Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Vector calculus

3,008 views

Published on

Published in: Technology, Education
  • Be the first to comment

Vector calculus

  1. 1. Vector Calculus
  2. 2. Vector Calculus COORDINATE SYSTEMS• RECTANGULAR or Cartesian • CYLINDRICAL Choice is based on • SPHERICAL symmetry of problem Examples: Sheets - RECTANGULAR Wires/Cables - CYLINDRICAL Spheres - SPHERICAL
  3. 3. Cylindrical Symmetry Spherical Symmetry
  4. 4. Cartesian Coordinates Or Rectangular Coordinates P (x, y, z z) −∞ < x < ∞ P(x,y,z) −∞ < y < ∞ y −∞ < z < ∞ x A vector A in Cartesian coordinates can be written as ( Ax , Ay , Az ) or Ax a x + Ay a y + Az a zwhere ax,ay and az are unit vectors along x, y and z-directions.
  5. 5. Cylindrical Coordinates z P (ρ, Φ, z) 0≤ρ <∞ z P(ρ, Φ, z) 0 ≤ φ < 2π −∞ < z < ∞ x Φ ρ y A vector A in Cylindrical coordinates can be written as ( Aρ , Aφ , Az ) or Aρ aρ + Aφ aφ + Az a zwhere aρ,aΦ and az are unit vectors along ρ, Φ and z-directions. x= ρ cos Φ, y=ρ sin Φ, z=z y ρ = x + y , φ = tan 2 2 −1 ,z = z x
  6. 6. The relationships between (ax,ay, az) and (aρ,aΦ, az)are a x = cos φaρ − sin φaφ a y = sin φaρ − cos φaφ az = az or aρ = cos φa x + sin φa y aφ = − sin φa x + cos φa y az = azThen the relationships between (Ax,Ay, Az) and (Aρ, AΦ, Az)areA = ( Ax cos φ + Ay sin φ )aρ + (− Ax sin φ + Ay cos φ )aφ + Az a z
  7. 7. Aρ = Ax cos φ + Ay sin φ Aφ = − Ax sin φ + Ay cos φ Az = AzIn matrix form we can write  Aρ   cos φ sin φ 0  Ax   A  = − sin φ cos φ 0  Ay   φ     Az   0    0 1  Az   
  8. 8. Spherical Coordinates z P (r, θ, Φ) 0≤r <∞ P(r, θ, Φ) θ r 0 ≤θ ≤π 0 ≤ φ < 2π x Φ yA vector A in Spherical coordinates can be written as ( Ar , Aθ , Aφ ) or Ar ar + Aθ aθ + Aφ aφ where ar, aθ, and aΦ are unit vectors along r, θ, and Φ-directions. x=r sin θ cos Φ, y=r sin θ sin Φ, Z=r cos θ x2 + y2 −1 y r = x 2 + y 2 + z 2 , θ = tan −1 , φ = tan z x
  9. 9. The relationships between (ax,ay, az) and (ar,aθ,aΦ)are a x = sin θ cos φar + cos θ cos φaθ − sin φaφ a y = sin θ sin φar + cos θ sin φaθ + cos φaφ a z = cos θar − sin θaθ or ar = sin θ cos φa x + sin θ sin φa y + cos θa z aθ = cos θ cos φa x + cos θ sin φa y − sin θa z aφ = − sin φa x + cos φa yThen the relationships between (Ax,Ay, Az) and (Ar, Aθ,and AΦ)are A = ( Ax sin θ cos φ + Ay sin θ sin φ + Az cos θ )ar + ( Ax cos θ cos φ + Ay cos θ sin φ − Az sin θ )aθ + (− Ax sin φ + Ay cos φ )aφ
  10. 10. Ar = Ax sin θ cos φ + Ay sin θ sin φ + Az cos θ Aθ = Ax cos θ cos φ + Ay cos θ sin φ − Az sin θ Aφ = − Ax sin φ + Ay cos φIn matrix form we can write  Ar   sin θ cos φ sin θ sin φ cos θ   Ax      Aθ  = cos θ cos φ cos θ sin φ − sin θ   Ay     Aφ   − sin φ cos φ 0   Az      
  11. 11. z z P(r, θ, Φ) Cartesian Coordinates P(x,y,z) θ r P(x, y, z) y y xx Φ Spherical Coordinates Cylindrical Coordinates P(r, θ, Φ) z P(ρ, Φ, z) z P(ρ, Φ, z) r y x Φ
