SlideShare a Scribd company logo
1 of 56
Filter-Type Fault Detection
and Exclusion (FDE) on Multi-
Frequency GNSS Receiver
Advisor: Prof. Chang, Fan-Ren
Presenters: Tsai, Yi-Hsueh
2
Outline
1. Introduction
2. GNSS Architecture, Observables, and
Covenantal Fault Detection and Exclusion
3. Using Multi-Frequency Tech. on FDE
4. Using ARMA-Filter on FDE
5. Using Kalman Filter on FDE
6. Conclusions and Future Works
3
Introduction (1/2)
accuracy
FDE algorithm
(stand-alone GPS use)
integrity
availability
continuity
ICAO (International Civil Aviation Organization)
navigation performance requirements
4
Introduction (2/2)
current
data
time
process
Filter-Type FDE Algorithm
(use current & past data)
Snapshot FDE Algorithm
(use current data)
past data
5
GNSS Architecture
System GPS GLONASS Galileo
Developed by United State Russian European
Sat. No. / planes 24 / 6 24 / 3 27 / 3
Inclination 55 64.8 56
Altitude 20200 km 19100 km 23616 km
Period 11 hr 58 min 11 hr 15 min 14 hr 22 min
Modulation CDMA FDMA CDMA
L1*, E1-L1-E2** 1575.42 MHz* 1602+0.5625n MHz* 1575.42 MHz**
L2*, E6** 1227.60 MHz* 1246+0.4375n MHz* 1278.75 MHz**
E5B** 1207.14 MHz**
L5*, E5A** 1176.45 MHz* 1176.45 MHz**
6
Observables
ionosphere
 
 2
frequencycarrier
1

 advancephase
delaygroupcode
Doppler shift
delta range
7
Least-Squares-Residuals (1/3)
              kkkkkkk TT
yRHHRHx 111
ˆ 

     kkk xHy ˆˆ 
The estimate of the state vector is
and the range residual vector is
The estimate of y(k) is
The linearized GPS measurement equation is
     kkk yyy ˆ~ 
       ,kkkk wxHy      kNk R0w ,~
8
Least-Squares-Residuals (2/3)
The test statistic
       kkkks T
yRy ~~ 1

0 5 10 15 20
0
0.05
0.1
0.15
0.2
false alarm rate = 1/100
normalized SSE (m2
)
probabilitydensityfunction
determination of threshold
Td
2(4)Parkinson showed that
the distribution of s(k)
is chi-square distributed
with degrees of freedom
as n4.
9
Least-Squares-Residuals (3/3)
detection threshold Td under FAR = 1/15000
Number of satellites
in view, n
Chi-square
degrees of freedom
Detection Threshold
5 1 15.9032
6 2 19.2316
7 3 21.9546
8 4 24.3914
9 5 26.6521
10 6 28.7899
11 7 30.8356
12 8 32.8089
10
> Te
Subset Method
Subset solutions are formed by removing
one of the visible satellites at a time.
s1(k)
si (k)
sn(k)
snf
(k)  Te
11
satisfying and
Parity Space Method (1/2)
The parity matrix
The parity vector
    0HP kk
     kkk yPp 
        kkkk ni pppP 1
     kkk wxH    nfkb e
0
   kkb nfp         kkkkk wPxHP 
      4 n
T
kkk IPRP
nfth channel vector
12
Parity Space Method (2/2)
ith channel vector
nfth channel vector
(failed satellite)
parity vector














 k
kk
maxarg
i
i
T
n,,i p
pp
1
No of visible satellite = 6
Using Multi-Frequency
Technique on Failure
Detection and Exclusion
14
Dual Frequency GPS (1/2)
 
 
 
 
 
 
 
 

























k
k
k
k
fk
fk
k
k
L
L
nL
nL
L
L
2
1
2
2
2
1
2
1
w
w
κ
x
IH
IH
y
y
The estimated positioning result
The linearized measurement equation
          kkkkk L
TT
DF 12
1
ˆ yHHHx


        kfkfffk LLLLLLL 2
2
11
2
2
12
1
2
212 yyy 
where
     kkk DFDFDF wHy
15
Dual Frequency GPS (2/2)
The parity matrix
The parity vector
      kfkfk LLLLDFDF PPP 2
1
2
2
1
2
1
1
1 
 
     
     kkff
kkk
LLLLLDF
DFDFDF
12
2
1
2
2
1
2
1
1
1
yP
yPp




The algorithm to identify the failed satellite
     kkks DF
T
DFDF ppThe test statistic
   
 
   
  















 k
kk
k
kk
L
iDF
L
iDF
T
DF
L
iDF
L
iDF
T
DF
ni
2
,
2
,
1
,
1
,
,,1
,maxmaxarg
p
pp
p
pp

16
GPS Triple Frequency (1/2)
The estimated positioning result
Extend to the triple frequency
          kkkkk L
TT
TF 125
1
ˆ yHHHx


 
 
 
 
 
 
 
 
 
 
 







































k
k
k
k
k
fk
fk
fk
k
k
k
L
L
L
nL
nL
nL
L
L
L
5
2
1
2
5
2
2
2
1
5
2
1
w
w
w
κ
x
IH
IH
IH
y
y
y
       kckckck LLLLLLL 552211125 yyyy where
     kkk TFTFTF wHy
17
GPS Triple Frequency (2/2)
The algorithm to identify the failed satellite
The test statistic      kkks TF
T
TFTF pp
   
 
   
 
   
  















 k
kk
,
k
kk
,
k
kk
maxmaxarg L
i,TF
L
i,TF
T
TF
L
i,TF
L
i,TF
T
TF
L
i,TF
L
i,TF
T
TF
n,,i
5
5
2
2
1
1
1 p
pp
p
pp
p
pp

The parity vector      kkk TFTFTF yPp 
The parity matrix
       
      






 

nLLLLLnLLLLLnLLLLL
LTFLTFLTF
TFTF
ffffff
kckckc
k
III
PPP
P 2
2
2
1
1
5
1
2
1
1
2
1
2
5
1
5
1
2
1
1
2
5
2
2
1
5
1
2
1
1
5211



18
GNSS (GPS + Galileo)
To simultaneously use the measurements
of both Galileo and GPS system
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





















































k
k
k
k
k
k
k
fk
fk
fk
fk
k
k
k
k
E
L
E
L
mE
nL
mE
nL
E
L
E
L
6
2
1
1
2
6
2
2
2
1
2
1
6
2
1
1
w
w
w
w
κ
κ
x
I0H
0IH
I0H
0IH
y
y
y
y



     kkk DFDFDF wHy

19
Simulation Results:
Positioning (1/2)
Dual freq.
L1/L2
Single
freq. L1
Triple freq.
L1/L2/L5
-20 -15 -10 -5 0 5 10 15 20
-20
-15
-10
-5
0
5
10
15
20
Positioning error (L1)
east error (m)
northerror(m)
-20 -15 -10 -5 0 5 10 15 20
-20
-15
-10
-5
0
5
10
15
20
Positioning error (L1/L2)
east error (m)
northerror(m)
-20 -15 -10 -5 0 5 10 15 20
-20
-15
-10
-5
0
5
10
15
20
Positioning error (L1/L2/L5)
east error (m)
northerror(m)
20
Simulation Results:
Positioning (2/2)
Standard
Derivation
Horizontal error (m)
Vertical error (m)
East error North error
Single Freq. 5.5499 3.9982 21.2627
Double Freq. 2.2234 3.3094 6.1387
Triple Freq. 1.8737 2.8852 5.4481
21
Simulation Results:
Failure Detection (1/2)
sound an
alarm
begin
failure   
11521152
1
timedetectionaverage DTADT
detection time (DT)
24 space 48 time
(RTCA DO-208)
22
Simulation Results:
Failure Detection (2/2)
0.5 1 2 5 10 20
1
2
5
10
20
50
80
Slope (m/s)
AverageDetectionTime(sec)
Average Detection Time
Single frequency
Dual frequency
Triple frequency
 The best improvement
percentage for dual
freq. and triple freq.
are 48.3% and 55.9%,
respectively.
 Application of multi-
frequency algorithms
will shorten the failure
detection time.
23
Simulation Results:
Failure Exclusion (1/2)
%100
exclusiontotalofno.
exclusionincorrectofno.
rate)exclusion(incorrect

