SlideShare a Scribd company logo
1 of 44
Download to read offline
Discrete Mathematics
Prof. V. A. Kshirsagar
Contact-7387904685
JSPM’s
Imperial College of Engineering &
Research, Wagholi, Pune.
Department of Computer Engineering
Unit-I: Set Theory and Logics
Set Theory :-
The concept of Set is developed by German
mathematician ‘George Cantor’in 1879.
Set:-
Collection of well defining objects is said to be
Set.
* well defining objects means element or
members of Set.
* set is denoted by capital letters A, B, C,
etc.
* elements of set are denoted by small letters
a, b, c, etc.
e.g.
1) Successful person in your City.
⇒ not set
2) Clever Students in your class.
⇒ not set
3) Happy people in your town.
⇒ not set
4) Number of days in a week.
⇒ set
𝐴 = 𝑀𝑜𝑛, 𝑇𝑢𝑒𝑠, 𝑊𝑒𝑑, 𝑇ℎ𝑢𝑟𝑠, 𝐹𝑟𝑖, 𝑆𝑎𝑡𝑢𝑟, 𝑆𝑢𝑛
5) First five natural numbers.
⇒ set
𝐵 = 1, 2, 3, 4, 5
e.g
 Example:
1) Set of vowels.
⇒ V = 𝑎, 𝑒, 𝑖, 𝑜, 𝑢 = Set of vowels
* here ‘a’is element of set ‘V’, i.e. a ϵ V
*lly e, i, o, u are elements of ‘V’, i.e. e, i, o, u ϵ V
*here ‘b’is not element of set ‘V’, i.e. b ∉ V
2) Set of odd positive integer less than 11.
⇒ C = 1, 3, 5, 7, 9
3) Set of positive integer less than 1000.
⇒ D = 1, 2, 3, … … , 999
4) Set of even positive integer less than 10.
⇒ E = 2, 4, 6, 8
 Set can be represented by using three methods.
1. Listing Method
2. Statement Method
3. Set-Builder Method
 e.g.
1. Set of natural numbers less than or equal to 10
⇒ F = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
* Listing Method ⇒ F = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
* Statement Method ⇒ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 are
elements of set ‘F’
*Set-Builder Method ⇒ F = 𝑥 𝑥𝜖ℕ, 0 < 𝑥 ≤ 10
2. Set of negative integer grether than or equal to -5
⇒ G = −5, −4, −3, −2, −1
* Listing Method ⇒ G = −5, −4, −3, −2, −1
* Statement Method ⇒ −5, −4, −3, −2, −1 are
elements of set ‘G’
*Set-Builder Method ⇒ G = 𝑥 𝑥𝜖ℤ−
, −5 ≤ 𝑥 < 0
 Some important Sets:-
1. Set of Natural numbers.
⇒ ℕ = 1, 2, 3, … … …
2. Set of whole numbers.
⇒ 𝑊 = 0, 1, 2, 3, … … …
3. Set of Integers.
⇒ ℤ = 0, ±1, ±2, ±3, … … …
4. Set of positive Integers.
⇒ ℤ+
= 1, 2, 3, … … …
5. Set of negative Integers.
⇒ ℤ− = −1, −2, −3, … … …
6. Set of rational numbers.
⇒ ℚ =
𝑝
𝑞
𝑝, 𝑞 ϵ ℤ & 𝑞 ≠ 0
7. Transcendental numbers.
⇒ π , e
8. Imaginary number.
⇒ 𝑖 = −1
 Subset:-
If every element of set ‘A’is also an element of set ‘B’
then we say ‘A’is subset of ‘B’and we write 𝐴 ⊆ 𝐵.
e.g. Suppose 𝐴 = 1, 2, 3 𝑎𝑛𝑑 𝐵 = 1, 2, 3, 4, 5
Here all elements of set ‘A’are in ‘B’.
i.e. 𝐴 ⊆ 𝐵.
 Superset:-
If 𝐴 ⊆ 𝐵, then ‘B’is called a superset of ‘A’and we
write 𝐵 ⊇ 𝐴.
e.g. Suppose 𝐴 = 1, 2, 3 𝑎𝑛𝑑 𝐵 = 1, 2, 3, 4, 5
Here 𝐴 ⊆ 𝐵. i.e. 𝐵 ⊇ 𝐴.
 Proper Subset:-
If 𝐴 ⊆ 𝐵 and 𝐴 ≠ 𝐵 then ‘A’is called a proper subset of
‘B’and we write 𝐴 ⊂ 𝐵.
 Types of set:-
 Universal Set:-
If in a particular discussion all sets under consideration
are subsets of set is called universal set for that
discussion and it is denoted by ‘U’.
 Empty Set / Null set (ϕ):-
A set containing no element is called as Empty set or
Null set and it is denoted by ‘ϕ’or { }.
e.g. 𝐴 = 𝑥 𝑥𝜖ℕ, 1 < 𝑥 < 2
 Singleton Set:-
A set containing only one element is called as Singleton
set.
e.g. Set of capital of India ⇒ 𝐴 = 𝐷𝑒𝑙ℎ𝑖
 Equal Set:-
Two sets are equal if and only if they have same
elements irrespective of order of element.
e.g. Suppose 𝐴 = 5, 2, 8 𝑎𝑛𝑑 𝐵 = 8, 2, 5
Here 𝐴 ⊆ 𝐵and 𝐵 ⊆ 𝐴, i.e. 𝐴 = 𝐵
 Finite Set:-
A set in which the process of counting of elements
comes to an end is called as Finite set.
 Infinite Set:-
A set which is not finite is called as Infinite set.
 Cardinality of Set:-
If there are exactly ‘n’distinct element in set ‘A’where
‘n’is non-negative integer, we say that set ‘A’is finite &
that ‘n’is cardinality of set ‘A’and it is denoted by 𝐴 .
e.g. 𝐴 = 1, 2, 3, 4, 5 Here 5 elements are present in Set
‘A’, i.e. 𝐴 = 5.
Power of Set:-