  12. 12. Differential Length, Area and Volume Cartesian CoordinatesDifferential displacementdl = dxa x + dya y + dza zDifferential area dS = dydza x = dxdza y = dxdya z Differential Volume dV = dxdydz
  13. 13. Cylindrical Coordinates ρ ρ ρ ρ ρ ρ ρρ ρ ρ ρ
  14. 14. Differential Length, Area and Volume Cylindrical CoordinatesDifferential displacement dl = dρa ρ + ρdφaφ + dza zDifferential area dS = ρdφdza ρ = dρdzaφ = ρdρdφa z Differential Volume dV = ρdρdφdz
  15. 15. Spherical Coordinates
  16. 16. Differential Length, Area and Volume Spherical CoordinatesDifferential displacement dl = drar + rdθaθ + r sin θdφaφDifferential area dS = r sin θdθdφar = r sin θdrdφaθ = rdrdθaφ 2 Differential Volume dV = r sin θdrdθdφ 2
  17. 17. Line, Surface and Volume IntegralsLine Integral ∫ A.dl LSurface Integral ψ = ∫ A.dS S Volume Integral ∫ p dv V v
  18. 18. Gradient, Divergence and Curl The Del Operator• Gradient of a scalar function is a vector quantity. ∇f Vector• Divergence of a vector is a scalar ∇. A quantity.• Curl of a vector is a vector ∇× A quantity.• The Laplacian of a scalar A ∇ A 2
  19. 19. Del OperatorCartesian Coordinates ∂ ∂ ∂ ∇ = ax + a y + az ∂x ∂y ∂zCylindrical Coordinates ∂ 1 ∂ ∂ ∇= aρ + aφ + a z ∂ρ ρ ∂φ ∂zSpherical Coordinates ∂ 1 ∂ 1 ∂ ∇ = ar + aθ + aφ ∂r r ∂θ r sin θ ∂φ
  20. 20. Gradient of a ScalarThe gradient of a scalar field V is a vector that representsboth the magnitude and the direction of the maximum spacerate of increase of V. ∂V ∂V ∂V ∇V = ax + ay + az ∂x ∂y ∂z ∂V 1 ∂V ∂V ∇V = aρ + aφ + az ∂ρ ρ ∂φ ∂z ∂V 1 ∂V 1 ∂V ∇V = ar + aθ + aφ ∂r r ∂θ r sin θ ∂φ
  21. 21. Divergence of a VectorThe divergence of A at a given point P is the outward flux perunit volume as the volume shrinks about P. ∫ A.dS divA = ∇. A = lim S ∆v →0 ∆v ∂A ∂A ∂A ∇. A = + + ∂x ∂y ∂z 1 ∂ 1 ∂Aφ ∂Az ∇. A = ( ρAρ ) + + ρ ∂ρ ρ ∂φ ∂z
  22. 22. Curl of a VectorThe curl of A is an axial vector whose magnitude is themaximum circulation of A per unit area tends to zero andwhose direction is the normal direction of the area when thearea is oriented to make the circulation maximum.  A.dl   ∫  curlA = ∇ × A =  lim L  an  ∆s →0 ∆S      maxWhere ΔS is the area bounded by the curve L and an is the unitvector normal to the surface ΔS
  23. 23.  ax ay az   aρ ρaφ az  ∂ ∂ ∂ 1∂ ∂ ∂∇× A =   ∇× A =    ∂x ∂y ∂z  ρ  ∂ρ ∂φ ∂z   Ax  Ay Az    Aρ  ρAφ Az   Cartesian Coordinates Cylindrical Coordinates  ar raθ r sin θaφ  1 ∂ ∂ ∂  ∇× A = 2   r sin θ  ∂r ∂θ ∂φ   Ar  rAθ r sin θAφ   Spherical Coordinates
  24. 24. Divergence or Gauss’ TheoremThe divergence theorem states that the total outward flux ofa vector field A through the closed surface S is the same as thevolume integral of the divergence of A. ∫ A.dS = ∫ ∇. Adv V
  25. 25. Stokes’ TheoremStokes’s theorem states that the circulation of a vector field A around aclosed path L is equal to the surface integral of the curl of A over the opensurface S bounded by L, provided A and × A ∇ are continuous on S ∫ A.dl = ∫ (∇ × A).dS L S

×