IER
failed excluded
24
Simulation Results:
Failure Exclusion (2/2)
15 20 25 30 35 40 45 50
0
5
10
15
20
25
30
35
Bias (m)
IncorrectExclusionRate(%)
Incorrect Exclusion Rate
Single frequency
Dual frequency
Triple frequency
 The IER obtained
through the dual (triple)
freq. is about 5% (12%)
lower than the one
through single freq.
 Application of multi-
frequency algorithms
will reduce the IER.
Failure Detection
and Exclusion
via ARMA-Filter
26
Failure Detection
via ARMA-filter
      

M
i
i
N
i
i iksikzkz
11
1
The scheme of the ARMA-filter
(Autoregressive Moving Average filter)
Failure
z(k) > Td
Normal
no
yes
ARMA-filters(k)
z(k)
27
Detection Threshold (1/3)
FAMMean time to false alarm (MTFA):
 
FAM
FAR
1
RateAlarmFalse 
sound a
false alarm
begin
detection
time to false alarm (TFA)
28
Detection Threshold (2/3)
Determining Td via the Markov Chain Approach
L
1 1
L
j
i
k-1
L(k)
i(k)
1(k)
terminating state
transient state k
Tij
z(k)  Td
z(k) > Td
29
Detection Threshold (3/3)
   1 kk Tππ
where T is the transition probability matrix
The transition of (k) can be represented as
   0
1
πTΙl

 L
T
LFAMMTFA:
Threshold Td
FAM
FAR
1

30
MA-filter
     
   




kkz
kskk
T
MMA
θβ
eθΦθ 1,1
The dynamic equation of the MA-filter state space
model
where i is the weight satisfies
The scheme of the MA-filter
   

M
i
i ikskz
1
1
11

M
i i
Markov Chain
31
MA-filter: Window Size 2 (1/2)
MA-filter with window size 2:      121  kskskz 
dT1
1


1S
LS
2
1
0
dT1
2


  dT 2211 
iS
 ii  ,
 
 
 
 
 
     































kkkz
ks
k
k
k
k
2211
2
1
2
1
0
1
1
1
01
00





state space model
32
MA-filter: Window Size 2 (2/2)
dT1
2


1S
LS
1S
LS iSjS
 k2
 k1
dT1
1

dT1
1


 12 k
dT1
2


 11 k
0 0
ijT
  dT 2211 
 ii  ,
    jiij SstateinwaskSstatetogoeskT 1|Pr  θθ
33
PFARMA-filter
The scheme of the PFARMA-filter
(parallel–form ARMA)
     
   




kkz
kskk
T
PFARMA
θη
λθΦθ 1
parallel-form
structure
      

M
i
i
N
i
i iksikzkz
11
1
The scheme of the ARMA-filter
Markov Chain
34
Probability Integral
Transformation (PIT)
0 5 10 15 20
0
0.2
0.4
0.6
0.8
0.9
1
random variable
cdfvalue
Probability Integral Transformation
4.6 10.6
2
(2)

2
(6)
F
-1
F
10 Sat.
2(6)
9 Sat.
2(5)
6 Sat.
2(2)
Visible Satellite
   ZZF 
1log21
2
35
Failure Exclusion
via Multivariate ARMA
The scheme of the multivariate ARMA-filter
      

M
i
i
N
i
i ikikk
11
1pqq 














 k
kk
i
i
T
ni p
pq
,,1
maxarg

Multivariate
ARMA-filterp(k)
q(k)
36
Simulation Results (1/5)
Window Size Threshold
1 19.2316
2 12.0159
3 9.3713
4 7.9669
5 7.0898
MA-filter with equal weights
37
Simulation Results (2/5)
1 2 3 4 5
2
5
10
20
50
100
120
Average Detection Time
Window Size
AverageDetectionTime(sec)
slope = 0.2
slope = 0.5
slope = 1
slope = 5
slope = 10
slope = 15
 Under small ramp-type
failures (slope = 0.2, 0.5
and 1 m/s), the ADT will
decrease as the window
size increase.
 Under large ramp-type
failures (slope = 5, 10
and 15 m/s), the window
size has little influence
on the ADT.
38
Simulation Results (3/5)
 Under small step-type
failures (bias = 20, 25
and 30 m), the ADT will
decrease as the window
size increase.
 Under large step-type
failures (bias = 40 m), the
window size has little
influence on the ADT.
1 2 3 4 5
1
2
5
10
20
50
90
Average Detection Time
Window Size
AverageDetectionTime(sec)
step = 20
step = 25
step = 30
step = 40
39
Simulation Results (4/5)
35 40 45 50 55
0
5
10
15
20
25
30
35
40
45
time (sec)
IncorrectExclusionRate(%)
Incorrect Exclusion Rate
Window Size = 1
Window Size = 2
Window Size = 3
Window Size = 4
Window Size = 5
 The IER will reduce as the
window size increase under
small ramp-type failures.
 The window size has little
influence on the IER under
large ramp-type failures.
3 4 5 6
0
2
4
6
8
10
12
14
16
18
time (sec)
IncorrectExclusionRate(%)
Incorrect Exclusion Rate
Window Size = 1
Window Size = 2
Window Size = 3
Window Size = 4
Window Size = 5
slope=0.5m/s
slope=10m/s
40
Simulation Results (5/5)
 The IER will reduce as the
window size increase under
small step-type failures.
 The window size has little
influence on the IER under
large step-type failures.
5 10 15 20 25 30
5
10
15
20
25
27
time (sec)
IncorrectExclusionRate(%)
Incorrect Exclusion Rate
Window Size = 1
Window Size = 2
Window Size = 3
Window Size = 4
Window Size = 5
2 3 4 5
3
4
5
6
7
8
9
10
11
time (sec)
IncorrectExclusionRate(%)
Incorrect Exclusion Rate
Window Size = 1
Window Size = 2
Window Size = 3
Window Size = 4
Window Size = 5
bias=25m
bias=40m
Failure Detection
and Exclusion
via Kalman Filter
42
PVA Model (1/2)
     
       
,
1





kkkk
kkk
PVAPVAPVAPVA
PVAPVAPVAPVA
wxHz
vxΦx
The dynamic and measurement equations









4
44
4
2
2
1
44
I00
II0
III
Φ S
SS
PVA t
tt
 
  



0H0
00H
H
k
k
PVAwhere
       kkkkkk PVAPVAPVAPVAPVA zKxΦx ~1|1ˆ|ˆ 
The updated state estimate
where        kkkkk PVA
T
PVAPVAPVA
1
| 
 RHPK
    
    


kNk
kNk
PVAPVA
PVAPVA
Rw
Qv
,0~
,0~
43
is the innovation vector with the covariance matrix
PVA Model (2/2)
The normalized innovation squared (NIS)
       kkkks PVAPVA
T
PVAPVA zSz ~~ 1

       1|1ˆ~  kkkkk PVAPVAPVAPVAPVA xΦHzz
         kkkkkk PVA
T
PVAPVAPVAPVA RHPHS  1|
Chi-square
distributed
44
FDE via Kalman filter
Kalman
Filter
Kalman
Filter 1
Kalman
Filter n
Pseudorange
Delta range
Doppler shift
Satellite Failure
Exclusion
Satellite Failure
Detection
All Measurements
Exclude Meas. n
Exclude Meas. 1
45
Maneuvering Vehicle
delta range information
46
Multiply L(k)
on both side
(L(k)H(k) = I4)
Delta Range Equation (1/3)
           kkkkkk ωxHxHu  11
The linearized delta range measurement
L(k)H(k-1)
           kkkkkk DRDR vuLxΦx  1
-L(k)(k)
The dynamic equation
47
Delta Range Equation (2/3)
The dynamic and measurement equations
           
       




,
1
kkkk
kkkkkk DRDR
wxHz
vuLxΦx
The updated state estimate
             kkkkkkkkk DRDRDRDR zKuLxΦx ~1|1ˆ|ˆ 
where        kkkkk T
DRDR
1
| 
 RHPK
    
    


kNk
kNk DRDR
Rw
Qv
,0~
,0~
48
Delta Range Equation (3/3)
The normalized innovation squared (NIS)
         kkkkkk T
DRDR RHPHS  1|
       kkkks DRDR
T
DRDR zSz ~~ 1

              kkkkkkkk DRDRDR uLxΦHzz  1|1ˆ~
is the innovation vector with the covariance matrix
49
Simulation Results
50 100 150 200 250 300 350 400 450 500
0
10
20
30
positioning
error(m)
PVA
50 100 150 200 250 300 350 400 450 500
0.0
50.3
80.0
120.0
160.0
Innovation
time (sec)
50 100 150 200 250 300 350 400 450 500
0
10
20
30
positioning
error(m)
DR
50 100 150 200 250 300 350 400 450 500
0.0
34.7
80.0
120.0
160.0
Innovation
time (sec)
detection threshold
detection threshold
50
Multiple Model Approach (1/2)
Kalman
Filter 0
Kalman
Filter 1
Kalman
Filter n
Pseudorange
Delta range
Positioning
Result+
 
