SlideShare a Scribd company logo
1 of 89
Download to read offline
Francesca Giordano, Martin Leitgab
for the BELLE collaboration
PRECISE PION AND KAON
MULTIPLICITIES @ BELLE
QCD-N’12, BILBAO
October 22-26 2012
Francesca Giordano
Fragmentation processor how do the hadrons get formed?
2
Francesca Giordano
Fragmentation processor how do the hadrons get formed?
q
2
Francesca Giordano
Fragmentation processor how do the hadrons get formed?
q
q
q
2
Francesca Giordano
Fragmentation processor how do the hadrons get formed?
Dq
h
h
q
q
q
2
Francesca Giordano
Fragmentation processor how do the hadrons get formed?
Dq
h
h
q
q
q
Fragmentation function describes the
process of hadronization of a parton
2
Francesca Giordano
Fragmentation processor how do the hadrons get formed?
Strictly related to quark confinement
Dq
h
h
q
q
q
Fragmentation function describes the
process of hadronization of a parton
2
Francesca Giordano
Fragmentation processor how do the hadrons get formed?
Strictly related to quark confinement
Dq
h
h
q
Fragmentation function describes the
process of hadronization of a parton
Cleanest way to access FF is in e+e- qq
e+
e- q
e+
e !hX
/
X
i=q¯q
e+
e !q¯q
⇥ Dh
q
2
Francesca Giordano
Fragmentation processor how do the hadrons get formed?
Strictly related to quark confinement
Universal: can be used to study the
nucleon structure when combined
with SIDIS and pp data
Dq
h
h
q
Fragmentation function describes the
process of hadronization of a parton
Cleanest way to access FF is in e+e- qq
e+
e- q
e+
e !hX
/
X
i=q¯q
e+
e !q¯q
⇥ Dh
q
2
Francesca Giordano
Fragmentation processor how do the hadrons get formed?
Strictly related to quark confinement
Universal: can be used to study the
nucleon structure when combined
with SIDIS and pp data
⇒ ⇒
⇒⇒Ah
LL =
! !
!+ !
Ah
UT =
" "
" + "
⇒⇒
⇒⇒
Dq
h
h
q
Fragmentation function describes the
process of hadronization of a parton
Cleanest way to access FF is in e+e- qq
e+
e- q
e+
e !hX
/
X
i=q¯q
e+
e !q¯q
⇥ Dh
q
2
Francesca Giordano
Fragmentation processor how do the hadrons get formed?
Strictly related to quark confinement
Universal: can be used to study the
nucleon structure when combined
with SIDIS and pp data
⇒ ⇒
⇒⇒Ah
LL =
! !
!+ !
Ah
UT =
" "
" + "
⇒⇒
⇒⇒
Dq
h
h
q
Fragmentation function describes the
process of hadronization of a parton
Cleanest way to access FF is in e+e- qq
e+
e- q
e+
e !hX
/
X
i=q¯q
e+
e !q¯q
⇥ Dh
q
2
Francesca Giordano
Fragmentation processor how do the hadrons get formed?
Strictly related to quark confinement
Universal: can be used to study the
nucleon structure when combined
with SIDIS and pp data
⇒ ⇒
⇒⇒Ah
LL =
! !
!+ !
Ah
UT =
" "
" + "
⇒⇒
⇒⇒
/ Dh
q
/ Dh
qDh
g
Dq
h
h
q
Fragmentation function describes the
process of hadronization of a parton
Cleanest way to access FF is in e+e- qq
e+
e- q
e+
e !hX
/
X
i=q¯q
e+
e !q¯q
⇥ Dh
q
2
Francesca Giordano
Fragmentation processor how do the hadrons get formed?
Dq
h
h
qe+
e- q
e+
e !hX
/
X
i=q¯q
e+
e !q¯q
⇥ Dh
q
3
Francesca Giordano
Fragmentation processor how do the hadrons get formed?
Dq
h
h
qe+
e- q
e+
e !hX
/
X
i=q¯q
e+
e !q¯q
⇥ Dh
q
3
Francesca Giordano
Fragmentation processor how do the hadrons get formed?
Dq
h
h
qe+
e- q
e+
e !hX
/
X
i=q¯q
e+
e !q¯q
⇥ Dh
q
3
Francesca Giordano
Fragmentation processor how do the hadrons get formed?
Non perturbative effect:
need input from measurements!Dq
h
h
qe+
e- q
e+
e !hX
/
X
i=q¯q
e+
e !q¯q
⇥ Dh
q
3
Francesca Giordano
Fragmentation processor how do the hadrons get formed?
Mh
(z, Q2
) =
1
tot
d (e+
e ! hX)
dz
Non perturbative effect:
need input from measurements!Dq
h
h
qe+
e- q
e+
e !hX
/
X
i=q¯q
e+
e !q¯q
⇥ Dh
q
3
Francesca Giordano
Fragmentation processor how do the hadrons get formed?
/
X
i=q,¯q
e2
i ⇥ Dh
i (z, Q2
)/
X
i=q¯q
e2
i
Dh
q Dh
¯q
Mh
(z, Q2
) =
1
tot
d (e+
e ! hX)
dz
Non perturbative effect:
need input from measurements!
LO
Dq
h
h
qe+
e- q
e+
e !hX
/
X
i=q¯q
e+
e !q¯q
⇥ Dh
q
3
Francesca Giordano
Fragmentation processor how do the hadrons get formed?
/
X
i=q,¯q
e2
i ⇥ Dh
i (z, Q2
)/
X
i=q¯q
e2
i
Dh
q Dh
¯q
Dh
g
Mh
(z, Q2
) =
1
tot
d (e+
e ! hX)
dz
Non perturbative effect:
need input from measurements!
LO
/
X
i=q,¯q,g
CNLO
i ⌦ Dh
i (z, Q2
)
NLO
Dq
h
h
qe+
e- q
e+
e !hX
/
X
i=q¯q
e+
e !q¯q
⇥ Dh
q
3
Francesca Giordano
e+e- data
4
Francesca Giordano
e+e- data
Hirai, Kumano, Nagai, Sudoh
Phys. Rev. D 75, 094009 (2007)
2007: First unpolarized FF extraction
with estimated uncertainties!
4
Francesca Giordano
Global analises:
e+e-, SIDIS, pp: (including uncertainties)
e+e-, pp:
e+e- data
Hirai, Kumano, Nagai, Sudoh
Phys. Rev. D 75, 094009 (2007)
Albino, Kniehl, Kramer
Nucl. Phys. B 803, 42 (2008)
2007: First unpolarized FF extraction
with estimated uncertainties!
de Florian, Sassot, Stratmann
Phys. Rev. D 75, 114010 (2007) and
Phys. Rev D 76, 074033 (2007)
Epele, Llubaroff, Sassot, Stratmann
arXiv:1209.3240 [hep-ph]
4
Francesca Giordano
e+e- data
Dπ+
i
Epele, Llubaroff, Sassot, Stratmann
arXiv:1209.3240 [hep-ph]
5
Francesca Giordano
e+e- data
Dπ+
i
Epele, Llubaroff, Sassot, Stratmann
arXiv:1209.3240 [hep-ph]
Few data at high z
5
Francesca Giordano
e+e- data
Dπ+
i
Epele, Llubaroff, Sassot, Stratmann
arXiv:1209.3240 [hep-ph]
Few data at low
energy
Few data at high z
5
Francesca Giordano
e+e- data
Dπ+
i
Epele, Llubaroff, Sassot, Stratmann
arXiv:1209.3240 [hep-ph]
Few data at low
energy
Few data at high z
5
Francesca Giordano
KEKB
BELLE @ KEKB
Francesca Giordano 6
Francesca Giordano
KEKB
Asymmetric
e+ (3.5 GeV) e- (8 GeV) collider
BELLE @ KEKB
Francesca Giordano 6
Francesca Giordano
BELLE @ KEKB
8 GeV e−
3.5 GeV e+
Asymmetric e+ e- collider
On resonance: √s = 10.58 GeV (e+ e- → Y(4S) → BB)
Off resonance √s = 10.52 GeV (e+ e- → qq (q=u,d,s,c))
7
Francesca Giordano
BELLE @ KEKB
8 GeV e−
3.5 GeV e+
Asymmetric e+ e- collider
On resonance: √s = 10.58 GeV (e+ e- → Y(4S) → BB)
Off resonance √s = 10.52 GeV (e+ e- → qq (q=u,d,s,c))
220 *106 events
7
Francesca Giordano
BELLE @ KEKB
Central Drift
Chamber
Si vertex
SC solenoid
1.5T
8 GeV e−
3.5 GeV e+
Asymmetric e+ e- collider
On resonance: √s = 10.58 GeV (e+ e- → Y(4S) → BB)
Off resonance √s = 10.52 GeV (e+ e- → qq (q=u,d,s,c)) Good tracking ϴ [170;1500]
220 *106 events
7
Francesca Giordano
BELLE @ KEKB
μ / KL
detection
Central Drift
Chamber
CsI
Aerogel Cherenkov
n=1.015~1.030
Si vertex
TOF
SC solenoid
1.5T
8 GeV e−
3.5 GeV e+
Asymmetric e+ e- collider
On resonance: √s = 10.58 GeV (e+ e- → Y(4S) → BB)
Off resonance √s = 10.52 GeV (e+ e- → qq (q=u,d,s,c)) Good tracking ϴ [170;1500]
Good PID: ε(π) 90%
ε(K) 85%
220 *106 events
7
Francesca Giordano
Multiplicities extraction
Mh
(z, Q2
) =
1
tot
d (e+
e ! hX)
dz
8
Francesca Giordano
Multiplicities extraction
Mh
(z, Q2
) =
1
tot
d (e+
e ! hX)
dz
1
Ntot
Mi
(z) =
i = ⇡, K
8
Francesca Giordano
Multiplicities extraction
Mh
(z, Q2
) =
1
tot
d (e+
e ! hX)
dz
1
Ntot
Nj,raw
(zm)Mi
(z) =
i = ⇡, K
8
Francesca Giordano
P 1
ijS 1
zzm
✏i
impu(zm)✏i
joint(z)✏i
ISR/F SR(z)
Multiplicities extraction
Mh
(z, Q2
) =
1
tot
d (e+
e ! hX)
dz
1
Ntot
Nj,raw
(zm)Mi
(z) =
i = ⇡, K
8
Francesca Giordano
P 1
ijS 1
zzm
✏i
impu(zm)✏i
joint(z)✏i
ISR/F SR(z)
Multiplicities extraction
Perfect PID ➯ j = i
1
Ntot
Nj,raw
(zm)Mi
(z) =
i = ⇡, K
8
Francesca Giordano
P 1
ijS 1
zzm
✏i
impu(zm)✏i
joint(z)✏i
ISR/F SR(z)
Multiplicities extraction
Perfect PID ➯ j = i
ε(π) 90% ε(K) 85%
BUT!!
1
Ntot
Nj,raw
(zm)Mi
(z) =
i = ⇡, K
8
Francesca Giordano
P 1
ijS 1
zzm
✏i
impu(zm)✏i
joint(z)✏i
ISR/F SR(z)
Multiplicities extraction
Perfect PID ➯ j = i
ε(π) 90% ε(K) 85%
⇡
⇡
90%
BUT!!
1
Ntot
Nj,raw
(zm)Mi
(z) =
i = ⇡, K
8
Francesca Giordano
P 1
ijS 1
zzm
✏i
impu(zm)✏i
joint(z)✏i
ISR/F SR(z)
Multiplicities extraction
Perfect PID ➯ j = i
ε(π) 90% ε(K) 85%
⇡
e, µ, K, p
⇡
90%
10%
BUT!!
1
Ntot
Nj,raw
(zm)Mi
(z) =
i = ⇡, K
8
Francesca Giordano
P 1
ijS 1
zzm
✏i
impu(zm)✏i
joint(z)✏i
ISR/F SR(z)
Multiplicities extraction
Perfect PID ➯ j = i
ε(π) 90% ε(K) 85%
⇡
e, µ, K, p
⇡
90%
10%
Pij =
0
B
B
B
B
@
Pe!e Pe!µ Pe!⇡ Pe!K Pe!p
Pµ!e Pµ!µ Pµ!⇡ Pµ!K Pµ!p
P⇡!e P⇡!µ P⇡!⇡ P⇡!K P⇡!p
PK!e PK!µ PK!⇡ PK!K PK!p
Pp!e Pp!mu Pp!⇡ Pp!K Pp!p
1
C
C
C
C
A
Nj,raw
= PijNi
BUT!!
1
Ntot
Nj,raw
(zm)Mi
(z) =
j = e, µ, ⇡, K, p
i = ⇡, K
8
Francesca Giordano
P 1
ijS 1
zzm
✏i
impu(zm)✏i
joint(z)✏i
ISR/F SR(z)
Multiplicities extraction
Perfect PID ➯ j = i
ε(π) 90% ε(K) 85%
⇡
e, µ, K, p
⇡
90%
10%
Pij =
0
B
B
B
B
@
Pe!e Pe!µ Pe!⇡ Pe!K Pe!p
Pµ!e Pµ!µ Pµ!⇡ Pµ!K Pµ!p