The set of all subset of a given set ‘A’ is called the
Power set of ‘A’ and it is denoted by P(A).
 Power of Set:-
The set of all subset of a given set ‘A’is called the
Power set of ‘A’and it is denoted by P(A).
 e.g. let 𝐴 = 𝑎, 𝑏, 𝑐
⇒𝑃(𝐴) = ∅, 𝑎 , 𝑏 , 𝑐 , 𝑎, 𝑏 , 𝑏, 𝑐 , 𝑎, 𝑐 , 𝑎, 𝑏, 𝑐
Here Cardinality of set ‘A’= 𝐴 = 3
∴ 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑃 𝐴 = 𝑃(𝐴) = 23 = 8
 Note:-
1) If there exists even a single element in ‘A’which is
not in ‘B’then ‘A’is not subset of ‘B’and we write
𝐴 ⊈ 𝐵.
2) If 𝐴 = 𝐵 then 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴.
3) Every elements of power set ‘A’is a set.
4) In general, if 𝐴 = 𝑚 then 𝑃(𝐴) = 2𝑚.
 Venn Diagram:-
The pictorial representation of a set is called Venn
diagram.
e.g. 𝐴 = 1, 2, 3, 4, 5 ⇒ OR OR
 Operation on Set:-
1) Complement of a set:-
If ‘A’is a subset of the universal set ‘U’, then the set of
all elements in ‘U’which are not in ‘A’is called the
complement of the set ‘A’and it is denoted by 𝐴 or 𝐴′
or 𝐴𝑐.
 e.g. If 𝑈 = 1, 2, 3, 4, 5, 6, 7, 8
and 𝐴 = 2, 5, 7
then 𝐴 = 1, 3, 4, 6, 8
A
U
𝐴
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
2) Unions of Sets:-
𝐴⋃𝐵 = 𝑥 𝑥𝜖𝐴 𝑜𝑟 𝑥𝜖𝐵
 e.g. If 𝐴 = 2, 3, 7 and
𝐵 = 1, 2, 5, 7, 9
then 𝐴⋃𝐵 = 1, 2, 3, 5, 7, 9
3) Intersections of Sets:-
𝐴⋂𝐵 = 𝑥 𝑥𝜖𝐴 𝑎𝑛𝑑 𝑥𝜖𝐵
 e.g. If 𝐴 = 2, 3, 7 and
𝐵 = 1, 2, 5, 7, 9 then
𝐴⋂𝐵 = 2, 7
U
A B
AUB
U
A B
A B
⋂
4) Disjoint Set:-
Two sets ‘A’and ‘B’are said to be disjoint if they have
no common element i.e. 𝐴⋂𝐵 = ∅
 e.g. suppose 𝐴 = 2, 3, 7 and
𝐵 = 5, 9
Here 𝐴⋂𝐵 = ∅,
∴ ‘A’and ‘B’are disjoint set.
5) Difference of Set:-
𝐴 − 𝐵 = 𝑥 𝑥𝜖𝐴, 𝑥 ∉ 𝐵
6) Cartesian Product:-
𝐴 × 𝐵 = 𝑎, 𝑏 /𝑎𝜖𝐴 𝑎𝑛𝑑 𝑏𝜖𝐵
 e.g. suppose 𝐴 = 1, 2 and 𝐵 = 𝑎, 𝑏, 𝑐
then 𝐴 × 𝐵 = 1, 𝑎 , 1, 𝑏 , 1, 𝑐 , 2, 𝑎 , 2, 𝑏 , 2, 𝑐
U
A B
⇒ A-B
B
A
U
A B
 Note:-
A×B and B×A are not equal unless A=ϕ or B=ϕ or
A=B
7) Equivalent set:-
Two finite set ‘A’and ‘B’are said to be equivalent if
𝐴 = 𝐵
 e.g. suppose 𝐴 = 2, 3, 7 and 𝐵 = 5, 7, 9
Here 𝐴 = 𝐵 = 3 ∴ Set ‘A’and ‘B’are equivalent set.
 Note:- Equal set are equivalent but equivalent set need not
be equal.
 e.g. suppose 𝐴 = 𝑎, 𝑏, 𝑐 and 𝐵 = 𝑑, 𝑒, 𝑓
Here 𝐴 = 𝐵 = 3 ∴ Set ‘A’and ‘B’are equivalent set
but set ‘A’and ‘B’are not equal
 Properties of set:-
1) Identity law:-
𝐴⋃∅ = 𝐴
𝐴⋂𝑈 = 𝐴
2) Domination law:-
𝐴⋃𝑈 = 𝑈
𝐴⋂∅ = ∅
3) Idempotent law:-
𝐴⋃𝐴 = 𝐴
𝐴⋂𝐴 = 𝐴
4) Commutative law:-
𝐴⋃𝐵 = 𝐵⋃𝐴
𝐴⋂𝐵 = 𝐵⋂𝐴
5) Complement law:-
𝐴 = 𝐴
6) Associative law:-
𝐴⋃ 𝐵⋃𝐶 = 𝐴⋃𝐵 ⋃𝐶
𝐴⋂ 𝐵⋂𝐶 = 𝐴⋂𝐵 ⋂𝐶
7) Distributive law:-
𝐴⋃ 𝐵⋂𝐶 = 𝐴⋃𝐵 ⋂ 𝐴⋃𝐶
𝐴⋂ 𝐵⋃𝐶 = 𝐴⋂𝐵 ⋃ 𝐴⋂𝐶
8) De morgans law:-
𝐴⋃𝐵 = 𝐴⋂𝐵
𝐴⋂𝐵 = 𝐴⋃𝐵
9) Absorption law:-
𝐴⋃ 𝐴⋂𝐵 = 𝐴
𝐴⋂ 𝐴⋃𝐵 = 𝐴
10) Complement law:-
𝐴⋃𝐴 = 𝑈
𝐴⋂𝐴 = ∅
11) Symmetric Difference:-
𝐴 ⊕ 𝐵 = 𝐴 − 𝐵 ⋃ 𝐵 − 𝐴
OR
𝐴 ⊕ 𝐵 = 𝐴⋃𝐵 − 𝐴⋂𝐵
 Properties of Set Operations:-
1) 𝐴⋃𝑈 = 𝑈
2) 𝐴⋃𝐴 = 𝑈
3) 𝐴⋂𝑈 = 𝐴
4) 𝐴⋂𝐴 = ∅
5) 𝐴⋃∅ = 𝐴
6) 𝐴⋂∅ = ∅
U
A B
⇒ A B
⊕
7) 𝐴⋃∅ = 𝐴
8) 𝐴⋂∅ = ∅
9) 𝑈 = ∅
10) ∅ = 𝑈
11) 𝐴 = 𝑈 − 𝐴
12) 𝐴 = 𝐴
13) 𝐴 − 𝐴 = ∅
14) 𝐴 − 𝐴 = 𝐴
15) ∅ − 𝐴 = ∅
16) 𝐴 − ∅ = 𝐴
17) 𝐴 − 𝐵 = 𝐴⋂𝐵
18) 𝐴 ⊕ 𝐴 = ∅ = 𝐴 − 𝐴 ∪ 𝐴 − 𝐴
19) 𝐴 ⊕ ∅ = 𝐴 = 𝐴 − ∅ ∪ ∅ − 𝐴
 Example
Prove the following expressions by using the Venn diagram.
1) 𝐴⋃ 𝐵⋂𝐶 = 𝐴⋃𝐵 ⋂ 𝐴⋃𝐶
2) 𝐴⋂ 𝐵⋃𝐶 = 𝐴⋂𝐵 ⋃ 𝐴⋂𝐶
3) 𝐴⋂ 𝐵 ⊕ 𝐶 = 𝐴⋂𝐵 ⊕ 𝐴⋂𝐶
1) 𝐴⋃ 𝐵⋂𝐶 = 𝐴⋃𝐵 ⋂ 𝐴⋃𝐶
⇒ Consider
LHS=𝐴⋃ 𝐵⋂𝐶
𝐵⋂𝐶 =
𝐴⋃ 𝐵⋂𝐶 = …… (1)
B
A
C
U
B
A
C
U
Consider
RHS= 𝐴⋃𝐵 ⋂ 𝐴⋃𝐶
𝐴⋃𝐵 =
𝐴⋃𝐶 =
B
A
C
U
B
A
C
U
𝐴⋃𝐵 ⋂ 𝐴⋃𝐶 = …… (2)
From equation (1) & (2),
LHS=RHS
∴ 𝐴⋃ 𝐵⋂𝐶 = 𝐴⋃𝐵 ⋂ 𝐴⋃𝐶
2) 𝐴⋂ 𝐵⋃𝐶 = 𝐴⋂𝐵 ⋃ 𝐴⋂𝐶
⇒ Consider
LHS=𝐴⋂ 𝐵⋃𝐶
𝐵⋃𝐶 =
B
A
C
U
B
A
C
U
𝐴⋂ 𝐵⋃𝐶 = …… (1)
Consider
RHS= 𝐴⋂𝐵 ⋃ 𝐴⋂𝐶
𝐴⋂𝐵 =
B
A
C
U
B
A
C
U
𝐴⋂𝐶 =
𝐴⋂𝐵 ⋃ 𝐴⋂𝐶 = …… (2)
From equation (1) & (2),
LHS=RHS
∴ 𝐴⋂ 𝐵⋃𝐶 = 𝐴⋂𝐵 ⋃ 𝐴⋂𝐶
B
A
C
U
B
A
C
U
3) 𝐴⋂ 𝐵 ⊕ 𝐶 = 𝐴⋂𝐵 ⊕ 𝐴⋂𝐶
⇒ Consider
LHS=𝐴⋂ 𝐵 ⊕ 𝐶
𝐵 ⊕ 𝐶 =
𝐴⋂ 𝐵 ⊕ 𝐶 = …… (1)
B
A
C
U
B
A
C
U
Consider
RHS= 𝐴⋂𝐵 ⊕ 𝐴⋂𝐶
𝐴⋂𝐵 =
𝐴⋂𝐶 =
B
A
C
U
B
A
C
U
𝐴⋂𝐵 ⊕ 𝐴⋂𝐶 = …… (2)
From equation (1) & (2),
LHS=RHS
∴ 𝐴⋂ 𝐵 ⊕ 𝐶 = 𝐴⋂𝐵 ⊕ 𝐴⋂𝐶
4) Show that:
i) 𝐴⋃ 𝐴⋂𝐵 = 𝐴⋃𝐵
ii) 𝐴⋂ 𝐴⋃𝐵 = 𝐴⋂𝐵
iii) 𝐴 − 𝐵 − 𝐶 = 𝐴 − 𝐵⋃𝐶
B
A
C
U
⇒ i) Consider, LHS=𝐴⋃ 𝐴⋂𝐵
