SlideShare a Scribd company logo
1 of 16
Download to read offline
 
 
Finite Differences
In this chapter we shall discuss about several difference operators such as forward difference operator, backward
difference operator, central difference operator, shifting operator etc.
Forward difference operator: The operator  is called forward difference operator and defined as,
1 1r r ry y y   
where ; 0,1,2, ... ... ...,ry r n are values of y .
Backward difference operator: The operator  is called backward difference operator and defined as,
1r r ry y y   
where ; 0,1,2, ... ... ...,ry r n are values of y .
Central difference operator: The operator  is called central difference operator and defined as,
(2 1) 1
2
r r ry y y   
where ; 0,1,2, ... ... ...,ry r n are values of y .
Shifting operator: The operator E is called shifting operator and defined as,
1r rEy y 
where ; 0,1,2, ... ... ...,ry r n are values of y .
Which shows that the effect of E is to shift the functional value of y to it’s next higher value.
Averaging operator: The operator  is called averaging operator and defined as,
(2 1) (2 1)
2 2
1
2
r r ry y y  
   
 
where ; 0,1,2, ... ... ...,ry r n are values of y .
Differential operator: The operator D is called differential operator and defined as,
 r r
d
Dy y
dx

Where ; 0,1,2, ... ... ...,ry r n are values of y .
Unit operator: The unit operator 1 is defined by,
1. r ry y
where ; 0,1,2, ... ... ...,ry r n are values of y .
Forward Differences: If 0 1 2, , , , ny y y y   denote a set of values of y , then 1 0 2 1, ,y y y y 
3 2 1, , n ny y y y     are called the differences of y . If these differences are denoted as follows,
0 1 0y y y  
1 2 1y y y  
   
1 1n n ny y y   
where  is called the forward difference operator and 0 1 1, , , ny y y     are called first forward differences.
The second forward differences are,
2
0 1 0y y y    
2
1 2 1y y y    
    
2
1 1n n ny y y     
Similarly, we can determine kth forward differences.
1 1
1 1. , k k k
n n ni e y y y 
     
 
 
Forward Difference Table
Backward Differences: If 0 1 2, , , , ny y y y   denote a set of values of y , then 1 0 2 1, ,y y y y 
3 2 1, , n ny y y y     are called the differences of y . If these differences are denoted as follows,
1 1 0y y y  
2 2 1y y y  
   
1n n ny y y   
where  is called the backward difference operator and 1 2, , , ny y y    are called first backward differences.
The second backward differences are,
2
1 1 0y y y    
2
2 2 1y y y   
    
2
1n n ny y y     
Similarly, we can determine kth backward differences.
1 1
1. , k k k
n n ni e y y y 
    
Backward Difference Table
x y  2
 3
 4
 5

0x
1x
2x
3x
4x
5x
0y
1y
2y
3y
4y
5y
0y
1y
2y
3y
4y
2
0y
2
1y
2
2y
2
3y
3
0y
3
1y
3
2y
4
0y
4
1y
5
0y
x y  2
 3
 4
 5

0x
1x
2x
3x
4x
5x
0y
1y
2y
3y
4y
5y
1y
2y
3y
4y
5y
2
2y
2
3y
2
4y
2
5y
3
3y
3
4y
3
5y
4
4y
4
5y
5
5y
 
 
Central Differences: If 0 1 2, , , , ny y y y   denote a set of values of y , then 1 0 2 1, ,y y y y 
3 2 1, , n ny y y y     are called the differences of y . If these differences are denoted as follows,
1 1 0
2
y y y  
3 2 1
2
y y y  
   
(2 1) 1
2
n n ny y y   
Where  is called the central difference operator and 1 3 (2 1)
2 2 2
, , , ny y y     are called first central differences.
The second central differences are,
2
1 3 1
22
y y y   
2
2 5 3
2 2
y y y   
    
2
(2 1) (2 1)
2 2
n n ny y y    
Similarly, we can determine kth central differences.
1 1
(2 1) (2 1)
2 2
. , k k k
n n ni e y y y   
  
Central Difference Table
x y  2
 3
 4
 5

0x
1x
2x
3x
4x
5x
0y
1y
2y
3y
4y
5y
1
2
y
3
2
y
5
2
y
7
2
y
9
2
y
2
1y
2
2y
2
3y
2
4y
3
3
2
y
3
5
2
y
3
7
2
y
4
2y
4
3y
5
5
2
y
 
 
Interpolation
Interpolation is a numerical technique which is used to estimate unknown values of a function by using known values. For
example, If we are to find out the population of Bangladesh in 1978 when we know the population of Bangladesh in the
year 1971, 1975, 1979, 1984, 1988, 1992 and so on, then the process of finding the population of 1978 is known as
interpolation.
Mathematically, let ( )y f x be a function which gives 0 1 2, , , , ny y y y  for 0 1 2, , , , nx x x x  respectively. The
method of finding ( )f x for x  where  lies in the given range is called an interpolation and if  lies outside
the given range is called an extrapolation.
Assumption for interpolation: For the application of the methods of interpolation, the following fundamental
assumptions are required.
a) In the interval under consideration, the values of the function cannot be jumped or fallen down suddenly.
b) In the absence of any evidence to the contrary, the rise and fall in the values of the function must be uniform.
c) The data can be expressed as a polynomial function so that the method of finite difference be applicable.
Methods of interpolation: The various methods of interpolation are as follows:
a) Method of graph
b) Method of curve fitting
c) Method for finite differences.
In this chapter we shall discuss only interpolation formulae for finite differences. These formulae can be separated as
follows:
a) Interpolation formulae for equal intervals
b) Interpolation formulae for unequal intervals
c) Interpolation formulae for central difference.
Interpolation formulae for equal intervals: The interpolation formulae for equal intervals are given bellow:
I. Newton’s forward interpolation formula: Suppose, 0 0 1 1 2 2( , ),( , ),( , ), , ( , )n nx y x y x y x y  
be a set of ( 1)n  values of x and y . Let the values of x be equidistant,
0. , ; 0,1,2, ,ri e x x rh r n    
where h is difference between the points.
Let ( )ny x be a polynomial of nth degree such that y and ( )ny x agree at the tabulated points, which is to be determined. It
can be written as,
0 1 0 2 0 1 0 1 1( ) ( ) ( )( ) ( )( ) ( ) (1)n n ny x a a x x a x x x x a x x x x x x               
where the constants 0a , 1a , 2a , … … , na can be determine as follows:
Putting 0x x in Eq.(1) we have,
0 0a y
Putting 1x x in Eq.(1) we have,
1 0 1 1 0( )y a a x x  
1 0 1,or y y a h 
1 0
1,
y y
or a
h


0
1
y
a
h

 
Putting 2x x in Eq.(1) we have,
2 0 1 2 0 2 2 0 2 1( ) ( )( )y a a x x a x x x x     
0
2 0 2, (2 ) (2 )( )
y
or y y h a h h
h

  
 
 
2
2 0 1 0 2, 2( ) 2or y y y y a h   
2
2 1 0 2, 2 2or y y y a h  
2 1 0
2 2
2
,
2
y y y
or a
h
 

2 1 1 0
2 2
( ) ( )
,
2
y y y y
or a
h
  

1 0
2 2
,
2
y y
or a
h
  

2
0
2 2
2!
y
a
h

 
Similarly,
3
0
3 3
3!
y
a
h


4
0
4 4
4!
y
a
h


  
0
!
n
n n
y
a
n h


Using these values in Eq.(1) we have,
2
0 0 0
0 0 0 1 0 1 12
( ) ( ) ( )( ) ( )( ) ( ) (2)
2! !
n
n nn
y y y
y x y x x x x x x x x x x x x
h h n h

  
              
Setting 0x x ph  we have,
0x x ph 
1 0 1 0x x x x x x    
0 1 0( ) ( )x x x x   
ph h 
( 1)p h 
Similarly, 2 ( 2)x x p h  
3 ( 3)x x p h  
    
1 ( 1)nx x p n h   
Equation (2) becomes,
2 3
0 0 0 0 0
( 1) ( 1)( 2) ( 1) ( 1)
( ) (3)
2! 3! !
n
n
p p p p p p p p n
y x y p y y y y
n
     
        
 
  
This is called Newton’s forward interpolation formula.
Note: Newton’s forward interpolation formula is used to interpolate the values of y near the beginning of a set of tabular
values.
 
 
II. Newton’s backward interpolation formula: Suppose, 0 0 1 1 2 2( , ),( , ),( , ), , ( , )n nx y x y x y x y   be a set of ( 1)n 
values of x and y . Let the values of x be equidistant,
0. , ; 0,1,2, ,ri e x x rh r n    
where h is difference between the points.
Let ( )ny x be a polynomial of nth degree such that y and ( )ny x agree at the tabulated points, which is to be determined. It
can be written as,
0 1 2 1 1 0( ) ( ) ( )( ) ( )( ) ( ) (1)n n n n n n ny x a a x x a x x x x a x x x x x x               
where the constants 0a , 1a , 2a , … … , na can be determine as follows:
Putting nx x in Eq.(1) we have,
0 na y
Putting 1nx x  in Eq.(1) we have,
1 1 1( )n n n ny y a x x   
1 1, ( )n nor y y a h   
1
1, n ny y
or a
h


1
ny
a
h

 
Putting 2nx x  in Eq.(1) we have,
2 0 1 2 2 2 2 1( ) ( )( )n n n n n n ny a a x x a x x x x         
2 2, ( 2 ) ( 2 )( )n
n n
y
or y y h a h h
h


     
2
2 1 2, 2( ) 2n n n nor y y y y a h    
2
2 1 2, 2 2n n nor y y y a h    
1 2
2 2
2
,
2
n n ny y y
or a
h
  

1 1 2
2 2
( ) ( )
,
2
n n n ny y y y
or a
h
    

1
2 2
,
2
n ny y
or a
h
  

2
2 2
2!
ny
a
h

 
Similarly,
3
3 3
3!
ny
a
h


4
4 4
4!
ny
a
h


  
!
n
n
n n
y
a
n h


Using these values in Eq.(1) we have,
2
1 1 12
( ) ( ) ( )( ) ( )( ) ( ) (2)
2! !
n
n n n
n n n n n n nn
y y y
y x y x x x x x x x x x x x x
h h n h
 
  
              
Setting nx x ph  we have,
 
 
nx x ph 
1 1n n n nx x x x x x     
1( ) ( )n n nx x x x    
ph h 
( 1)p h 
Similarly, 2 ( 2)nx x p h  
3 ( 3)nx x p h  
    