P⇡!e P⇡!µ P⇡!⇡ P⇡!K P⇡!p
PK!e PK!µ PK!⇡ PK!K PK!p
Pp!e Pp!mu Pp!⇡ Pp!K Pp!p
1
C
C
C
C
A
Nj,raw
= PijNi
BUT!!
1
Ntot
Nj,raw
(zm)Mi
(z) =
j = e, µ, ⇡, K, p
i = ⇡, K
Ni
= P 1
ij Nj,raw
8
Francesca Giordano
P 1
ijS 1
zzm
✏i
impu(zm)✏i
joint(z)✏i
ISR/F SR(z)
Multiplicities extraction
Perfect PID ➯ j = i
ε(π) 90% ε(K) 85%
⇡
e, µ, K, p
⇡
90%
10%
Pij =
0
B
B
B
B
@
Pe!e Pe!µ Pe!⇡ Pe!K Pe!p
Pµ!e Pµ!µ Pµ!⇡ Pµ!K Pµ!p
P⇡!e P⇡!µ P⇡!⇡ P⇡!K P⇡!p
PK!e PK!µ PK!⇡ PK!K PK!p
Pp!e Pp!mu Pp!⇡ Pp!K Pp!p
1
C
C
C
C
A
Nj,raw
= PijNi
BUT!!
1
Ntot
Nj,raw
(zm)P 1
ijMi
(z) =
j = e, µ, ⇡, K, p
i = ⇡, K
Ni
= P 1
ij Nj,raw
8
Francesca Giordano
ijHow to determine the Pij?
9
Francesca Giordano
ijHow to determine the Pij?
From data!
9
Francesca Giordano
ijHow to determine the Pij?
D⇤ D0
⇡+
slowFrom data!
9
Francesca Giordano
ijHow to determine the Pij?
D⇤ D0
K
⇡+
slow ⇡+
fastFrom data!
9
Francesca Giordano
ijHow to determine the Pij?
D⇤ D0
K
⇡+
slow ⇡+
fast
m⇤
D m0
D
Negative hadron = .
(no PID likelihood used)
K
From data!
9
Francesca Giordano
ijHow to determine the Pij?
D⇤ D0
K
⇡+
slow ⇡+
fast
m⇤
D m0
D
Negative hadron = .
(no PID likelihood used)
K
Negative hadron
identified as .⇡
m⇤
D m0
D
From data!
9
Francesca Giordano
ijHow to determine the Pij?
D⇤ D0
K
⇡+
slow ⇡+
fast
m⇤
D m0
D
Negative hadron = .
(no PID likelihood used)
K
Negative hadron
identified as .⇡
m⇤
D m0
D PK !⇡
From data!
9
Francesca Giordano
ijHow to determine the Pij?
D⇤ D0
K
⇡+
slow ⇡+
fast
m⇤
D m0
D
Negative hadron = .
(no PID likelihood used)
K
Negative hadron
identified as .⇡
m⇤
D m0
D PK !⇡
K
PK !K
From data!
9
Francesca Giordano
ijHow to determine the Pij?
D⇤ D0
K
⇡+
slow ⇡+
fast
m⇤
D m0
D
Negative hadron = .
(no PID likelihood used)
K
Negative hadron
identified as .⇡
m⇤
D m0
D PK !⇡
K
PK !K
PK !¯p
¯p
From data!
9
Francesca Giordano
ijHow to determine the Pij?
D⇤ D0
K
⇡+
slow ⇡+
fast
m⇤
D m0
D
Negative hadron = .
(no PID likelihood used)
K
Negative hadron
identified as .⇡
m⇤
D m0
D PK !⇡
µ
PK !µ
K
PK !K
PK !¯p
¯p
From data!
9
Francesca Giordano
ijHow to determine the Pij?
D⇤ D0
K
⇡+
slow ⇡+
fast
m⇤
D m0
D
Negative hadron = .
(no PID likelihood used)
K
Negative hadron
identified as .⇡
m⇤
D m0
D PK !⇡
eµ
PK !e
PK !µ
K
PK !K
PK !¯p
¯p
From data!
9
Francesca Giordano
2D correction
Detector performance depends on momentum
and scattering angle!
10
Francesca Giordano
2D correction
Detector performance depends on momentum
and scattering angle!
Pij Pij(p, ✓)➬
10
Francesca Giordano
2D correction
Detector performance depends on momentum
and scattering angle!
Bin
#
plab [GeV/c]
bin ranges
0 [0.5,0.65)
1 [0.65,0.8)
2 [0.8,1.0)
3 [1.0,1.2)
4 [1.2,1.4)
5 [1.4,1.6)
6 [1.6,1.8)
7 [1.8,2.0)
8 [2.0,2.2)
9 [2.2,2.4)
10 [2.4,2.6)
11 [2.6,2.8)
12 [2.8,3.0)
13 [3.0,3.5)
14 [3.5,4.0)
15 [4.0,5.0)
16 [5.0,8.0)
Bin
#
cos𝜽lab
bin ranges
0 [-0.511,-0.300)
1 [-0.300,-0.152)
2 [-0.512,0.017)
3 [0.017,0.209)
4 [0.209,0.355)
5 [0.355,0.435)
6 [0.435,0.542)
7 [0.542,0.692)
8 [0.692,0.842)
Pij Pij(p, ✓)➬
10
Francesca Giordano
2D correction
Detector performance depends on momentum
and scattering angle!
Bin
#
plab [GeV/c]
bin ranges
0 [0.5,0.65)
1 [0.65,0.8)
2 [0.8,1.0)
3 [1.0,1.2)
4 [1.2,1.4)
5 [1.4,1.6)
6 [1.6,1.8)
7 [1.8,2.0)
8 [2.0,2.2)
9 [2.2,2.4)
10 [2.4,2.6)
11 [2.6,2.8)
12 [2.8,3.0)
13 [3.0,3.5)
14 [3.5,4.0)
15 [4.0,5.0)
16 [5.0,8.0)
Bin
#
cos𝜽lab
bin ranges
0 [-0.511,-0.300)
1 [-0.300,-0.152)
2 [-0.512,0.017)
3 [0.017,0.209)
4 [0.209,0.355)
5 [0.355,0.435)
6 [0.435,0.542)
7 [0.542,0.692)
8 [0.692,0.842)
no PID cut e/μ PID cut π PID cut
K PID cut p PID cut Unsel.
K from D* decay for plab in [1.4,1.6) and cos𝜽lab in [0.209,0.355)
Pij Pij(p, ✓)➬
10
Francesca Giordano
2D correction
no PID cut e/μ PID cut π PID cut
K PID cut p PID cut Unsel.
K from D* decay for plab in [1.4,1.6) and cos𝜽lab in [0.209,0.355)
0
B
B
B
B
@
Pe!e Pe!µ Pe!⇡ Pe!K Pe!p
Pµ!e Pµ!µ Pµ!⇡ Pµ!K Pµ!p
P⇡!e P⇡!µ P⇡!⇡ P⇡!K P⇡!p
PK!e PK!µ PK!⇡ PK!K PK!p
Pp!e Pp!mu Pp!⇡ Pp!K Pp!p
1
C
C
C
C
A
11
Francesca Giordano
2D correction
no PID cut e/μ PID cut π PID cut
K PID cut p PID cut Unsel.
K from D* decay for plab in [1.4,1.6) and cos𝜽lab in [0.209,0.355)
0
B
B
B
B
@
Pe!e Pe!µ Pe!⇡ Pe!K Pe!p
Pµ!e Pµ!µ Pµ!⇡ Pµ!K Pµ!p
P⇡!e P⇡!µ P⇡!⇡ P⇡!K P⇡!p
PK!e PK!µ PK!⇡ PK!K PK!p
Pp!e Pp!mu Pp!⇡ Pp!K Pp!p
1
C
C
C
C
A
11
Francesca Giordano
2D correction
no PID cut e/μ PID cut π PID cut
K PID cut p PID cut Unsel.
K from D* decay for plab in [1.4,1.6) and cos𝜽lab in [0.209,0.355)
0
B
B
B
B
@
Pe!e Pe!µ Pe!⇡ Pe!K Pe!p
Pµ!e Pµ!µ Pµ!⇡ Pµ!K Pµ!p
P⇡!e P⇡!µ P⇡!⇡ P⇡!K P⇡!p
PK!e PK!µ PK!⇡ PK!K PK!p
Pp!e Pp!mu Pp!⇡ Pp!K Pp!p
1
C
C
C
C
A
pπ, K -> j from D* decay
pπ, p -> j from Λ decay
pe, µ -> j from J/ψ decay
11
Francesca Giordano
2D correction0
B
B
B
B
@
Pe!e Pe!µ Pe!⇡ Pe!K Pe!p
Pµ!e Pµ!µ Pµ!⇡ Pµ!K Pµ!p
P⇡!e P⇡!µ P⇡!⇡ P⇡!K P⇡!p
PK!e PK!µ PK!⇡ PK!K PK!p
Pp!e Pp!mu Pp!⇡ Pp!K Pp!p
1
C
C
C
C
A
pπ, K -> j from D* decay
pπ, p -> j from Λ decay
pe, µ -> j from J/ψ decay
12
Francesca Giordano
2D correction0
B
B
B
B
@
Pe!e Pe!µ Pe!⇡ Pe!K Pe!p
Pµ!e Pµ!µ Pµ!⇡ Pµ!K Pµ!p
P⇡!e P⇡!µ P⇡!⇡ P⇡!K P⇡!p
PK!e PK!µ PK!⇡ PK!K PK!p
Pp!e Pp!mu Pp!⇡ Pp!K Pp!p
1
C
C
C
C
A
pπ, K -> j from D* decay
pπ, p -> j from Λ decay
pe, µ -> j from J/ψ decay
12
Francesca Giordano
PID correction
⇡
K
< 15%
30% >
13
Francesca Giordano
P 1
ijS 1
zzm
✏i
impu(zm)✏i
joint(z)✏i
ISR/F SR(z)
Impurity correction
Correction for hadrons
generated by ττ, 2γ
qqbarMC
π-
1
Ntot
Nj,raw
(zm)P 1
ij✏i
impu(zm)Mi
(z) =
i = ⇡, K
14
Francesca Giordano
P 1
ijS 1
zzm
✏i
impu(zm)✏i
joint(z)✏i
ISR/F SR(z)
Impurity correction
Correction for hadrons
generated by ττ, 2γ
qqbarMC
π-
yields from qq
total yields
1
Ntot
Nj,raw
(zm)P 1
ij✏i
impu(zm)Mi
(z) =
i = ⇡, K
14
Francesca Giordano
P 1
ijS 1
zzm
✏i
impu(zm)✏i
joint(z)✏i
ISR/F SR(z)
Smearing correction
Detector smearing
correction
1
Ntot
Nj,raw
(zm)P 1
ijS 1
zzm
✏i
impu(zm)Mi
(z) =
i = ⇡, K
➬zmz
15
Francesca Giordano
P 1
ijS 1
zzm
✏i
impu(zm)✏i
joint(z)✏i
ISR/F SR(z)
Smearing correction
Detector smearing
correction
1
Ntot
Nj,raw
(zm)P 1
ijS 1
zzm
✏i
impu(zm)Mi
(z) =
i = ⇡, K
➬zmz
studied. For most z bins, bin contents
value of all particles smeared to z >
systematic uncertainties are found to be
smeared to z > 1.0. Thus no addition
z > 1.0 is assigned.
Figure 39 shows ratios of negativel
versus z, after and before the smearin
uncertainties for each yield are added
the ratio. As can be seen from the plot
all values z within their uncertainties.
(a)
before/after
15
Francesca Giordano
P 1
ijS 1
zzm
✏i
impu(zm)✏i
joint(z)✏i
ISR/F SR(z)
ISR/FSR correction
1
Ntot
Nj,raw
(zm)P 1
ijS 1
zzm
✏i
impu(zm)✏i
ISR/F SR(z)Mi
(z) =
e+
e-
q
q
i = ⇡, K
Emission of a real photon changes the
fragmentation energy scale
16
Francesca Giordano
P 1
ijS 1
zzm
✏i
impu(zm)✏i
joint(z)✏i
ISR/F SR(z)
ISR/FSR correction
1
Ntot
Nj,raw
(zm)P 1
ijS 1
zzm
✏i
impu(zm)✏i
ISR/F SR(z)Mi
(z) =
e+
e-
q
q
i = ⇡, K
Emission of a real photon changes the
fragmentation energy scale
16
Francesca Giordano
P 1
ijS 1
zzm
✏i
impu(zm)✏i
joint(z)✏i
ISR/F SR(z)
ISR/FSR correction
1
Ntot
Nj,raw
(zm)P 1
ijS 1
zzm
✏i
impu(zm)✏i
ISR/F SR(z)Mi
(z) =
e+
e-
q
q
i = ⇡, K
Emission of a real photon changes the
fragmentation energy scale
16
Francesca Giordano
P 1
ijS 1
zzm
✏i
impu(zm)✏i
joint(z)✏i
ISR/F SR(z)
ISR/FSR correction
1
Ntot
Nj,raw
(zm)P 1
ijS 1
zzm
✏i
impu(zm)✏i
ISR/F SR(z)Mi
(z) =
e+
e-
q
q
i = ⇡, K
Emission of a real photon changes the
fragmentation energy scale
16
Francesca Giordano
P 1
ijS 1
zzm
✏i
impu(zm)✏i
joint(z)✏i
ISR/F SR(z)
ISR/FSR correction
1
Ntot
Nj,raw
(zm)P 1
ijS 1
zzm
✏i
impu(zm)✏i
ISR/F SR(z)Mi
(z) =
produced in events whose center-of-mass energy is lower th
Thus the particle fractions are seen to decrease versus z. The
the pion and kaon curve can most likely be related to mass
The fractions shown in Figure 67 represent the fractions
z bin which are excluded from the analysis to limit ISR/F
measured yields. The assumption in this analysis step is
particles from events with hard QED effects is the same in
experimental data.
e+
e-
q
q
i = ⇡, K
Emission of a real photon changes the
fragmentation energy scale
> 0.5% change in cms energy
16
Francesca Giordano
P 1
ijS 1
zzm
✏i
impu(zm)✏i
joint(z)✏i
ISR/F SR(z)
ISR/FSR correction
1
Ntot
Nj,raw
(zm)P 1
ijS 1
zzm
✏i
impu(zm)✏i
ISR/F SR(z)Mi
(z) =
produced in events whose center-of-mass energy is lower th
Thus the particle fractions are seen to decrease versus z. The
