SlideShare a Scribd company logo
1 of 37
微分可能レンダリングの最新動向
〜「見比べる」ことによる3次元理解 〜
2020.6.11
加藤 大晴
(東京大学/Preferred Networks, Inc.)
-
-
-
-
-
○
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
✔
✗
✔
✗
✔
✗
✔
✗
✔
✗
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

More Related Content

What's hot

【メタサーベイ】Transformerから基盤モデルまでの流れ / From Transformer to Foundation Models
【メタサーベイ】Transformerから基盤モデルまでの流れ / From Transformer to Foundation Models【メタサーベイ】Transformerから基盤モデルまでの流れ / From Transformer to Foundation Models
【メタサーベイ】Transformerから基盤モデルまでの流れ / From Transformer to Foundation Modelscvpaper. challenge
 
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View SynthesisKento Doi
 
ECCV2020 オーラル論文完全読破 (2/2)
ECCV2020 オーラル論文完全読破 (2/2) ECCV2020 オーラル論文完全読破 (2/2)
ECCV2020 オーラル論文完全読破 (2/2) cvpaper. challenge
 
[第2回3D勉強会 研究紹介] Neural 3D Mesh Renderer (CVPR 2018)
[第2回3D勉強会 研究紹介] Neural 3D Mesh Renderer (CVPR 2018)[第2回3D勉強会 研究紹介] Neural 3D Mesh Renderer (CVPR 2018)
[第2回3D勉強会 研究紹介] Neural 3D Mesh Renderer (CVPR 2018)Hiroharu Kato
 
【DL輪読会】"Instant Neural Graphics Primitives with a Multiresolution Hash Encoding"
【DL輪読会】"Instant Neural Graphics Primitives with a Multiresolution Hash Encoding"【DL輪読会】"Instant Neural Graphics Primitives with a Multiresolution Hash Encoding"
【DL輪読会】"Instant Neural Graphics Primitives with a Multiresolution Hash Encoding"Deep Learning JP
 
SuperGlue; Learning Feature Matching with Graph Neural Networks (CVPR'20)
SuperGlue;Learning Feature Matching with Graph Neural Networks (CVPR'20)SuperGlue;Learning Feature Matching with Graph Neural Networks (CVPR'20)
SuperGlue; Learning Feature Matching with Graph Neural Networks (CVPR'20)Yusuke Uchida
 
DQNからRainbowまで 〜深層強化学習の最新動向〜
DQNからRainbowまで 〜深層強化学習の最新動向〜DQNからRainbowまで 〜深層強化学習の最新動向〜
DQNからRainbowまで 〜深層強化学習の最新動向〜Jun Okumura
 
backbone としての timm 入門
backbone としての timm 入門backbone としての timm 入門
backbone としての timm 入門Takuji Tahara
 
猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoderSho Tatsuno
 
【DL輪読会】Patches Are All You Need? (ConvMixer)
【DL輪読会】Patches Are All You Need? (ConvMixer)【DL輪読会】Patches Are All You Need? (ConvMixer)
【DL輪読会】Patches Are All You Need? (ConvMixer)Deep Learning JP
 
【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Models【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Modelscvpaper. challenge
 
[DL輪読会]NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
[DL輪読会]NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis[DL輪読会]NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
[DL輪読会]NeRF: Representing Scenes as Neural Radiance Fields for View SynthesisDeep Learning JP
 
Skip Connection まとめ(Neural Network)
Skip Connection まとめ(Neural Network)Skip Connection まとめ(Neural Network)
Skip Connection まとめ(Neural Network)Yamato OKAMOTO
 
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜SSII
 
[DL輪読会]深層強化学習はなぜ難しいのか?Why Deep RL fails? A brief survey of recent works.
[DL輪読会]深層強化学習はなぜ難しいのか?Why Deep RL fails? A brief survey of recent works.[DL輪読会]深層強化学習はなぜ難しいのか?Why Deep RL fails? A brief survey of recent works.
[DL輪読会]深層強化学習はなぜ難しいのか?Why Deep RL fails? A brief survey of recent works.Deep Learning JP
 
強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習Eiji Uchibe
 
[DL輪読会]Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images
[DL輪読会]Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images[DL輪読会]Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images
[DL輪読会]Pixel2Mesh: Generating 3D Mesh Models from Single RGB ImagesDeep Learning JP
 
モデルアーキテクチャ観点からのDeep Neural Network高速化
モデルアーキテクチャ観点からのDeep Neural Network高速化モデルアーキテクチャ観点からのDeep Neural Network高速化
モデルアーキテクチャ観点からのDeep Neural Network高速化Yusuke Uchida
 
【メタサーベイ】Neural Fields
【メタサーベイ】Neural Fields【メタサーベイ】Neural Fields
【メタサーベイ】Neural Fieldscvpaper. challenge
 

What's hot (20)