1 ( 1)x x p n h   
Equation (2) becomes,
2 3( 1) ( 1)( 2) ( 1) ( 1)
( ) (3)
2! 3! !
n
n n n n n n
p p p p p p p p n
y x y p y y y y
n
     
        
 
  
This is called Newton’s backward interpolation formula.
Note: Newton’s backward interpolation formula is used to interpolate the values of y near the end of a set of tabular
values.
Problem-01: Construct a difference table to find the polynomial of the data      1,1 , 2,8 , 3,27 ,
     4,64 , 5,125 ,(6,216) 7,343 ,(8,512)considering appropriate method. Also find r , where (9, )r is given.
Solution: We may construct any one of forward, backward and central difference tables. Since we also have to find r for
9x  which is nearer at the end of the set of given tabular values, so we will construct the backward difference table.
The backward difference table of the given data is as follows:
x y  2
 3
 4

1
2
3
4
5
6
7
8
1
8
27
64
125
216
343
512
7
19
37
61
91
127
169
12
18
24
30
36
42
6
6
6
6
6
0
0
0
0
This is the required difference table.
Here 2 3 4
8, 1, 512, 169, 42, 6, 0.n n n n n nx h y y y y y          
8
( 8)
1
nx x x
p x
h
 
    
By Newton’s backward formula we get,
2 3( 1) ( 1)( 2) ( 1) ( 1)
( )
2! 3! !
n
n n n n n
p p p p p p p p n
y x y p y y y y
n
     
        
 
 
( 8)( 8 1) ( 8)( 8 1)( 8 2)
512 169( 8) 42 6
2! 3!
x x x x x
x
       
      
2 3 2
512 169 1352 21 315 1176 21 146 336x x x x x x         
3
x
This is the required polynomial.
 
 
2nd
part: For 9x  we get, 3
(9) 9y  729r  (Ans.)
Problem-02: From the following table of yearly premiums for policies maturing at quinquennial ages, estimate the
premiums foe policies maturing at the age of 46 years.
Age(x) 45 50 55 60 65
Premium(y) 2.871 2.404 2.083 1.862 1.712
Solution: Since 46x  is nearer at the beginning of the set of given tabular values, so we have to construct the forward
difference table.
The forward difference table of the given data is as follows:
Age(x) Premium(y)  2
 3
 4

45
50
55
60
65
2.871
2.404
2.083
1.862
1.712
-0.467
-0.321
-0.221
-0.150
0.146
0.100
0.071
-0.046
-0.029
0.017
Here 2 3 4
0 0 0 0 0 046, 5, 45, 45, 0.467, 0.146, 0.046, 0.017x h x y y y y y             
0 46 45 1
0.2
5 5
x x
p
h
 
    
By Newton’s forward formula we get,
2 3
0 0 0 0 0
( 1) ( 1)( 2) ( 1) ( 1)
( )
2! 3! !
np p p p p p p p n
y x y p y y y y
n
     
        
 
 
0.2(0.2 1) 0.2(0.2 1)(0.2 2) 0.2(0.2 1)(0.2 2)(0.2 3)
(46) 2.871 0.2 ( 0.467) (0.146) ( 0.046) (0.017)
2! 3! 4!
y
     
           
2.8710 0.0934 0.01168 0.002208 0.0005712    
2.763( .)approx
Problem-03: The values of sin x are given below for different values of x, find the value of 0
sin38 .
x 15 20 25 30 35 40
siny x 0.2588190 0.3420201 0.4226183 0.5 0.5735764 0.6427876
Solution: Since 0
38x  is nearer at the end of the set of given tabular values, so we have to construct the backward
difference table.
The backward difference table of the given data is as follows:
x siny x  2
 3
 4
 5

15
20
25
30
35
40
0.2588190
0.3420201
0.4226183
0.5
0.5735764
0.6427875
0.0832011
0.0805982
0.0773817
0.0735764
0.0692112
-0.0026029
-0.0032165
-0.0038053
-0.0043652
-0.0006136
-0.0005888
-0.0005599
0.0000248
0.0000289
0.0000041
Here 2 3
38, 40, 5, 0.6427875, 0.0692112, 0.0043652, 0.0005599,n n n n nx x h y y y y           
 
 
4 5
0.0000289, 0.0000041n ny y    .
38 40 2
0.4
5 5
nx x
p
h
 
      
By Newton’s backward formula we get,
2 3( 1) ( 1)( 2) ( 1) ( 1)
(38)
2! 3! !
n
n n n n n
p p p p p p p p n
y y p y y y y
n
     
        
 
 
( 0.4)( 0.4 1) ( 0.4)( 0.4 1)( 0.4 2)
0.6427876 ( 0.4) 0.0692112 ( 0.0043652) ( 0.0005599)
2! 3!
       
         
( 0.4)( 0.4 1)( 0.4 2)( 0.4 3) ( 0.4)( 0.4 1)( 0.4 2)( 0.4 3)( 0.4 4)
(0.0000289) (0.0000041)
4! 5!
               
   
0.6427876 0.02768448 0.00052382 0.00003583 0.00000120    
0.6156614( .)approx
Problem-04: In an examination the number of candidates who obtained marks between certain limits were as follows:
Marks 30-40 40-50 50-60 60-70 70-80
No. of Students 31 42 51 35 31
Find the number of candidates whose scores lie between 45 and 50.
Solution: First of all we construct a cumulative frequency table for the given data.
Upper limits of the class intervals 40 50 60 70 80
Cumulative frequency 31 73 124 159 190
Since 45x  is nearer at the beginning of the set of values in cumulative frequency table, so we have to construct the
forward difference table.
The forward difference table of the given data is as follows:
Marks(x) Cumulative
frequencies(y)
 2
 3
 4

40
50
60
70
80
31
73
124
159
190
42
51
35
31
9
-16
-4
-25
12
37
Here 2 3 4
0 0 0 0 0 045, 40, 10, 31, 42, 9, 25, 37x x h y y y y y             .
0 45 40 5
0.5
10 10
x x
p
h
 
    
By Newton’s forward formula we get,
2 3
0 0 0 0 0
( 1) ( 1)( 2) ( 1) ( 1)
( )
2! 3! !
np p p p p p p p n
y x y p y y y y
n
     
        
 
 
0.5(0.5 1) 0.5(0.5 1)(0.5 2) 0.5(0.5 1)(0.5 2)(0.5 3)
(45) 31 0.5 42 9 ( 25) 37
2! 3! 4!
y
     
          
31 21 1.125 1.5625 1.4452    
47.8673
48( .)approx
 
 
Problem-05: The population of a town in the last six censuses was as given below. Estimate the population for the year
1946.
Year(x) 1911 1921 1931 1941 1951 1961
Population in thousands(y) 12 15 20 27 39 52
Solution: Since 1946x  is nearer at the end of the set of given tabular values, so we have to construct the backward
difference table
The backward difference table of the given data is as follows:
( )Year x ( )Populations y  2
 3
 4
 5

1911
1921
1931
1941
1951
1961
12
15
20
27
39
52
3
5
7
12
13
2
2
5
1
0
3
-4
3
-7
-10
Here 2 3 4 5
1946, 1961, 10, 52, 13, 1, 4, 7, 10n n n n n n nx x h y y y y y y                 .
1946 1961 15
1.5
10 10
nx x
p
h
 
      
By Newton’s backward formula we get,
2 3( 1) ( 1)( 2) ( 1) ( 1)
( )
2! 3! !
n
n n n n n
p p p p p p p p n
y x y p y y y y
n
     
        
 
 
( 1.5)( 1.5 1) ( 1.5)( 1.5 1)( 1.5 2) ( 1.5)( 1.5 1)( 1.5 2)( 1.5 3)
(1946) 52 ( 1.5) 13 1 ( 4) ( 7)
2! 3! 4!
y
              
            
( 1.5)( 1.5 1)( 1.5 2)( 1.5 3)( 1.5 4)
( 10)
5!
        
  
32.3438( .)approx
Exercise:
Problem-01: The population of a village in the last six censuses was recorded as follows. Estimate the population for the
year 1945.
Year(x) 1941 1951 1961 1971 1981 1991
Population(y) 2500 2800 3200 3700 4350 5225
Problem-02: In a company the number of persons whose daily wage are as follows:
Daily wage in Tk. 0-20 20-40 40-60 60-80 80-100
No. of persons 120 145 200 250 150
Find the number of persons whose daily wage is between TK. 40 and TK.50.
Problem-03: The population of a town in decennial census was recorded as follows. Estimate the population for the year
1985.
Year(x) 1951 1961 1971 1981 1991
Population in thousands(y) 98.752 132.285 168.076 195.690 246.05
Problem-04: The population of a town in decennial census was recorded as follows. Estimate the population for the year
1895.
Year(x) 1891 1901 1911 1921 1931
Population in thousands(y) 46 66 81 93 101
Problem-05: Estimate the production of cotton in the year 1935 from the data given below.
Year(x) 1931 1932 1934 1936 1938
Production in millions of bales(y) 17.1 13.0 14.0 9.6 12.4
 
 
Interpolation formulae for unequal intervals: The interpolation formulae for unequal intervals are given bellow:
1) Newton’s Interpolation formula for unequal intervals.
2) Lagrange’s Interpolation formula for unequal intervals.
Divided Differences: Let ( )y f x be a polynomial which gives 0( )f x , 1( )f x , 2( )f x , , ( )nf x  at the points 0x ,
1x , 2x , , nx  (which are not equally spaced)respectively. Then the first divided difference for the arguments 0x and 1x
is denoted by 0 1( , )f x x or ( )f x and defined as,
0 1
0 1
0 1
( ) ( )
[ , ]
f x f x
f x x
x x



The second divided difference for the arguments 0x , 1x and 2x is denoted by 0 1 2( , , )f x x x or 2
( )f x and defined as,
0 1 1 2
0 1 2
0 2
( , ) ( , )
( , , )
f x x f x x
f x x x
x x



The third divided difference for the arguments 0x , 1x , 2x and 3x is denoted by 0 1 2 3( , , , )f x x x x or 3
( )f x and defined as,
0 1 2 1 2 3
0 1 2 3
0 3
( , , ) ( , , )
( , , , )
f x x x f x x x
f x x x x
x x



Similarly, the nth divided difference for the arguments 0x , 1x , 2x , , nx  is denoted by 0 1 2( , , , , )nf x x x x  or
( )n
f x and defined as,
0 1 1 1 2
0 1 2
0
( , , , ) ( , , , )
( , , , , ) n n
n
n
f x x x f x x x
f x x x x
x x
 