   

n
i
iDRi
MM
kkk
kk
0
|ˆ
|ˆ
,x
x

 k0
 k1
 kn
prior prob.
51
Multiple Model Approach (2/2)
        
   


 n
l ll
ii
kii
kk
kk
k
0
1
1
|Pr


 Z
         kzk iDRikki ,11
~Pr,|Pr zZ  
The prior probability
where
i(k): the likelihood function of the ith model
52
0 25 50 75 100 125 150 175 200
0
20
40
60
detection threshold
Innovation
innovation
0 25 50 75 100 125 150 175 200
0
12.5
25
37.5
50
Delta Range Model
positioningerror(m)
0 25 50 75 100 125 150 175 200
0
12.5
25
37.5
50
Multiple Model Approach
positioningerror(m)
time (sec)
Simulation Results
0 50 100 150 200
0
0.5
1
φ0
(k)
0 50 100 150 200
0
0.5
1
φ1
(k)
0 50 100 150 200
0
0.5
1
φ2
(k)
0 50 100 150 200
0
0.5
1
φ3
(k)
0 50 100 150 200
0
0.5
1φ4
(k)
0 50 100 150 200
0
0.5
1
φ5
(k)
time (sec)
0 50 100 150 200
0
0.5
1
φ6
(k)
time (sec)
0 50 100 150 200
0
0.5
1
φ7
(k)
time (sec)
Ramp-Type Failure (slope = 0.2m/s)
53
0 25 50 75 100 125 150 175 200
0
20
40
60
detection threshold
Innovation
innovation
0 25 50 75 100 125 150 175 200
0
12.5
25
37.5
50
Delta Range Model
positioningerror(m)
0 25 50 75 100 125 150 175 200
0
12.5
25
37.5
50
Multiple Model Approach
positioningerror(m)
time (sec)
Simulation Results (2/2)
0 50 100 150 200
0
0.5
1
φ
0
(k)
0 50 100 150 200
0
0.5
1
φ
1
(k)
0 50 100 150 200
0
0.5
1
φ
2
(k)
0 50 100 150 200
0
0.5
1
φ
3
(k)
0 50 100 150 200
0
0.5
1
φ
4
(k)
0 50 100 150 200
0
0.5
1
φ
5
(k)
0 50 100 150 200
0
0.5
1
φ
6
(k)
time (sec)
0 50 100 150 200
0
0.5
1
φ
7
(k)
time (sec)
Step-Type Failure (bias = 20 m)
54
Conclusions (1/2)
 In Multi-frequency
 propose the dual frequency alogrithm
 extend to the triple frequency algorithm
 to simultaneously use the measurements of both
GPS and Galileo system
 In ARMA-filter
 propose the ARMA filter for fast failure detection
 use the Markov chain approach for calculating the
threshold of ARMA
55
Conclusions (2/2)
 In ARMA-filter (cont.)
 propose the PIT to solve the problem caused by
change of number of visible satellites
 proposed the multivariate ARMA to reduce the IER
 In Kalman filter
 use delta range information to accurately describe
the dynamic behavior of a maneuvering vehicle
 propose multiple model approach to reduce the
positioning error
56
Future Work
 Multi-frequency
 using delta range and/or Doppler shift measurements
 ARMA-filter
 to extend the ARMA detector to multivariate case
 to determine the optimal coefficients for FDE
 Kalman filter
 to reduce the computing burden
 Generalized pseudo-Bayesian (GPB) approach
 Interacting multiple model (IMM) algorithm.

More Related Content

What's hot

Phenix Forward Upgrade: the RPCs
Phenix Forward Upgrade: the RPCsPhenix Forward Upgrade: the RPCs
Phenix Forward Upgrade: the RPCsFrancesca Giordano
 
DEVELOPMENT OF NEUROFUZZY CONTROL SYSTEM FOR THE GUIDANCE OF AIR TO AIR MISS...
DEVELOPMENT OF NEUROFUZZY CONTROL SYSTEM FOR THE GUIDANCE OF AIR TO AIR  MISS...DEVELOPMENT OF NEUROFUZZY CONTROL SYSTEM FOR THE GUIDANCE OF AIR TO AIR  MISS...
DEVELOPMENT OF NEUROFUZZY CONTROL SYSTEM FOR THE GUIDANCE OF AIR TO AIR MISS...Ahmed Momtaz Hosny, PhD
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingSimen Li
 
S4495-plasma-turbulence-sims-gyrokinetic-tokamak-solver
S4495-plasma-turbulence-sims-gyrokinetic-tokamak-solverS4495-plasma-turbulence-sims-gyrokinetic-tokamak-solver
S4495-plasma-turbulence-sims-gyrokinetic-tokamak-solverPraveen Narayanan
 
Real Time Filtering on Embedded ARM
Real Time Filtering on Embedded ARMReal Time Filtering on Embedded ARM
Real Time Filtering on Embedded ARMVincent Claes
 
Module iv sp
Module iv spModule iv sp
Module iv spVijaya79
 
Fpga design of clutter generator for radar testing
Fpga design of clutter generator for radar testingFpga design of clutter generator for radar testing
Fpga design of clutter generator for radar testingcsijjournal
 
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisSimen Li
 
射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計Simen Li
 
Design and Analysis of a Control System Using Root Locus and Frequency Respon...
Design and Analysis of a Control System Using Root Locus and Frequency Respon...Design and Analysis of a Control System Using Root Locus and Frequency Respon...
Design and Analysis of a Control System Using Root Locus and Frequency Respon...Umair Shahzad
 

What's hot (10)

Phenix Forward Upgrade: the RPCs
Phenix Forward Upgrade: the RPCsPhenix Forward Upgrade: the RPCs
Phenix Forward Upgrade: the RPCs
 
DEVELOPMENT OF NEUROFUZZY CONTROL SYSTEM FOR THE GUIDANCE OF AIR TO AIR MISS...
DEVELOPMENT OF NEUROFUZZY CONTROL SYSTEM FOR THE GUIDANCE OF AIR TO AIR  MISS...DEVELOPMENT OF NEUROFUZZY CONTROL SYSTEM FOR THE GUIDANCE OF AIR TO AIR  MISS...
DEVELOPMENT OF NEUROFUZZY CONTROL SYSTEM FOR THE GUIDANCE OF AIR TO AIR MISS...
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
 
S4495-plasma-turbulence-sims-gyrokinetic-tokamak-solver
S4495-plasma-turbulence-sims-gyrokinetic-tokamak-solverS4495-plasma-turbulence-sims-gyrokinetic-tokamak-solver
S4495-plasma-turbulence-sims-gyrokinetic-tokamak-solver
 
Real Time Filtering on Embedded ARM
Real Time Filtering on Embedded ARMReal Time Filtering on Embedded ARM
Real Time Filtering on Embedded ARM
 
Module iv sp
Module iv spModule iv sp
Module iv sp
 
Fpga design of clutter generator for radar testing
Fpga design of clutter generator for radar testingFpga design of clutter generator for radar testing
Fpga design of clutter generator for radar testing
 
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
 
射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計
 
Design and Analysis of a Control System Using Root Locus and Frequency Respon...
Design and Analysis of a Control System Using Root Locus and Frequency Respon...Design and Analysis of a Control System Using Root Locus and Frequency Respon...
Design and Analysis of a Control System Using Root Locus and Frequency Respon...
 