the pion and kaon curve can most likely be related to mass
The fractions shown in Figure 67 represent the fractions
z bin which are excluded from the analysis to limit ISR/F
measured yields. The assumption in this analysis step is
particles from events with hard QED effects is the same in
experimental data.
e+
e-
q
q
i = ⇡, K
Emission of a real photon changes the
fragmentation energy scale
> 0.5% change in cms energy
12 different MC
tunes studied
16
Francesca Giordano
More corrections
1
Ntot
Nj,raw
(zm)Mi
(z) =
i = ⇡, K
Correction for particles lost due to
decay in flight
interaction with detectors
detector/tracking inefficiencies
geometric/kinematic acceptance
P 1
ijS 1
zzm
✏i
impu(zm)✏i
ISR/F SR(z)✏i
joint(z)
17
Francesca Giordano
More corrections
1
Ntot
Nj,raw
(zm)Mi
(z) =
i = ⇡, K
Correction for particles lost due to
decay in flight
interaction with detectors
detector/tracking inefficiencies
geometric/kinematic acceptance } < 10%
P 1
ijS 1
zzm
✏i
impu(zm)✏i
ISR/F SR(z)✏i
joint(z)
17
Francesca Giordano
Preliminary multiplicities
1
Ntot
Nj,raw
(zm)Mi
(z) =
i = ⇡, K
P 1
ijS 1
zzm
✏i
impu(zm)✏i
ISR/F SR(z)✏i
joint(z)
Preliminary
18
Francesca Giordano
Comparison with world data
PreliminaryPreliminary
19
Francesca Giordano
Relative uncertainties
PreliminaryPreliminary
20
Francesca Giordano
Outlook
Final pion and kaon multiplicities ready, paper
submission by the end of the year
21
Francesca Giordano
Outlook
Final pion and kaon multiplicities ready, paper
submission by the end of the year
kT spin-averaged FF for single and di-hadron
kT Collins FF for single and di-hadron
chiral-odd FF
More high precision measurements to come
21
Francesca Giordano
Outlook
Improved Kaon Identification allow for more precise
measurements
22
Francesca Giordano
Outlook
Pij =
0
B
B
B
B
@
Pe!e Pe!µ Pe!⇡ Pe!K Pe!p
Pµ!e Pµ!µ Pµ!⇡ Pµ!K Pµ!p
P⇡!e P⇡!µ P⇡!⇡ P⇡!K P⇡!p
PK!e PK!µ PK!⇡ PK!K PK!p
Pp!e Pp!mu Pp!⇡ Pp!K Pp!p
1
C
C
C
C
A
Ni
= P 1
ij Nj,raw
Improved Kaon Identification allow for more precise
measurements
22
Francesca Giordano
Outlook
Pij =
0
B
B
B
B
@
Pe!e Pe!µ Pe!⇡ Pe!K Pe!p
Pµ!e Pµ!µ Pµ!⇡ Pµ!K Pµ!p
P⇡!e P⇡!µ P⇡!⇡ P⇡!K P⇡!p
PK!e PK!µ PK!⇡ PK!K PK!p
Pp!e Pp!mu Pp!⇡ Pp!K Pp!p
1
C
C
C
C
A
Ni
= P 1
ij Nj,raw
Improved Kaon Identification allow for more precise
measurements
Kaon Interference FF
22
Francesca Giordano
-0.15
-0.1
-0.05
0
0.05
0.1
0.15
0.2
-0.15
-0.1
-0.05
0
0.05
0.1
0.15
0.2
0.2 0.4 0.6 0.8
A12
0.2<z1<0.3
K
KK
0.3<z1<0.5
z2
A12
0.5<z1<0.7
z2
0.7<z1<1
0.2 0.4 0.6 0.8
Outlook
Improved Kaon Identification allow for more precise
measurements
Kaon Collins FF
Kaon Interference FF
5
FIG. 2: Definition of the azimuthal angles φ1 and φ2 of the
two hadrons, between the scattering plane and their transverse
momenta Phi⊥ around the thrust axis ˆn. The angle θ is defined
as the angle between the lepton axis and the thrust axis.
momentum of the quark-antiquark pair is known. The
quark directions are, however, not accessible to a direct
measurement and are thus approximated by the thrust
axis. The thrust axis ˆn maximizes the event shape vari-
able thrust:
T
max
= h |PCMS
h · ˆn|
h |PCMS
h |
, (3)
FIG. 3: Definition of the azimuthal angle φ0 formed between
the planes defined by the lepton momenta and that of one
hadron and the second hadron’s transverse momentum Ph1⊥
relative to the first hadron.
fragmentation function; the charge-conjugate term has
been omitted. The fragmentation functions do not ap-
pear in the cross section directly but as the zeroth ([0])
or first ([1]) moments in the absolute value of the corre-
sponding transverse momenta [26]:
F[n]
(z) = d|kT |2 |kT |
M
n
F(z, k2
T ) . (6)
e+
e-
𝛑
𝛑
22
Francesca Giordano
-0.15
-0.1
-0.05
0
0.05
0.1
0.15
0.2
-0.15
-0.1
-0.05
0
0.05
0.1
0.15
0.2
0.2 0.4 0.6 0.8
A12
0.2<z1<0.3
K
KK
0.3<z1<0.5
z2
A12
0.5<z1<0.7
z2
0.7<z1<1
0.2 0.4 0.6 0.8
Outlook
Improved Kaon Identification allow for more precise
measurements
Kaon Collins FF
Kaon Interference FF
5
FIG. 2: Definition of the azimuthal angles φ1 and φ2 of the
two hadrons, between the scattering plane and their transverse
momenta Phi⊥ around the thrust axis ˆn. The angle θ is defined
as the angle between the lepton axis and the thrust axis.
momentum of the quark-antiquark pair is known. The
quark directions are, however, not accessible to a direct
measurement and are thus approximated by the thrust
axis. The thrust axis ˆn maximizes the event shape vari-
able thrust:
T
max
= h |PCMS
h · ˆn|
h |PCMS
h |
, (3)
FIG. 3: Definition of the azimuthal angle φ0 formed between
the planes defined by the lepton momenta and that of one
hadron and the second hadron’s transverse momentum Ph1⊥
relative to the first hadron.
fragmentation function; the charge-conjugate term has
been omitted. The fragmentation functions do not ap-
pear in the cross section directly but as the zeroth ([0])
or first ([1]) moments in the absolute value of the corre-
sponding transverse momenta [26]:
F[n]
(z) = d|kT |2 |kT |
M
n
F(z, k2
T ) . (6)
e+
e-
𝛑
K
e+
e-
𝛑
𝛑
22
Francesca Giordano
-0.15
-0.1
-0.05
0
0.05
0.1
0.15
0.2
-0.15
-0.1
-0.05
0
0.05
0.1
0.15
0.2
0.2 0.4 0.6 0.8
A12
0.2<z1<0.3
K
KK
0.3<z1<0.5
z2
A12
0.5<z1<0.7
z2
0.7<z1<1
0.2 0.4 0.6 0.8
Outlook
Improved Kaon Identification allow for more precise
measurements
Kaon Collins FF
Kaon Interference FF
5
FIG. 2: Definition of the azimuthal angles φ1 and φ2 of the
two hadrons, between the scattering plane and their transverse
momenta Phi⊥ around the thrust axis ˆn. The angle θ is defined
as the angle between the lepton axis and the thrust axis.
momentum of the quark-antiquark pair is known. The
quark directions are, however, not accessible to a direct
measurement and are thus approximated by the thrust
axis. The thrust axis ˆn maximizes the event shape vari-
able thrust:
T
max
= h |PCMS
h · ˆn|
h |PCMS
h |
, (3)
FIG. 3: Definition of the azimuthal angle φ0 formed between
the planes defined by the lepton momenta and that of one
hadron and the second hadron’s transverse momentum Ph1⊥
relative to the first hadron.
fragmentation function; the charge-conjugate term has
been omitted. The fragmentation functions do not ap-
pear in the cross section directly but as the zeroth ([0])
or first ([1]) moments in the absolute value of the corre-
sponding transverse momenta [26]:
F[n]
(z) = d|kT |2 |kT |
M
n
F(z, k2
T ) . (6)
e+
e-
𝛑
K
e+
e-
K
K
e+
e-
𝛑
𝛑
22
Francesca Giordano
-0.15
-0.1
-0.05
0
0.05
0.1
0.15
0.2
-0.15
-0.1
-0.05
0
0.05
0.1
0.15
0.2
0.2 0.4 0.6 0.8
A12
0.2<z1<0.3
K
KK
0.3<z1<0.5
z2
A12
0.5<z1<0.7
z2
0.7<z1<1
0.2 0.4 0.6 0.8
Outlook
Improved Kaon Identification allow for more precise
measurements
Kaon Collins FF
Kaon Interference FF
5
FIG. 2: Definition of the azimuthal angles φ1 and φ2 of the
two hadrons, between the scattering plane and their transverse
momenta Phi⊥ around the thrust axis ˆn. The angle θ is defined
as the angle between the lepton axis and the thrust axis.
momentum of the quark-antiquark pair is known. The
quark directions are, however, not accessible to a direct
measurement and are thus approximated by the thrust
axis. The thrust axis ˆn maximizes the event shape vari-
able thrust:
T
max
= h |PCMS
h · ˆn|
h |PCMS
h |
, (3)
FIG. 3: Definition of the azimuthal angle φ0 formed between
the planes defined by the lepton momenta and that of one
hadron and the second hadron’s transverse momentum Ph1⊥
relative to the first hadron.
fragmentation function; the charge-conjugate term has
been omitted. The fragmentation functions do not ap-
pear in the cross section directly but as the zeroth ([0])
or first ([1]) moments in the absolute value of the corre-
sponding transverse momenta [26]:
F[n]
(z) = d|kT |2 |kT |
M
n
F(z, k2
T ) . (6)
e+
e-
𝛑
K
e+
e-
K
K
e+
e-
𝛑
𝛑
Thanks!
22
Francesca Giordano
Who’s working on what...
RIKEN/RBRC Illinois Indiana Bilbao Titech
Unpol FFs
e+e- ⟶hX:
e+e-⟶(hh) X,
(h)(h)X, hhX:
Unpol kT
dependence
Charged di-
hadrons: Ralf
Seidl
Charged hadrons
(π,K,P):
Martin Leitgab
Martin Leitgab
π0 ,η0:
Hairong Li
Charlotte Hulse
Collins FFs
e+e-⟶(h)(h)X:
kT dependence:
πρ0: Ralf Seidl
ππ: Ralf Seidl
πK,KK: Francesca
Giordano
Francesca Giordano
ππ0 : Hairong Li
Charlotte Hulse
Interference FF:
e+e-⟶(hh)(hh)X
Charged ππ :
Ralf Seidl
Charged ππ:
Anselm Vossen
ππ0 : Anselm
Vossen
Charged πK,
KK:
Nori-aki
Kobayashi
Local P :
Λ(polFF,SSA) :
Jet-jet asy:
Anselm Vossen
23