   
 
Divided Difference Table
x ( )f x  2
 3

0x
1x
2x
3x
0( )f x
1( )f x
2( )f x
3( )f x
0 1( , )f x x
1 2( , )f x x
2 3( , )f x x
0 1 2( , , )f x x x
1 2 3( , , )f x x x
0 1 2 3( , , , )f x x x x
Properties of Divided Differences: The properties are given as follows:
1) The divided differences are symmetric. 0 1 1 0. , ( , ) ( , )i e f x x f x x .
2) The nth divided differences of a polynomial of the nth degree are constant.
3) The nth divided differences can be expressed as the quotient of two determinants each of order ( 1)n  .
I). Newton’s Interpolation formula for unequal intervals: Let ( )y f x be a polynomial which gives 0( )f x , 1( )f x ,
2( )f x , , ( )nf x  at the points 0x , 1x , 2x , , nx  (which are not equally spaced)respectively. Then the first divided
difference for the arguments x and 0x is given by,
0
0
0
( ) ( )
( , )
f x f x
f x x
x x



0 0 0, ( ) ( ) ( ) ( , ) (1)or f x f x x x f x x    
The second divided difference for the arguments x , 0x and 1x is given by,
0 0 1
0 1
1
( , ) ( , )
( , , )
f x x f x x
f x x x
x x



0 0 1 1 0 1, ( , ) ( , ) ( ) ( , , ) (2)or f x x f x x x x f x x x    
 
 
The third divided difference for the arguments x , 0x
, 1x and 2x is given by,
0 1 0 1 2
0 1 2
2
( , , ) ( , , )
( , , , )
f x x x f x x x
f x x x x
x x



0 1 0 1 2 2 0 1 2, ( , , ) ( , , ) ( ) ( , , , ) (3)or f x x x f x x x x x f x x x x    
The nth divided difference for the arguments x , 0x , 1x , , nx  is given by,
0 1 1 0 1 0 1 1( , , , , ) ( , , , ) ( ) ( , , , , ) (4)n n n nf x x x x f x x x x x f x x x x          
Multiplying Eq.(2) by 0( )x x , Eq.(3) by 0( )x x 1( )x x and so on and finally the Eq. (4) by 0( )x x 1( )x x
1( )nx x   and adding with Eq.(1) we get,
0 0 0 1 0 1 0 1 2 0 1 2 0 1 2 3( ) ( ) ( ) ( , ) ( )( ) ( , , ) ( )( )( ) ( , , , )f x f x x x f x x x x x x f x x x x x x x x x f x x x x         
0 1 2 1 0 1 2( )( )( ) ( ) ( , , , ) (5)n n nx x x x x x x x f x x x x R            
where 0 1 2 0 1 2( )( )( ) ( ) ( , , , , )n n nR x x x x x x x x f x x x x x       
If ( )f x be a polynomial of degree n, then the ( 1)n  th divided difference of ( )f x will be zero.
0 1( , , , , ) 0nf x x x x  
Then the Eq. (5) can be written as,
0 0 0 1 0 1 0 1 2 0 1 2 0 1 2 3( ) ( ) ( ) ( , ) ( )( ) ( , , ) ( )( )( ) ( , , , )f x f x x x f x x x x x x f x x x x x x x x x f x x x x         
0 1 2 1 0 1 2( )( )( ) ( ) ( , , , ) (6)n nx x x x x x x x f x x x x           
This formula is called Newton’s divided difference interpolation formula for unequal intervals.
II). Lagrange’s Interpolation formula for unequal intervals: Let ( )y f x be a polynomial of degree n which gives
0( )f x , 1( )f x , 2( )f x , , ( )nf x  at the points 0x , 1x , 2x , , nx  (which are not equally spaced)respectively. This
polynomial can be written as,
0 1 2 1 0 2 2 0 1( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )n n nf x a x x x x x x a x x x x x x a x x x x x x             
0 1 1( )( ) ( ) (1)n na x x x x x x        
putting 0x x in Eq.(1) we get,
0 0 0 1 0 2 0( ) ( )( ) ( )nf x a x x x x x x   
0
0
0 1 0 2 0
( )
,
( )( ) ( )n
f x
or a
x x x x x x

   
putting 1x x in Eq.(1) we get,
1 1 1 0 1 2 1( ) ( )( ) ( )nf x a x x x x x x   
1
1
1 0 1 2 1
( )
,
( )( ) ( )n
f x
or a
x x x x x x

   
Similarly putting 2 ,x x 3x x , nx x in Eq.(1) we get,
2
2
2 0 2 1 2
( )
( )( ) ( )n
f x
a
x x x x x x

  
   
0 1 1
( )
( )( ) ( )
n
n
n n n n
f x
a
x x x x x x 

   
Substituting the values of 0 1 2, , , , na a a a in Eq.(1) we get,
1 2 0 2 0 1
0 1 2
0 1 0 2 0 1 0 1 2 1 2 0 2 1 2
( )( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )
( )( ) ( ) ( )( ) ( ) ( )( ) ( )
n n n
n n n
x x x x x x x x x x x x x x x x x x
f x f x f x f x
x x x x x x x x x x x x x x x x x x
        
  
        
  
  
0 1 1
0 1 1
( )( ) ( )
( ) (2)
( )( ) ( )
n
n
n n n n
x x x x x x
f x
x x x x x x


  

  
 
  
 
This formula is called Lagrange’s interpolation formula for unequal intervals.
 
 
NOTE: The calculation is more complicated in Lagrange’s formula than Newton’s formula. The application of the
formula is not speedy and there is always a chance of committing some error due to the number of positive and negative
signs in the numerator and denominator of each term.
Comparisons between Lagrange and Newton Interpolation:
1). The Lagrange and Newton interpolating formulas provide two different forms for an interpolating polynomial,
even though the interpolating polynomial is unique.
2). Lagrange method is numerically unstable but Newton's method is usually numerically stable and computationally
efficient.
3). Newton formula is much better for computation than the Lagrange formula.
4). Lagrange form is most often used for deriving formulas for approximating derivatives and integrals
5). Lagrange's form is more efficient then the Newton's formula when you have to interpolate several data sets on the
same data points.
Problem-01: Using Newton’s divided difference estimate (8) & (15)f f from the following table.
x 4 5 7 10 11 13
( )f x 48 100 294 900 1210 2028
Solution: The divided difference table is as follows:
x ( )f x ( )f x 2
( )f x 3
( )f x 4
( )f x
4
5
7
10
11
13
48
100
294
900
1210
2028
100 48
52
5 4



294 100
97
7 5



900 294
202
10 7



1210 900
310
11 10



2028 1210
409
13 11



97 52
15
7 4



202 97
21
10 5



310 202
27
11 7



409 310
33
13 10



21 15
1
10 4



27 21
1
11 5



33 27
1
13 7



0
0
Here, 0 1 2 3 4 54, 5, 7, 10, 11, 13x x x x x x     
0 0 1 0 1 2 0 1 2 3( ) 48, ( , ) 52, ( , , ) 15, ( , , , ) 1f x f x x f x x x f x x x x   
By Newton’s divided difference formula we get,
0 0 0 1 0 1 0 1 2 0 1 2 0 1 2 3( ) ( ) ( ) ( , ) ( )( ) ( , , ) ( )( )( ) ( , , , )f x f x x x f x x x x x x f x x x x x x x x x f x x x x         
0 1 2 1 0 1 2( )( )( ) ( ) ( , , , )n nx x x x x x x x f x x x x         
48 ( 4) 52 ( 4)( 5) 15 ( 4)( 5)( 7) 1x x x x x x            
2 3 2
48 52 208 15 135 300 16 83 140x x x x x x         
3 2
( )f x x x  
Now 3 2
(8) 8 8 512 64 448 ( .)f Ans    
And 3 2
(15) (15) (15) 3375 225 3150 ( .)f Ans    
 
 
Problem-02: Using Newton’s divided difference estimate ( )f x from the following table.
x -1 0 2 3 4
( )f x -16 -7 -1 8 29
Solution: The divided difference table is as follows:
x ( )f x ( )f x 2
( )f x 3
( )f x 4
( )f x
-1
0
2
3
4
-16
-7
-1
8
29
7 16
9
0 1
 


1 7
3
2 0
 


8 1
9
3 1



29 8
21
4 3



3 9
2
2 1

 

9 3
2
3 0



21 9
6
4 2



2 2
1
3 1



6 2
1
4 0



0
Here, 0 1 2 3 41, 0, 2, 3, 4x x x x x     
0 0 1 0 1 2 0 1 2 3( ) 16, ( , ) 9, ( , , ) 2, ( , , , ) 1f x f x x f x x x f x x x x     
By Newton’s divided difference formula we get,
0 0 0 1 0 1 0 1 2 0 1 2 0 1 2 3( ) ( ) ( ) ( , ) ( )( ) ( , , ) ( )( )( ) ( , , , )f x f x x x f x x x x x x f x x x x x x x x x f x x x x         
0 1 2 1 0 1 2( )( )( ) ( ) ( , , , )n nx x x x x x x x f x x x x         
16 ( 1) 9 ( 1) ( 2) ( 1)( 2) 1x x x x x x            
2 3 2 2
16 9 9 2 2 2 2x x x x x x x         
 3 2
( ) 3 5 7 .f x x x x Ans    
Problem-03: Using Lagrange’s formula estimate ( )f x from the following table.
x 0 1 2 5
( )f x 2 3 12 147
Solution: Here, 0 1 2 30, 1, 2, 5x x x x   
0 1 2 3( ) 2, ( ) 3, ( ) 12, ( ) 147f x f x f x f x   
By Lagrange’s formula we get,
1 2 0 2 0 1
0 1 2
0 1 0 2 0 1 0 1 2 1 2 0 2 1 2
( )( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )
( )( ) ( ) ( )( ) ( ) ( )( ) ( )
n n n
n n n
x x x x x x x x x x x x x x x x x x
f x f x f x f x
x x x x x x x x x x x x x x x x x x
        
  
        
  
  
0 1 1
0 1 1
( )( ) ( )
( )
( )( ) ( )
n
n
n n n n
x x x x x x
f x
x x x x x x


  

  
 
 
 
       
( 1)( 2)( 5) ( 0)( 2)( 5) ( 0)( 1)( 5) ( 0)( 1)( 2)
2 3 12 147
(0 1)(0 2)(0 5) (1 0)(1 2) (1 5) (2 0)(2 1)(2 5) (5 0)(5 1)(5 2)
x x x x x x x x x x x x           
       