Viewers also liked

Motivation of the New SI Proposal: Study on Licensed-Assisted Access using LTE
Motivation of the New SI Proposal:Study on Licensed-Assisted Access using LTEMotivation of the New SI Proposal:Study on Licensed-Assisted Access using LTE
Motivation of the New SI Proposal: Study on Licensed-Assisted Access using LTEYi-Hsueh Tsai
 
Seeking the candidate technology to drive the Automated Vehicles market
Seeking the candidate technology to drive the Automated Vehicles marketSeeking the candidate technology to drive the Automated Vehicles market
Seeking the candidate technology to drive the Automated Vehicles marketThe European GNSS Agency (GSA)
 
Realini go gps_foss4g2011_small2
Realini go gps_foss4g2011_small2Realini go gps_foss4g2011_small2
Realini go gps_foss4g2011_small2masarunarazaki
 
Essential parameters of space borne oscillators for satellite based augmentat...
Essential parameters of space borne oscillators for satellite based augmentat...Essential parameters of space borne oscillators for satellite based augmentat...
Essential parameters of space borne oscillators for satellite based augmentat...Lawal Salami Lasisi (PhD)
 
Master Thesis Final Presentation: Ionosphere monitoring in GBAS using Dual Fr...
Master Thesis Final Presentation: Ionosphere monitoring in GBAS using Dual Fr...Master Thesis Final Presentation: Ionosphere monitoring in GBAS using Dual Fr...
Master Thesis Final Presentation: Ionosphere monitoring in GBAS using Dual Fr...Joan Erencia
 
Comparative study of Salt & Pepper filters and Gaussian filters
Comparative study of Salt & Pepper filters and Gaussian filtersComparative study of Salt & Pepper filters and Gaussian filters
Comparative study of Salt & Pepper filters and Gaussian filtersAnkush Srivastava
 
Removal of Salt and Pepper Noise in images
Removal of Salt and Pepper Noise in imagesRemoval of Salt and Pepper Noise in images
Removal of Salt and Pepper Noise in imagesMurali Siva
 
Image processing SaltPepper Noise
Image processing SaltPepper NoiseImage processing SaltPepper Noise
Image processing SaltPepper NoiseAnkush Srivastava
 
Noise filtering
Noise filteringNoise filtering
Noise filteringAlaa Ahmed
 

Viewers also liked (12)

Motivation of the New SI Proposal: Study on Licensed-Assisted Access using LTE
Motivation of the New SI Proposal:Study on Licensed-Assisted Access using LTEMotivation of the New SI Proposal:Study on Licensed-Assisted Access using LTE
Motivation of the New SI Proposal: Study on Licensed-Assisted Access using LTE
 
Seeking the candidate technology to drive the Automated Vehicles market
Seeking the candidate technology to drive the Automated Vehicles marketSeeking the candidate technology to drive the Automated Vehicles market
Seeking the candidate technology to drive the Automated Vehicles market
 
Realini go gps_foss4g2011_small2
Realini go gps_foss4g2011_small2Realini go gps_foss4g2011_small2
Realini go gps_foss4g2011_small2
 
Essential parameters of space borne oscillators for satellite based augmentat...
Essential parameters of space borne oscillators for satellite based augmentat...Essential parameters of space borne oscillators for satellite based augmentat...
Essential parameters of space borne oscillators for satellite based augmentat...
 
goGPS (November 2013)
goGPS (November 2013)goGPS (November 2013)
goGPS (November 2013)
 
Master Thesis Final Presentation: Ionosphere monitoring in GBAS using Dual Fr...
Master Thesis Final Presentation: Ionosphere monitoring in GBAS using Dual Fr...Master Thesis Final Presentation: Ionosphere monitoring in GBAS using Dual Fr...
Master Thesis Final Presentation: Ionosphere monitoring in GBAS using Dual Fr...
 
DFMC SBAS Receiver Development
DFMC SBAS Receiver DevelopmentDFMC SBAS Receiver Development
DFMC SBAS Receiver Development
 
Gbas
GbasGbas
Gbas
 
Comparative study of Salt & Pepper filters and Gaussian filters
Comparative study of Salt & Pepper filters and Gaussian filtersComparative study of Salt & Pepper filters and Gaussian filters
Comparative study of Salt & Pepper filters and Gaussian filters
 
Removal of Salt and Pepper Noise in images
Removal of Salt and Pepper Noise in imagesRemoval of Salt and Pepper Noise in images
Removal of Salt and Pepper Noise in images
 
Image processing SaltPepper Noise
Image processing SaltPepper NoiseImage processing SaltPepper Noise
Image processing SaltPepper Noise
 
Noise filtering
Noise filteringNoise filtering
Noise filtering
 

Similar to Filter-Type Fault Detection and Exclusion (FDE) Using Multi-Frequency GNSS Receiver

Kalman Filter Based GPS Receiver
Kalman Filter Based GPS ReceiverKalman Filter Based GPS Receiver
Kalman Filter Based GPS ReceiverFalak Shah
 
Modal Analysis Basic Theory
Modal Analysis Basic TheoryModal Analysis Basic Theory
Modal Analysis Basic TheoryYuanCheng38
 
Cyclostationary analysis of polytime coded signals for lpi radars
Cyclostationary analysis of polytime coded signals for lpi radarsCyclostationary analysis of polytime coded signals for lpi radars
Cyclostationary analysis of polytime coded signals for lpi radarseSAT Journals
 
Mining of time series data base using fuzzy neural information systems
Mining of time series data base using fuzzy neural information systemsMining of time series data base using fuzzy neural information systems
Mining of time series data base using fuzzy neural information systemsDr.MAYA NAYAK
 
Introduction to OFDM.ppt
Introduction to  OFDM.pptIntroduction to  OFDM.ppt
Introduction to OFDM.pptStefan Oprea
 
Digital Signal Processing Tutorial:Chapt 3 frequency analysis
Digital Signal Processing Tutorial:Chapt 3 frequency analysisDigital Signal Processing Tutorial:Chapt 3 frequency analysis
Digital Signal Processing Tutorial:Chapt 3 frequency analysisChandrashekhar Padole
 
1 radar signal processing
1 radar signal processing1 radar signal processing
1 radar signal processingSolo Hermelin
 
ISNCC 2015 Presentation, POPS-OFDM: Ping-Pong Optimized Pulse Shaping OFDM fo...
ISNCC 2015 Presentation, POPS-OFDM:Ping-Pong Optimized Pulse Shaping OFDM fo...ISNCC 2015 Presentation, POPS-OFDM:Ping-Pong Optimized Pulse Shaping OFDM fo...
ISNCC 2015 Presentation, POPS-OFDM: Ping-Pong Optimized Pulse Shaping OFDM fo...Mohamed Siala
 
Multiple Sensors Soft-Failure Diagnosis Based on Kalman Filter
Multiple Sensors Soft-Failure Diagnosis Based on Kalman FilterMultiple Sensors Soft-Failure Diagnosis Based on Kalman Filter
Multiple Sensors Soft-Failure Diagnosis Based on Kalman Filtersipij
 
SSD 2015 Presentation, POPS-OFDM: Ping-pong Optimized Pulse Shaping OFDM for ...
SSD 2015 Presentation, POPS-OFDM: Ping-pong Optimized Pulse Shaping OFDM for ...SSD 2015 Presentation, POPS-OFDM: Ping-pong Optimized Pulse Shaping OFDM for ...
SSD 2015 Presentation, POPS-OFDM: Ping-pong Optimized Pulse Shaping OFDM for ...Mohamed Siala
 
07 image filtering of colored noise based on kalman filter
07 image filtering of colored noise based on kalman filter07 image filtering of colored noise based on kalman filter
07 image filtering of colored noise based on kalman filterstudymate
 
4 ijaems nov-2015-4-fsk demodulator- case study of pll application
4 ijaems nov-2015-4-fsk demodulator- case study of pll application4 ijaems nov-2015-4-fsk demodulator- case study of pll application
4 ijaems nov-2015-4-fsk demodulator- case study of pll applicationINFOGAIN PUBLICATION
 
Vedran Peric's PhD Defense Presentation: Non-intrusive Methods for Mode Estim...
Vedran Peric's PhD Defense Presentation: Non-intrusive Methods for Mode Estim...Vedran Peric's PhD Defense Presentation: Non-intrusive Methods for Mode Estim...
Vedran Peric's PhD Defense Presentation: Non-intrusive Methods for Mode Estim...Luigi Vanfretti
 
Indian remote sensing satellite,potentials with a revolution
Indian remote sensing satellite,potentials with a revolutionIndian remote sensing satellite,potentials with a revolution
Indian remote sensing satellite,potentials with a revolutionSamikshya Kar
 
Course-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdfCourse-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdfShreeDevi42
 
Advanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdfAdvanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdfHariPrasad314745
 
20220421_翁寬.ppt.pptx
20220421_翁寬.ppt.pptx20220421_翁寬.ppt.pptx
20220421_翁寬.ppt.pptxssuser4b3dc8
 
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...Toshihiro FUJII
 

Similar to Filter-Type Fault Detection and Exclusion (FDE) Using Multi-Frequency GNSS Receiver (20)

Kalman Filter Based GPS Receiver
Kalman Filter Based GPS ReceiverKalman Filter Based GPS Receiver
Kalman Filter Based GPS Receiver
 
Modal Analysis Basic Theory
Modal Analysis Basic TheoryModal Analysis Basic Theory
Modal Analysis Basic Theory
 
