 1 k 1 p(t) 1 mode 1 m 1 c 1 k 1 p(t) 1 mode 2 m 2 c 2 k 2 p(t) 2 mode 2 m 2 c 2 k 2 p(t) 2 mode 2 m 2 c 2 k 2 p(t) 2 mode 3 m 3 c3 k 3 p(t) 3 mode 3 m 3 c3 k 3 p(t) 3 mode 3 m 3 c3 k 3 p(t) 3 * ,1 ,1 * 1 1 * ,2 ,2 * 2 2 * ,3 ,3 * 3 3 ( ) pq pq pq pq pq pq pq A A H j j j A A j j A A j j             
  • 19. 19 copyright LMS International - 2005 MDOF Impulse Responses  FRF  Inverse Fourier transform = Impulse Responses * * , , 1 ( ) k k n t t pq pq k pq k k h t A e A e       * , , * 1 ( ) n pq k pq k pq k k k A A H j j j         
  • 20. 20 copyright LMS International - 2005 Deformation at certain moment = linear combination of mode shapes Linear combination factors depend on input forces, frequency, damping and mode shape at input locations Vibration Response Mode shapes = + + + + ... a1 x x x x a2 a3 a4 Real structures Modal decomposition
  • 21. Modal Analysis Gub – LMS Engineering Services Modal Analysis Parameter Estimation
  • 22. 22 copyright LMS International - 2005 Overview 1. Selection of method 2. Selection of measurements 3. Selection of frequency band 4. Selection of time block 5. Estimation of number of poles 6. Estimation of poles 7. Estimation of modal vectors Modal Analysis Process
  • 23. 23 copyright LMS International - 2005 0.00 80.00 Hz 10.0e-6 0.10 Log ( g/N ) 0.00 80.00 Linear Hz 0.00 80.00 Hz -180.00 180.00 Phase ° 0.00 6.00 s -1.07 0.91 Real ( g/N ) Modal Parameter estimation Frequency domain versus Time domain Inverse Fourier transform Frequency domain Time domain FRF IRF * * 1 ( ) n k k k k k A A H j j        * * 1 ( ) e e n k k k k k t t h t A A       { } T k k k k A Q      * 2 , 1 k k k k k k j    z   z 
  • 24. 24 copyright LMS International - 2005 Modal Parameter Estimation SDOF vs. MDOF SDOF Methods MDOF methods
  • 25. 25 copyright LMS International - 2005 one global estimate for f !Consistency of data is important! Modal Parameter Estimation Local vs. Global vs. Polyreference Estimates f = 136.07 Hz f = 135.74 Hz Local Global Polyreference Separation of repeated poles!
  • 26. 26 copyright LMS International - 2005 Modal Parameter Estimation Single Degree of Freedom Techniques  FRF around (lightly-damped and not multiple) pole: !Assumes at resonance only one mode is important!  Method (Process)  Find resonance frequencies  Estimate residues  Estimate damping ratios * * 1 ( ) n k k k k k A A H j j        ( ) k k k k k k k A A H j       z 
  • 27. 27 copyright LMS International - 2005 Modal Parameter Estimation Single Degree of Freedom Techniques • Estimation of resonance frequencies • Peak Picking • Circle fit • Very simple to use, BUT limited applicability • Well-separated modes • Very low damping • Interesting when strong mass loading effects
  • 28. 28 copyright LMS International - 2005 Modal Parameter Estimation SDOF – Estimation of Damping  Half-power bandwidth method  3 dB 1 2 z      2 1 2
  • 29. 29 copyright LMS International - 2005 3D FRF & Circle Fit -10 0 10 20 30 40 50 -0.1 0 0.1 0.2 0.3 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 Imag Real Freq
  • 30. 30 copyright LMS International - 2005 Modal Parameter Estimation - MDOF Complex Mode Indicator Function (CMIF)  The rank of the FRF matrix at a certain frequency depends on the number of modes having a significant contribution at that frequency E.g. around (lightly-damped and not multiple) pole  Numerical tool to asses the rank of a matrix Singular Value Decomposition (SVD) * * * 1 { } { } ( ) T H n k k k k k k k k k Q Q H j j                ( ) { } T k k k H      Rank = 1, since column vector * row vector ( ) ( ) ( ) ( ) H H U V      
  • 31. 31 copyright LMS International - 2005 ( ) ( ) ( ) ( ) H H U V       Modal Parameter Estimation - MDOF Complex Mode Indicator Function (CMIF)  SVD of FRF @ all spectral lines CMIF = Singular values as a function of frequency (diagonals of ) ( )   Double pole
  • 32. 32 copyright LMS International - 2005 Modal Parameter Estimation - MDOF Complex Mode Indicator Function (CMIF)  Cada-X: estimation of complete set of modal parameters  Test.Lab: “mode indicator”, background of stabilization diagram