𝐴⋂𝐵 =
𝐴⋃ 𝐴⋂𝐵 = …(1)
Consider, RHS=𝐴⋃𝐵
𝐴⋃𝐵 = …(2)
B
A
C
U
B
A
C
U
B
A
C
U
From equation (1) & (2)
LHS= RHS
∴ 𝐴⋃ 𝐴⋂𝐵 = 𝐴⋃𝐵
ii) Consider, LHS=𝐴⋂ 𝐴⋃𝐵
𝐴⋃𝐵 =
𝐴⋂ 𝐴⋃𝐵 = … (1)
B
A
C
U
B
A
C
U
Consider, RHS=𝐴⋂𝐵
𝐴⋂𝐵 = … (2)
From equation (1) & (2)
LHS= RHS
∴ 𝐴⋂ 𝐴⋃𝐵 = 𝐴⋂𝐵
iii) Consider, LHS= 𝐴 − 𝐵 − 𝐶
𝐴 − 𝐵 =
B
A
C
U
B
A
C
U
𝐴 − 𝐵 − 𝐶 = … (1)
Consider, RHS=𝐴 − 𝐵⋃𝐶
𝐵⋃𝐶 =
𝐴 − 𝐵⋃𝐶 = … (2)
B
A
C
U
B
A
C
U
B
A
C
U
From equation (1) & (2)
LHS= RHS
∴ 𝐴 − 𝐵 − 𝐶 = 𝐴 − 𝐵⋃𝐶
4) Show that:
i) 𝐴⋃ 𝐴⋂𝐵 = 𝐴⋃𝐵
ii) 𝐴⋂ 𝐴⋃𝐵 = 𝐴⋂𝐵
iii) 𝐴 − 𝐵 − 𝐶 = 𝐴 − 𝐵⋃𝐶
⇒ i) Consider
LHS=𝐴⋃ 𝐴⋂𝐵
= 𝐴⋃𝐴 ⋂ 𝐴⋃𝐵 Distributive law
=𝑈⋂ 𝐴⋃𝐵 ∵𝐴⋃𝐴 = 𝐴⋃𝐴 = 𝑈
=𝐴⋃𝐵 ∵𝑈⋂𝐴 = 𝐴⋂𝑈 = 𝐴
LHS= RHS
ii) Consider
LHS=𝐴⋂ 𝐴⋃𝐵
= 𝐴⋂𝐴 ⋃ 𝐴⋂𝐵 Distributive law
=∅⋃ 𝐴⋂𝐵 ∵𝐴⋂𝐴 = 𝐴⋂𝐴 = ∅
=𝐴⋂𝐵 ∵∅⋃𝐴 = 𝐴⋃∅ = 𝐴
LHS= RHS
iii) Consider
LHS= 𝐴 − 𝐵 − 𝐶
= 𝐴⋂𝐵 − 𝐶 ∵𝐴 − 𝐵 = 𝐴⋂𝐵
= 𝐴⋂𝐵 ⋂𝐶
=𝐴⋂ 𝐵⋂𝐶 Commutative Property
=𝐴⋂ 𝐵⋃𝐶 Demorgans law
=𝐴 − 𝐵⋃𝐶 ∵𝐴⋂𝐵 = 𝐴 − 𝐵
LHS= RHS
5) Show that
𝐴⋂𝐵 ⋃ 𝐴⋂𝐵 ⋃ 𝐴⋂𝐵 = 𝐴⋃𝐵
⇒ Consider
LHS= 𝐴⋂𝐵 ⋃ 𝐴⋂𝐵 ⋃ 𝐴⋂𝐵
= 𝐴⋂𝐵 ⋃ 𝐴⋂ 𝐵⋃𝐵 Distributive law
= 𝐴⋂𝐵 ⋃ 𝐴⋂𝑈 ∵𝐵⋃𝐵 = 𝐵⋃𝐵 = 𝑈
= 𝐴⋂𝐵 ⋃𝐴 ∵𝐴⋂𝑈 = 𝑈⋂𝐴 = 𝐴
= 𝐴⋃ 𝐴⋂𝐵 ∵𝐴⋃𝐵 = 𝐵⋃𝐴
= 𝐴⋃𝐴 ⋂ 𝐴⋃𝐵 Distributive law
=U⋂ 𝐴⋃𝐵 ∵𝐴⋃𝐴 = 𝐴⋃𝐴 = 𝑈
=𝐴⋃𝐵
LHS= RHS
6) If 𝐴 = 1, 4, 7, 10 , B= 1, 2, 3, 4, 5 , C= 2, 4, 6, 8 ,
U= 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 then find
i) 𝐴⋃𝐵 ii) 𝐵⋂𝐶 iii) 𝐴 − 𝐵 iv) 𝐵 − 𝐴
v) 𝐴 vi) 𝑈 − 𝐶 vii) 𝐶 viii) 𝑈
ix) 𝐴⋂𝐵 − 𝐶 x) 𝐴⋂𝐵⋂𝐶 xi) 𝐴⋃𝐵 − 𝐶
xii) 𝐴⋂𝐵⋂𝐶
⇒ i) 𝐴⋃𝐵 = 1, 2, 3, 4, 5, 7, 10
ii) 𝐵⋂𝐶 = 2, 4
iii) 𝐴 − 𝐵 = 7, 10
iv) 𝐵 − 𝐴 = 2, 3, 5
v) 𝐴 = 2, 3, 5, 6, 8, 9
vi) 𝑈 − 𝐶 = 1, 3, 5, 7, 9, 10
vii) 𝐶 = 1, 3, 5, 7, 9, 10
viii) 𝑈 = ∅
ix) 𝐴⋂𝐵 = 1, 4
∴ 𝐴⋂𝐵 − 𝐶 = 1
x) 𝐴⋂𝐵⋂𝐶 = 4
xi) 𝐴⋃𝐵 = 1, 2, 3, 4, 5, 7, 10
𝐶 = 1, 3, 5, 7, 9, 10
∴ 𝐴⋃𝐵 − 𝐶 = 2, 4
xii) 𝐴 = 2, 3, 5, 6, 8, 9 , 𝐵 = 6, 7, 8, 9, 10
𝐶 = 1, 3, 5, 7, 9, 10
∴ 𝐴⋂𝐵⋂𝐶 = 9
7) If 𝐴 = 𝑎, 𝑏, 𝑎, 𝑐 , ∅ then find
i) 𝑃(𝐴) ii) 𝐴 − 𝑎, 𝑐 iii) 𝑎, 𝑐 − 𝐴
iv) 𝐴 − 𝑎, 𝑏 v) 𝑎, 𝑐 − 𝐴 vi) 𝐴 − 𝑎, 𝑏
⇒ i) Cardnality of 𝑃 𝐴 = 𝑃(𝐴) = 24
= 16
𝑃 𝐴 =
∅, 𝑎 , 𝑏 , 𝑎, 𝑐 , ∅ , 𝑎, 𝑏 , 𝑎, 𝑎, 𝑐 ,
𝑎, ∅ , 𝑏, 𝑎, 𝑐 , 𝑏, ∅ , 𝑎, 𝑐 , ∅ ,
𝑎, 𝑏, 𝑎, 𝑐 , 𝑎, 𝑏, ∅ , 𝑎, 𝑎, 𝑐 , ∅ ,
𝑏, 𝑎, 𝑐 , ∅ , 𝑎, 𝑏, 𝑎, 𝑐 , ∅
ii) 𝐴 − 𝑎, 𝑐 = 𝑏, 𝑎, 𝑐 , ∅
iii) 𝑎, 𝑐 − 𝐴 = ∅
iv) 𝐴 − 𝑎, 𝑏 = 𝑎, 𝑏, 𝑎, 𝑐 , ∅ = 𝐴
v) 𝑎, 𝑐 − 𝐴 = 𝑐
vi) 𝐴 − 𝑎, 𝑏 = 𝑎, 𝑐 , ∅
8) Prove the following by using venn diagram
i) 𝐴 ⊕ 𝐵 ⊕ 𝐶 = 𝐴 ⊕ 𝐵 ⊕ 𝐶
ii) 𝐴⋂𝐵⋂𝐶 = 𝐴 − 𝐴 − 𝐵 ⋃ 𝐴 − 𝐶
⇒ i) Consider,
LHS=𝐴 ⊕ 𝐵 ⊕ 𝐶
𝐵 ⊕ 𝐶 =
𝐴 ⊕ 𝐵 ⊕ 𝐶 = … (1)
B
A
C
U
B
A
C
U
Consider,
RHS= 𝐴 ⊕ 𝐵 ⊕ 𝐶
A ⊕ 𝐵 =
𝐴 ⊕ 𝐵 ⊕ 𝐶 = … (2)
from equation (1) and (2),
LHS=RHS
𝐴 ⊕ 𝐵 ⊕ 𝐶 = 𝐴 ⊕ 𝐵 ⊕ 𝐶
B
A
C
U
B
A
C
U
ii) 𝐴⋂𝐵⋂𝐶 = 𝐴 − 𝐴 − 𝐵 ⋃ 𝐴 − 𝐶
⇒ Consider,
LHS=𝐴⋂𝐵⋂𝐶
𝐴⋂𝐵⋂𝐶 = … (1)
Consider,
RHS=𝐴 − 𝐴 − 𝐵 ⋃ 𝐴 − 𝐶
𝐴 − 𝐵 =
B
A
C
U
B
A
C
U
𝐴 − 𝐶 =
𝐴 − 𝐵 ⋃ 𝐴 − 𝐶 =
A − 𝐴 − 𝐵 ⋃ 𝐴 − 𝐶 = … (2)
from equation (1) and (2),
LHS=RHS
𝐴⋂𝐵⋂𝐶 = 𝐴 − 𝐴 − 𝐵 ⋃ 𝐴 − 𝐶
B
A
C
U
B
A
C
U
B
A
C
U
9) Check the following sets are equal
i) 𝐴 = 𝑥 𝑥2 + 𝑥 = 2 , 𝐵 = 1, −2
ii) 𝑃 = 𝑥 5 < 𝑥2 < 36 , 𝑄 = 1, 2, 4, 8
⇒ i) Here given,
𝐴 = 𝑥 𝑥2
+ 𝑥 = 2 and 𝐵 = 1, −2
now, 𝑥2
+ 𝑥 = 2
𝑥2 + 𝑥 − 2 = 0
𝑥2 + 2𝑥 − 𝑥 − 2 = 0
𝑥 𝑥 + 2 − 1 𝑥 + 2 = 0
𝑥 + 2 𝑥 − 1 = 0
𝑥 + 2 = 0 , 𝑥 − 1 = 0
𝑥 = −2 , 𝑥 = 1
𝐴 = 1, −2 and 𝐵 = 1, −2
Here 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴
∴ 𝐴 = 𝐵
⇒ ii) Here given,
𝑃 = 𝑥 5 < 𝑥2
< 36 and 𝑄 = 1, 2, 4, 8
now, 5 < 𝑥2 < 36
5 < 12 = 1 < 36 not satishfy
5 < 22
= 4 < 36 not satishfy
5 < 42 = 16 < 36 satishfy
5 < 82
= 64 < 36 not satishfy
Here 𝑃 ⊈ 𝑄 and 𝑄 ⊈ 𝑃
∴ 𝑃 ≠ 𝑄
10) Let A: Set of all vehicles manufacture in india
B: Set of all imported vehicles
C: Set of all vehicles designed before 2000
D: Set of all with current cost <20,000
& E: Set of all vehicles owned by students of SE computer
Express following sentences in terms of set theoretical
notation.
i) Vehicles owned by students of SE computer are either
in india or are imported
ii) All indian vehicles designed before 2000 have
market value <20,000
iii) All imported vehicles designed after 2000 have
market value more than rupees 20,000
⇒ i) 𝐸 ⊆ 𝐴⋃𝐵
ii) 𝐴⋂𝐶⋂𝐷 𝑜𝑟 𝐴⋂𝐶 ⊆ 𝐷
iii) B⋂𝐶⋂𝐷 𝑜𝑟 (B⋂𝐶) ⊆ 𝐷