                       
       
3 2 3 2 3 2 3 2
8 17 10 7 10 6 5 3 2
2 3 12 147
10 4 6 60
x x x x x x x x x x x x        
       
   
       
3 2 3 2 3 2
3 28 17 10 3 21 30 49 147 98
2 12 10
5 4 20
x x x x x x x x x
x x x
       
     
 
 
 
3 2 3 2 3 2 3 21
( 4 32 68 40 15 105 150 2 12 10 49 147 98 )
20
x x x x x x x x x x x x             
3 21
(20 20 20 40)
20
x x x   
3 2
2x x x   
 3 2
( ) 2 .f x x x x Ans    
Problem-04: Using Lagrange’s formula estimate (10)f from the following table.
x 5 6 9 11
( )f x 12 13 14 16
Solution: Here, 0 1 2 35, 6, 9, 11 & 10x x x x x    
0 1 2 3( ) 12, ( ) 13, ( ) 14, ( ) 16f x f x f x f x   
By Lagrange’s formula we get,
1 2 0 2 0 1
0 1 2
0 1 0 2 0 1 0 1 2 1 2 0 2 1 2
( )( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )
( )( ) ( ) ( )( ) ( ) ( )( ) ( )
n n n
n n n
x x x x x x x x x x x x x x x x x x
f x f x f x f x
x x x x x x x x x x x x x x x x x x
        
  
        
  
  
0 1 1
0 1 1
( )( ) ( )
( )
( )( ) ( )
n
n
n n n n
x x x x x x
f x
x x x x x x


  

  
 
 
 
       
(10 6)(10 9)(10 11) (10 5)(10 9)(10 11) (10 5)(10 6)(10 11) (10 5)(10 6)(10 9)
12 13 14 16
(5 6)(5 9)(5 11) (6 5)(6 9)(6 11) (9 5)(9 6)(5 11) (11 5)(11 6)(11 9)
           
       
                  
       
4 5 20 20
12 13 14 16
24 15 24 60
  
       
   
2 4.333 11.667 5.333   
14.667 ( .)Ans
Problem-05: Using Lagrange’s formula estimate 3 55 from the following table.
x 50 52 54 56
3
( )f x x 3.684 3.732 3.779 3.825
Solution: Here, 0 1 2 350, 52, 54, 56 & 55x x x x x    
0 1 2 3( ) 3.684, ( ) 3.732, ( ) 3.779, ( ) 3.825f x f x f x f x   
By Lagrange’s formula we get,
1 2 0 2 0 1
0 1 2
0 1 0 2 0 1 0 1 2 1 2 0 2 1 2
( )( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )
( )( ) ( ) ( )( ) ( ) ( )( ) ( )
n n n
n n n
x x x x x x x x x x x x x x x x x x
f x f x f x f x
x x x x x x x x x x x x x x x x x x
        
  
        
  
  
0 1 1
0 1 1
( )( ) ( )
( )
( )( ) ( )
n
n
n n n n
x x x x x x
f x
x x x x x x


  

  
 
 
 
        
(55 52)(55 54)(55 56) (55 50)(55 54)(55 56) (55 50)(55 52)(55 56) (55 50)(55 52)(55 54)
3.684 3.732 3.779 3.825
(50 52)(50 54)(50 56) (52 50)(52 54)(52 56) (54 50)(54 52)(54 56) (56 50)(56 52)(56 54)
           
       
                 
        
3 5 15 15
3.684 3.732 3.779 3.825
48 16 16 48
  
       
  
0.23025 1.16625 3.5428125 1.1953125    
3.341625 ( .)Ans
 
 
Exercise:
Problem-01: Using Lagrange’s formula estimate 0
sin39 from the following table.
x 0 10 20 30 40
( ) sinf x x 0 1.1736 0.3420 0.5000 0.6428
Problem-02: Using Lagrange’s formula estimate log5.15 from the following table.
x 5.1 5.2 5.3 5.4 5.5
( ) logf x x 0.7076 0.7160 0.7243 0.7324 0.7404
Problem-03: The following table gives the sales of a concern for the five years. Using Lagrange’s formula estimate the
sales for the years1986 &1992 .
Year 1985 1987 1989 1991 1993
Sales 40 43 48 52 57
Problem-04: Using Lagrange’s formula estimate 151 from the following table.
x 150 152 154 156
( )f x x 12.247 12.329 12.410 12.490
Problem-05: Using Lagrange’s formula estimate tan(0.15) from the following table.
x 0.10 0.13 0.20 0.22 0.30
( ) tanf x x 0.1003 0.1307 0.2027 0.2236 0.3093
Problem-06: Using Newton’s divided difference formula estimate (8)f from the following table.
x 4 5 7 10 11
( )f x 48 100 294 900 1210
Problem-07: Using Newton’s divided difference formula estimate ( )f x from the following table.
x 0 1 4 5
( )f x 8 11 68 123
Problem-08: Using Newton’s divided difference formula estimate ( )f x in powers of ( 5)x  from the following table.
x 0 2 3 4 7 9
( )f x 4 26 58 112 466 922
Problem-09: Using Newton’s divided difference formula estimate (6)f from the following table.
x 5 7 11 13 21
( )f x 150 392 1452 2366 9702
Problem-010: Using Newton’s divided difference formula estimate tan(0.12) from the following table.
x 0.10 0.13 0.20 0.22 0.30
( ) tanf x x 0.1003 0.1307 0.2027 0.2236 0.3093

More Related Content

What's hot

Unit 1: Topological spaces (its definition and definition of open sets)
Unit 1:  Topological spaces (its definition and definition of open sets)Unit 1:  Topological spaces (its definition and definition of open sets)
Unit 1: Topological spaces (its definition and definition of open sets)nasserfuzt
 
Fourier integral of Fourier series
Fourier integral of Fourier seriesFourier integral of Fourier series
Fourier integral of Fourier seriesChintan Mehta
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IV
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IVEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-IV
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IVRai University
 
Succesive differntiation
Succesive differntiationSuccesive differntiation
Succesive differntiationJaydevVadachhak
 
Newton Forward Difference Interpolation Method
Newton Forward Difference Interpolation MethodNewton Forward Difference Interpolation Method
Newton Forward Difference Interpolation MethodAdeel Rasheed
 
Numerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNumerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNikolai Priezjev
 
Cubic Spline Interpolation
Cubic Spline InterpolationCubic Spline Interpolation
Cubic Spline InterpolationVARUN KUMAR
 
L19 increasing & decreasing functions
L19 increasing & decreasing functionsL19 increasing & decreasing functions
L19 increasing & decreasing functionsJames Tagara
 
Study Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential EquationsStudy Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential EquationsMeenakshisundaram N
 
Root test and Ratio test
Root test and Ratio testRoot test and Ratio test
Root test and Ratio testDhrumil Panchal
 
Spline Interpolation
Spline InterpolationSpline Interpolation
Spline InterpolationaiQUANT
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differencesDr. Nirav Vyas
 
Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2Asad Ali
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1Pokkarn Narkhede
 
Volume of solid of revolution
Volume of solid of revolutionVolume of solid of revolution
Volume of solid of revolutionKushal Gohel
 

What's hot (20)

Unit 1: Topological spaces (its definition and definition of open sets)
Unit 1:  Topological spaces (its definition and definition of open sets)Unit 1:  Topological spaces (its definition and definition of open sets)
Unit 1: Topological spaces (its definition and definition of open sets)
 
Fourier integral of Fourier series
Fourier integral of Fourier seriesFourier integral of Fourier series
Fourier integral of Fourier series
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IV
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IVEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-IV
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IV
 
Succesive differntiation
Succesive differntiationSuccesive differntiation
Succesive differntiation
 
INTERPOLATION
INTERPOLATIONINTERPOLATION
INTERPOLATION
 
Newton Forward Difference Interpolation Method
Newton Forward Difference Interpolation MethodNewton Forward Difference Interpolation Method
Newton Forward Difference Interpolation Method
 
Numerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNumerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolation
 
Cubic Spline Interpolation
Cubic Spline InterpolationCubic Spline Interpolation
Cubic Spline Interpolation
 
Complex variables
Complex variablesComplex variables
Complex variables
 
L19 increasing & decreasing functions
L19 increasing & decreasing functionsL19 increasing & decreasing functions
L19 increasing & decreasing functions
 
Study Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential EquationsStudy Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential Equations
 
Numerical analysis ppt
Numerical analysis pptNumerical analysis ppt
Numerical analysis ppt
 
Root test and Ratio test
Root test and Ratio testRoot test and Ratio test
Root test and Ratio test
 
Spline Interpolation
Spline InterpolationSpline Interpolation
Spline Interpolation
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differences
 
Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2
 
P1 . norm vector space
P1 . norm vector spaceP1 . norm vector space
P1 . norm vector space
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1
 
Volume of solid of revolution
Volume of solid of revolutionVolume of solid of revolution
Volume of solid of revolution
 
Power series
Power seriesPower series
Power series
 

Viewers also liked

Interpolation 2013
Interpolation 2013Interpolation 2013
Interpolation 2013Atiqa khan
 
Spatial interpolation techniques
Spatial interpolation techniquesSpatial interpolation techniques
Spatial interpolation techniquesManisha Shrivastava
 
08 interpolation lagrange
08 interpolation   lagrange08 interpolation   lagrange
08 interpolation lagrangeMohammad Tawfik
 
Applied numerical methods lec9
Applied numerical methods lec9Applied numerical methods lec9
Applied numerical methods lec9Yasser Ahmed
 
معادلة لاغرانج
معادلة لاغرانجمعادلة لاغرانج
معادلة لاغرانجaleen_21
 
Lagrange's Theorem
Lagrange's TheoremLagrange's Theorem
Lagrange's Theoremjohn1129
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functionsTarun Gehlot
 
Numerical integration
Numerical integrationNumerical integration
Numerical integrationMohammed_AQ
 
Numerical integration
Numerical integrationNumerical integration
Numerical integrationSunny Chauhan
 
Interpolation
InterpolationInterpolation
Interpolationmbhuiya6
 
interpolation
interpolationinterpolation
interpolation8laddu8
 
Interpolation Generalized
Interpolation GeneralizedInterpolation Generalized
Interpolation GeneralizedMohammad Tawfik
 

Viewers also liked (20)