Cyclostationary analysis of polytime coded signals for lpi radars
Cyclostationary analysis of polytime coded signals for lpi radarsCyclostationary analysis of polytime coded signals for lpi radars
Cyclostationary analysis of polytime coded signals for lpi radars
 
Mining of time series data base using fuzzy neural information systems
Mining of time series data base using fuzzy neural information systemsMining of time series data base using fuzzy neural information systems
Mining of time series data base using fuzzy neural information systems
 
IMT Advanced
IMT AdvancedIMT Advanced
IMT Advanced
 
Introduction to OFDM.ppt
Introduction to  OFDM.pptIntroduction to  OFDM.ppt
Introduction to OFDM.ppt
 
Digital Signal Processing Tutorial:Chapt 3 frequency analysis
Digital Signal Processing Tutorial:Chapt 3 frequency analysisDigital Signal Processing Tutorial:Chapt 3 frequency analysis
Digital Signal Processing Tutorial:Chapt 3 frequency analysis
 
1 radar signal processing
1 radar signal processing1 radar signal processing
1 radar signal processing
 
ISNCC 2015 Presentation, POPS-OFDM: Ping-Pong Optimized Pulse Shaping OFDM fo...
ISNCC 2015 Presentation, POPS-OFDM:Ping-Pong Optimized Pulse Shaping OFDM fo...ISNCC 2015 Presentation, POPS-OFDM:Ping-Pong Optimized Pulse Shaping OFDM fo...
ISNCC 2015 Presentation, POPS-OFDM: Ping-Pong Optimized Pulse Shaping OFDM fo...
 
Multiple Sensors Soft-Failure Diagnosis Based on Kalman Filter
Multiple Sensors Soft-Failure Diagnosis Based on Kalman FilterMultiple Sensors Soft-Failure Diagnosis Based on Kalman Filter
Multiple Sensors Soft-Failure Diagnosis Based on Kalman Filter
 
SSD 2015 Presentation, POPS-OFDM: Ping-pong Optimized Pulse Shaping OFDM for ...
SSD 2015 Presentation, POPS-OFDM: Ping-pong Optimized Pulse Shaping OFDM for ...SSD 2015 Presentation, POPS-OFDM: Ping-pong Optimized Pulse Shaping OFDM for ...
SSD 2015 Presentation, POPS-OFDM: Ping-pong Optimized Pulse Shaping OFDM for ...
 
07 image filtering of colored noise based on kalman filter
07 image filtering of colored noise based on kalman filter07 image filtering of colored noise based on kalman filter
07 image filtering of colored noise based on kalman filter
 
4 ijaems nov-2015-4-fsk demodulator- case study of pll application
4 ijaems nov-2015-4-fsk demodulator- case study of pll application4 ijaems nov-2015-4-fsk demodulator- case study of pll application
4 ijaems nov-2015-4-fsk demodulator- case study of pll application
 
13486500-FFT.ppt
13486500-FFT.ppt13486500-FFT.ppt
13486500-FFT.ppt
 
Vedran Peric's PhD Defense Presentation: Non-intrusive Methods for Mode Estim...
Vedran Peric's PhD Defense Presentation: Non-intrusive Methods for Mode Estim...Vedran Peric's PhD Defense Presentation: Non-intrusive Methods for Mode Estim...
Vedran Peric's PhD Defense Presentation: Non-intrusive Methods for Mode Estim...
 
Indian remote sensing satellite,potentials with a revolution
Indian remote sensing satellite,potentials with a revolutionIndian remote sensing satellite,potentials with a revolution
Indian remote sensing satellite,potentials with a revolution
 
Course-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdfCourse-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdf
 
Advanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdfAdvanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdf
 
20220421_翁寬.ppt.pptx
20220421_翁寬.ppt.pptx20220421_翁寬.ppt.pptx
20220421_翁寬.ppt.pptx
 
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
 

More from Yi-Hsueh Tsai

S1 154010 Summary of CEPT Report 52 regarding BDA2GC
S1 154010 Summary of CEPT Report 52 regarding BDA2GCS1 154010 Summary of CEPT Report 52 regarding BDA2GC
S1 154010 Summary of CEPT Report 52 regarding BDA2GCYi-Hsueh Tsai
 
LTE Release 13 and SMARTER – Road Towards 5G
LTE Release 13 and SMARTER – Road Towards 5GLTE Release 13 and SMARTER – Road Towards 5G
LTE Release 13 and SMARTER – Road Towards 5GYi-Hsueh Tsai
 
S1-153199 Use Case and Requirements for DA2GC
S1-153199 Use Case and Requirements for DA2GCS1-153199 Use Case and Requirements for DA2GC
S1-153199 Use Case and Requirements for DA2GCYi-Hsueh Tsai
 
Quantum Entanglement - Cryptography and Communication
Quantum Entanglement - Cryptography and CommunicationQuantum Entanglement - Cryptography and Communication
Quantum Entanglement - Cryptography and CommunicationYi-Hsueh Tsai
 
Use Case and Requirements for Broadband Direct Air to Ground Communications (...
Use Case and Requirements for Broadband Direct Air to Ground Communications (...Use Case and Requirements for Broadband Direct Air to Ground Communications (...
Use Case and Requirements for Broadband Direct Air to Ground Communications (...Yi-Hsueh Tsai
 
Report of the LTE breakout session (NB-IoT) by Mediatek Inc. (Session Chair)
Report of the LTE breakout session (NB-IoT) by Mediatek Inc. (Session Chair)Report of the LTE breakout session (NB-IoT) by Mediatek Inc. (Session Chair)
Report of the LTE breakout session (NB-IoT) by Mediatek Inc. (Session Chair)Yi-Hsueh Tsai
 
SMARTER Building Block: enhanced Mobile BroadBand (eMBB)
SMARTER Building Block: enhanced Mobile BroadBand (eMBB)SMARTER Building Block: enhanced Mobile BroadBand (eMBB)
SMARTER Building Block: enhanced Mobile BroadBand (eMBB)Yi-Hsueh Tsai
 
Use Cases and Requirements for Isolated EUTRAN Operation
Use Cases and Requirements for Isolated EUTRAN OperationUse Cases and Requirements for Isolated EUTRAN Operation
Use Cases and Requirements for Isolated EUTRAN OperationYi-Hsueh Tsai
 
New Services and Markets Technology Enablers (SMARTER) - LTE Relese 13+ and r...
New Services and Markets Technology Enablers (SMARTER) - LTE Relese 13+ and r...New Services and Markets Technology Enablers (SMARTER) - LTE Relese 13+ and r...
New Services and Markets Technology Enablers (SMARTER) - LTE Relese 13+ and r...Yi-Hsueh Tsai
 
3GPP TR 22.885 study on LTE support for V2X services
3GPP TR 22.885 study on LTE support for V2X services3GPP TR 22.885 study on LTE support for V2X services
3GPP TR 22.885 study on LTE support for V2X servicesYi-Hsueh Tsai
 
Enhanced ue assisted positioning use case (s1-151008)
Enhanced ue assisted positioning use case (s1-151008)Enhanced ue assisted positioning use case (s1-151008)
Enhanced ue assisted positioning use case (s1-151008)Yi-Hsueh Tsai
 
Public safety ue assisted positioning use case (s1-151007)
Public safety ue assisted positioning use case (s1-151007)Public safety ue assisted positioning use case (s1-151007)
Public safety ue assisted positioning use case (s1-151007)Yi-Hsueh Tsai
 
Public safety ue assisted positioning use case (s1-151007)
Public safety ue assisted positioning use case (s1-151007)Public safety ue assisted positioning use case (s1-151007)
Public safety ue assisted positioning use case (s1-151007)Yi-Hsueh Tsai
 
Indoor positioning based on enhanced utdoa (R1-150419)
Indoor positioning based on enhanced utdoa (R1-150419)Indoor positioning based on enhanced utdoa (R1-150419)
Indoor positioning based on enhanced utdoa (R1-150419)Yi-Hsueh Tsai
 
Automotive Use Cases for LTE-based V2X Study Item
Automotive Use Cases for LTE-based V2X Study ItemAutomotive Use Cases for LTE-based V2X Study Item
Automotive Use Cases for LTE-based V2X Study ItemYi-Hsueh Tsai
 
Study on LTE support for V2X services
Study on LTE support for V2X servicesStudy on LTE support for V2X services
Study on LTE support for V2X servicesYi-Hsueh Tsai
 
Treaty of San Francisco
Treaty of San FranciscoTreaty of San Francisco
Treaty of San FranciscoYi-Hsueh Tsai
 