  • 33. 33 copyright LMS International - 2005 Overview 1. Selection of method 2. Selection of measurements 3. Selection of frequency band 4. Selection of time block 5. Estimation of number of poles 6. Estimation of poles 7. Estimation of modal vectors Modal Analysis Process
  • 34. 34 copyright LMS International - 2005 How many modes to estimate?  Major problem in modal parameter estimation What is the model order? How many modes to curve-fit?  Solutions Sum of frequency response functions Mode indicator functions Stabilisation diagram (Error chart) * * 1 ( ) n k k k k k A A H j j        0.00 80.00 Hz 10.0e-6 0.10 Log ( (m/s2)/N ) 22.56 41.19
  • 35. 35 copyright LMS International - 2005 How many modes to estimate? Mode indicator functions  “Sum” of FRFs  Multivariant mode indicator function (MvMIF)  Complex mode indicator function (CMIF) 22.00 42.00 Linear Hz 4.73e-3 0.09 Log ( ) 22.00 42.00 Linear Hz 22.00 42.00 Hz -180.00 180.00 Phase ° 22.00 42.00 Hz 0.00 1.00 Real / 22.00 42.00 Hz 1.01e-3 1.00 Log /
  • 36. 36 copyright LMS International - 2005 Stability : new : freq : damp + freq : part. vector + freq : all o f d v s How many modes to estimate? Stabilisation diagram  Try a whole range of model orders  Compare modal parameters at current order with previous order * * 1 ( ) n k k k k k A A H j j        n
  • 37. 37 copyright LMS International - 2005 How many modes to estimate? Stabilisation diagram Model order problem shifted to problem of separating true from computational poles? !Difficulty: Avoid Computational Modes!
  • 38. 38 copyright LMS International - 2005 Frequency-Domain Curve-Fitting  Pole-residue models not directly used  Non-linear optimisation problem  Right matrix-fraction model  Can be linearised Poles & participation factors Mode shapes            " ) ( ) ( ) ( ) ( ) ( ) ( " ) ( ) ( ) ( 0 0 1 1 0 0 1 1 1                                               j j j j j j A B H p p p p p p p p     r    r  Quotes have been introduced because the ratio notation is normally not used for matrices in the denominator * *                  n i i H i i i T i i j l v j l v H 1 * * } { } { ) ( measured unknowns measured unknowns
  • 39. 39 copyright LMS International - 2005 LMS PolyMAX Linear Least Squares  Right matrix-fraction model (z-domain)  Linearisation By minimising the error (in a linear least squares sense), the model can be found from the data  Algorithm optimisation “Reduced Normal Equations”  Problem size reduction (Final dimension not related to the number of DOFs: very large-size problems can be tackled)  Memory and speed optimisation            " " ) ( ) ( ) ( 0 0 1 1 0 0 1 1 1 z z z z z z A B H p p p p p p p p                                                ) ( ) ( ) ( error      A H B           0 ) ) ( ( 1 0                    p H M     ) ( , ) (   B A   ) ( H t j z    e 
  • 40. 40 copyright LMS International - 2005 LMS PolyMAX Consequence of z-Domain Description  Properties of z-domain model with real-valued coefficients  Consequence: pole estimation close to borders of frequency band less accurate -40 -20 0 20 40 60 80 10 -3 10 -2 10 -1 Magnitude -40 -20 0 20 40 60 80 -200 0 200 f [Hz] Phase [deg] Complex conjugated and mirrored ) ( ) ( ) ( ) 2 ( *           H H H t H
  • 41. 41 copyright LMS International - 2005 LMS PolyMAX Implementation • Step 1: reduced normal equations • Establish reduced normal equations for maximum model order           0 ) ) ( ( 1 0                    p H M 
  • 42. 42 copyright LMS International - 2005 • Step 1: reduced normal equations • Establish reduced normal equations for maximum model order           0 ) ) ( ( 1 0                    p H M  LMS PolyMAX Implementation • Step 2: stabilisation diagram • Compute poles and participation factors for the model order range • Select stable modes
