SlideShare a Scribd company logo
1 of 19
The Ramachandran Plot
Dr. Radhakrishna G Pillai
Department of Life Sciences
University of Calicut
Torsion angles of a protein
• Also known as a dihedral angle
• Formed by three consecutive bonds in a
molecule and
• Defined by the angle created between the
two outer bonds
Torsion angles
• The backbone of a protein has three different torsion angles
• Describe the rotations of the polypeptide backbone around the
bonds between
• N-Cα (called Phi, φ)
• Cα-C (called Psi, ψ) and
• The omega-angle (ω) - around the peptide bond between C and N
• ω-bond has a slightly double-bond character and is therefore
almost always 180 degrees
Torsion angles
• Torsion angles are
dihedral angles, which
are defined by 4
points in space
• In proteins the two
torsion angles phi and
psi describe the
rotation of the
polypeptide chain
around the two bonds
on both sides of the C
alpha atom
Dihedral angle
• The standard IUPAC definition of a dihedral angle is
illustrated in the figure below
• A, B, C and D illustrate the position of the 4 atoms
used to define the dihedral angle
• The rotation takes place around the central B-C bond
• The view on the right is along the B-C bond with
atom A placed at 12 o'clock
• The rotation around the B-C bond is described by the
A-B-D angle shown on the right figure: Positive
angles correspond to clockwise rotation
Ramachandran plot
• Phi and psi angles could be varied from -180 to +1800
• Many combinations of these angles are not seen in
proteins
• Some are very common in proteins
• Computer modelling, X-ray crystallographic studies –
reveal the possible combinations of angles
• NMR also used
• Plot of psi vs phi angles – ramachandran plot
The Ramachandran Plot
• The Ramachandran plot shows the statistical distribution of
the combinations of the backbone dihedral angles ϕ and ψ
• It also provides an overview of allowed and disallowed
regions of torsion angle values
– serve as an important indicator of the quality of protein
three-dimensional structures
• Torsion angles are among the most important local
structural parameters that control protein folding
The Ramachandran Plot
• Ability to predict the Ramachandran angles for a particular
protein, provide ability to predict its 3D folding
• The reason is that these angles provide the flexibility required for
the polypeptide backbone to adopt a certain fold, since ω is
essentially flat and fixed to 180 degrees
– This is due to the partial double-bond character of the peptide
bond which;
– restricts rotation around the C-N bond, placing two successive
alpha-carbons and C, O, N and H between them in one plane
– Thus, rotation of the protein chain can be described as rotation
of the peptide bond planes relative to each other
Protein backbone
The psi angle is the angle
around the -CA-C- bond-
can rotate in 3600 (-180-+180)
+ve angle clockwise rotation
The omega angle is the angle
around the -C-N- bond (i.e. the
peptide bond)
The protein backbone can be described in terms of the phi, psi
and omega torsion angles of the bonds:
The phi angle is the angle around the -N-CA- bond - can rotate in 3600
(-180 to +180) +ve angle clockwise rotation
The Ramachandran Plot
In a polypeptide the main chain N-Calpha and Calpha-C bonds
relatively are free to rotate. These rotations are represented by
the torsion angles phi and psi, respectively
• G N Ramachandran used computer models of small polypeptides
to systematically vary phi and psi with the objective of finding
stable conformations
• For each conformation, the structure was examined for close
contacts between atoms
• Atoms were treated as hard spheres with dimensions
corresponding to their van der Waals radii
• Therefore, phi and psi angles which cause spheres to collide
correspond to sterically disallowed conformations of the
polypeptide backbone
Steric limits of psi and phi angles
• Atoms take up space
• Same space can not be occupied by more than
one atom
• Atoms connected by covalent bonds
• These bonds can not be broken- only rotation
• Only two angles in a residue rotate- psi and phi
• Physical clashes of atoms in 3D space make
many combinations not possible
The Ramachandran Plot
In the diagram the white areas
correspond to conformations
where atoms in the
polypeptide come closer than
the sum of their van der Waals
radi
These regions are sterically
disallowed for all amino acids
except glycine which is unique
in that it lacks a side chain
The Ramachandran Plot
• The yellow areas show the
allowed regions if slightly
shorter van der Waals radi are
used in the calculation, ie the
atoms are allowed to come a
little closer together
• This brings out an additional
region which corresponds to
the left-handed alpha-helix
The red regions correspond to conformations where there are
no steric clashes, ie these are the allowed regions namely the
alpha-helical and beta-sheet conformations
Ramachandran plot
The Ramachandran Plot
• L-amino acids cannot form extended regions of left-
handed helix
– but occasionally individual residues adopt this
conformation
– These residues are usually glycine but can also be
asparagine or aspartate where the side chain forms a
hydrogen bond with the main chain and therefore
stabilises this otherwise unfavourable conformation
– The 3(10) helix occurs close to the upper right of the
alpha-helical region and is on the
edge of allowed region indicating
lower stability
310 helix
• A 310 helix is a type of secondary
structure
• found (often) in proteins and
polypeptides
• Top view of the same helix shown
to the right
• Three carbonyl groups are pointing
upwards towards the viewer
– spaced roughly 120° apart on the
circle
– corresponding to 3.0 amino-acid
residues per turn of the helix
The Ramachandran Plot
• Disallowed regions generally involve steric hindrance
between the side chain C-beta methylene group and
main chain atoms
Glycine has no side chain and
therefore can adopt phi and psi
angles in all four quadrants of
the Ramachandran plot
Hence it frequently occurs in
turn regions of proteins where
any other residue would be
sterically hindered
Conclusion
• Steric limitations of individual amino acids
decide folding in protein secondary structure
• Folding of proteins is complex and controlled
by psi and phi angles of each amino acid
• Details of the psi and phi angles and the
location in Ramachandran plot help to
predict details about proteins
Ramachandran plot