More Related Content

Similar to Talk at the QCDN 2012 conference in Bilbao

Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesVjekoslavKovac1
 
Compilation of COSMO for GPU using LLVM
Compilation of COSMO for GPU using LLVMCompilation of COSMO for GPU using LLVM
Compilation of COSMO for GPU using LLVMLinaro
 
CS253: Network Flow (2019)
CS253: Network Flow (2019)CS253: Network Flow (2019)
CS253: Network Flow (2019)Jinho Choi
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisSimen Li
 
Orthogonal basis and gram schmidth process
Orthogonal basis and gram schmidth processOrthogonal basis and gram schmidth process
Orthogonal basis and gram schmidth processgidc engineering college
 
Computing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCDComputing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCDChristos Kallidonis
 
slides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial scienceslides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial scienceArthur Charpentier
 
ゲーム理論BASIC 演習59 -有限回繰り返しゲームにおける部分ゲーム完全均衡2-
ゲーム理論BASIC 演習59 -有限回繰り返しゲームにおける部分ゲーム完全均衡2-ゲーム理論BASIC 演習59 -有限回繰り返しゲームにおける部分ゲーム完全均衡2-
ゲーム理論BASIC 演習59 -有限回繰り返しゲームにおける部分ゲーム完全均衡2-ssusere0a682
 
Measurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducersMeasurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducersOndrej Cernotik
 
Lundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentierLundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentierArthur Charpentier
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDBenjamin Jaedon Choi
 
Iterative methods with special structures
Iterative methods with special structuresIterative methods with special structures
Iterative methods with special structuresDavid Gleich
 
Smoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfSmoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfkeansheng
 
Learning Algorithms For Life Scientists
Learning Algorithms For Life ScientistsLearning Algorithms For Life Scientists
Learning Algorithms For Life ScientistsBrian Frezza
 
On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions iosrjce
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and transDr Fereidoun Dejahang
 
transformations and nonparametric inference
transformations and nonparametric inferencetransformations and nonparametric inference
transformations and nonparametric inferenceArthur Charpentier
 

Similar to Talk at the QCDN 2012 conference in Bilbao (20)

Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averages
 
Compilation of COSMO for GPU using LLVM
Compilation of COSMO for GPU using LLVMCompilation of COSMO for GPU using LLVM
Compilation of COSMO for GPU using LLVM
 
CS253: Network Flow (2019)
CS253: Network Flow (2019)CS253: Network Flow (2019)
CS253: Network Flow (2019)
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
 
Orthogonal basis and gram schmidth process
Orthogonal basis and gram schmidth processOrthogonal basis and gram schmidth process
Orthogonal basis and gram schmidth process
 
Computing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCDComputing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCD
 
slides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial scienceslides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial science
 
Dg mcqs (1)
Dg mcqs (1)Dg mcqs (1)
Dg mcqs (1)
 
BSE and TDDFT at work
BSE and TDDFT at workBSE and TDDFT at work
BSE and TDDFT at work
 