More Related Content

Similar to Unit 1 Set Theory-Engineering Mathematics.pptx

Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Март
 
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولanasKhalaf4
 
Discrete mathematic
Discrete mathematicDiscrete mathematic
Discrete mathematicNaralaswapna
 
Binary Operations.pptx
Binary Operations.pptxBinary Operations.pptx
Binary Operations.pptxSoyaMathew1
 
Set Theory
Set TheorySet Theory
Set Theoryitutor
 
Mathematical Languages.pptx
Mathematical Languages.pptxMathematical Languages.pptx
Mathematical Languages.pptxallanbabad4
 
Set theory
Set theorySet theory
Set theoryAN_Rajin
 
Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1jennytuazon01630
 
On Series of Fuzzy Numbers
On Series of Fuzzy NumbersOn Series of Fuzzy Numbers
On Series of Fuzzy NumbersIOSR Journals
 
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric SpaceFixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Spaceinventionjournals
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSRai University
 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...mathsjournal
 
My finale MAD. Antonette
My finale MAD. AntonetteMy finale MAD. Antonette
My finale MAD. Antonette09102565143
 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mappinginventionjournals
 
Integral dalam Bahasa Inggris
Integral dalam Bahasa InggrisIntegral dalam Bahasa Inggris
Integral dalam Bahasa Inggrisimmochacha
 
MAT-314 Midterm Exam 2 Review
MAT-314 Midterm Exam 2 ReviewMAT-314 Midterm Exam 2 Review
MAT-314 Midterm Exam 2 ReviewKevin Johnson
 