More Related Content

What's hot (20)

Post-Translational Modifications
Post-Translational ModificationsPost-Translational Modifications
Post-Translational Modifications
 
DNA Supercoiling
DNA Supercoiling DNA Supercoiling
DNA Supercoiling
 
post translational modifications of protein
post translational modifications of proteinpost translational modifications of protein
post translational modifications of protein
 
The Ramachandran plot
The Ramachandran plotThe Ramachandran plot
The Ramachandran plot
 
Supersecondary structure ppt
Supersecondary structure pptSupersecondary structure ppt
Supersecondary structure ppt
 
MODELS OF REPLICATION
MODELS OF REPLICATIONMODELS OF REPLICATION
MODELS OF REPLICATION
 
DNA protein interaction.pptx
DNA protein interaction.pptxDNA protein interaction.pptx
DNA protein interaction.pptx
 
C value paradox
C value paradoxC value paradox
C value paradox
 
Ramachandran plot
Ramachandran plotRamachandran plot
Ramachandran plot
 
Various model of DNA replication
Various model of DNA replicationVarious model of DNA replication
Various model of DNA replication
 
Protein folding
Protein foldingProtein folding
Protein folding
 
Ramachandran plot
Ramachandran plotRamachandran plot
Ramachandran plot
 
A, b, and z forms of dna
A, b, and z forms of dnaA, b, and z forms of dna
A, b, and z forms of dna
 
Translation in Prokaryotes
Translation in ProkaryotesTranslation in Prokaryotes
Translation in Prokaryotes
 
Heterochromatin and euchromatin mains
Heterochromatin and euchromatin mainsHeterochromatin and euchromatin mains
Heterochromatin and euchromatin mains
 
5’ capping
5’ capping5’ capping
5’ capping
 
Tm of DNA - melting temperature of DNA
Tm of DNA - melting temperature of DNATm of DNA - melting temperature of DNA
Tm of DNA - melting temperature of DNA
 
Mechanism of action of lysozyme
Mechanism of action of lysozymeMechanism of action of lysozyme
Mechanism of action of lysozyme
 