V2X Communication in 3GPP (S1-144374)
V2X Communication in 3GPP (S1-144374)V2X Communication in 3GPP (S1-144374)
V2X Communication in 3GPP (S1-144374)Yi-Hsueh Tsai
 
LTE direct in unlicensed spectrum
LTE direct in unlicensed spectrumLTE direct in unlicensed spectrum
LTE direct in unlicensed spectrumYi-Hsueh Tsai
 

More from Yi-Hsueh Tsai (20)

5G Sandardization
5G Sandardization5G Sandardization
5G Sandardization
 
S1 154010 Summary of CEPT Report 52 regarding BDA2GC
S1 154010 Summary of CEPT Report 52 regarding BDA2GCS1 154010 Summary of CEPT Report 52 regarding BDA2GC
S1 154010 Summary of CEPT Report 52 regarding BDA2GC
 
LTE Release 13 and SMARTER – Road Towards 5G
LTE Release 13 and SMARTER – Road Towards 5GLTE Release 13 and SMARTER – Road Towards 5G
LTE Release 13 and SMARTER – Road Towards 5G
 
S1-153199 Use Case and Requirements for DA2GC
S1-153199 Use Case and Requirements for DA2GCS1-153199 Use Case and Requirements for DA2GC
S1-153199 Use Case and Requirements for DA2GC
 
Quantum Entanglement - Cryptography and Communication
Quantum Entanglement - Cryptography and CommunicationQuantum Entanglement - Cryptography and Communication
Quantum Entanglement - Cryptography and Communication
 
Use Case and Requirements for Broadband Direct Air to Ground Communications (...
Use Case and Requirements for Broadband Direct Air to Ground Communications (...Use Case and Requirements for Broadband Direct Air to Ground Communications (...
Use Case and Requirements for Broadband Direct Air to Ground Communications (...
 
Report of the LTE breakout session (NB-IoT) by Mediatek Inc. (Session Chair)
Report of the LTE breakout session (NB-IoT) by Mediatek Inc. (Session Chair)Report of the LTE breakout session (NB-IoT) by Mediatek Inc. (Session Chair)
Report of the LTE breakout session (NB-IoT) by Mediatek Inc. (Session Chair)
 
SMARTER Building Block: enhanced Mobile BroadBand (eMBB)
SMARTER Building Block: enhanced Mobile BroadBand (eMBB)SMARTER Building Block: enhanced Mobile BroadBand (eMBB)
SMARTER Building Block: enhanced Mobile BroadBand (eMBB)
 
Use Cases and Requirements for Isolated EUTRAN Operation
Use Cases and Requirements for Isolated EUTRAN OperationUse Cases and Requirements for Isolated EUTRAN Operation
Use Cases and Requirements for Isolated EUTRAN Operation
 
New Services and Markets Technology Enablers (SMARTER) - LTE Relese 13+ and r...
New Services and Markets Technology Enablers (SMARTER) - LTE Relese 13+ and r...New Services and Markets Technology Enablers (SMARTER) - LTE Relese 13+ and r...
New Services and Markets Technology Enablers (SMARTER) - LTE Relese 13+ and r...
 
3GPP TR 22.885 study on LTE support for V2X services
3GPP TR 22.885 study on LTE support for V2X services3GPP TR 22.885 study on LTE support for V2X services
3GPP TR 22.885 study on LTE support for V2X services
 
Enhanced ue assisted positioning use case (s1-151008)
Enhanced ue assisted positioning use case (s1-151008)Enhanced ue assisted positioning use case (s1-151008)
Enhanced ue assisted positioning use case (s1-151008)
 
Public safety ue assisted positioning use case (s1-151007)
Public safety ue assisted positioning use case (s1-151007)Public safety ue assisted positioning use case (s1-151007)
Public safety ue assisted positioning use case (s1-151007)
 
Public safety ue assisted positioning use case (s1-151007)
Public safety ue assisted positioning use case (s1-151007)Public safety ue assisted positioning use case (s1-151007)
Public safety ue assisted positioning use case (s1-151007)
 
Indoor positioning based on enhanced utdoa (R1-150419)
Indoor positioning based on enhanced utdoa (R1-150419)Indoor positioning based on enhanced utdoa (R1-150419)
Indoor positioning based on enhanced utdoa (R1-150419)
 
Automotive Use Cases for LTE-based V2X Study Item
Automotive Use Cases for LTE-based V2X Study ItemAutomotive Use Cases for LTE-based V2X Study Item
Automotive Use Cases for LTE-based V2X Study Item
 
Study on LTE support for V2X services
Study on LTE support for V2X servicesStudy on LTE support for V2X services
Study on LTE support for V2X services
 
Treaty of San Francisco
Treaty of San FranciscoTreaty of San Francisco
Treaty of San Francisco
 
V2X Communication in 3GPP (S1-144374)
V2X Communication in 3GPP (S1-144374)V2X Communication in 3GPP (S1-144374)
V2X Communication in 3GPP (S1-144374)
 
LTE direct in unlicensed spectrum
LTE direct in unlicensed spectrumLTE direct in unlicensed spectrum
LTE direct in unlicensed spectrum
 

Recently uploaded

Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trssuser06f238
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
Genomic DNA And Complementary DNA Libraries construction.
Genomic DNA And Complementary DNA Libraries construction.Genomic DNA And Complementary DNA Libraries construction.
Genomic DNA And Complementary DNA Libraries construction.k64182334
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physicsvishikhakeshava1
 
Recombination DNA Technology (Microinjection)
Recombination DNA Technology (Microinjection)Recombination DNA Technology (Microinjection)
Recombination DNA Technology (Microinjection)Jshifa
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 

Recently uploaded (20)

The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 tr
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Genomic DNA And Complementary DNA Libraries construction.
Genomic DNA And Complementary DNA Libraries construction.Genomic DNA And Complementary DNA Libraries construction.
Genomic DNA And Complementary DNA Libraries construction.
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physics
 
Recombination DNA Technology (Microinjection)
Recombination DNA Technology (Microinjection)Recombination DNA Technology (Microinjection)
Recombination DNA Technology (Microinjection)
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 

Filter-Type Fault Detection and Exclusion (FDE) Using Multi-Frequency GNSS Receiver