Es272 ch5b
Es272 ch5bEs272 ch5b
Es272 ch5b
 
Interpolation 2013
Interpolation 2013Interpolation 2013
Interpolation 2013
 
Extrapolation
ExtrapolationExtrapolation
Extrapolation
 
Spatial interpolation techniques
Spatial interpolation techniquesSpatial interpolation techniques
Spatial interpolation techniques
 
08 interpolation lagrange
08 interpolation   lagrange08 interpolation   lagrange
08 interpolation lagrange
 
Presentation2
Presentation2Presentation2
Presentation2
 
Applied numerical methods lec9
Applied numerical methods lec9Applied numerical methods lec9
Applied numerical methods lec9
 
Interpolation
InterpolationInterpolation
Interpolation
 
معادلة لاغرانج
معادلة لاغرانجمعادلة لاغرانج
معادلة لاغرانج
 
Lagrange’s interpolation formula
Lagrange’s interpolation formulaLagrange’s interpolation formula
Lagrange’s interpolation formula
 
Lagrange's Theorem
Lagrange's TheoremLagrange's Theorem
Lagrange's Theorem
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functions
 
Numerical Integration
Numerical IntegrationNumerical Integration
Numerical Integration
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Interpolation
InterpolationInterpolation
Interpolation
 
interpolation
interpolationinterpolation
interpolation
 
Interpolation Generalized
Interpolation GeneralizedInterpolation Generalized
Interpolation Generalized
 
Interpolation Methods
Interpolation MethodsInterpolation Methods
Interpolation Methods
 
Numerical method
Numerical methodNumerical method
Numerical method
 

Similar to Finite difference & interpolation

Perspectives and application of fuzzy initial value problems
Perspectives and application of fuzzy initial value problemsPerspectives and application of fuzzy initial value problems
Perspectives and application of fuzzy initial value problemsRAJKRISHNA MONDAL
 
Perspectives and application of fuzzy initial value problems
Perspectives and application of fuzzy initial value problemsPerspectives and application of fuzzy initial value problems
Perspectives and application of fuzzy initial value problemsRAJKRISHNA MONDAL
 
Numerical treatments to nonlocal Fredholm –Volterra integral equation with co...
Numerical treatments to nonlocal Fredholm –Volterra integral equation with co...Numerical treatments to nonlocal Fredholm –Volterra integral equation with co...
Numerical treatments to nonlocal Fredholm –Volterra integral equation with co...iosrjce
 
About testing the hypothesis of equality of two bernoulli
About testing the hypothesis of equality of two bernoulliAbout testing the hypothesis of equality of two bernoulli
About testing the hypothesis of equality of two bernoulliAlexander Decker
 
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...IOSRJM
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)inventionjournals
 
Common Fixed Theorems Using Random Implicit Iterative Schemes
Common Fixed Theorems Using Random Implicit Iterative SchemesCommon Fixed Theorems Using Random Implicit Iterative Schemes
Common Fixed Theorems Using Random Implicit Iterative Schemesinventy
 
Amity university sem ii applied mathematics ii lecturer notes
Amity university sem ii applied mathematics ii lecturer notesAmity university sem ii applied mathematics ii lecturer notes
Amity university sem ii applied mathematics ii lecturer notesAlbert Jose
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...ieijjournal
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...ieijjournal
 
On Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their ApplicationsOn Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their ApplicationsIJERA Editor
 
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable CoefficientsDecay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable CoefficientsEditor IJCATR
 

Similar to Finite difference & interpolation (20)

Perspectives and application of fuzzy initial value problems
Perspectives and application of fuzzy initial value problemsPerspectives and application of fuzzy initial value problems
Perspectives and application of fuzzy initial value problems
 
Perspectives and application of fuzzy initial value problems
Perspectives and application of fuzzy initial value problemsPerspectives and application of fuzzy initial value problems
Perspectives and application of fuzzy initial value problems
 
E028047054
E028047054E028047054
E028047054
 
The scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equationsThe scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equations
 
Numerical treatments to nonlocal Fredholm –Volterra integral equation with co...
Numerical treatments to nonlocal Fredholm –Volterra integral equation with co...Numerical treatments to nonlocal Fredholm –Volterra integral equation with co...
Numerical treatments to nonlocal Fredholm –Volterra integral equation with co...
 
About testing the hypothesis of equality of two bernoulli
About testing the hypothesis of equality of two bernoulliAbout testing the hypothesis of equality of two bernoulli
About testing the hypothesis of equality of two bernoulli
 
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
Common Fixed Theorems Using Random Implicit Iterative Schemes
Common Fixed Theorems Using Random Implicit Iterative SchemesCommon Fixed Theorems Using Random Implicit Iterative Schemes
Common Fixed Theorems Using Random Implicit Iterative Schemes
 
Amity university sem ii applied mathematics ii lecturer notes
Amity university sem ii applied mathematics ii lecturer notesAmity university sem ii applied mathematics ii lecturer notes
Amity university sem ii applied mathematics ii lecturer notes
 
Maths digital text
Maths digital textMaths digital text
Maths digital text
 
A04 07 0105
A04 07 0105A04 07 0105
A04 07 0105
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
A02402001011
A02402001011A02402001011
A02402001011
 
Algebra
AlgebraAlgebra
Algebra
 
On Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their ApplicationsOn Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their Applications
 
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable CoefficientsDecay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
 
Chs4
Chs4Chs4
Chs4
 
B02404014
B02404014B02404014
B02404014
 

More from Daffodil International University (20)

Bresenham algorithm
Bresenham algorithmBresenham algorithm
Bresenham algorithm
 
Tic Tac Toe
Tic Tac ToeTic Tac Toe
Tic Tac Toe
 
The Waterfall Model & RAD MODEL
 The Waterfall Model &  RAD MODEL The Waterfall Model &  RAD MODEL
The Waterfall Model & RAD MODEL
 
Reinforcement learning
Reinforcement learningReinforcement learning
Reinforcement learning
 
online marketing
online marketingonline marketing
online marketing
 
normalization
normalizationnormalization
normalization
 
Bioinformatics lesson
Bioinformatics lessonBioinformatics lesson
Bioinformatics lesson
 
Blasta
BlastaBlasta
Blasta
 
Bioinformatics lesson
Bioinformatics lessonBioinformatics lesson
Bioinformatics lesson
 
Liver
LiverLiver
Liver
 
Numerical methods
Numerical methodsNumerical methods
Numerical methods
 
stack in assembally language
stack in assembally languagestack in assembally language
stack in assembally language
 
OSI Model
OSI ModelOSI Model
OSI Model
 
Topology
TopologyTopology
Topology
 
Complex number
Complex numberComplex number
Complex number
 
Ahsan Manzil
Ahsan Manzil Ahsan Manzil
Ahsan Manzil
 
Big data
Big dataBig data
Big data
 
Search
SearchSearch
Search
 
Encoders
EncodersEncoders
Encoders
 
Applications of numerical methods
Applications of numerical methodsApplications of numerical methods
Applications of numerical methods
 

Recently uploaded

Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
 

Recently uploaded (20)

Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
 

Finite difference & interpolation

  • 1.     Finite Differences In this chapter we shall discuss about several difference operators such as forward difference operator, backward difference operator, central difference operator, shifting operator etc. Forward difference operator: The operator  is called forward difference operator and defined as, 1 1r r ry y y    where ; 0,1,2, ... ... ...,ry r n are values of y . Backward difference operator: The operator  is called backward difference operator and defined as, 1r r ry y y    where ; 0,1,2, ... ... ...,ry r n are values of y . Central difference operator: The operator  is called central difference operator and defined as, (2 1) 1 2 r r ry y y    where ; 0,1,2, ... ... ...,ry r n are values of y . Shifting operator: The operator E is called shifting operator and defined as, 1r rEy y  where ; 0,1,2, ... ... ...,ry r n are values of y . Which shows that the effect of E is to shift the functional value of y to it’s next higher value. Averaging operator: The operator  is called averaging operator and defined as, (2 1) (2 1) 2 2 1 2 r r ry y y         where ; 0,1,2, ... ... ...,ry r n are values of y . Differential operator: The operator D is called differential operator and defined as,  r r d Dy y dx  Where ; 0,1,2, ... ... ...,ry r n are values of y . Unit operator: The unit operator 1 is defined by, 1. r ry y where ; 0,1,2, ... ... ...,ry r n are values of y . Forward Differences: If 0 1 2, , , , ny y y y   denote a set of values of y , then 1 0 2 1, ,y y y y  3 2 1, , n ny y y y     are called the differences of y . If these differences are denoted as follows, 0 1 0y y y   1 2 1y y y       1 1n n ny y y    where  is called the forward difference operator and 0 1 1, , , ny y y     are called first forward differences. The second forward differences are, 2 0 1 0y y y     2 1 2 1y y y          2 1 1n n ny y y      Similarly, we can determine kth forward differences. 1 1 1 1. , k k k n n ni e y y y       
  • 2.     Forward Difference Table Backward Differences: If 0 1 2, , , , ny y y y   denote a set of values of y , then 1 0 2 1, ,y y y y  3 2 1, , n ny y y y     are called the differences of y . If these differences are denoted as follows, 1 1 0y y y   2 2 1y y y       1n n ny y y    where  is called the backward difference operator and 1 2, , , ny y y    are called first backward differences. The second backward differences are, 2 1 1 0y y y     2 2 2 1y y y         2 1n n ny y y      Similarly, we can determine kth backward differences. 1 1 1. , k k k n n ni e y y y       Backward Difference Table x y  2  3  4  5  0x 1x 2x 3x 4x 5x 0y 1y 2y 3y 4y 5y 0y 1y 2y 3y 4y 2 0y 2 1y 2 2y 2 3y 3 0y 3 1y 3 2y 4 0y 4 1y 5 0y x y  2  3  4  5  0x 1x 2x 3x 4x 5x 0y 1y 2y 3y 4y 5y 1y 2y 3y 4y 5y 2 2y 2 3y 2 4y 2 5y 3 3y 3 4y 3 5y 4 4y 4 5y 5 5y
  • 3.     Central Differences: If 0 1 2, , , , ny y y y   denote a set of values of y , then 1 0 2 1, ,y y y y  3 2 1, , n ny y y y     are called the differences of y . If these differences are denoted as follows, 1 1 0 2 y y y   3 2 1 2 y y y       (2 1) 1 2 n n ny y y    Where  is called the central difference operator and 1 3 (2 1) 2 2 2 , , , ny y y     are called first central differences. The second central differences are, 2 1 3 1 22 y y y    2 2 5 3 2 2 y y y         2 (2 1) (2 1) 2 2 n n ny y y     Similarly, we can determine kth central differences. 1 1 (2 1) (2 1) 2 2 . , k k k n n ni e y y y       Central Difference Table x y  2  3  4  5  0x 1x 2x 3x 4x 5x 0y 1y 2y 3y 4y 5y 1 2 y 3 2 y 5 2 y 7 2 y 9 2 y 2 1y 2 2y 2 3y 2 4y 3 3 2 y 3 5 2 y 3 7 2 y 4 2y 4 3y 5 5 2 y
  • 4.     Interpolation Interpolation is a numerical technique which is used to estimate unknown values of a function by using known values. For example, If we are to find out the population of Bangladesh in 1978 when we know the population of Bangladesh in the year 1971, 1975, 1979, 1984, 1988, 1992 and so on, then the process of finding the population of 1978 is known as interpolation. Mathematically, let ( )y f x be a function which gives 0 1 2, , , , ny y y y  for 0 1 2, , , , nx x x x  respectively. The method of finding ( )f x for x  where  lies in the given range is called an interpolation and if  lies outside the given range is called an extrapolation. Assumption for interpolation: For the application of the methods of interpolation, the following fundamental assumptions are required. a) In the interval under consideration, the values of the function cannot be jumped or fallen down suddenly. b) In the absence of any evidence to the contrary, the rise and fall in the values of the function must be uniform. c) The data can be expressed as a polynomial function so that the method of finite difference be applicable. Methods of interpolation: The various methods of interpolation are as follows: a) Method of graph b) Method of curve fitting c) Method for finite differences. In this chapter we shall discuss only interpolation formulae for finite differences. These formulae can be separated as follows: a) Interpolation formulae for equal intervals b) Interpolation formulae for unequal intervals c) Interpolation formulae for central difference. Interpolation formulae for equal intervals: The interpolation formulae for equal intervals are given bellow: I. Newton’s forward interpolation formula: Suppose, 0 0 1 1 2 2( , ),( , ),( , ), , ( , )n nx y x y x y x y   be a set of ( 1)n  values of x and y . Let the values of x be equidistant, 0. , ; 0,1,2, ,ri e x x rh r n     where h is difference between the points. Let ( )ny x be a polynomial of nth degree such that y and ( )ny x agree at the tabulated points, which is to be determined. It can be written as, 0 1 0 2 0 1 0 1 1( ) ( ) ( )( ) ( )( ) ( ) (1)n n ny x a a x x a x x x x a x x x x x x                where the constants 0a , 1a , 2a , … … , na can be determine as follows: Putting 0x x in Eq.(1) we have, 0 0a y Putting 1x x in Eq.(1) we have, 1 0 1 1 0( )y a a x x   1 0 1,or y y a h  1 0 1, y y or a h   0 1 y a h    Putting 2x x in Eq.(1) we have, 2 0 1 2 0 2 2 0 2 1( ) ( )( )y a a x x a x x x x      0 2 0 2, (2 ) (2 )( ) y or y y h a h h h    
  • 5.     2 2 0 1 0 2, 2( ) 2or y y y y a h    2 2 1 0 2, 2 2or y y y a h   2 1 0 2 2 2 , 2 y y y or a h    2 1 1 0 2 2 ( ) ( ) , 2 y y y y or a h     1 0 2 2 , 2 y y or a h     2 0 2 2 2! y a h    Similarly, 3 0 3 3 3! y a h   4 0 4 4 4! y a h      0 ! n n n y a n h   Using these values in Eq.(1) we have, 2 0 0 0 0 0 0 1 0 1 12 ( ) ( ) ( )( ) ( )( ) ( ) (2) 2! ! n n nn y y y y x y x x x x x x x x x x x x h h n h                    Setting 0x x ph  we have, 0x x ph  1 0 1 0x x x x x x     0 1 0( ) ( )x x x x    ph h  ( 1)p h  Similarly, 2 ( 2)x x p h   3 ( 3)x x p h        1 ( 1)nx x p n h    Equation (2) becomes, 2 3 0 0 0 0 0 ( 1) ( 1)( 2) ( 1) ( 1) ( ) (3) 2! 3! ! n n p p p p p p p p n y x y p y y y y n                     This is called Newton’s forward interpolation formula. Note: Newton’s forward interpolation formula is used to interpolate the values of y near the beginning of a set of tabular values.
  • 6.     II. Newton’s backward interpolation formula: Suppose, 0 0 1 1 2 2( , ),( , ),( , ), , ( , )n nx y x y x y x y   be a set of ( 1)n  values of x and y . Let the values of x be equidistant, 0. , ; 0,1,2, ,ri e x x rh r n     where h is difference between the points. Let ( )ny x be a polynomial of nth degree such that y and ( )ny x agree at the tabulated points, which is to be determined. It can be written as, 0 1 2 1 1 0( ) ( ) ( )( ) ( )( ) ( ) (1)n n n n n n ny x a a x x a x x x x a x x x x x x                where the constants 0a , 1a , 2a , … … , na can be determine as follows: Putting nx x in Eq.(1) we have, 0 na y Putting 1nx x  in Eq.(1) we have, 1 1 1( )n n n ny y a x x    1 1, ( )n nor y y a h    1 1, n ny y or a h   1 ny a h    Putting 2nx x  in Eq.(1) we have, 2 0 1 2 2 2 2 1( ) ( )( )n n n n n n ny a a x x a x x x x          2 2, ( 2 ) ( 2 )( )n n n y or y y h a h h h         2 2 1 2, 2( ) 2n n n nor y y y y a h     2 2 1 2, 2 2n n nor y y y a h     1 2 2 2 2 , 2 n n ny y y or a h     1 1 2 2 2 ( ) ( ) , 2 n n n ny y y y or a h       1 2 2 , 2 n ny y or a h     2 2 2 2! ny a h    Similarly, 3 3 3 3! ny a h   4 4 4 4! ny a h      ! n n n n y a n h   Using these values in Eq.(1) we have, 2 1 1 12 ( ) ( ) ( )( ) ( )( ) ( ) (2) 2! ! n n n n n n n n n n nn y y y y x y x x x x x x x x x x x x h h n h                     Setting nx x ph  we have,
  • 7.     nx x ph  1 1n n n nx x x x x x      1( ) ( )n n nx x x x     ph h  ( 1)p h  Similarly, 2 ( 2)nx x p h   3 ( 3)nx x p h        1 ( 1)x x p n h    Equation (2) becomes, 2 3( 1) ( 1)( 2) ( 1) ( 1) ( ) (3) 2! 3! ! n n n n n n n p p p p p p p p n y x y p y y y y n                     This is called Newton’s backward interpolation formula. Note: Newton’s backward interpolation formula is used to interpolate the values of y near the end of a set of tabular values. Problem-01: Construct a difference table to find the polynomial of the data      1,1 , 2,8 , 3,27 ,      4,64 , 5,125 ,(6,216) 7,343 ,(8,512)considering appropriate method. Also find r , where (9, )r is given. Solution: We may construct any one of forward, backward and central difference tables. Since we also have to find r for 9x  which is nearer at the end of the set of given tabular values, so we will construct the backward difference table. The backward difference table of the given data is as follows: x y  2  3  4  1 2 3 4 5 6 7 8 1 8 27 64 125 216 343 512 7 19 37 61 91 127 169 12 18 24 30 36 42 6 6 6 6 6 0 0 0 0 This is the required difference table. Here 2 3 4 8, 1, 512, 169, 42, 6, 0.n n n n n nx h y y y y y           8 ( 8) 1 nx x x p x h        By Newton’s backward formula we get, 2 3( 1) ( 1)( 2) ( 1) ( 1) ( ) 2! 3! ! n n n n n n p p p p p p p p n y x y p y y y y n                    ( 8)( 8 1) ( 8)( 8 1)( 8 2) 512 169( 8) 42 6 2! 3! x x x x x x                2 3 2 512 169 1352 21 315 1176 21 146 336x x x x x x          3 x This is the required polynomial.