Dna binding motiffs
Dna binding motiffsDna binding motiffs
Dna binding motiffs
 
Dna replication in prokaryotes
Dna replication in prokaryotesDna replication in prokaryotes
Dna replication in prokaryotes
 

Similar to Ramachandran plot

Ramachandran plot
Ramachandran plotRamachandran plot
Ramachandran plotAhalya40
 
Ramachandran plot- biochemistry
Ramachandran plot- biochemistryRamachandran plot- biochemistry
Ramachandran plot- biochemistryAanchalManchanda4
 
RAMACHANDRAN PLOT One is to show in principle which values of and angles are ...
RAMACHANDRAN PLOT One is to show in principle which values of and angles are ...RAMACHANDRAN PLOT One is to show in principle which values of and angles are ...
RAMACHANDRAN PLOT One is to show in principle which values of and angles are ...406SAKSHIPRIYA
 
Ramachandran plot by Krunal Chodvadiya
Ramachandran plot by Krunal ChodvadiyaRamachandran plot by Krunal Chodvadiya
Ramachandran plot by Krunal Chodvadiyachodvadiyakrunal
 
Ramachandran Plot
Ramachandran PlotRamachandran Plot
Ramachandran PlotEmaSushan
 
structureofproteins-161119045143.pptx
structureofproteins-161119045143.pptxstructureofproteins-161119045143.pptx
structureofproteins-161119045143.pptxabdulahad563527
 
Ramachandran plot
Ramachandran plotRamachandran plot
Ramachandran plotKajal Jain
 
Structure of proteins
Structure of proteinsStructure of proteins
Structure of proteinsDevyani Joshi
 
Protein structure Lecture for M Sc biology students
Protein structure Lecture for M Sc biology students Protein structure Lecture for M Sc biology students
Protein structure Lecture for M Sc biology students Anuj Kumar
 
Lec4 protein structure aimec
Lec4 protein structure aimecLec4 protein structure aimec
Lec4 protein structure aimecShamim Akram
 
Lec4 proteinstructure
Lec4 proteinstructureLec4 proteinstructure
Lec4 proteinstructureDrShamimAkram
 
Stereo chemistry and kinetic molecular theory
Stereo chemistry and kinetic molecular theoryStereo chemistry and kinetic molecular theory
Stereo chemistry and kinetic molecular theoryAlexis Wellington
 
Secondary structural elements & ramachandran plot
Secondary structural elements & ramachandran plotSecondary structural elements & ramachandran plot
Secondary structural elements & ramachandran plotPrasanthperceptron
 
Introduction to crystallography and x ray diffraction theory
Introduction to crystallography and x ray diffraction theoryIntroduction to crystallography and x ray diffraction theory
Introduction to crystallography and x ray diffraction theoryRaghd Muhi Al-Deen Jassim
 

Similar to Ramachandran plot (20)

Ramachandran plot
Ramachandran plotRamachandran plot
Ramachandran plot
 
Ramachandran plot- biochemistry
Ramachandran plot- biochemistryRamachandran plot- biochemistry
Ramachandran plot- biochemistry
 
RAMACHANDRAN PLOT One is to show in principle which values of and angles are ...
RAMACHANDRAN PLOT One is to show in principle which values of and angles are ...RAMACHANDRAN PLOT One is to show in principle which values of and angles are ...
RAMACHANDRAN PLOT One is to show in principle which values of and angles are ...
 