  • 1. Filter-Type Fault Detection and Exclusion (FDE) on Multi- Frequency GNSS Receiver Advisor: Prof. Chang, Fan-Ren Presenters: Tsai, Yi-Hsueh
  • 2. 2 Outline 1. Introduction 2. GNSS Architecture, Observables, and Covenantal Fault Detection and Exclusion 3. Using Multi-Frequency Tech. on FDE 4. Using ARMA-Filter on FDE 5. Using Kalman Filter on FDE 6. Conclusions and Future Works
  • 3. 3 Introduction (1/2) accuracy FDE algorithm (stand-alone GPS use) integrity availability continuity ICAO (International Civil Aviation Organization) navigation performance requirements
  • 4. 4 Introduction (2/2) current data time process Filter-Type FDE Algorithm (use current & past data) Snapshot FDE Algorithm (use current data) past data
  • 5. 5 GNSS Architecture System GPS GLONASS Galileo Developed by United State Russian European Sat. No. / planes 24 / 6 24 / 3 27 / 3 Inclination 55 64.8 56 Altitude 20200 km 19100 km 23616 km Period 11 hr 58 min 11 hr 15 min 14 hr 22 min Modulation CDMA FDMA CDMA L1*, E1-L1-E2** 1575.42 MHz* 1602+0.5625n MHz* 1575.42 MHz** L2*, E6** 1227.60 MHz* 1246+0.4375n MHz* 1278.75 MHz** E5B** 1207.14 MHz** L5*, E5A** 1176.45 MHz* 1176.45 MHz**
  • 6. 6 Observables ionosphere    2 frequencycarrier 1   advancephase delaygroupcode Doppler shift delta range
  • 7. 7 Least-Squares-Residuals (1/3)               kkkkkkk TT yRHHRHx 111 ˆ        kkk xHy ˆˆ  The estimate of the state vector is and the range residual vector is The estimate of y(k) is The linearized GPS measurement equation is      kkk yyy ˆ~         ,kkkk wxHy      kNk R0w ,~
  • 8. 8 Least-Squares-Residuals (2/3) The test statistic        kkkks T yRy ~~ 1  0 5 10 15 20 0 0.05 0.1 0.15 0.2 false alarm rate = 1/100 normalized SSE (m2 ) probabilitydensityfunction determination of threshold Td 2(4)Parkinson showed that the distribution of s(k) is chi-square distributed with degrees of freedom as n4.
  • 9. 9 Least-Squares-Residuals (3/3) detection threshold Td under FAR = 1/15000 Number of satellites in view, n Chi-square degrees of freedom Detection Threshold 5 1 15.9032 6 2 19.2316 7 3 21.9546 8 4 24.3914 9 5 26.6521 10 6 28.7899 11 7 30.8356 12 8 32.8089
  • 10. 10 > Te Subset Method Subset solutions are formed by removing one of the visible satellites at a time. s1(k) si (k) sn(k) snf (k)  Te
  • 11. 11 satisfying and Parity Space Method (1/2) The parity matrix The parity vector     0HP kk      kkk yPp          kkkk ni pppP 1      kkk wxH    nfkb e 0    kkb nfp         kkkkk wPxHP        4 n T kkk IPRP nfth channel vector
  • 12. 12 Parity Space Method (2/2) ith channel vector nfth channel vector (failed satellite) parity vector                k kk maxarg i i T n,,i p pp 1 No of visible satellite = 6
  • 13. Using Multi-Frequency Technique on Failure Detection and Exclusion
  • 14. 14 Dual Frequency GPS (1/2)                                          k k k k fk fk k k L L nL nL L L 2 1 2 2 2 1 2 1 w w κ x IH IH y y The estimated positioning result The linearized measurement equation           kkkkk L TT DF 12 1 ˆ yHHHx           kfkfffk LLLLLLL 2 2 11 2 2 12 1 2 212 yyy  where      kkk DFDFDF wHy
  • 15. 15 Dual Frequency GPS (2/2) The parity matrix The parity vector       kfkfk LLLLDFDF PPP 2 1 2 2 1 2 1 1 1               kkff kkk LLLLLDF DFDFDF 12 2 1 2 2 1 2 1 1 1 yP yPp     The algorithm to identify the failed satellite      kkks DF T DFDF ppThe test statistic                              k kk k kk L iDF L iDF T DF L iDF L iDF T DF ni 2 , 2 , 1 , 1 , ,,1 ,maxmaxarg p pp p pp 
  • 16. 16 GPS Triple Frequency (1/2) The estimated positioning result Extend to the triple frequency           kkkkk L TT TF 125 1 ˆ yHHHx                                                                k k k k k fk fk fk k k k L L L nL nL nL L L L 5 2 1 2 5 2 2 2 1 5 2 1 w w w κ x IH IH IH y y y        kckckck LLLLLLL 552211125 yyyy where      kkk TFTFTF wHy
  • 17. 17 GPS Triple Frequency (2/2) The algorithm to identify the failed satellite The test statistic      kkks TF T TFTF pp                                    k kk , k kk , k kk maxmaxarg L i,TF L i,TF T TF L i,TF L i,TF T TF L i,TF L i,TF T TF n,,i 5 5 2 2 1 1 1 p pp p pp p pp  The parity vector      kkk TFTFTF yPp  The parity matrix                         nLLLLLnLLLLLnLLLLL LTFLTFLTF TFTF ffffff kckckc k III PPP P 2 2 2 1 1 5 1 2 1 1 2 1 2 5 1 5 1 2 1 1 2 5 2 2 1 5 1 2 1 1 5211   
  • 18. 18 GNSS (GPS + Galileo) To simultaneously use the measurements of both Galileo and GPS system                                                                                    k k k k k k k fk fk fk fk k k k k E L E L mE nL mE nL E L E L 6 2 1 1 2 6 2 2 2 1 2 1 6 2 1 1 w w w w κ κ x I0H 0IH I0H 0IH y y y y         kkk DFDFDF wHy 
  • 19. 19 Simulation Results: Positioning (1/2) Dual freq. L1/L2 Single freq. L1 Triple freq. L1/L2/L5 -20 -15 -10 -5 0 5 10 15 20 -20 -15 -10 -5 0 5 10 15 20 Positioning error (L1) east error (m) northerror(m) -20 -15 -10 -5 0 5 10 15 20 -20 -15 -10 -5 0 5 10 15 20 Positioning error (L1/L2) east error (m) northerror(m) -20 -15 -10 -5 0 5 10 15 20 -20 -15 -10 -5 0 5 10 15 20 Positioning error (L1/L2/L5) east error (m) northerror(m)
  • 20. 20 Simulation Results: Positioning (2/2) Standard Derivation Horizontal error (m) Vertical error (m) East error North error Single Freq. 5.5499 3.9982 21.2627 Double Freq. 2.2234 3.3094 6.1387 Triple Freq. 1.8737 2.8852 5.4481
  • 21. 21 Simulation Results: Failure Detection (1/2) sound an alarm begin failure    11521152 1 timedetectionaverage DTADT detection time (DT) 24 space 48 time (RTCA DO-208)
  • 22. 22 Simulation Results: Failure Detection (2/2) 0.5 1 2 5 10 20 1 2 5 10 20 50 80 Slope (m/s) AverageDetectionTime(sec) Average Detection Time Single frequency Dual frequency Triple frequency  The best improvement percentage for dual freq. and triple freq. are 48.3% and 55.9%, respectively.  Application of multi- frequency algorithms will shorten the failure detection time.
  • 23. 23 Simulation Results: Failure Exclusion (1/2) %100 exclusiontotalofno. exclusionincorrectofno. rate)exclusion(incorrect  IER failed excluded
  • 24. 24 Simulation Results: Failure Exclusion (2/2) 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 Bias (m) IncorrectExclusionRate(%) Incorrect Exclusion Rate Single frequency Dual frequency Triple frequency  The IER obtained through the dual (triple) freq. is about 5% (12%) lower than the one through single freq.  Application of multi- frequency algorithms will reduce the IER.
  • 26. 26 Failure Detection via ARMA-filter         M i i N i i iksikzkz 11 1 The scheme of the ARMA-filter (Autoregressive Moving Average filter) Failure z(k) > Td Normal no yes ARMA-filters(k) z(k)
  • 27. 27 Detection Threshold (1/3) FAMMean time to false alarm (MTFA):   FAM FAR 1 RateAlarmFalse  sound a false alarm begin detection time to false alarm (TFA)
  • 28. 28 Detection Threshold (2/3) Determining Td via the Markov Chain Approach L 1 1 L j i k-1 L(k) i(k) 1(k) terminating state transient state k Tij z(k)  Td z(k) > Td
  • 29. 29 Detection Threshold (3/3)    1 kk Tππ where T is the transition probability matrix The transition of (k) can be represented as    0 1 πTΙl   L T LFAMMTFA: Threshold Td FAM FAR 1 
  • 30. 30 MA-filter               kkz kskk T MMA θβ eθΦθ 1,1 The dynamic equation of the MA-filter state space model where i is the weight satisfies The scheme of the MA-filter      M i i ikskz 1 1 11  M i i Markov Chain
  • 31. 31 MA-filter: Window Size 2 (1/2) MA-filter with window size 2:      121  kskskz  dT1 1   1S LS 2 1 0 dT1 2     dT 2211  iS  ii  ,                                                kkkz ks k k k k 2211 2 1 2 1 0 1 1 1 01 00      state space model