  • 8.     2nd part: For 9x  we get, 3 (9) 9y  729r  (Ans.) Problem-02: From the following table of yearly premiums for policies maturing at quinquennial ages, estimate the premiums foe policies maturing at the age of 46 years. Age(x) 45 50 55 60 65 Premium(y) 2.871 2.404 2.083 1.862 1.712 Solution: Since 46x  is nearer at the beginning of the set of given tabular values, so we have to construct the forward difference table. The forward difference table of the given data is as follows: Age(x) Premium(y)  2  3  4  45 50 55 60 65 2.871 2.404 2.083 1.862 1.712 -0.467 -0.321 -0.221 -0.150 0.146 0.100 0.071 -0.046 -0.029 0.017 Here 2 3 4 0 0 0 0 0 046, 5, 45, 45, 0.467, 0.146, 0.046, 0.017x h x y y y y y              0 46 45 1 0.2 5 5 x x p h        By Newton’s forward formula we get, 2 3 0 0 0 0 0 ( 1) ( 1)( 2) ( 1) ( 1) ( ) 2! 3! ! np p p p p p p p n y x y p y y y y n                    0.2(0.2 1) 0.2(0.2 1)(0.2 2) 0.2(0.2 1)(0.2 2)(0.2 3) (46) 2.871 0.2 ( 0.467) (0.146) ( 0.046) (0.017) 2! 3! 4! y                   2.8710 0.0934 0.01168 0.002208 0.0005712     2.763( .)approx Problem-03: The values of sin x are given below for different values of x, find the value of 0 sin38 . x 15 20 25 30 35 40 siny x 0.2588190 0.3420201 0.4226183 0.5 0.5735764 0.6427876 Solution: Since 0 38x  is nearer at the end of the set of given tabular values, so we have to construct the backward difference table. The backward difference table of the given data is as follows: x siny x  2  3  4  5  15 20 25 30 35 40 0.2588190 0.3420201 0.4226183 0.5 0.5735764 0.6427875 0.0832011 0.0805982 0.0773817 0.0735764 0.0692112 -0.0026029 -0.0032165 -0.0038053 -0.0043652 -0.0006136 -0.0005888 -0.0005599 0.0000248 0.0000289 0.0000041 Here 2 3 38, 40, 5, 0.6427875, 0.0692112, 0.0043652, 0.0005599,n n n n nx x h y y y y           
  • 9.     4 5 0.0000289, 0.0000041n ny y    . 38 40 2 0.4 5 5 nx x p h          By Newton’s backward formula we get, 2 3( 1) ( 1)( 2) ( 1) ( 1) (38) 2! 3! ! n n n n n n p p p p p p p p n y y p y y y y n                    ( 0.4)( 0.4 1) ( 0.4)( 0.4 1)( 0.4 2) 0.6427876 ( 0.4) 0.0692112 ( 0.0043652) ( 0.0005599) 2! 3!                   ( 0.4)( 0.4 1)( 0.4 2)( 0.4 3) ( 0.4)( 0.4 1)( 0.4 2)( 0.4 3)( 0.4 4) (0.0000289) (0.0000041) 4! 5!                     0.6427876 0.02768448 0.00052382 0.00003583 0.00000120     0.6156614( .)approx Problem-04: In an examination the number of candidates who obtained marks between certain limits were as follows: Marks 30-40 40-50 50-60 60-70 70-80 No. of Students 31 42 51 35 31 Find the number of candidates whose scores lie between 45 and 50. Solution: First of all we construct a cumulative frequency table for the given data. Upper limits of the class intervals 40 50 60 70 80 Cumulative frequency 31 73 124 159 190 Since 45x  is nearer at the beginning of the set of values in cumulative frequency table, so we have to construct the forward difference table. The forward difference table of the given data is as follows: Marks(x) Cumulative frequencies(y)  2  3  4  40 50 60 70 80 31 73 124 159 190 42 51 35 31 9 -16 -4 -25 12 37 Here 2 3 4 0 0 0 0 0 045, 40, 10, 31, 42, 9, 25, 37x x h y y y y y             . 0 45 40 5 0.5 10 10 x x p h        By Newton’s forward formula we get, 2 3 0 0 0 0 0 ( 1) ( 1)( 2) ( 1) ( 1) ( ) 2! 3! ! np p p p p p p p n y x y p y y y y n                    0.5(0.5 1) 0.5(0.5 1)(0.5 2) 0.5(0.5 1)(0.5 2)(0.5 3) (45) 31 0.5 42 9 ( 25) 37 2! 3! 4! y                  31 21 1.125 1.5625 1.4452     47.8673 48( .)approx
  • 10.     Problem-05: The population of a town in the last six censuses was as given below. Estimate the population for the year 1946. Year(x) 1911 1921 1931 1941 1951 1961 Population in thousands(y) 12 15 20 27 39 52 Solution: Since 1946x  is nearer at the end of the set of given tabular values, so we have to construct the backward difference table The backward difference table of the given data is as follows: ( )Year x ( )Populations y  2  3  4  5  1911 1921 1931 1941 1951 1961 12 15 20 27 39 52 3 5 7 12 13 2 2 5 1 0 3 -4 3 -7 -10 Here 2 3 4 5 1946, 1961, 10, 52, 13, 1, 4, 7, 10n n n n n n nx x h y y y y y y                 . 1946 1961 15 1.5 10 10 nx x p h          By Newton’s backward formula we get, 2 3( 1) ( 1)( 2) ( 1) ( 1) ( ) 2! 3! ! n n n n n n p p p p p p p p n y x y p y y y y n                    ( 1.5)( 1.5 1) ( 1.5)( 1.5 1)( 1.5 2) ( 1.5)( 1.5 1)( 1.5 2)( 1.5 3) (1946) 52 ( 1.5) 13 1 ( 4) ( 7) 2! 3! 4! y                             ( 1.5)( 1.5 1)( 1.5 2)( 1.5 3)( 1.5 4) ( 10) 5!             32.3438( .)approx Exercise: Problem-01: The population of a village in the last six censuses was recorded as follows. Estimate the population for the year 1945. Year(x) 1941 1951 1961 1971 1981 1991 Population(y) 2500 2800 3200 3700 4350 5225 Problem-02: In a company the number of persons whose daily wage are as follows: Daily wage in Tk. 0-20 20-40 40-60 60-80 80-100 No. of persons 120 145 200 250 150 Find the number of persons whose daily wage is between TK. 40 and TK.50. Problem-03: The population of a town in decennial census was recorded as follows. Estimate the population for the year 1985. Year(x) 1951 1961 1971 1981 1991 Population in thousands(y) 98.752 132.285 168.076 195.690 246.05 Problem-04: The population of a town in decennial census was recorded as follows. Estimate the population for the year 1895. Year(x) 1891 1901 1911 1921 1931 Population in thousands(y) 46 66 81 93 101 Problem-05: Estimate the production of cotton in the year 1935 from the data given below. Year(x) 1931 1932 1934 1936 1938 Production in millions of bales(y) 17.1 13.0 14.0 9.6 12.4
  • 11.     Interpolation formulae for unequal intervals: The interpolation formulae for unequal intervals are given bellow: 1) Newton’s Interpolation formula for unequal intervals. 2) Lagrange’s Interpolation formula for unequal intervals. Divided Differences: Let ( )y f x be a polynomial which gives 0( )f x , 1( )f x , 2( )f x , , ( )nf x  at the points 0x , 1x , 2x , , nx  (which are not equally spaced)respectively. Then the first divided difference for the arguments 0x and 1x is denoted by 0 1( , )f x x or ( )f x and defined as, 0 1 0 1 0 1 ( ) ( ) [ , ] f x f x f x x x x    The second divided difference for the arguments 0x , 1x and 2x is denoted by 0 1 2( , , )f x x x or 2 ( )f x and defined as, 0 1 1 2 0 1 2 0 2 ( , ) ( , ) ( , , ) f x x f x x f x x x x x    The third divided difference for the arguments 0x , 1x , 2x and 3x is denoted by 0 1 2 3( , , , )f x x x x or 3 ( )f x and defined as, 0 1 2 1 2 3 0 1 2 3 0 3 ( , , ) ( , , ) ( , , , ) f x x x f x x x f x x x x x x    Similarly, the nth divided difference for the arguments 0x , 1x , 2x , , nx  is denoted by 0 1 2( , , , , )nf x x x x  or ( )n f x and defined as, 0 1 1 1 2 0 1 2 0 ( , , , ) ( , , , ) ( , , , , ) n n n n f x x x f x x x f x x x x x x           Divided Difference Table x ( )f x  2  3  0x 1x 2x 3x 0( )f x 1( )f x 2( )f x 3( )f x 0 1( , )f x x 1 2( , )f x x 2 3( , )f x x 0 1 2( , , )f x x x 1 2 3( , , )f x x x 0 1 2 3( , , , )f x x x x Properties of Divided Differences: The properties are given as follows: 1) The divided differences are symmetric. 0 1 1 0. , ( , ) ( , )i e f x x f x x . 2) The nth divided differences of a polynomial of the nth degree are constant. 3) The nth divided differences can be expressed as the quotient of two determinants each of order ( 1)n  . I). Newton’s Interpolation formula for unequal intervals: Let ( )y f x be a polynomial which gives 0( )f x , 1( )f x , 2( )f x , , ( )nf x  at the points 0x , 1x , 2x , , nx  (which are not equally spaced)respectively. Then the first divided difference for the arguments x and 0x is given by, 0 0 0 ( ) ( ) ( , ) f x f x f x x x x    0 0 0, ( ) ( ) ( ) ( , ) (1)or f x f x x x f x x     The second divided difference for the arguments x , 0x and 1x is given by, 0 0 1 0 1 1 ( , ) ( , ) ( , , ) f x x f x x f x x x x x    0 0 1 1 0 1, ( , ) ( , ) ( ) ( , , ) (2)or f x x f x x x x f x x x    