ゲーム理論BASIC 演習59 -有限回繰り返しゲームにおける部分ゲーム完全均衡2-
ゲーム理論BASIC 演習59 -有限回繰り返しゲームにおける部分ゲーム完全均衡2-ゲーム理論BASIC 演習59 -有限回繰り返しゲームにおける部分ゲーム完全均衡2-
ゲーム理論BASIC 演習59 -有限回繰り返しゲームにおける部分ゲーム完全均衡2-
 
Measurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducersMeasurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducers
 
Lundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentierLundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentier
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
 
Iterative methods with special structures
Iterative methods with special structuresIterative methods with special structures
Iterative methods with special structures
 
Smoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfSmoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdf
 
Technical
TechnicalTechnical
Technical
 
Learning Algorithms For Life Scientists
Learning Algorithms For Life ScientistsLearning Algorithms For Life Scientists
Learning Algorithms For Life Scientists
 
On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and trans
 
transformations and nonparametric inference
transformations and nonparametric inferencetransformations and nonparametric inference
transformations and nonparametric inference
 

More from Francesca Giordano

Phenix Forward Upgrade: the RPCs
Phenix Forward Upgrade: the RPCsPhenix Forward Upgrade: the RPCs
Phenix Forward Upgrade: the RPCsFrancesca Giordano
 
Seminario per Studenti a SPINFest 2014
Seminario per Studenti a SPINFest 2014Seminario per Studenti a SPINFest 2014
Seminario per Studenti a SPINFest 2014Francesca Giordano
 
NGS Assembly Practical Lesson (EBI course)
NGS Assembly Practical Lesson (EBI course)NGS Assembly Practical Lesson (EBI course)
NGS Assembly Practical Lesson (EBI course)Francesca Giordano
 
Genome assembly from three sequencing platforms: minION, MiSeq and PacBio
Genome assembly from three sequencing platforms: minION, MiSeq and PacBioGenome assembly from three sequencing platforms: minION, MiSeq and PacBio
Genome assembly from three sequencing platforms: minION, MiSeq and PacBioFrancesca Giordano
 
F Giordano ScanPAV Analysis Pipeline
F Giordano ScanPAV Analysis PipelineF Giordano ScanPAV Analysis Pipeline
F Giordano ScanPAV Analysis PipelineFrancesca Giordano
 
F Giordano Proton Spin from Sea Quarks
F Giordano Proton Spin from Sea QuarksF Giordano Proton Spin from Sea Quarks
F Giordano Proton Spin from Sea QuarksFrancesca Giordano
 
F Giordano: spin-dependent effects in spin-averaged DIS
F Giordano: spin-dependent effects in spin-averaged DISF Giordano: spin-dependent effects in spin-averaged DIS
F Giordano: spin-dependent effects in spin-averaged DISFrancesca Giordano
 
F Giordano Collins Fragmentation for Kaon
F Giordano Collins Fragmentation for KaonF Giordano Collins Fragmentation for Kaon
F Giordano Collins Fragmentation for KaonFrancesca Giordano
 
F Giordano Proton transversity distributions
F Giordano Proton transversity distributionsF Giordano Proton transversity distributions
F Giordano Proton transversity distributionsFrancesca Giordano
 

More from Francesca Giordano (11)

Phenix Forward Upgrade: the RPCs
Phenix Forward Upgrade: the RPCsPhenix Forward Upgrade: the RPCs
Phenix Forward Upgrade: the RPCs
 
Dis2013 spin highlights
Dis2013 spin highlightsDis2013 spin highlights
Dis2013 spin highlights
 
TMD PDF in SIDIS
TMD PDF in SIDISTMD PDF in SIDIS
TMD PDF in SIDIS
 
Seminario per Studenti a SPINFest 2014
Seminario per Studenti a SPINFest 2014Seminario per Studenti a SPINFest 2014
Seminario per Studenti a SPINFest 2014
 
NGS Assembly Practical Lesson (EBI course)
NGS Assembly Practical Lesson (EBI course)NGS Assembly Practical Lesson (EBI course)
NGS Assembly Practical Lesson (EBI course)
 
Genome assembly from three sequencing platforms: minION, MiSeq and PacBio
Genome assembly from three sequencing platforms: minION, MiSeq and PacBioGenome assembly from three sequencing platforms: minION, MiSeq and PacBio
Genome assembly from three sequencing platforms: minION, MiSeq and PacBio
 
F Giordano ScanPAV Analysis Pipeline
F Giordano ScanPAV Analysis PipelineF Giordano ScanPAV Analysis Pipeline
F Giordano ScanPAV Analysis Pipeline
 
F Giordano Proton Spin from Sea Quarks
F Giordano Proton Spin from Sea QuarksF Giordano Proton Spin from Sea Quarks
F Giordano Proton Spin from Sea Quarks
 
F Giordano: spin-dependent effects in spin-averaged DIS
F Giordano: spin-dependent effects in spin-averaged DISF Giordano: spin-dependent effects in spin-averaged DIS
F Giordano: spin-dependent effects in spin-averaged DIS
 
F Giordano Collins Fragmentation for Kaon
F Giordano Collins Fragmentation for KaonF Giordano Collins Fragmentation for Kaon
F Giordano Collins Fragmentation for Kaon
 
F Giordano Proton transversity distributions
F Giordano Proton transversity distributionsF Giordano Proton transversity distributions
F Giordano Proton transversity distributions
 

Recently uploaded

Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Types of different blotting techniques.pptx
Types of different blotting techniques.pptxTypes of different blotting techniques.pptx
Types of different blotting techniques.pptxkhadijarafiq2012
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 

Recently uploaded (20)

Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Types of different blotting techniques.pptx
Types of different blotting techniques.pptxTypes of different blotting techniques.pptx
Types of different blotting techniques.pptx
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 