Similar to Unit 1 Set Theory-Engineering Mathematics.pptx (20)

Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2
 
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
 
Discrete mathematic
Discrete mathematicDiscrete mathematic
Discrete mathematic
 
Binary Operations.pptx
Binary Operations.pptxBinary Operations.pptx
Binary Operations.pptx
 
Set Theory
Set TheorySet Theory
Set Theory
 
Mathematical Languages.pptx
Mathematical Languages.pptxMathematical Languages.pptx
Mathematical Languages.pptx
 
Set theory
Set theorySet theory
Set theory
 
01 FUNCTIONS.pptx
01 FUNCTIONS.pptx01 FUNCTIONS.pptx
01 FUNCTIONS.pptx
 
Sets
SetsSets
Sets
 
Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1
 
On Series of Fuzzy Numbers
On Series of Fuzzy NumbersOn Series of Fuzzy Numbers
On Series of Fuzzy Numbers
 
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric SpaceFixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
 
Annie
AnnieAnnie
Annie
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
 
My finale MAD. Antonette
My finale MAD. AntonetteMy finale MAD. Antonette
My finale MAD. Antonette
 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
 
Integral dalam Bahasa Inggris
Integral dalam Bahasa InggrisIntegral dalam Bahasa Inggris
Integral dalam Bahasa Inggris
 
Aed.pptx
Aed.pptxAed.pptx
Aed.pptx
 
MAT-314 Midterm Exam 2 Review
MAT-314 Midterm Exam 2 ReviewMAT-314 Midterm Exam 2 Review
MAT-314 Midterm Exam 2 Review
 

Recently uploaded

Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptxPoojaSen20
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 

Recently uploaded (20)

Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 

Unit 1 Set Theory-Engineering Mathematics.pptx

  • 1. Discrete Mathematics Prof. V. A. Kshirsagar Contact-7387904685 JSPM’s Imperial College of Engineering & Research, Wagholi, Pune. Department of Computer Engineering
  • 2. Unit-I: Set Theory and Logics Set Theory :- The concept of Set is developed by German mathematician ‘George Cantor’in 1879. Set:- Collection of well defining objects is said to be Set. * well defining objects means element or members of Set. * set is denoted by capital letters A, B, C, etc. * elements of set are denoted by small letters a, b, c, etc.
  • 3. e.g. 1) Successful person in your City. ⇒ not set 2) Clever Students in your class. ⇒ not set 3) Happy people in your town. ⇒ not set 4) Number of days in a week. ⇒ set 𝐴 = 𝑀𝑜𝑛, 𝑇𝑢𝑒𝑠, 𝑊𝑒𝑑, 𝑇ℎ𝑢𝑟𝑠, 𝐹𝑟𝑖, 𝑆𝑎𝑡𝑢𝑟, 𝑆𝑢𝑛 5) First five natural numbers. ⇒ set 𝐵 = 1, 2, 3, 4, 5
  • 4. e.g  Example: 1) Set of vowels. ⇒ V = 𝑎, 𝑒, 𝑖, 𝑜, 𝑢 = Set of vowels * here ‘a’is element of set ‘V’, i.e. a ϵ V *lly e, i, o, u are elements of ‘V’, i.e. e, i, o, u ϵ V *here ‘b’is not element of set ‘V’, i.e. b ∉ V 2) Set of odd positive integer less than 11. ⇒ C = 1, 3, 5, 7, 9 3) Set of positive integer less than 1000. ⇒ D = 1, 2, 3, … … , 999 4) Set of even positive integer less than 10. ⇒ E = 2, 4, 6, 8
  • 5.  Set can be represented by using three methods. 1. Listing Method 2. Statement Method 3. Set-Builder Method  e.g. 1. Set of natural numbers less than or equal to 10 ⇒ F = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 * Listing Method ⇒ F = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 * Statement Method ⇒ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 are elements of set ‘F’ *Set-Builder Method ⇒ F = 𝑥 𝑥𝜖ℕ, 0 < 𝑥 ≤ 10 2. Set of negative integer grether than or equal to -5 ⇒ G = −5, −4, −3, −2, −1 * Listing Method ⇒ G = −5, −4, −3, −2, −1 * Statement Method ⇒ −5, −4, −3, −2, −1 are elements of set ‘G’ *Set-Builder Method ⇒ G = 𝑥 𝑥𝜖ℤ− , −5 ≤ 𝑥 < 0
  • 6.  Some important Sets:- 1. Set of Natural numbers. ⇒ ℕ = 1, 2, 3, … … … 2. Set of whole numbers. ⇒ 𝑊 = 0, 1, 2, 3, … … … 3. Set of Integers. ⇒ ℤ = 0, ±1, ±2, ±3, … … … 4. Set of positive Integers. ⇒ ℤ+ = 1, 2, 3, … … … 5. Set of negative Integers. ⇒ ℤ− = −1, −2, −3, … … … 6. Set of rational numbers. ⇒ ℚ = 𝑝 𝑞 𝑝, 𝑞 ϵ ℤ & 𝑞 ≠ 0
  • 7. 7. Transcendental numbers. ⇒ π , e 8. Imaginary number. ⇒ 𝑖 = −1  Subset:- If every element of set ‘A’is also an element of set ‘B’ then we say ‘A’is subset of ‘B’and we write 𝐴 ⊆ 𝐵. e.g. Suppose 𝐴 = 1, 2, 3 𝑎𝑛𝑑 𝐵 = 1, 2, 3, 4, 5 Here all elements of set ‘A’are in ‘B’. i.e. 𝐴 ⊆ 𝐵.  Superset:- If 𝐴 ⊆ 𝐵, then ‘B’is called a superset of ‘A’and we write 𝐵 ⊇ 𝐴. e.g. Suppose 𝐴 = 1, 2, 3 𝑎𝑛𝑑 𝐵 = 1, 2, 3, 4, 5 Here 𝐴 ⊆ 𝐵. i.e. 𝐵 ⊇ 𝐴.
  • 8.  Proper Subset:- If 𝐴 ⊆ 𝐵 and 𝐴 ≠ 𝐵 then ‘A’is called a proper subset of ‘B’and we write 𝐴 ⊂ 𝐵.  Types of set:-  Universal Set:- If in a particular discussion all sets under consideration are subsets of set is called universal set for that discussion and it is denoted by ‘U’.  Empty Set / Null set (ϕ):- A set containing no element is called as Empty set or Null set and it is denoted by ‘ϕ’or { }. e.g. 𝐴 = 𝑥 𝑥𝜖ℕ, 1 < 𝑥 < 2  Singleton Set:- A set containing only one element is called as Singleton set. e.g. Set of capital of India ⇒ 𝐴 = 𝐷𝑒𝑙ℎ𝑖
  • 9.  Equal Set:- Two sets are equal if and only if they have same elements irrespective of order of element. e.g. Suppose 𝐴 = 5, 2, 8 𝑎𝑛𝑑 𝐵 = 8, 2, 5 Here 𝐴 ⊆ 𝐵and 𝐵 ⊆ 𝐴, i.e. 𝐴 = 𝐵  Finite Set:- A set in which the process of counting of elements comes to an end is called as Finite set.  Infinite Set:- A set which is not finite is called as Infinite set.  Cardinality of Set:- If there are exactly ‘n’distinct element in set ‘A’where ‘n’is non-negative integer, we say that set ‘A’is finite & that ‘n’is cardinality of set ‘A’and it is denoted by 𝐴 . e.g. 𝐴 = 1, 2, 3, 4, 5 Here 5 elements are present in Set ‘A’, i.e. 𝐴 = 5.