  • 43. 43 copyright LMS International - 2005 • Step 1: reduced normal equations • Establish reduced normal equations for maximum model order           0 ) ) ( ( 1 0                    p H M  LMS PolyMAX Implementation • Step 2: stabilisation diagram • Compute poles and participation factors for the model order range • Select stable modes • Step 3: mode shapes and residuals • Least-Squares Frequency-Domain (LSFD) Method       UR LR j l v j l v H n i i H i i i T i i                   2 1 * * ) ( Selected from stabilisation diagram unknowns measured
  • 44. 44 copyright LMS International - 2005 Modal Parameter Estimation Least Squares Frequency Domain (LSFD)  Interpretation of stabilization diagram yields poles (freq+damp) and participation factors  Second step to estimate mode shapes and residuals = LSFD 0.00 80.00 Linear Hz 100e-9 1.00 Log ( ) FRF BACK:125:-Y / RAIL:151:+Y Synthesized FRF BACK:125:-Y/RAIL:151:+Y Synthesized FRF BACK:125:-Y/RAIL:151:+Y 0.00 80.00 Linear Hz 0.00 80.00 Hz -180.00 180.00 Phase ° Blue: without residuals       UR LR j l v j l v H n k k H k k k T k k                   2 1 * * ) ( Selected from stabilisation diagram unknowns measured
  • 45. 45 copyright LMS International - 2005 Example Porsche 911 Targa Carrera 4  Full vehicle Heavily damped  Excitation 4 shakers  CMIF Complex mode indicator function
  • 46. 46 copyright LMS International - 2005 Example Porsche 911 Targa Carrera 4 - Stabilisation LSCE (least squares complex exponential)
  • 47. 47 copyright LMS International - 2005 FDPI (frequency domain direct parameter) Example Porsche 911 Targa Carrera 4 - Stabilisation
  • 48. 48 copyright LMS International - 2005 PolyMAX (Z-domain estimation) Example Porsche 911 Targa Carrera 4 - Stabilisation
  • 49. 49 copyright LMS International - 2005  Satellite Very lightly damped  Excitation 5 shakers  CMIF Example Radar sat
  • 50. 50 copyright LMS International - 2005  “Textbook” stabilisation  Analysis in one single range possible with PolyMAX  Classical methods: only possible through sub- ranges Successful identification of many closely-spaced local modes Example Radar sat - Stabilisation
  • 51. Modal Analysis Gub – LMS Engineering Services Modal Analysis Validation
  • 52. 52 copyright LMS International - 2005 Validation  Synthesis of FRFs  Plot and animate mode shapes  MAC matrix  Mode participation  Mode colinearity  Mode complexity  … 0.00 80.00 Linear Hz 10.0e-6 1.00 Log ( (m/s2)/N ) FRF BACK:125:-Y / FRNT:15:+Z Synthesized FRF BACK:125:-Y/FRNT:15:+Z 0.00 80.00 Linear Hz 0.00 80.00 Hz -180.00 180.00 Phase °
  • 53. 53 copyright LMS International - 2005 Porsche 911 Targa Carrera 4 PolyMAX FRF Synthesis 3.50 30.00 Linear Hz 100e-6 10.0e-3 Log ( g/N ) FRF moto:9:+Z/karo:1:+Z 3.50 30.00 Linear Hz 3.50 30.00 Hz -180.00 180.00 Phase ° FRF moto:9:+Z/karo:1:+Z 3.50 30.00 Linear Hz 10.0e-6 10.0e-3 Log ( g/N ) FRF moto:9:+Z/karo:25:+Z 3.50 30.00 Linear Hz 3.50 30.00 Hz -180.00 180.00 Phase ° FRF moto:9:+Z/karo:25:+Z 3.50 30.00 Linear Hz 10.0e-6 10.0e-3 Log ( g/N ) FRF moto:9:+Z/moto:2:+Z 3.50 30.00 Linear Hz 3.50 30.00 Hz -180.00 180.00 Phase ° FRF moto:9:+Z/moto:2:+Z 3.50 30.00 Linear Hz 10.0e-6 10.0e-3 Log ( g/N ) FRF moto:9:+Z/moto:15:+Z 3.50 30.00 Linear Hz 3.50 30.00 Hz -180.00 180.00 Phase ° FRF moto:9:+Z/moto:15:+Z
  • 54. 54 copyright LMS International - 2005 MAC Matrix Spatial Aliasing  PZL-Sokol Helicopter MAC
  • 55. 55 copyright LMS International - 2005 Validation Mode Complexity and Mode Participation Mode Frequency MPC (%) MP(%) FRNT:15:+Z MP(%) RAIL:151:+Y MP(%) 1 26.996 Hz 99.968 65.783 100.000 23.634 2 27.346 Hz 99.903 100.000 2.688 1.768 3 31.555 Hz 99.954 100.000 51.330 12.264 4 34.538 Hz 99.778 100.000 5.110 12.763 5 35.948 Hz 99.906 100.000 12.841 11.651 6 37.872 Hz 99.871 100.000 27.591 12.127 7 49.369 Hz 99.950 100.000 32.962 9.651 8 52.728 Hz 99.308 100.000 21.333 1.047 9 53.432 Hz 99.541 100.000 10.176 0.514 10 54.058 Hz 96.061 88.338 100.000 7.671 11 54.902 Hz 99.439 27.366 100.000 1.806 12 55.349 Hz 98.500 18.353 100.000 2.671 13 58.430 Hz 98.395 100.000 63.563 2.433 Vertical shaker Horizontal shaker Vertical shaker Horizontal shaker
  • 56. 56 copyright LMS International - 2005 Validation Mode Colinearity  Plot mode shape in complex plane