Talk at the QCDN 2012 conference in Bilbao

  • 1. Francesca Giordano, Martin Leitgab for the BELLE collaboration PRECISE PION AND KAON MULTIPLICITIES @ BELLE QCD-N’12, BILBAO October 22-26 2012
  • 2. Francesca Giordano Fragmentation processor how do the hadrons get formed? 2
  • 3. Francesca Giordano Fragmentation processor how do the hadrons get formed? q 2
  • 4. Francesca Giordano Fragmentation processor how do the hadrons get formed? q q q 2
  • 5. Francesca Giordano Fragmentation processor how do the hadrons get formed? Dq h h q q q 2
  • 6. Francesca Giordano Fragmentation processor how do the hadrons get formed? Dq h h q q q Fragmentation function describes the process of hadronization of a parton 2
  • 7. Francesca Giordano Fragmentation processor how do the hadrons get formed? Strictly related to quark confinement Dq h h q q q Fragmentation function describes the process of hadronization of a parton 2
  • 8. Francesca Giordano Fragmentation processor how do the hadrons get formed? Strictly related to quark confinement Dq h h q Fragmentation function describes the process of hadronization of a parton Cleanest way to access FF is in e+e- qq e+ e- q e+ e !hX / X i=q¯q e+ e !q¯q ⇥ Dh q 2
  • 9. Francesca Giordano Fragmentation processor how do the hadrons get formed? Strictly related to quark confinement Universal: can be used to study the nucleon structure when combined with SIDIS and pp data Dq h h q Fragmentation function describes the process of hadronization of a parton Cleanest way to access FF is in e+e- qq e+ e- q e+ e !hX / X i=q¯q e+ e !q¯q ⇥ Dh q 2
  • 10. Francesca Giordano Fragmentation processor how do the hadrons get formed? Strictly related to quark confinement Universal: can be used to study the nucleon structure when combined with SIDIS and pp data ⇒ ⇒ ⇒⇒Ah LL = ! ! !+ ! Ah UT = " " " + " ⇒⇒ ⇒⇒ Dq h h q Fragmentation function describes the process of hadronization of a parton Cleanest way to access FF is in e+e- qq e+ e- q e+ e !hX / X i=q¯q e+ e !q¯q ⇥ Dh q 2
  • 11. Francesca Giordano Fragmentation processor how do the hadrons get formed? Strictly related to quark confinement Universal: can be used to study the nucleon structure when combined with SIDIS and pp data ⇒ ⇒ ⇒⇒Ah LL = ! ! !+ ! Ah UT = " " " + " ⇒⇒ ⇒⇒ Dq h h q Fragmentation function describes the process of hadronization of a parton Cleanest way to access FF is in e+e- qq e+ e- q e+ e !hX / X i=q¯q e+ e !q¯q ⇥ Dh q 2
  • 12. Francesca Giordano Fragmentation processor how do the hadrons get formed? Strictly related to quark confinement Universal: can be used to study the nucleon structure when combined with SIDIS and pp data ⇒ ⇒ ⇒⇒Ah LL = ! ! !+ ! Ah UT = " " " + " ⇒⇒ ⇒⇒ / Dh q / Dh qDh g Dq h h q Fragmentation function describes the process of hadronization of a parton Cleanest way to access FF is in e+e- qq e+ e- q e+ e !hX / X i=q¯q e+ e !q¯q ⇥ Dh q 2
  • 13. Francesca Giordano Fragmentation processor how do the hadrons get formed? Dq h h qe+ e- q e+ e !hX / X i=q¯q e+ e !q¯q ⇥ Dh q 3
  • 14. Francesca Giordano Fragmentation processor how do the hadrons get formed? Dq h h qe+ e- q e+ e !hX / X i=q¯q e+ e !q¯q ⇥ Dh q 3
  • 15. Francesca Giordano Fragmentation processor how do the hadrons get formed? Dq h h qe+ e- q e+ e !hX / X i=q¯q e+ e !q¯q ⇥ Dh q 3
  • 16. Francesca Giordano Fragmentation processor how do the hadrons get formed? Non perturbative effect: need input from measurements!Dq h h qe+ e- q e+ e !hX / X i=q¯q e+ e !q¯q ⇥ Dh q 3
  • 17. Francesca Giordano Fragmentation processor how do the hadrons get formed? Mh (z, Q2 ) = 1 tot d (e+ e ! hX) dz Non perturbative effect: need input from measurements!Dq h h qe+ e- q e+ e !hX / X i=q¯q e+ e !q¯q ⇥ Dh q 3
  • 18. Francesca Giordano Fragmentation processor how do the hadrons get formed? / X i=q,¯q e2 i ⇥ Dh i (z, Q2 )/ X i=q¯q e2 i Dh q Dh ¯q Mh (z, Q2 ) = 1 tot d (e+ e ! hX) dz Non perturbative effect: need input from measurements! LO Dq h h qe+ e- q e+ e !hX / X i=q¯q e+ e !q¯q ⇥ Dh q 3
  • 19. Francesca Giordano Fragmentation processor how do the hadrons get formed? / X i=q,¯q e2 i ⇥ Dh i (z, Q2 )/ X i=q¯q e2 i Dh q Dh ¯q Dh g Mh (z, Q2 ) = 1 tot d (e+ e ! hX) dz Non perturbative effect: need input from measurements! LO / X i=q,¯q,g CNLO i ⌦ Dh i (z, Q2 ) NLO Dq h h qe+ e- q e+ e !hX / X i=q¯q e+ e !q¯q ⇥ Dh q 3
  • 21. Francesca Giordano e+e- data Hirai, Kumano, Nagai, Sudoh Phys. Rev. D 75, 094009 (2007) 2007: First unpolarized FF extraction with estimated uncertainties! 4
  • 22. Francesca Giordano Global analises: e+e-, SIDIS, pp: (including uncertainties) e+e-, pp: e+e- data Hirai, Kumano, Nagai, Sudoh Phys. Rev. D 75, 094009 (2007) Albino, Kniehl, Kramer Nucl. Phys. B 803, 42 (2008) 2007: First unpolarized FF extraction with estimated uncertainties! de Florian, Sassot, Stratmann Phys. Rev. D 75, 114010 (2007) and Phys. Rev D 76, 074033 (2007) Epele, Llubaroff, Sassot, Stratmann arXiv:1209.3240 [hep-ph] 4
  • 23. Francesca Giordano e+e- data Dπ+ i Epele, Llubaroff, Sassot, Stratmann arXiv:1209.3240 [hep-ph] 5
  • 24. Francesca Giordano e+e- data Dπ+ i Epele, Llubaroff, Sassot, Stratmann arXiv:1209.3240 [hep-ph] Few data at high z 5
  • 25. Francesca Giordano e+e- data Dπ+ i Epele, Llubaroff, Sassot, Stratmann arXiv:1209.3240 [hep-ph] Few data at low energy Few data at high z 5
  • 26. Francesca Giordano e+e- data Dπ+ i Epele, Llubaroff, Sassot, Stratmann arXiv:1209.3240 [hep-ph] Few data at low energy Few data at high z 5
  • 27. Francesca Giordano KEKB BELLE @ KEKB Francesca Giordano 6
  • 28. Francesca Giordano KEKB Asymmetric e+ (3.5 GeV) e- (8 GeV) collider BELLE @ KEKB Francesca Giordano 6
  • 29. Francesca Giordano BELLE @ KEKB 8 GeV e− 3.5 GeV e+ Asymmetric e+ e- collider On resonance: √s = 10.58 GeV (e+ e- → Y(4S) → BB) Off resonance √s = 10.52 GeV (e+ e- → qq (q=u,d,s,c)) 7
  • 30. Francesca Giordano BELLE @ KEKB 8 GeV e− 3.5 GeV e+ Asymmetric e+ e- collider On resonance: √s = 10.58 GeV (e+ e- → Y(4S) → BB) Off resonance √s = 10.52 GeV (e+ e- → qq (q=u,d,s,c)) 220 *106 events 7
  • 31. Francesca Giordano BELLE @ KEKB Central Drift Chamber Si vertex SC solenoid 1.5T 8 GeV e− 3.5 GeV e+ Asymmetric e+ e- collider On resonance: √s = 10.58 GeV (e+ e- → Y(4S) → BB) Off resonance √s = 10.52 GeV (e+ e- → qq (q=u,d,s,c)) Good tracking ϴ [170;1500] 220 *106 events 7
  • 32. Francesca Giordano BELLE @ KEKB μ / KL detection Central Drift Chamber CsI Aerogel Cherenkov n=1.015~1.030 Si vertex TOF SC solenoid 1.5T 8 GeV e− 3.5 GeV e+ Asymmetric e+ e- collider On resonance: √s = 10.58 GeV (e+ e- → Y(4S) → BB) Off resonance √s = 10.52 GeV (e+ e- → qq (q=u,d,s,c)) Good tracking ϴ [170;1500] Good PID: ε(π) 90% ε(K) 85% 220 *106 events 7
  • 33. Francesca Giordano Multiplicities extraction Mh (z, Q2 ) = 1 tot d (e+ e ! hX) dz 8
  • 34. Francesca Giordano Multiplicities extraction Mh (z, Q2 ) = 1 tot d (e+ e ! hX) dz 1 Ntot Mi (z) = i = ⇡, K 8
  • 35. Francesca Giordano Multiplicities extraction Mh (z, Q2 ) = 1 tot d (e+ e ! hX) dz 1 Ntot Nj,raw (zm)Mi (z) = i = ⇡, K 8
  • 36. Francesca Giordano P 1 ijS 1 zzm ✏i impu(zm)✏i joint(z)✏i ISR/F SR(z) Multiplicities extraction Mh (z, Q2 ) = 1 tot d (e+ e ! hX) dz 1 Ntot Nj,raw (zm)Mi (z) = i = ⇡, K 8
  • 37. Francesca Giordano P 1 ijS 1 zzm ✏i impu(zm)✏i joint(z)✏i ISR/F SR(z) Multiplicities extraction Perfect PID ➯ j = i 1 Ntot Nj,raw (zm)Mi (z) = i = ⇡, K 8
  • 38. Francesca Giordano P 1 ijS 1 zzm ✏i impu(zm)✏i joint(z)✏i ISR/F SR(z) Multiplicities extraction Perfect PID ➯ j = i ε(π) 90% ε(K) 85% BUT!! 1 Ntot Nj,raw (zm)Mi (z) = i = ⇡, K 8
  • 39. Francesca Giordano P 1 ijS 1 zzm ✏i impu(zm)✏i joint(z)✏i ISR/F SR(z) Multiplicities extraction Perfect PID ➯ j = i ε(π) 90% ε(K) 85% ⇡ ⇡ 90% BUT!! 1 Ntot Nj,raw (zm)Mi (z) = i = ⇡, K 8
  • 40. Francesca Giordano P 1 ijS 1 zzm ✏i impu(zm)✏i joint(z)✏i ISR/F SR(z) Multiplicities extraction Perfect PID ➯ j = i ε(π) 90% ε(K) 85% ⇡ e, µ, K, p ⇡ 90% 10% BUT!! 1 Ntot Nj,raw (zm)Mi (z) = i = ⇡, K 8
  • 41. Francesca Giordano P 1 ijS 1 zzm ✏i impu(zm)✏i joint(z)✏i ISR/F SR(z) Multiplicities extraction Perfect PID ➯ j = i ε(π) 90% ε(K) 85% ⇡ e, µ, K, p ⇡ 90% 10% Pij = 0 B B B B @ Pe!e Pe!µ Pe!⇡ Pe!K Pe!p Pµ!e Pµ!µ Pµ!⇡ Pµ!K Pµ!p P⇡!e P⇡!µ P⇡!⇡ P⇡!K P⇡!p PK!e PK!µ PK!⇡ PK!K PK!p Pp!e Pp!mu Pp!⇡ Pp!K Pp!p 1 C C C C A Nj,raw = PijNi BUT!! 1 Ntot Nj,raw (zm)Mi (z) = j = e, µ, ⇡, K, p i = ⇡, K 8