Protein_structure_2022.pdf
Protein_structure_2022.pdfProtein_structure_2022.pdf
Protein_structure_2022.pdf
 
Ramachandran plot by Krunal Chodvadiya
Ramachandran plot by Krunal ChodvadiyaRamachandran plot by Krunal Chodvadiya
Ramachandran plot by Krunal Chodvadiya
 
Ramachandran Plot
Ramachandran PlotRamachandran Plot
Ramachandran Plot
 
structureofproteins-161119045143.pptx
structureofproteins-161119045143.pptxstructureofproteins-161119045143.pptx
structureofproteins-161119045143.pptx
 
Ramachandran plot
Ramachandran plotRamachandran plot
Ramachandran plot
 
Ramachandran plot
Ramachandran plotRamachandran plot
Ramachandran plot
 
Structure of proteins
Structure of proteinsStructure of proteins
Structure of proteins
 
Conformational isomers
Conformational isomersConformational isomers
Conformational isomers
 
10.torsion angles
10.torsion angles10.torsion angles
10.torsion angles
 
11.ramachandran plot
11.ramachandran plot11.ramachandran plot
11.ramachandran plot
 
Protein structure Lecture for M Sc biology students
Protein structure Lecture for M Sc biology students Protein structure Lecture for M Sc biology students
Protein structure Lecture for M Sc biology students
 
Lec4 protein structure aimec
Lec4 protein structure aimecLec4 protein structure aimec
Lec4 protein structure aimec
 
Lec4 proteinstructure
Lec4 proteinstructureLec4 proteinstructure
Lec4 proteinstructure
 
Stereo chemistry and kinetic molecular theory
Stereo chemistry and kinetic molecular theoryStereo chemistry and kinetic molecular theory
Stereo chemistry and kinetic molecular theory
 
Secondary structural elements & ramachandran plot
Secondary structural elements & ramachandran plotSecondary structural elements & ramachandran plot
Secondary structural elements & ramachandran plot
 
219102 lecture 7
219102 lecture 7219102 lecture 7
219102 lecture 7
 
Introduction to crystallography and x ray diffraction theory
Introduction to crystallography and x ray diffraction theoryIntroduction to crystallography and x ray diffraction theory
Introduction to crystallography and x ray diffraction theory
 

More from Radhakrishna Gopala Pillai

Gastro intestinal tract –part ii oesophagus-stomach
Gastro intestinal tract –part ii oesophagus-stomachGastro intestinal tract –part ii oesophagus-stomach
Gastro intestinal tract –part ii oesophagus-stomachRadhakrishna Gopala Pillai
 
Syndrome of inappropriate antidiuretic hormone release
Syndrome of inappropriate antidiuretic hormone releaseSyndrome of inappropriate antidiuretic hormone release
Syndrome of inappropriate antidiuretic hormone releaseRadhakrishna Gopala Pillai
 

More from Radhakrishna Gopala Pillai (20)

Gastro intestinal tract part 4
Gastro intestinal tract part  4Gastro intestinal tract part  4
Gastro intestinal tract part 4
 
Gastro intestinal tract –part ii oesophagus-stomach
Gastro intestinal tract –part ii oesophagus-stomachGastro intestinal tract –part ii oesophagus-stomach
Gastro intestinal tract –part ii oesophagus-stomach
 
Digestive system Mouth
Digestive system MouthDigestive system Mouth
Digestive system Mouth
 
Syndrome of inappropriate antidiuretic hormone release
Syndrome of inappropriate antidiuretic hormone releaseSyndrome of inappropriate antidiuretic hormone release
Syndrome of inappropriate antidiuretic hormone release
 
First pass metabolism
First pass metabolismFirst pass metabolism
First pass metabolism
 
Cloning
CloningCloning
Cloning
 
Hypothalamus pituitary-thyroid
Hypothalamus pituitary-thyroidHypothalamus pituitary-thyroid
Hypothalamus pituitary-thyroid
 
The endocrine system introduction
The endocrine system introductionThe endocrine system introduction
The endocrine system introduction
 
Organ based metabolism liver
Organ based metabolism liverOrgan based metabolism liver
Organ based metabolism liver
 
Chemical messengers
Chemical messengersChemical messengers
Chemical messengers
 
Heme synthesis
Heme synthesisHeme synthesis
Heme synthesis
 
Bioenergetics
BioenergeticsBioenergetics
Bioenergetics
 
Eicosanoid synthesis
Eicosanoid synthesisEicosanoid synthesis
Eicosanoid synthesis
 