  • 10. Power of Set:- The set of all subset of a given set ‘A’ is called the Power set of ‘A’ and it is denoted by P(A).  Power of Set:- The set of all subset of a given set ‘A’is called the Power set of ‘A’and it is denoted by P(A).  e.g. let 𝐴 = 𝑎, 𝑏, 𝑐 ⇒𝑃(𝐴) = ∅, 𝑎 , 𝑏 , 𝑐 , 𝑎, 𝑏 , 𝑏, 𝑐 , 𝑎, 𝑐 , 𝑎, 𝑏, 𝑐 Here Cardinality of set ‘A’= 𝐴 = 3 ∴ 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑃 𝐴 = 𝑃(𝐴) = 23 = 8  Note:- 1) If there exists even a single element in ‘A’which is not in ‘B’then ‘A’is not subset of ‘B’and we write 𝐴 ⊈ 𝐵. 2) If 𝐴 = 𝐵 then 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴. 3) Every elements of power set ‘A’is a set. 4) In general, if 𝐴 = 𝑚 then 𝑃(𝐴) = 2𝑚.
  • 11.  Venn Diagram:- The pictorial representation of a set is called Venn diagram. e.g. 𝐴 = 1, 2, 3, 4, 5 ⇒ OR OR  Operation on Set:- 1) Complement of a set:- If ‘A’is a subset of the universal set ‘U’, then the set of all elements in ‘U’which are not in ‘A’is called the complement of the set ‘A’and it is denoted by 𝐴 or 𝐴′ or 𝐴𝑐.  e.g. If 𝑈 = 1, 2, 3, 4, 5, 6, 7, 8 and 𝐴 = 2, 5, 7 then 𝐴 = 1, 3, 4, 6, 8 A U 𝐴 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
  • 12. 2) Unions of Sets:- 𝐴⋃𝐵 = 𝑥 𝑥𝜖𝐴 𝑜𝑟 𝑥𝜖𝐵  e.g. If 𝐴 = 2, 3, 7 and 𝐵 = 1, 2, 5, 7, 9 then 𝐴⋃𝐵 = 1, 2, 3, 5, 7, 9 3) Intersections of Sets:- 𝐴⋂𝐵 = 𝑥 𝑥𝜖𝐴 𝑎𝑛𝑑 𝑥𝜖𝐵  e.g. If 𝐴 = 2, 3, 7 and 𝐵 = 1, 2, 5, 7, 9 then 𝐴⋂𝐵 = 2, 7 U A B AUB U A B A B ⋂
  • 13. 4) Disjoint Set:- Two sets ‘A’and ‘B’are said to be disjoint if they have no common element i.e. 𝐴⋂𝐵 = ∅  e.g. suppose 𝐴 = 2, 3, 7 and 𝐵 = 5, 9 Here 𝐴⋂𝐵 = ∅, ∴ ‘A’and ‘B’are disjoint set. 5) Difference of Set:- 𝐴 − 𝐵 = 𝑥 𝑥𝜖𝐴, 𝑥 ∉ 𝐵 6) Cartesian Product:- 𝐴 × 𝐵 = 𝑎, 𝑏 /𝑎𝜖𝐴 𝑎𝑛𝑑 𝑏𝜖𝐵  e.g. suppose 𝐴 = 1, 2 and 𝐵 = 𝑎, 𝑏, 𝑐 then 𝐴 × 𝐵 = 1, 𝑎 , 1, 𝑏 , 1, 𝑐 , 2, 𝑎 , 2, 𝑏 , 2, 𝑐 U A B ⇒ A-B B A U A B
  • 14.  Note:- A×B and B×A are not equal unless A=ϕ or B=ϕ or A=B 7) Equivalent set:- Two finite set ‘A’and ‘B’are said to be equivalent if 𝐴 = 𝐵  e.g. suppose 𝐴 = 2, 3, 7 and 𝐵 = 5, 7, 9 Here 𝐴 = 𝐵 = 3 ∴ Set ‘A’and ‘B’are equivalent set.  Note:- Equal set are equivalent but equivalent set need not be equal.  e.g. suppose 𝐴 = 𝑎, 𝑏, 𝑐 and 𝐵 = 𝑑, 𝑒, 𝑓 Here 𝐴 = 𝐵 = 3 ∴ Set ‘A’and ‘B’are equivalent set but set ‘A’and ‘B’are not equal
  • 15.  Properties of set:- 1) Identity law:- 𝐴⋃∅ = 𝐴 𝐴⋂𝑈 = 𝐴 2) Domination law:- 𝐴⋃𝑈 = 𝑈 𝐴⋂∅ = ∅ 3) Idempotent law:- 𝐴⋃𝐴 = 𝐴 𝐴⋂𝐴 = 𝐴 4) Commutative law:- 𝐴⋃𝐵 = 𝐵⋃𝐴 𝐴⋂𝐵 = 𝐵⋂𝐴
  • 16. 5) Complement law:- 𝐴 = 𝐴 6) Associative law:- 𝐴⋃ 𝐵⋃𝐶 = 𝐴⋃𝐵 ⋃𝐶 𝐴⋂ 𝐵⋂𝐶 = 𝐴⋂𝐵 ⋂𝐶 7) Distributive law:- 𝐴⋃ 𝐵⋂𝐶 = 𝐴⋃𝐵 ⋂ 𝐴⋃𝐶 𝐴⋂ 𝐵⋃𝐶 = 𝐴⋂𝐵 ⋃ 𝐴⋂𝐶 8) De morgans law:- 𝐴⋃𝐵 = 𝐴⋂𝐵 𝐴⋂𝐵 = 𝐴⋃𝐵 9) Absorption law:- 𝐴⋃ 𝐴⋂𝐵 = 𝐴 𝐴⋂ 𝐴⋃𝐵 = 𝐴
  • 17. 10) Complement law:- 𝐴⋃𝐴 = 𝑈 𝐴⋂𝐴 = ∅ 11) Symmetric Difference:- 𝐴 ⊕ 𝐵 = 𝐴 − 𝐵 ⋃ 𝐵 − 𝐴 OR 𝐴 ⊕ 𝐵 = 𝐴⋃𝐵 − 𝐴⋂𝐵  Properties of Set Operations:- 1) 𝐴⋃𝑈 = 𝑈 2) 𝐴⋃𝐴 = 𝑈 3) 𝐴⋂𝑈 = 𝐴 4) 𝐴⋂𝐴 = ∅ 5) 𝐴⋃∅ = 𝐴 6) 𝐴⋂∅ = ∅ U A B ⇒ A B ⊕
  • 18. 7) 𝐴⋃∅ = 𝐴 8) 𝐴⋂∅ = ∅ 9) 𝑈 = ∅ 10) ∅ = 𝑈 11) 𝐴 = 𝑈 − 𝐴 12) 𝐴 = 𝐴 13) 𝐴 − 𝐴 = ∅ 14) 𝐴 − 𝐴 = 𝐴 15) ∅ − 𝐴 = ∅ 16) 𝐴 − ∅ = 𝐴 17) 𝐴 − 𝐵 = 𝐴⋂𝐵 18) 𝐴 ⊕ 𝐴 = ∅ = 𝐴 − 𝐴 ∪ 𝐴 − 𝐴 19) 𝐴 ⊕ ∅ = 𝐴 = 𝐴 − ∅ ∪ ∅ − 𝐴  Example Prove the following expressions by using the Venn diagram. 1) 𝐴⋃ 𝐵⋂𝐶 = 𝐴⋃𝐵 ⋂ 𝐴⋃𝐶 2) 𝐴⋂ 𝐵⋃𝐶 = 𝐴⋂𝐵 ⋃ 𝐴⋂𝐶 3) 𝐴⋂ 𝐵 ⊕ 𝐶 = 𝐴⋂𝐵 ⊕ 𝐴⋂𝐶
  • 19. 1) 𝐴⋃ 𝐵⋂𝐶 = 𝐴⋃𝐵 ⋂ 𝐴⋃𝐶 ⇒ Consider LHS=𝐴⋃ 𝐵⋂𝐶 𝐵⋂𝐶 = 𝐴⋃ 𝐵⋂𝐶 = …… (1) B A C U B A C U
  • 20. Consider RHS= 𝐴⋃𝐵 ⋂ 𝐴⋃𝐶 𝐴⋃𝐵 = 𝐴⋃𝐶 = B A C U B A C U
  • 21. 𝐴⋃𝐵 ⋂ 𝐴⋃𝐶 = …… (2) From equation (1) & (2), LHS=RHS ∴ 𝐴⋃ 𝐵⋂𝐶 = 𝐴⋃𝐵 ⋂ 𝐴⋃𝐶 2) 𝐴⋂ 𝐵⋃𝐶 = 𝐴⋂𝐵 ⋃ 𝐴⋂𝐶 ⇒ Consider LHS=𝐴⋂ 𝐵⋃𝐶 𝐵⋃𝐶 = B A C U B A C U
  • 22. 𝐴⋂ 𝐵⋃𝐶 = …… (1) Consider RHS= 𝐴⋂𝐵 ⋃ 𝐴⋂𝐶 𝐴⋂𝐵 = B A C U B A C U
  • 23. 𝐴⋂𝐶 = 𝐴⋂𝐵 ⋃ 𝐴⋂𝐶 = …… (2) From equation (1) & (2), LHS=RHS ∴ 𝐴⋂ 𝐵⋃𝐶 = 𝐴⋂𝐵 ⋃ 𝐴⋂𝐶 B A C U B A C U
  • 24. 3) 𝐴⋂ 𝐵 ⊕ 𝐶 = 𝐴⋂𝐵 ⊕ 𝐴⋂𝐶 ⇒ Consider LHS=𝐴⋂ 𝐵 ⊕ 𝐶 𝐵 ⊕ 𝐶 = 𝐴⋂ 𝐵 ⊕ 𝐶 = …… (1) B A C U B A C U
  • 25. Consider RHS= 𝐴⋂𝐵 ⊕ 𝐴⋂𝐶 𝐴⋂𝐵 = 𝐴⋂𝐶 = B A C U B A C U
  • 26. 𝐴⋂𝐵 ⊕ 𝐴⋂𝐶 = …… (2) From equation (1) & (2), LHS=RHS ∴ 𝐴⋂ 𝐵 ⊕ 𝐶 = 𝐴⋂𝐵 ⊕ 𝐴⋂𝐶 4) Show that: i) 𝐴⋃ 𝐴⋂𝐵 = 𝐴⋃𝐵 ii) 𝐴⋂ 𝐴⋃𝐵 = 𝐴⋂𝐵 iii) 𝐴 − 𝐵 − 𝐶 = 𝐴 − 𝐵⋃𝐶 B A C U