  • 42. Francesca Giordano P 1 ijS 1 zzm ✏i impu(zm)✏i joint(z)✏i ISR/F SR(z) Multiplicities extraction Perfect PID ➯ j = i ε(π) 90% ε(K) 85% ⇡ e, µ, K, p ⇡ 90% 10% Pij = 0 B B B B @ Pe!e Pe!µ Pe!⇡ Pe!K Pe!p Pµ!e Pµ!µ Pµ!⇡ Pµ!K Pµ!p P⇡!e P⇡!µ P⇡!⇡ P⇡!K P⇡!p PK!e PK!µ PK!⇡ PK!K PK!p Pp!e Pp!mu Pp!⇡ Pp!K Pp!p 1 C C C C A Nj,raw = PijNi BUT!! 1 Ntot Nj,raw (zm)Mi (z) = j = e, µ, ⇡, K, p i = ⇡, K Ni = P 1 ij Nj,raw 8
  • 43. Francesca Giordano P 1 ijS 1 zzm ✏i impu(zm)✏i joint(z)✏i ISR/F SR(z) Multiplicities extraction Perfect PID ➯ j = i ε(π) 90% ε(K) 85% ⇡ e, µ, K, p ⇡ 90% 10% Pij = 0 B B B B @ Pe!e Pe!µ Pe!⇡ Pe!K Pe!p Pµ!e Pµ!µ Pµ!⇡ Pµ!K Pµ!p P⇡!e P⇡!µ P⇡!⇡ P⇡!K P⇡!p PK!e PK!µ PK!⇡ PK!K PK!p Pp!e Pp!mu Pp!⇡ Pp!K Pp!p 1 C C C C A Nj,raw = PijNi BUT!! 1 Ntot Nj,raw (zm)P 1 ijMi (z) = j = e, µ, ⇡, K, p i = ⇡, K Ni = P 1 ij Nj,raw 8
  • 44. Francesca Giordano ijHow to determine the Pij? 9
  • 45. Francesca Giordano ijHow to determine the Pij? From data! 9
  • 46. Francesca Giordano ijHow to determine the Pij? D⇤ D0 ⇡+ slowFrom data! 9
  • 47. Francesca Giordano ijHow to determine the Pij? D⇤ D0 K ⇡+ slow ⇡+ fastFrom data! 9
  • 48. Francesca Giordano ijHow to determine the Pij? D⇤ D0 K ⇡+ slow ⇡+ fast m⇤ D m0 D Negative hadron = . (no PID likelihood used) K From data! 9
  • 49. Francesca Giordano ijHow to determine the Pij? D⇤ D0 K ⇡+ slow ⇡+ fast m⇤ D m0 D Negative hadron = . (no PID likelihood used) K Negative hadron identified as .⇡ m⇤ D m0 D From data! 9
  • 50. Francesca Giordano ijHow to determine the Pij? D⇤ D0 K ⇡+ slow ⇡+ fast m⇤ D m0 D Negative hadron = . (no PID likelihood used) K Negative hadron identified as .⇡ m⇤ D m0 D PK !⇡ From data! 9
  • 51. Francesca Giordano ijHow to determine the Pij? D⇤ D0 K ⇡+ slow ⇡+ fast m⇤ D m0 D Negative hadron = . (no PID likelihood used) K Negative hadron identified as .⇡ m⇤ D m0 D PK !⇡ K PK !K From data! 9
  • 52. Francesca Giordano ijHow to determine the Pij? D⇤ D0 K ⇡+ slow ⇡+ fast m⇤ D m0 D Negative hadron = . (no PID likelihood used) K Negative hadron identified as .⇡ m⇤ D m0 D PK !⇡ K PK !K PK !¯p ¯p From data! 9
  • 53. Francesca Giordano ijHow to determine the Pij? D⇤ D0 K ⇡+ slow ⇡+ fast m⇤ D m0 D Negative hadron = . (no PID likelihood used) K Negative hadron identified as .⇡ m⇤ D m0 D PK !⇡ µ PK !µ K PK !K PK !¯p ¯p From data! 9
  • 54. Francesca Giordano ijHow to determine the Pij? D⇤ D0 K ⇡+ slow ⇡+ fast m⇤ D m0 D Negative hadron = . (no PID likelihood used) K Negative hadron identified as .⇡ m⇤ D m0 D PK !⇡ eµ PK !e PK !µ K PK !K PK !¯p ¯p From data! 9
  • 55. Francesca Giordano 2D correction Detector performance depends on momentum and scattering angle! 10
  • 56. Francesca Giordano 2D correction Detector performance depends on momentum and scattering angle! Pij Pij(p, ✓)➬ 10
  • 57. Francesca Giordano 2D correction Detector performance depends on momentum and scattering angle! Bin # plab [GeV/c] bin ranges 0 [0.5,0.65) 1 [0.65,0.8) 2 [0.8,1.0) 3 [1.0,1.2) 4 [1.2,1.4) 5 [1.4,1.6) 6 [1.6,1.8) 7 [1.8,2.0) 8 [2.0,2.2) 9 [2.2,2.4) 10 [2.4,2.6) 11 [2.6,2.8) 12 [2.8,3.0) 13 [3.0,3.5) 14 [3.5,4.0) 15 [4.0,5.0) 16 [5.0,8.0) Bin # cos𝜽lab bin ranges 0 [-0.511,-0.300) 1 [-0.300,-0.152) 2 [-0.512,0.017) 3 [0.017,0.209) 4 [0.209,0.355) 5 [0.355,0.435) 6 [0.435,0.542) 7 [0.542,0.692) 8 [0.692,0.842) Pij Pij(p, ✓)➬ 10
  • 58. Francesca Giordano 2D correction Detector performance depends on momentum and scattering angle! Bin # plab [GeV/c] bin ranges 0 [0.5,0.65) 1 [0.65,0.8) 2 [0.8,1.0) 3 [1.0,1.2) 4 [1.2,1.4) 5 [1.4,1.6) 6 [1.6,1.8) 7 [1.8,2.0) 8 [2.0,2.2) 9 [2.2,2.4) 10 [2.4,2.6) 11 [2.6,2.8) 12 [2.8,3.0) 13 [3.0,3.5) 14 [3.5,4.0) 15 [4.0,5.0) 16 [5.0,8.0) Bin # cos𝜽lab bin ranges 0 [-0.511,-0.300) 1 [-0.300,-0.152) 2 [-0.512,0.017) 3 [0.017,0.209) 4 [0.209,0.355) 5 [0.355,0.435) 6 [0.435,0.542) 7 [0.542,0.692) 8 [0.692,0.842) no PID cut e/μ PID cut π PID cut K PID cut p PID cut Unsel. K from D* decay for plab in [1.4,1.6) and cos𝜽lab in [0.209,0.355) Pij Pij(p, ✓)➬ 10
  • 59. Francesca Giordano 2D correction no PID cut e/μ PID cut π PID cut K PID cut p PID cut Unsel. K from D* decay for plab in [1.4,1.6) and cos𝜽lab in [0.209,0.355) 0 B B B B @ Pe!e Pe!µ Pe!⇡ Pe!K Pe!p Pµ!e Pµ!µ Pµ!⇡ Pµ!K Pµ!p P⇡!e P⇡!µ P⇡!⇡ P⇡!K P⇡!p PK!e PK!µ PK!⇡ PK!K PK!p Pp!e Pp!mu Pp!⇡ Pp!K Pp!p 1 C C C C A 11
  • 60. Francesca Giordano 2D correction no PID cut e/μ PID cut π PID cut K PID cut p PID cut Unsel. K from D* decay for plab in [1.4,1.6) and cos𝜽lab in [0.209,0.355) 0 B B B B @ Pe!e Pe!µ Pe!⇡ Pe!K Pe!p Pµ!e Pµ!µ Pµ!⇡ Pµ!K Pµ!p P⇡!e P⇡!µ P⇡!⇡ P⇡!K P⇡!p PK!e PK!µ PK!⇡ PK!K PK!p Pp!e Pp!mu Pp!⇡ Pp!K Pp!p 1 C C C C A 11
  • 61. Francesca Giordano 2D correction no PID cut e/μ PID cut π PID cut K PID cut p PID cut Unsel. K from D* decay for plab in [1.4,1.6) and cos𝜽lab in [0.209,0.355) 0 B B B B @ Pe!e Pe!µ Pe!⇡ Pe!K Pe!p Pµ!e Pµ!µ Pµ!⇡ Pµ!K Pµ!p P⇡!e P⇡!µ P⇡!⇡ P⇡!K P⇡!p PK!e PK!µ PK!⇡ PK!K PK!p Pp!e Pp!mu Pp!⇡ Pp!K Pp!p 1 C C C C A pπ, K -> j from D* decay pπ, p -> j from Λ decay pe, µ -> j from J/ψ decay 11
  • 62. Francesca Giordano 2D correction0 B B B B @ Pe!e Pe!µ Pe!⇡ Pe!K Pe!p Pµ!e Pµ!µ Pµ!⇡ Pµ!K Pµ!p P⇡!e P⇡!µ P⇡!⇡ P⇡!K P⇡!p PK!e PK!µ PK!⇡ PK!K PK!p Pp!e Pp!mu Pp!⇡ Pp!K Pp!p 1 C C C C A pπ, K -> j from D* decay pπ, p -> j from Λ decay pe, µ -> j from J/ψ decay 12
  • 63. Francesca Giordano 2D correction0 B B B B @ Pe!e Pe!µ Pe!⇡ Pe!K Pe!p Pµ!e Pµ!µ Pµ!⇡ Pµ!K Pµ!p P⇡!e P⇡!µ P⇡!⇡ P⇡!K P⇡!p PK!e PK!µ PK!⇡ PK!K PK!p Pp!e Pp!mu Pp!⇡ Pp!K Pp!p 1 C C C C A pπ, K -> j from D* decay pπ, p -> j from Λ decay pe, µ -> j from J/ψ decay 12
  • 65. Francesca Giordano P 1 ijS 1 zzm ✏i impu(zm)✏i joint(z)✏i ISR/F SR(z) Impurity correction Correction for hadrons generated by ττ, 2γ qqbarMC π- 1 Ntot Nj,raw (zm)P 1 ij✏i impu(zm)Mi (z) = i = ⇡, K 14
  • 66. Francesca Giordano P 1 ijS 1 zzm ✏i impu(zm)✏i joint(z)✏i ISR/F SR(z) Impurity correction Correction for hadrons generated by ττ, 2γ qqbarMC π- yields from qq total yields 1 Ntot Nj,raw (zm)P 1 ij✏i impu(zm)Mi (z) = i = ⇡, K 14
  • 67. Francesca Giordano P 1 ijS 1 zzm ✏i impu(zm)✏i joint(z)✏i ISR/F SR(z) Smearing correction Detector smearing correction 1 Ntot Nj,raw (zm)P 1 ijS 1 zzm ✏i impu(zm)Mi (z) = i = ⇡, K ➬zmz 15
  • 68. Francesca Giordano P 1 ijS 1 zzm ✏i impu(zm)✏i joint(z)✏i ISR/F SR(z) Smearing correction Detector smearing correction 1 Ntot Nj,raw (zm)P 1 ijS 1 zzm ✏i impu(zm)Mi (z) = i = ⇡, K ➬zmz studied. For most z bins, bin contents value of all particles smeared to z > systematic uncertainties are found to be smeared to z > 1.0. Thus no addition z > 1.0 is assigned. Figure 39 shows ratios of negativel versus z, after and before the smearin uncertainties for each yield are added the ratio. As can be seen from the plot all values z within their uncertainties. (a) before/after 15
  • 69. Francesca Giordano P 1 ijS 1 zzm ✏i impu(zm)✏i joint(z)✏i ISR/F SR(z) ISR/FSR correction 1 Ntot Nj,raw (zm)P 1 ijS 1 zzm ✏i impu(zm)✏i ISR/F SR(z)Mi (z) = e+ e- q q i = ⇡, K Emission of a real photon changes the fragmentation energy scale 16
  • 70. Francesca Giordano P 1 ijS 1 zzm ✏i impu(zm)✏i joint(z)✏i ISR/F SR(z) ISR/FSR correction 1 Ntot Nj,raw (zm)P 1 ijS 1 zzm ✏i impu(zm)✏i ISR/F SR(z)Mi (z) = e+ e- q q i = ⇡, K Emission of a real photon changes the fragmentation energy scale 16
  • 71. Francesca Giordano P 1 ijS 1 zzm ✏i impu(zm)✏i joint(z)✏i ISR/F SR(z) ISR/FSR correction 1 Ntot Nj,raw (zm)P 1 ijS 1 zzm ✏i impu(zm)✏i ISR/F SR(z)Mi (z) = e+ e- q q i = ⇡, K Emission of a real photon changes the fragmentation energy scale 16
  • 72. Francesca Giordano P 1 ijS 1 zzm ✏i impu(zm)✏i joint(z)✏i ISR/F SR(z) ISR/FSR correction 1 Ntot Nj,raw (zm)P 1 ijS 1 zzm ✏i impu(zm)✏i ISR/F SR(z)Mi (z) = e+ e- q q i = ⇡, K Emission of a real photon changes the fragmentation energy scale 16
  • 73. Francesca Giordano P 1 ijS 1 zzm ✏i impu(zm)✏i joint(z)✏i ISR/F SR(z) ISR/FSR correction 1 Ntot Nj,raw (zm)P 1 ijS 1 zzm ✏i impu(zm)✏i ISR/F SR(z)Mi (z) = produced in events whose center-of-mass energy is lower th Thus the particle fractions are seen to decrease versus z. The the pion and kaon curve can most likely be related to mass The fractions shown in Figure 67 represent the fractions z bin which are excluded from the analysis to limit ISR/F measured yields. The assumption in this analysis step is particles from events with hard QED effects is the same in experimental data. e+ e- q q i = ⇡, K Emission of a real photon changes the fragmentation energy scale > 0.5% change in cms energy 16