【メタサーベイ】Transformerから基盤モデルまでの流れ / From Transformer to Foundation Models
【メタサーベイ】Transformerから基盤モデルまでの流れ / From Transformer to Foundation Models【メタサーベイ】Transformerから基盤モデルまでの流れ / From Transformer to Foundation Models
【メタサーベイ】Transformerから基盤モデルまでの流れ / From Transformer to Foundation Models
 
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
 
ECCV2020 オーラル論文完全読破 (2/2)
ECCV2020 オーラル論文完全読破 (2/2) ECCV2020 オーラル論文完全読破 (2/2)
ECCV2020 オーラル論文完全読破 (2/2)
 
[第2回3D勉強会 研究紹介] Neural 3D Mesh Renderer (CVPR 2018)
[第2回3D勉強会 研究紹介] Neural 3D Mesh Renderer (CVPR 2018)[第2回3D勉強会 研究紹介] Neural 3D Mesh Renderer (CVPR 2018)
[第2回3D勉強会 研究紹介] Neural 3D Mesh Renderer (CVPR 2018)
 
【DL輪読会】"Instant Neural Graphics Primitives with a Multiresolution Hash Encoding"
【DL輪読会】"Instant Neural Graphics Primitives with a Multiresolution Hash Encoding"【DL輪読会】"Instant Neural Graphics Primitives with a Multiresolution Hash Encoding"
【DL輪読会】"Instant Neural Graphics Primitives with a Multiresolution Hash Encoding"
 
SuperGlue; Learning Feature Matching with Graph Neural Networks (CVPR'20)
SuperGlue;Learning Feature Matching with Graph Neural Networks (CVPR'20)SuperGlue;Learning Feature Matching with Graph Neural Networks (CVPR'20)
SuperGlue; Learning Feature Matching with Graph Neural Networks (CVPR'20)
 
DQNからRainbowまで 〜深層強化学習の最新動向〜
DQNからRainbowまで 〜深層強化学習の最新動向〜DQNからRainbowまで 〜深層強化学習の最新動向〜
DQNからRainbowまで 〜深層強化学習の最新動向〜
 
backbone としての timm 入門
backbone としての timm 入門backbone としての timm 入門
backbone としての timm 入門
 
猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder
 
【DL輪読会】Patches Are All You Need? (ConvMixer)
【DL輪読会】Patches Are All You Need? (ConvMixer)【DL輪読会】Patches Are All You Need? (ConvMixer)
【DL輪読会】Patches Are All You Need? (ConvMixer)
 
【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Models【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Models
 
[DL輪読会]NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
[DL輪読会]NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis[DL輪読会]NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
[DL輪読会]NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
 
Skip Connection まとめ(Neural Network)
Skip Connection まとめ(Neural Network)Skip Connection まとめ(Neural Network)
Skip Connection まとめ(Neural Network)
 
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
 
[DL輪読会]深層強化学習はなぜ難しいのか?Why Deep RL fails? A brief survey of recent works.
[DL輪読会]深層強化学習はなぜ難しいのか?Why Deep RL fails? A brief survey of recent works.[DL輪読会]深層強化学習はなぜ難しいのか?Why Deep RL fails? A brief survey of recent works.
[DL輪読会]深層強化学習はなぜ難しいのか?Why Deep RL fails? A brief survey of recent works.
 
強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習
 
研究効率化Tips Ver.2
研究効率化Tips Ver.2研究効率化Tips Ver.2
研究効率化Tips Ver.2
 
[DL輪読会]Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images
[DL輪読会]Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images[DL輪読会]Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images
[DL輪読会]Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images
 
モデルアーキテクチャ観点からのDeep Neural Network高速化
モデルアーキテクチャ観点からのDeep Neural Network高速化モデルアーキテクチャ観点からのDeep Neural Network高速化
モデルアーキテクチャ観点からのDeep Neural Network高速化
 
【メタサーベイ】Neural Fields
【メタサーベイ】Neural Fields【メタサーベイ】Neural Fields
【メタサーベイ】Neural Fields
 

More from SSII

SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜SSII
 
SSII2022 [TS3] コンテンツ制作を支援する機械学習技術​〜 イラストレーションやデザインの基礎から最新鋭の技術まで 〜​
SSII2022 [TS3] コンテンツ制作を支援する機械学習技術​〜 イラストレーションやデザインの基礎から最新鋭の技術まで 〜​SSII2022 [TS3] コンテンツ制作を支援する機械学習技術​〜 イラストレーションやデザインの基礎から最新鋭の技術まで 〜​
SSII2022 [TS3] コンテンツ制作を支援する機械学習技術​〜 イラストレーションやデザインの基礎から最新鋭の技術まで 〜​SSII
 