  • 27. ⇒ i) Consider, LHS=𝐴⋃ 𝐴⋂𝐵 𝐴⋂𝐵 = 𝐴⋃ 𝐴⋂𝐵 = …(1) Consider, RHS=𝐴⋃𝐵 𝐴⋃𝐵 = …(2) B A C U B A C U B A C U
  • 28. From equation (1) & (2) LHS= RHS ∴ 𝐴⋃ 𝐴⋂𝐵 = 𝐴⋃𝐵 ii) Consider, LHS=𝐴⋂ 𝐴⋃𝐵 𝐴⋃𝐵 = 𝐴⋂ 𝐴⋃𝐵 = … (1) B A C U B A C U
  • 29. Consider, RHS=𝐴⋂𝐵 𝐴⋂𝐵 = … (2) From equation (1) & (2) LHS= RHS ∴ 𝐴⋂ 𝐴⋃𝐵 = 𝐴⋂𝐵 iii) Consider, LHS= 𝐴 − 𝐵 − 𝐶 𝐴 − 𝐵 = B A C U B A C U
  • 30. 𝐴 − 𝐵 − 𝐶 = … (1) Consider, RHS=𝐴 − 𝐵⋃𝐶 𝐵⋃𝐶 = 𝐴 − 𝐵⋃𝐶 = … (2) B A C U B A C U B A C U
  • 31. From equation (1) & (2) LHS= RHS ∴ 𝐴 − 𝐵 − 𝐶 = 𝐴 − 𝐵⋃𝐶
  • 32. 4) Show that: i) 𝐴⋃ 𝐴⋂𝐵 = 𝐴⋃𝐵 ii) 𝐴⋂ 𝐴⋃𝐵 = 𝐴⋂𝐵 iii) 𝐴 − 𝐵 − 𝐶 = 𝐴 − 𝐵⋃𝐶 ⇒ i) Consider LHS=𝐴⋃ 𝐴⋂𝐵 = 𝐴⋃𝐴 ⋂ 𝐴⋃𝐵 Distributive law =𝑈⋂ 𝐴⋃𝐵 ∵𝐴⋃𝐴 = 𝐴⋃𝐴 = 𝑈 =𝐴⋃𝐵 ∵𝑈⋂𝐴 = 𝐴⋂𝑈 = 𝐴 LHS= RHS
  • 33. ii) Consider LHS=𝐴⋂ 𝐴⋃𝐵 = 𝐴⋂𝐴 ⋃ 𝐴⋂𝐵 Distributive law =∅⋃ 𝐴⋂𝐵 ∵𝐴⋂𝐴 = 𝐴⋂𝐴 = ∅ =𝐴⋂𝐵 ∵∅⋃𝐴 = 𝐴⋃∅ = 𝐴 LHS= RHS iii) Consider LHS= 𝐴 − 𝐵 − 𝐶 = 𝐴⋂𝐵 − 𝐶 ∵𝐴 − 𝐵 = 𝐴⋂𝐵 = 𝐴⋂𝐵 ⋂𝐶 =𝐴⋂ 𝐵⋂𝐶 Commutative Property =𝐴⋂ 𝐵⋃𝐶 Demorgans law =𝐴 − 𝐵⋃𝐶 ∵𝐴⋂𝐵 = 𝐴 − 𝐵 LHS= RHS
  • 34. 5) Show that 𝐴⋂𝐵 ⋃ 𝐴⋂𝐵 ⋃ 𝐴⋂𝐵 = 𝐴⋃𝐵 ⇒ Consider LHS= 𝐴⋂𝐵 ⋃ 𝐴⋂𝐵 ⋃ 𝐴⋂𝐵 = 𝐴⋂𝐵 ⋃ 𝐴⋂ 𝐵⋃𝐵 Distributive law = 𝐴⋂𝐵 ⋃ 𝐴⋂𝑈 ∵𝐵⋃𝐵 = 𝐵⋃𝐵 = 𝑈 = 𝐴⋂𝐵 ⋃𝐴 ∵𝐴⋂𝑈 = 𝑈⋂𝐴 = 𝐴 = 𝐴⋃ 𝐴⋂𝐵 ∵𝐴⋃𝐵 = 𝐵⋃𝐴 = 𝐴⋃𝐴 ⋂ 𝐴⋃𝐵 Distributive law =U⋂ 𝐴⋃𝐵 ∵𝐴⋃𝐴 = 𝐴⋃𝐴 = 𝑈 =𝐴⋃𝐵 LHS= RHS
  • 35. 6) If 𝐴 = 1, 4, 7, 10 , B= 1, 2, 3, 4, 5 , C= 2, 4, 6, 8 , U= 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 then find i) 𝐴⋃𝐵 ii) 𝐵⋂𝐶 iii) 𝐴 − 𝐵 iv) 𝐵 − 𝐴 v) 𝐴 vi) 𝑈 − 𝐶 vii) 𝐶 viii) 𝑈 ix) 𝐴⋂𝐵 − 𝐶 x) 𝐴⋂𝐵⋂𝐶 xi) 𝐴⋃𝐵 − 𝐶 xii) 𝐴⋂𝐵⋂𝐶 ⇒ i) 𝐴⋃𝐵 = 1, 2, 3, 4, 5, 7, 10 ii) 𝐵⋂𝐶 = 2, 4 iii) 𝐴 − 𝐵 = 7, 10 iv) 𝐵 − 𝐴 = 2, 3, 5 v) 𝐴 = 2, 3, 5, 6, 8, 9 vi) 𝑈 − 𝐶 = 1, 3, 5, 7, 9, 10 vii) 𝐶 = 1, 3, 5, 7, 9, 10
  • 36. viii) 𝑈 = ∅ ix) 𝐴⋂𝐵 = 1, 4 ∴ 𝐴⋂𝐵 − 𝐶 = 1 x) 𝐴⋂𝐵⋂𝐶 = 4 xi) 𝐴⋃𝐵 = 1, 2, 3, 4, 5, 7, 10 𝐶 = 1, 3, 5, 7, 9, 10 ∴ 𝐴⋃𝐵 − 𝐶 = 2, 4 xii) 𝐴 = 2, 3, 5, 6, 8, 9 , 𝐵 = 6, 7, 8, 9, 10 𝐶 = 1, 3, 5, 7, 9, 10 ∴ 𝐴⋂𝐵⋂𝐶 = 9
  • 37. 7) If 𝐴 = 𝑎, 𝑏, 𝑎, 𝑐 , ∅ then find i) 𝑃(𝐴) ii) 𝐴 − 𝑎, 𝑐 iii) 𝑎, 𝑐 − 𝐴 iv) 𝐴 − 𝑎, 𝑏 v) 𝑎, 𝑐 − 𝐴 vi) 𝐴 − 𝑎, 𝑏 ⇒ i) Cardnality of 𝑃 𝐴 = 𝑃(𝐴) = 24 = 16 𝑃 𝐴 = ∅, 𝑎 , 𝑏 , 𝑎, 𝑐 , ∅ , 𝑎, 𝑏 , 𝑎, 𝑎, 𝑐 , 𝑎, ∅ , 𝑏, 𝑎, 𝑐 , 𝑏, ∅ , 𝑎, 𝑐 , ∅ , 𝑎, 𝑏, 𝑎, 𝑐 , 𝑎, 𝑏, ∅ , 𝑎, 𝑎, 𝑐 , ∅ , 𝑏, 𝑎, 𝑐 , ∅ , 𝑎, 𝑏, 𝑎, 𝑐 , ∅ ii) 𝐴 − 𝑎, 𝑐 = 𝑏, 𝑎, 𝑐 , ∅ iii) 𝑎, 𝑐 − 𝐴 = ∅ iv) 𝐴 − 𝑎, 𝑏 = 𝑎, 𝑏, 𝑎, 𝑐 , ∅ = 𝐴 v) 𝑎, 𝑐 − 𝐴 = 𝑐 vi) 𝐴 − 𝑎, 𝑏 = 𝑎, 𝑐 , ∅
  • 38. 8) Prove the following by using venn diagram i) 𝐴 ⊕ 𝐵 ⊕ 𝐶 = 𝐴 ⊕ 𝐵 ⊕ 𝐶 ii) 𝐴⋂𝐵⋂𝐶 = 𝐴 − 𝐴 − 𝐵 ⋃ 𝐴 − 𝐶 ⇒ i) Consider, LHS=𝐴 ⊕ 𝐵 ⊕ 𝐶 𝐵 ⊕ 𝐶 = 𝐴 ⊕ 𝐵 ⊕ 𝐶 = … (1) B A C U B A C U
  • 39. Consider, RHS= 𝐴 ⊕ 𝐵 ⊕ 𝐶 A ⊕ 𝐵 = 𝐴 ⊕ 𝐵 ⊕ 𝐶 = … (2) from equation (1) and (2), LHS=RHS 𝐴 ⊕ 𝐵 ⊕ 𝐶 = 𝐴 ⊕ 𝐵 ⊕ 𝐶 B A C U B A C U
  • 40. ii) 𝐴⋂𝐵⋂𝐶 = 𝐴 − 𝐴 − 𝐵 ⋃ 𝐴 − 𝐶 ⇒ Consider, LHS=𝐴⋂𝐵⋂𝐶 𝐴⋂𝐵⋂𝐶 = … (1) Consider, RHS=𝐴 − 𝐴 − 𝐵 ⋃ 𝐴 − 𝐶 𝐴 − 𝐵 = B A C U B A C U
  • 41. 𝐴 − 𝐶 = 𝐴 − 𝐵 ⋃ 𝐴 − 𝐶 = A − 𝐴 − 𝐵 ⋃ 𝐴 − 𝐶 = … (2) from equation (1) and (2), LHS=RHS 𝐴⋂𝐵⋂𝐶 = 𝐴 − 𝐴 − 𝐵 ⋃ 𝐴 − 𝐶 B A C U B A C U B A C U
  • 42. 9) Check the following sets are equal i) 𝐴 = 𝑥 𝑥2 + 𝑥 = 2 , 𝐵 = 1, −2 ii) 𝑃 = 𝑥 5 < 𝑥2 < 36 , 𝑄 = 1, 2, 4, 8 ⇒ i) Here given, 𝐴 = 𝑥 𝑥2 + 𝑥 = 2 and 𝐵 = 1, −2 now, 𝑥2 + 𝑥 = 2 𝑥2 + 𝑥 − 2 = 0 𝑥2 + 2𝑥 − 𝑥 − 2 = 0 𝑥 𝑥 + 2 − 1 𝑥 + 2 = 0 𝑥 + 2 𝑥 − 1 = 0 𝑥 + 2 = 0 , 𝑥 − 1 = 0 𝑥 = −2 , 𝑥 = 1 𝐴 = 1, −2 and 𝐵 = 1, −2 Here 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴 ∴ 𝐴 = 𝐵
  • 43. ⇒ ii) Here given, 𝑃 = 𝑥 5 < 𝑥2 < 36 and 𝑄 = 1, 2, 4, 8 now, 5 < 𝑥2 < 36 5 < 12 = 1 < 36 not satishfy 5 < 22 = 4 < 36 not satishfy 5 < 42 = 16 < 36 satishfy 5 < 82 = 64 < 36 not satishfy Here 𝑃 ⊈ 𝑄 and 𝑄 ⊈ 𝑃 ∴ 𝑃 ≠ 𝑄
  • 44. 10) Let A: Set of all vehicles manufacture in india B: Set of all imported vehicles C: Set of all vehicles designed before 2000 D: Set of all with current cost <20,000 & E: Set of all vehicles owned by students of SE computer Express following sentences in terms of set theoretical notation. i) Vehicles owned by students of SE computer are either in india or are imported ii) All indian vehicles designed before 2000 have market value <20,000 iii) All imported vehicles designed after 2000 have market value more than rupees 20,000 ⇒ i) 𝐸 ⊆ 𝐴⋃𝐵 ii) 𝐴⋂𝐶⋂𝐷 𝑜𝑟 𝐴⋂𝐶 ⊆ 𝐷 iii) B⋂𝐶⋂𝐷 𝑜𝑟 (B⋂𝐶) ⊆ 𝐷