Nutritional importance of fats
Nutritional importance of fatsNutritional importance of fats
Nutritional importance of fats
 
Cellular ageing
Cellular ageingCellular ageing
Cellular ageing
 
Gi secretions
Gi secretionsGi secretions
Gi secretions
 
Digestive system basics
Digestive system  basicsDigestive system  basics
Digestive system basics
 
Lipoprotein metabolism
Lipoprotein metabolismLipoprotein metabolism
Lipoprotein metabolism
 
Regulation of blood glucose
Regulation of blood glucoseRegulation of blood glucose
Regulation of blood glucose
 
Detoxification phase i and ii
Detoxification  phase i and iiDetoxification  phase i and ii
Detoxification phase i and ii
 

Recently uploaded

How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 

Recently uploaded (20)

9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 

Ramachandran plot

  • 1. The Ramachandran Plot Dr. Radhakrishna G Pillai Department of Life Sciences University of Calicut
  • 2. Torsion angles of a protein • Also known as a dihedral angle • Formed by three consecutive bonds in a molecule and • Defined by the angle created between the two outer bonds
  • 3. Torsion angles • The backbone of a protein has three different torsion angles • Describe the rotations of the polypeptide backbone around the bonds between • N-Cα (called Phi, φ) • Cα-C (called Psi, ψ) and • The omega-angle (ω) - around the peptide bond between C and N • ω-bond has a slightly double-bond character and is therefore almost always 180 degrees
  • 4. Torsion angles • Torsion angles are dihedral angles, which are defined by 4 points in space • In proteins the two torsion angles phi and psi describe the rotation of the polypeptide chain around the two bonds on both sides of the C alpha atom
  • 5. Dihedral angle • The standard IUPAC definition of a dihedral angle is illustrated in the figure below • A, B, C and D illustrate the position of the 4 atoms used to define the dihedral angle • The rotation takes place around the central B-C bond • The view on the right is along the B-C bond with atom A placed at 12 o'clock • The rotation around the B-C bond is described by the A-B-D angle shown on the right figure: Positive angles correspond to clockwise rotation
  • 6. Ramachandran plot • Phi and psi angles could be varied from -180 to +1800 • Many combinations of these angles are not seen in proteins • Some are very common in proteins • Computer modelling, X-ray crystallographic studies – reveal the possible combinations of angles • NMR also used • Plot of psi vs phi angles – ramachandran plot
  • 7. The Ramachandran Plot • The Ramachandran plot shows the statistical distribution of the combinations of the backbone dihedral angles ϕ and ψ • It also provides an overview of allowed and disallowed regions of torsion angle values – serve as an important indicator of the quality of protein three-dimensional structures • Torsion angles are among the most important local structural parameters that control protein folding
  • 8. The Ramachandran Plot • Ability to predict the Ramachandran angles for a particular protein, provide ability to predict its 3D folding • The reason is that these angles provide the flexibility required for the polypeptide backbone to adopt a certain fold, since ω is essentially flat and fixed to 180 degrees – This is due to the partial double-bond character of the peptide bond which; – restricts rotation around the C-N bond, placing two successive alpha-carbons and C, O, N and H between them in one plane – Thus, rotation of the protein chain can be described as rotation of the peptide bond planes relative to each other
  • 9. Protein backbone The psi angle is the angle around the -CA-C- bond- can rotate in 3600 (-180-+180) +ve angle clockwise rotation The omega angle is the angle around the -C-N- bond (i.e. the peptide bond) The protein backbone can be described in terms of the phi, psi and omega torsion angles of the bonds: The phi angle is the angle around the -N-CA- bond - can rotate in 3600 (-180 to +180) +ve angle clockwise rotation
  • 10. The Ramachandran Plot In a polypeptide the main chain N-Calpha and Calpha-C bonds relatively are free to rotate. These rotations are represented by the torsion angles phi and psi, respectively • G N Ramachandran used computer models of small polypeptides to systematically vary phi and psi with the objective of finding stable conformations • For each conformation, the structure was examined for close contacts between atoms • Atoms were treated as hard spheres with dimensions corresponding to their van der Waals radii • Therefore, phi and psi angles which cause spheres to collide correspond to sterically disallowed conformations of the polypeptide backbone
  • 11. Steric limits of psi and phi angles • Atoms take up space • Same space can not be occupied by more than one atom • Atoms connected by covalent bonds • These bonds can not be broken- only rotation • Only two angles in a residue rotate- psi and phi • Physical clashes of atoms in 3D space make many combinations not possible
  • 12. The Ramachandran Plot In the diagram the white areas correspond to conformations where atoms in the polypeptide come closer than the sum of their van der Waals radi These regions are sterically disallowed for all amino acids except glycine which is unique in that it lacks a side chain
  • 13. The Ramachandran Plot • The yellow areas show the allowed regions if slightly shorter van der Waals radi are used in the calculation, ie the atoms are allowed to come a little closer together • This brings out an additional region which corresponds to the left-handed alpha-helix The red regions correspond to conformations where there are no steric clashes, ie these are the allowed regions namely the alpha-helical and beta-sheet conformations
  • 15. The Ramachandran Plot • L-amino acids cannot form extended regions of left- handed helix – but occasionally individual residues adopt this conformation – These residues are usually glycine but can also be asparagine or aspartate where the side chain forms a hydrogen bond with the main chain and therefore stabilises this otherwise unfavourable conformation – The 3(10) helix occurs close to the upper right of the alpha-helical region and is on the edge of allowed region indicating lower stability
  • 16. 310 helix • A 310 helix is a type of secondary structure • found (often) in proteins and polypeptides • Top view of the same helix shown to the right • Three carbonyl groups are pointing upwards towards the viewer – spaced roughly 120° apart on the circle – corresponding to 3.0 amino-acid residues per turn of the helix
  • 17. The Ramachandran Plot • Disallowed regions generally involve steric hindrance between the side chain C-beta methylene group and main chain atoms Glycine has no side chain and therefore can adopt phi and psi angles in all four quadrants of the Ramachandran plot Hence it frequently occurs in turn regions of proteins where any other residue would be sterically hindered
  • 18. Conclusion • Steric limitations of individual amino acids decide folding in protein secondary structure • Folding of proteins is complex and controlled by psi and phi angles of each amino acid • Details of the psi and phi angles and the location in Ramachandran plot help to predict details about proteins