  • 12.     The third divided difference for the arguments x , 0x , 1x and 2x is given by, 0 1 0 1 2 0 1 2 2 ( , , ) ( , , ) ( , , , ) f x x x f x x x f x x x x x x    0 1 0 1 2 2 0 1 2, ( , , ) ( , , ) ( ) ( , , , ) (3)or f x x x f x x x x x f x x x x     The nth divided difference for the arguments x , 0x , 1x , , nx  is given by, 0 1 1 0 1 0 1 1( , , , , ) ( , , , ) ( ) ( , , , , ) (4)n n n nf x x x x f x x x x x f x x x x           Multiplying Eq.(2) by 0( )x x , Eq.(3) by 0( )x x 1( )x x and so on and finally the Eq. (4) by 0( )x x 1( )x x 1( )nx x   and adding with Eq.(1) we get, 0 0 0 1 0 1 0 1 2 0 1 2 0 1 2 3( ) ( ) ( ) ( , ) ( )( ) ( , , ) ( )( )( ) ( , , , )f x f x x x f x x x x x x f x x x x x x x x x f x x x x          0 1 2 1 0 1 2( )( )( ) ( ) ( , , , ) (5)n n nx x x x x x x x f x x x x R             where 0 1 2 0 1 2( )( )( ) ( ) ( , , , , )n n nR x x x x x x x x f x x x x x        If ( )f x be a polynomial of degree n, then the ( 1)n  th divided difference of ( )f x will be zero. 0 1( , , , , ) 0nf x x x x   Then the Eq. (5) can be written as, 0 0 0 1 0 1 0 1 2 0 1 2 0 1 2 3( ) ( ) ( ) ( , ) ( )( ) ( , , ) ( )( )( ) ( , , , )f x f x x x f x x x x x x f x x x x x x x x x f x x x x          0 1 2 1 0 1 2( )( )( ) ( ) ( , , , ) (6)n nx x x x x x x x f x x x x            This formula is called Newton’s divided difference interpolation formula for unequal intervals. II). Lagrange’s Interpolation formula for unequal intervals: Let ( )y f x be a polynomial of degree n which gives 0( )f x , 1( )f x , 2( )f x , , ( )nf x  at the points 0x , 1x , 2x , , nx  (which are not equally spaced)respectively. This polynomial can be written as, 0 1 2 1 0 2 2 0 1( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )n n nf x a x x x x x x a x x x x x x a x x x x x x              0 1 1( )( ) ( ) (1)n na x x x x x x         putting 0x x in Eq.(1) we get, 0 0 0 1 0 2 0( ) ( )( ) ( )nf x a x x x x x x    0 0 0 1 0 2 0 ( ) , ( )( ) ( )n f x or a x x x x x x      putting 1x x in Eq.(1) we get, 1 1 1 0 1 2 1( ) ( )( ) ( )nf x a x x x x x x    1 1 1 0 1 2 1 ( ) , ( )( ) ( )n f x or a x x x x x x      Similarly putting 2 ,x x 3x x , nx x in Eq.(1) we get, 2 2 2 0 2 1 2 ( ) ( )( ) ( )n f x a x x x x x x         0 1 1 ( ) ( )( ) ( ) n n n n n n f x a x x x x x x       Substituting the values of 0 1 2, , , , na a a a in Eq.(1) we get, 1 2 0 2 0 1 0 1 2 0 1 0 2 0 1 0 1 2 1 2 0 2 1 2 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) n n n n n n x x x x x x x x x x x x x x x x x x f x f x f x f x x x x x x x x x x x x x x x x x x x                            0 1 1 0 1 1 ( )( ) ( ) ( ) (2) ( )( ) ( ) n n n n n n x x x x x x f x x x x x x x                 This formula is called Lagrange’s interpolation formula for unequal intervals.
  • 13.     NOTE: The calculation is more complicated in Lagrange’s formula than Newton’s formula. The application of the formula is not speedy and there is always a chance of committing some error due to the number of positive and negative signs in the numerator and denominator of each term. Comparisons between Lagrange and Newton Interpolation: 1). The Lagrange and Newton interpolating formulas provide two different forms for an interpolating polynomial, even though the interpolating polynomial is unique. 2). Lagrange method is numerically unstable but Newton's method is usually numerically stable and computationally efficient. 3). Newton formula is much better for computation than the Lagrange formula. 4). Lagrange form is most often used for deriving formulas for approximating derivatives and integrals 5). Lagrange's form is more efficient then the Newton's formula when you have to interpolate several data sets on the same data points. Problem-01: Using Newton’s divided difference estimate (8) & (15)f f from the following table. x 4 5 7 10 11 13 ( )f x 48 100 294 900 1210 2028 Solution: The divided difference table is as follows: x ( )f x ( )f x 2 ( )f x 3 ( )f x 4 ( )f x 4 5 7 10 11 13 48 100 294 900 1210 2028 100 48 52 5 4    294 100 97 7 5    900 294 202 10 7    1210 900 310 11 10    2028 1210 409 13 11    97 52 15 7 4    202 97 21 10 5    310 202 27 11 7    409 310 33 13 10    21 15 1 10 4    27 21 1 11 5    33 27 1 13 7    0 0 Here, 0 1 2 3 4 54, 5, 7, 10, 11, 13x x x x x x      0 0 1 0 1 2 0 1 2 3( ) 48, ( , ) 52, ( , , ) 15, ( , , , ) 1f x f x x f x x x f x x x x    By Newton’s divided difference formula we get, 0 0 0 1 0 1 0 1 2 0 1 2 0 1 2 3( ) ( ) ( ) ( , ) ( )( ) ( , , ) ( )( )( ) ( , , , )f x f x x x f x x x x x x f x x x x x x x x x f x x x x          0 1 2 1 0 1 2( )( )( ) ( ) ( , , , )n nx x x x x x x x f x x x x          48 ( 4) 52 ( 4)( 5) 15 ( 4)( 5)( 7) 1x x x x x x             2 3 2 48 52 208 15 135 300 16 83 140x x x x x x          3 2 ( )f x x x   Now 3 2 (8) 8 8 512 64 448 ( .)f Ans     And 3 2 (15) (15) (15) 3375 225 3150 ( .)f Ans    
  • 14.     Problem-02: Using Newton’s divided difference estimate ( )f x from the following table. x -1 0 2 3 4 ( )f x -16 -7 -1 8 29 Solution: The divided difference table is as follows: x ( )f x ( )f x 2 ( )f x 3 ( )f x 4 ( )f x -1 0 2 3 4 -16 -7 -1 8 29 7 16 9 0 1     1 7 3 2 0     8 1 9 3 1    29 8 21 4 3    3 9 2 2 1     9 3 2 3 0    21 9 6 4 2    2 2 1 3 1    6 2 1 4 0    0 Here, 0 1 2 3 41, 0, 2, 3, 4x x x x x      0 0 1 0 1 2 0 1 2 3( ) 16, ( , ) 9, ( , , ) 2, ( , , , ) 1f x f x x f x x x f x x x x      By Newton’s divided difference formula we get, 0 0 0 1 0 1 0 1 2 0 1 2 0 1 2 3( ) ( ) ( ) ( , ) ( )( ) ( , , ) ( )( )( ) ( , , , )f x f x x x f x x x x x x f x x x x x x x x x f x x x x          0 1 2 1 0 1 2( )( )( ) ( ) ( , , , )n nx x x x x x x x f x x x x          16 ( 1) 9 ( 1) ( 2) ( 1)( 2) 1x x x x x x             2 3 2 2 16 9 9 2 2 2 2x x x x x x x           3 2 ( ) 3 5 7 .f x x x x Ans     Problem-03: Using Lagrange’s formula estimate ( )f x from the following table. x 0 1 2 5 ( )f x 2 3 12 147 Solution: Here, 0 1 2 30, 1, 2, 5x x x x    0 1 2 3( ) 2, ( ) 3, ( ) 12, ( ) 147f x f x f x f x    By Lagrange’s formula we get, 1 2 0 2 0 1 0 1 2 0 1 0 2 0 1 0 1 2 1 2 0 2 1 2 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) n n n n n n x x x x x x x x x x x x x x x x x x f x f x f x f x x x x x x x x x x x x x x x x x x x                            0 1 1 0 1 1 ( )( ) ( ) ( ) ( )( ) ( ) n n n n n n x x x x x x f x x x x x x x                        ( 1)( 2)( 5) ( 0)( 2)( 5) ( 0)( 1)( 5) ( 0)( 1)( 2) 2 3 12 147 (0 1)(0 2)(0 5) (1 0)(1 2) (1 5) (2 0)(2 1)(2 5) (5 0)(5 1)(5 2) x x x x x x x x x x x x                                                    3 2 3 2 3 2 3 2 8 17 10 7 10 6 5 3 2 2 3 12 147 10 4 6 60 x x x x x x x x x x x x                             3 2 3 2 3 2 3 28 17 10 3 21 30 49 147 98 2 12 10 5 4 20 x x x x x x x x x x x x                
  • 15.     3 2 3 2 3 2 3 21 ( 4 32 68 40 15 105 150 2 12 10 49 147 98 ) 20 x x x x x x x x x x x x              3 21 (20 20 20 40) 20 x x x    3 2 2x x x     3 2 ( ) 2 .f x x x x Ans     Problem-04: Using Lagrange’s formula estimate (10)f from the following table. x 5 6 9 11 ( )f x 12 13 14 16 Solution: Here, 0 1 2 35, 6, 9, 11 & 10x x x x x     0 1 2 3( ) 12, ( ) 13, ( ) 14, ( ) 16f x f x f x f x    By Lagrange’s formula we get, 1 2 0 2 0 1 0 1 2 0 1 0 2 0 1 0 1 2 1 2 0 2 1 2 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) n n n n n n x x x x x x x x x x x x x x x x x x f x f x f x f x x x x x x x x x x x x x x x x x x x                            0 1 1 0 1 1 ( )( ) ( ) ( ) ( )( ) ( ) n n n n n n x x x x x x f x x x x x x x                        (10 6)(10 9)(10 11) (10 5)(10 9)(10 11) (10 5)(10 6)(10 11) (10 5)(10 6)(10 9) 12 13 14 16 (5 6)(5 9)(5 11) (6 5)(6 9)(6 11) (9 5)(9 6)(5 11) (11 5)(11 6)(11 9)                                                4 5 20 20 12 13 14 16 24 15 24 60                2 4.333 11.667 5.333    14.667 ( .)Ans Problem-05: Using Lagrange’s formula estimate 3 55 from the following table. x 50 52 54 56 3 ( )f x x 3.684 3.732 3.779 3.825 Solution: Here, 0 1 2 350, 52, 54, 56 & 55x x x x x     0 1 2 3( ) 3.684, ( ) 3.732, ( ) 3.779, ( ) 3.825f x f x f x f x    By Lagrange’s formula we get, 1 2 0 2 0 1 0 1 2 0 1 0 2 0 1 0 1 2 1 2 0 2 1 2 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) n n n n n n x x x x x x x x x x x x x x x x x x f x f x f x f x x x x x x x x x x x x x x x x x x x                            0 1 1 0 1 1 ( )( ) ( ) ( ) ( )( ) ( ) n n n n n n x x x x x x f x x x x x x x                         (55 52)(55 54)(55 56) (55 50)(55 54)(55 56) (55 50)(55 52)(55 56) (55 50)(55 52)(55 54) 3.684 3.732 3.779 3.825 (50 52)(50 54)(50 56) (52 50)(52 54)(52 56) (54 50)(54 52)(54 56) (56 50)(56 52)(56 54)                                                3 5 15 15 3.684 3.732 3.779 3.825 48 16 16 48               0.23025 1.16625 3.5428125 1.1953125     3.341625 ( .)Ans
  • 16.     Exercise: Problem-01: Using Lagrange’s formula estimate 0 sin39 from the following table. x 0 10 20 30 40 ( ) sinf x x 0 1.1736 0.3420 0.5000 0.6428 Problem-02: Using Lagrange’s formula estimate log5.15 from the following table. x 5.1 5.2 5.3 5.4 5.5 ( ) logf x x 0.7076 0.7160 0.7243 0.7324 0.7404 Problem-03: The following table gives the sales of a concern for the five years. Using Lagrange’s formula estimate the sales for the years1986 &1992 . Year 1985 1987 1989 1991 1993 Sales 40 43 48 52 57 Problem-04: Using Lagrange’s formula estimate 151 from the following table. x 150 152 154 156 ( )f x x 12.247 12.329 12.410 12.490 Problem-05: Using Lagrange’s formula estimate tan(0.15) from the following table. x 0.10 0.13 0.20 0.22 0.30 ( ) tanf x x 0.1003 0.1307 0.2027 0.2236 0.3093 Problem-06: Using Newton’s divided difference formula estimate (8)f from the following table. x 4 5 7 10 11 ( )f x 48 100 294 900 1210 Problem-07: Using Newton’s divided difference formula estimate ( )f x from the following table. x 0 1 4 5 ( )f x 8 11 68 123 Problem-08: Using Newton’s divided difference formula estimate ( )f x in powers of ( 5)x  from the following table. x 0 2 3 4 7 9 ( )f x 4 26 58 112 466 922 Problem-09: Using Newton’s divided difference formula estimate (6)f from the following table. x 5 7 11 13 21 ( )f x 150 392 1452 2366 9702 Problem-010: Using Newton’s divided difference formula estimate tan(0.12) from the following table. x 0.10 0.13 0.20 0.22 0.30 ( ) tanf x x 0.1003 0.1307 0.2027 0.2236 0.3093