  • 74. Francesca Giordano P 1 ijS 1 zzm ✏i impu(zm)✏i joint(z)✏i ISR/F SR(z) ISR/FSR correction 1 Ntot Nj,raw (zm)P 1 ijS 1 zzm ✏i impu(zm)✏i ISR/F SR(z)Mi (z) = produced in events whose center-of-mass energy is lower th Thus the particle fractions are seen to decrease versus z. The the pion and kaon curve can most likely be related to mass The fractions shown in Figure 67 represent the fractions z bin which are excluded from the analysis to limit ISR/F measured yields. The assumption in this analysis step is particles from events with hard QED effects is the same in experimental data. e+ e- q q i = ⇡, K Emission of a real photon changes the fragmentation energy scale > 0.5% change in cms energy 12 different MC tunes studied 16
  • 75. Francesca Giordano More corrections 1 Ntot Nj,raw (zm)Mi (z) = i = ⇡, K Correction for particles lost due to decay in flight interaction with detectors detector/tracking inefficiencies geometric/kinematic acceptance P 1 ijS 1 zzm ✏i impu(zm)✏i ISR/F SR(z)✏i joint(z) 17
  • 76. Francesca Giordano More corrections 1 Ntot Nj,raw (zm)Mi (z) = i = ⇡, K Correction for particles lost due to decay in flight interaction with detectors detector/tracking inefficiencies geometric/kinematic acceptance } < 10% P 1 ijS 1 zzm ✏i impu(zm)✏i ISR/F SR(z)✏i joint(z) 17
  • 77. Francesca Giordano Preliminary multiplicities 1 Ntot Nj,raw (zm)Mi (z) = i = ⇡, K P 1 ijS 1 zzm ✏i impu(zm)✏i ISR/F SR(z)✏i joint(z) Preliminary 18
  • 78. Francesca Giordano Comparison with world data PreliminaryPreliminary 19
  • 80. Francesca Giordano Outlook Final pion and kaon multiplicities ready, paper submission by the end of the year 21
  • 81. Francesca Giordano Outlook Final pion and kaon multiplicities ready, paper submission by the end of the year kT spin-averaged FF for single and di-hadron kT Collins FF for single and di-hadron chiral-odd FF More high precision measurements to come 21
  • 82. Francesca Giordano Outlook Improved Kaon Identification allow for more precise measurements 22
  • 83. Francesca Giordano Outlook Pij = 0 B B B B @ Pe!e Pe!µ Pe!⇡ Pe!K Pe!p Pµ!e Pµ!µ Pµ!⇡ Pµ!K Pµ!p P⇡!e P⇡!µ P⇡!⇡ P⇡!K P⇡!p PK!e PK!µ PK!⇡ PK!K PK!p Pp!e Pp!mu Pp!⇡ Pp!K Pp!p 1 C C C C A Ni = P 1 ij Nj,raw Improved Kaon Identification allow for more precise measurements 22
  • 84. Francesca Giordano Outlook Pij = 0 B B B B @ Pe!e Pe!µ Pe!⇡ Pe!K Pe!p Pµ!e Pµ!µ Pµ!⇡ Pµ!K Pµ!p P⇡!e P⇡!µ P⇡!⇡ P⇡!K P⇡!p PK!e PK!µ PK!⇡ PK!K PK!p Pp!e Pp!mu Pp!⇡ Pp!K Pp!p 1 C C C C A Ni = P 1 ij Nj,raw Improved Kaon Identification allow for more precise measurements Kaon Interference FF 22
  • 85. Francesca Giordano -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.2 0.4 0.6 0.8 A12 0.2<z1<0.3 K KK 0.3<z1<0.5 z2 A12 0.5<z1<0.7 z2 0.7<z1<1 0.2 0.4 0.6 0.8 Outlook Improved Kaon Identification allow for more precise measurements Kaon Collins FF Kaon Interference FF 5 FIG. 2: Definition of the azimuthal angles φ1 and φ2 of the two hadrons, between the scattering plane and their transverse momenta Phi⊥ around the thrust axis ˆn. The angle θ is defined as the angle between the lepton axis and the thrust axis. momentum of the quark-antiquark pair is known. The quark directions are, however, not accessible to a direct measurement and are thus approximated by the thrust axis. The thrust axis ˆn maximizes the event shape vari- able thrust: T max = h |PCMS h · ˆn| h |PCMS h | , (3) FIG. 3: Definition of the azimuthal angle φ0 formed between the planes defined by the lepton momenta and that of one hadron and the second hadron’s transverse momentum Ph1⊥ relative to the first hadron. fragmentation function; the charge-conjugate term has been omitted. The fragmentation functions do not ap- pear in the cross section directly but as the zeroth ([0]) or first ([1]) moments in the absolute value of the corre- sponding transverse momenta [26]: F[n] (z) = d|kT |2 |kT | M n F(z, k2 T ) . (6) e+ e- 𝛑 𝛑 22
  • 86. Francesca Giordano -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.2 0.4 0.6 0.8 A12 0.2<z1<0.3 K KK 0.3<z1<0.5 z2 A12 0.5<z1<0.7 z2 0.7<z1<1 0.2 0.4 0.6 0.8 Outlook Improved Kaon Identification allow for more precise measurements Kaon Collins FF Kaon Interference FF 5 FIG. 2: Definition of the azimuthal angles φ1 and φ2 of the two hadrons, between the scattering plane and their transverse momenta Phi⊥ around the thrust axis ˆn. The angle θ is defined as the angle between the lepton axis and the thrust axis. momentum of the quark-antiquark pair is known. The quark directions are, however, not accessible to a direct measurement and are thus approximated by the thrust axis. The thrust axis ˆn maximizes the event shape vari- able thrust: T max = h |PCMS h · ˆn| h |PCMS h | , (3) FIG. 3: Definition of the azimuthal angle φ0 formed between the planes defined by the lepton momenta and that of one hadron and the second hadron’s transverse momentum Ph1⊥ relative to the first hadron. fragmentation function; the charge-conjugate term has been omitted. The fragmentation functions do not ap- pear in the cross section directly but as the zeroth ([0]) or first ([1]) moments in the absolute value of the corre- sponding transverse momenta [26]: F[n] (z) = d|kT |2 |kT | M n F(z, k2 T ) . (6) e+ e- 𝛑 K e+ e- 𝛑 𝛑 22
  • 87. Francesca Giordano -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.2 0.4 0.6 0.8 A12 0.2<z1<0.3 K KK 0.3<z1<0.5 z2 A12 0.5<z1<0.7 z2 0.7<z1<1 0.2 0.4 0.6 0.8 Outlook Improved Kaon Identification allow for more precise measurements Kaon Collins FF Kaon Interference FF 5 FIG. 2: Definition of the azimuthal angles φ1 and φ2 of the two hadrons, between the scattering plane and their transverse momenta Phi⊥ around the thrust axis ˆn. The angle θ is defined as the angle between the lepton axis and the thrust axis. momentum of the quark-antiquark pair is known. The quark directions are, however, not accessible to a direct measurement and are thus approximated by the thrust axis. The thrust axis ˆn maximizes the event shape vari- able thrust: T max = h |PCMS h · ˆn| h |PCMS h | , (3) FIG. 3: Definition of the azimuthal angle φ0 formed between the planes defined by the lepton momenta and that of one hadron and the second hadron’s transverse momentum Ph1⊥ relative to the first hadron. fragmentation function; the charge-conjugate term has been omitted. The fragmentation functions do not ap- pear in the cross section directly but as the zeroth ([0]) or first ([1]) moments in the absolute value of the corre- sponding transverse momenta [26]: F[n] (z) = d|kT |2 |kT | M n F(z, k2 T ) . (6) e+ e- 𝛑 K e+ e- K K e+ e- 𝛑 𝛑 22
  • 88. Francesca Giordano -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.2 0.4 0.6 0.8 A12 0.2<z1<0.3 K KK 0.3<z1<0.5 z2 A12 0.5<z1<0.7 z2 0.7<z1<1 0.2 0.4 0.6 0.8 Outlook Improved Kaon Identification allow for more precise measurements Kaon Collins FF Kaon Interference FF 5 FIG. 2: Definition of the azimuthal angles φ1 and φ2 of the two hadrons, between the scattering plane and their transverse momenta Phi⊥ around the thrust axis ˆn. The angle θ is defined as the angle between the lepton axis and the thrust axis. momentum of the quark-antiquark pair is known. The quark directions are, however, not accessible to a direct measurement and are thus approximated by the thrust axis. The thrust axis ˆn maximizes the event shape vari- able thrust: T max = h |PCMS h · ˆn| h |PCMS h | , (3) FIG. 3: Definition of the azimuthal angle φ0 formed between the planes defined by the lepton momenta and that of one hadron and the second hadron’s transverse momentum Ph1⊥ relative to the first hadron. fragmentation function; the charge-conjugate term has been omitted. The fragmentation functions do not ap- pear in the cross section directly but as the zeroth ([0]) or first ([1]) moments in the absolute value of the corre- sponding transverse momenta [26]: F[n] (z) = d|kT |2 |kT | M n F(z, k2 T ) . (6) e+ e- 𝛑 K e+ e- K K e+ e- 𝛑 𝛑 Thanks! 22
  • 89. Francesca Giordano Who’s working on what... RIKEN/RBRC Illinois Indiana Bilbao Titech Unpol FFs e+e- ⟶hX: e+e-⟶(hh) X, (h)(h)X, hhX: Unpol kT dependence Charged di- hadrons: Ralf Seidl Charged hadrons (π,K,P): Martin Leitgab Martin Leitgab π0 ,η0: Hairong Li Charlotte Hulse Collins FFs e+e-⟶(h)(h)X: kT dependence: πρ0: Ralf Seidl ππ: Ralf Seidl πK,KK: Francesca Giordano Francesca Giordano ππ0 : Hairong Li Charlotte Hulse Interference FF: e+e-⟶(hh)(hh)X Charged ππ : Ralf Seidl Charged ππ: Anselm Vossen ππ0 : Anselm Vossen Charged πK, KK: Nori-aki Kobayashi Local P : Λ(polFF,SSA) : Jet-jet asy: Anselm Vossen 23