Editor's Notes

  1. Ramachandran angles -after the Indian physicist who first introduced the Ramachandran plot, (RAMACHANDRAN GN, RAMAKRISHNAN C, SASISEKHARAN V., J Mol Biol., 7:95-99)
  2. A dihedral angle is the angle between two intersecting planes. In chemistry it is the angle between planes through two sets of three atoms, having two atoms in common. In solid geometry it is defined as the union of a line and two half-planes that have this line as a common edge.
  3. A 310 helix is a type of secondary structure found in proteins and polypeptides. Of the numerous protein secondary structures present, the 310-helix is the fourth most common type observed; following α-helices, β-sheets and reverse turns. 310-helices constitute nearly 10–15% of all helices in protein secondary structures, and are typically observed as extensions of α-helices found at either their N- or C- termini. Because of the α-helices tendency to consistently fold and unfold, it has been proposed that the 310-helix serves as an intermediary conformation of sorts, and provides insight into the initiation of α-helix folding.
  4. A 310 helix is a type of secondary structure found in proteins and polypeptides. Of the numerous protein secondary structures present, the 310-helix is the fourth most common type observed; following α-helices, β-sheets and reverse turns. 310-helices constitute nearly 10–15% of all helices in protein secondary structures, and are typically observed as extensions of α-helices found at either their N- or C- termini. Because of the α-helices tendency to consistently fold and unfold, it has been proposed that the 310-helix serves as an intermediary conformation of sorts, and provides insight into the initiation of α-helix folding.