  • 32. 32 MA-filter: Window Size 2 (2/2) dT1 2   1S LS 1S LS iSjS  k2  k1 dT1 1  dT1 1    12 k dT1 2    11 k 0 0 ijT   dT 2211   ii  ,     jiij SstateinwaskSstatetogoeskT 1|Pr  θθ
  • 33. 33 PFARMA-filter The scheme of the PFARMA-filter (parallel–form ARMA)               kkz kskk T PFARMA θη λθΦθ 1 parallel-form structure         M i i N i i iksikzkz 11 1 The scheme of the ARMA-filter Markov Chain
  • 34. 34 Probability Integral Transformation (PIT) 0 5 10 15 20 0 0.2 0.4 0.6 0.8 0.9 1 random variable cdfvalue Probability Integral Transformation 4.6 10.6 2 (2)  2 (6) F -1 F 10 Sat. 2(6) 9 Sat. 2(5) 6 Sat. 2(2) Visible Satellite    ZZF  1log21 2
  • 35. 35 Failure Exclusion via Multivariate ARMA The scheme of the multivariate ARMA-filter         M i i N i i ikikk 11 1pqq                 k kk i i T ni p pq ,,1 maxarg  Multivariate ARMA-filterp(k) q(k)
  • 36. 36 Simulation Results (1/5) Window Size Threshold 1 19.2316 2 12.0159 3 9.3713 4 7.9669 5 7.0898 MA-filter with equal weights
  • 37. 37 Simulation Results (2/5) 1 2 3 4 5 2 5 10 20 50 100 120 Average Detection Time Window Size AverageDetectionTime(sec) slope = 0.2 slope = 0.5 slope = 1 slope = 5 slope = 10 slope = 15  Under small ramp-type failures (slope = 0.2, 0.5 and 1 m/s), the ADT will decrease as the window size increase.  Under large ramp-type failures (slope = 5, 10 and 15 m/s), the window size has little influence on the ADT.
  • 38. 38 Simulation Results (3/5)  Under small step-type failures (bias = 20, 25 and 30 m), the ADT will decrease as the window size increase.  Under large step-type failures (bias = 40 m), the window size has little influence on the ADT. 1 2 3 4 5 1 2 5 10 20 50 90 Average Detection Time Window Size AverageDetectionTime(sec) step = 20 step = 25 step = 30 step = 40
  • 39. 39 Simulation Results (4/5) 35 40 45 50 55 0 5 10 15 20 25 30 35 40 45 time (sec) IncorrectExclusionRate(%) Incorrect Exclusion Rate Window Size = 1 Window Size = 2 Window Size = 3 Window Size = 4 Window Size = 5  The IER will reduce as the window size increase under small ramp-type failures.  The window size has little influence on the IER under large ramp-type failures. 3 4 5 6 0 2 4 6 8 10 12 14 16 18 time (sec) IncorrectExclusionRate(%) Incorrect Exclusion Rate Window Size = 1 Window Size = 2 Window Size = 3 Window Size = 4 Window Size = 5 slope=0.5m/s slope=10m/s
  • 40. 40 Simulation Results (5/5)  The IER will reduce as the window size increase under small step-type failures.  The window size has little influence on the IER under large step-type failures. 5 10 15 20 25 30 5 10 15 20 25 27 time (sec) IncorrectExclusionRate(%) Incorrect Exclusion Rate Window Size = 1 Window Size = 2 Window Size = 3 Window Size = 4 Window Size = 5 2 3 4 5 3 4 5 6 7 8 9 10 11 time (sec) IncorrectExclusionRate(%) Incorrect Exclusion Rate Window Size = 1 Window Size = 2 Window Size = 3 Window Size = 4 Window Size = 5 bias=25m bias=40m
  • 42. 42 PVA Model (1/2)               , 1      kkkk kkk PVAPVAPVAPVA PVAPVAPVAPVA wxHz vxΦx The dynamic and measurement equations          4 44 4 2 2 1 44 I00 II0 III Φ S SS PVA t tt         0H0 00H H k k PVAwhere        kkkkkk PVAPVAPVAPVAPVA zKxΦx ~1|1ˆ|ˆ  The updated state estimate where        kkkkk PVA T PVAPVAPVA 1 |   RHPK             kNk kNk PVAPVA PVAPVA Rw Qv ,0~ ,0~
  • 43. 43 is the innovation vector with the covariance matrix PVA Model (2/2) The normalized innovation squared (NIS)        kkkks PVAPVA T PVAPVA zSz ~~ 1         1|1ˆ~  kkkkk PVAPVAPVAPVAPVA xΦHzz          kkkkkk PVA T PVAPVAPVAPVA RHPHS  1| Chi-square distributed
  • 44. 44 FDE via Kalman filter Kalman Filter Kalman Filter 1 Kalman Filter n Pseudorange Delta range Doppler shift Satellite Failure Exclusion Satellite Failure Detection All Measurements Exclude Meas. n Exclude Meas. 1
  • 46. 46 Multiply L(k) on both side (L(k)H(k) = I4) Delta Range Equation (1/3)            kkkkkk ωxHxHu  11 The linearized delta range measurement L(k)H(k-1)            kkkkkk DRDR vuLxΦx  1 -L(k)(k) The dynamic equation
  • 47. 47 Delta Range Equation (2/3) The dynamic and measurement equations                         , 1 kkkk kkkkkk DRDR wxHz vuLxΦx The updated state estimate              kkkkkkkkk DRDRDRDR zKuLxΦx ~1|1ˆ|ˆ  where        kkkkk T DRDR 1 |   RHPK             kNk kNk DRDR Rw Qv ,0~ ,0~
  • 48. 48 Delta Range Equation (3/3) The normalized innovation squared (NIS)          kkkkkk T DRDR RHPHS  1|        kkkks DRDR T DRDR zSz ~~ 1                kkkkkkkk DRDRDR uLxΦHzz  1|1ˆ~ is the innovation vector with the covariance matrix
  • 49. 49 Simulation Results 50 100 150 200 250 300 350 400 450 500 0 10 20 30 positioning error(m) PVA 50 100 150 200 250 300 350 400 450 500 0.0 50.3 80.0 120.0 160.0 Innovation time (sec) 50 100 150 200 250 300 350 400 450 500 0 10 20 30 positioning error(m) DR 50 100 150 200 250 300 350 400 450 500 0.0 34.7 80.0 120.0 160.0 Innovation time (sec) detection threshold detection threshold
  • 50. 50 Multiple Model Approach (1/2) Kalman Filter 0 Kalman Filter 1 Kalman Filter n Pseudorange Delta range Positioning Result+        n i iDRi MM kkk kk 0 |ˆ |ˆ ,x x   k0  k1  kn prior prob.
  • 51. 51 Multiple Model Approach (2/2)                 n l ll ii kii kk kk k 0 1 1 |Pr    Z          kzk iDRikki ,11 ~Pr,|Pr zZ   The prior probability where i(k): the likelihood function of the ith model
  • 52. 52 0 25 50 75 100 125 150 175 200 0 20 40 60 detection threshold Innovation innovation 0 25 50 75 100 125 150 175 200 0 12.5 25 37.5 50 Delta Range Model positioningerror(m) 0 25 50 75 100 125 150 175 200 0 12.5 25 37.5 50 Multiple Model Approach positioningerror(m) time (sec) Simulation Results 0 50 100 150 200 0 0.5 1 φ0 (k) 0 50 100 150 200 0 0.5 1 φ1 (k) 0 50 100 150 200 0 0.5 1 φ2 (k) 0 50 100 150 200 0 0.5 1 φ3 (k) 0 50 100 150 200 0 0.5 1φ4 (k) 0 50 100 150 200 0 0.5 1 φ5 (k) time (sec) 0 50 100 150 200 0 0.5 1 φ6 (k) time (sec) 0 50 100 150 200 0 0.5 1 φ7 (k) time (sec) Ramp-Type Failure (slope = 0.2m/s)
  • 53. 53 0 25 50 75 100 125 150 175 200 0 20 40 60 detection threshold Innovation innovation 0 25 50 75 100 125 150 175 200 0 12.5 25 37.5 50 Delta Range Model positioningerror(m) 0 25 50 75 100 125 150 175 200 0 12.5 25 37.5 50 Multiple Model Approach positioningerror(m) time (sec) Simulation Results (2/2) 0 50 100 150 200 0 0.5 1 φ 0 (k) 0 50 100 150 200 0 0.5 1 φ 1 (k) 0 50 100 150 200 0 0.5 1 φ 2 (k) 0 50 100 150 200 0 0.5 1 φ 3 (k) 0 50 100 150 200 0 0.5 1 φ 4 (k) 0 50 100 150 200 0 0.5 1 φ 5 (k) 0 50 100 150 200 0 0.5 1 φ 6 (k) time (sec) 0 50 100 150 200 0 0.5 1 φ 7 (k) time (sec) Step-Type Failure (bias = 20 m)
  • 54. 54 Conclusions (1/2)  In Multi-frequency  propose the dual frequency alogrithm  extend to the triple frequency algorithm  to simultaneously use the measurements of both GPS and Galileo system  In ARMA-filter  propose the ARMA filter for fast failure detection  use the Markov chain approach for calculating the threshold of ARMA
  • 55. 55 Conclusions (2/2)  In ARMA-filter (cont.)  propose the PIT to solve the problem caused by change of number of visible satellites  proposed the multivariate ARMA to reduce the IER  In Kalman filter  use delta range information to accurately describe the dynamic behavior of a maneuvering vehicle  propose multiple model approach to reduce the positioning error
  • 56. 56 Future Work  Multi-frequency  using delta range and/or Doppler shift measurements  ARMA-filter  to extend the ARMA detector to multivariate case  to determine the optimal coefficients for FDE  Kalman filter  to reduce the computing burden  Generalized pseudo-Bayesian (GPB) approach  Interacting multiple model (IMM) algorithm.