SSII2022 [TS2] 自律移動ロボットのためのロボットビジョン〜 オープンソースの自動運転ソフトAutowareを解説 〜
SSII2022 [TS2] 自律移動ロボットのためのロボットビジョン〜 オープンソースの自動運転ソフトAutowareを解説 〜SSII2022 [TS2] 自律移動ロボットのためのロボットビジョン〜 オープンソースの自動運転ソフトAutowareを解説 〜
SSII2022 [TS2] 自律移動ロボットのためのロボットビジョン〜 オープンソースの自動運転ソフトAutowareを解説 〜SSII
 
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜SSII
 
SSII2022 [OS3-04] Human-in-the-Loop 機械学習
SSII2022 [OS3-04] Human-in-the-Loop 機械学習SSII2022 [OS3-04] Human-in-the-Loop 機械学習
SSII2022 [OS3-04] Human-in-the-Loop 機械学習SSII
 
SSII2022 [OS3-03] スケーラブルなロボット学習システムに向けて
SSII2022 [OS3-03] スケーラブルなロボット学習システムに向けてSSII2022 [OS3-03] スケーラブルなロボット学習システムに向けて
SSII2022 [OS3-03] スケーラブルなロボット学習システムに向けてSSII
 
SSII2022 [OS3-02] Federated Learningの基礎と応用
SSII2022 [OS3-02] Federated Learningの基礎と応用SSII2022 [OS3-02] Federated Learningの基礎と応用
SSII2022 [OS3-02] Federated Learningの基礎と応用SSII
 
SSII2022 [OS3-01] 深層学習のための効率的なデータ収集と活用
SSII2022 [OS3-01] 深層学習のための効率的なデータ収集と活用SSII2022 [OS3-01] 深層学習のための効率的なデータ収集と活用
SSII2022 [OS3-01] 深層学習のための効率的なデータ収集と活用SSII
 
SSII2022 [OS2-01] イメージング最前線
SSII2022 [OS2-01] イメージング最前線SSII2022 [OS2-01] イメージング最前線
SSII2022 [OS2-01] イメージング最前線SSII
 
SSII2022 [OS1-01] AI時代のチームビルディング
SSII2022 [OS1-01] AI時代のチームビルディングSSII2022 [OS1-01] AI時代のチームビルディング
SSII2022 [OS1-01] AI時代のチームビルディングSSII
 
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII
 
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向SSII
 
SSII2021 [SS2] Deepfake Generation and Detection – An Overview (ディープフェイクの生成と検出)
SSII2021 [SS2] Deepfake Generation and Detection – An Overview (ディープフェイクの生成と検出)SSII2021 [SS2] Deepfake Generation and Detection – An Overview (ディープフェイクの生成と検出)
SSII2021 [SS2] Deepfake Generation and Detection – An Overview (ディープフェイクの生成と検出)SSII
 
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...SSII
 
SSII2021 [TS3] 機械学習のアノテーションにおける データ収集​ 〜 精度向上のための仕組み・倫理や社会性バイアス 〜
SSII2021 [TS3] 機械学習のアノテーションにおける データ収集​ 〜 精度向上のための仕組み・倫理や社会性バイアス 〜SSII2021 [TS3] 機械学習のアノテーションにおける データ収集​ 〜 精度向上のための仕組み・倫理や社会性バイアス 〜
SSII2021 [TS3] 機械学習のアノテーションにおける データ収集​ 〜 精度向上のための仕組み・倫理や社会性バイアス 〜SSII
 
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜SSII
 
SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~
SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~
SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~SSII
 
SSII2021 [OS3-03] 画像と点群を用いた、森林という広域空間のゾーニングと施業管理
SSII2021 [OS3-03] 画像と点群を用いた、森林という広域空間のゾーニングと施業管理SSII2021 [OS3-03] 画像と点群を用いた、森林という広域空間のゾーニングと施業管理
SSII2021 [OS3-03] 画像と点群を用いた、森林という広域空間のゾーニングと施業管理SSII
 
SSII2021 [OS3-02] BIM/CIMにおいて安価に点群を取得する目的とその利活用
SSII2021 [OS3-02] BIM/CIMにおいて安価に点群を取得する目的とその利活用SSII2021 [OS3-02] BIM/CIMにおいて安価に点群を取得する目的とその利活用
SSII2021 [OS3-02] BIM/CIMにおいて安価に点群を取得する目的とその利活用SSII
 
SSII2021 [OS3-01] 設備や環境の高品質計測点群取得と自動モデル化技術
SSII2021 [OS3-01] 設備や環境の高品質計測点群取得と自動モデル化技術SSII2021 [OS3-01] 設備や環境の高品質計測点群取得と自動モデル化技術
SSII2021 [OS3-01] 設備や環境の高品質計測点群取得と自動モデル化技術SSII
 

More from SSII (20)

SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
 
SSII2022 [TS3] コンテンツ制作を支援する機械学習技術​〜 イラストレーションやデザインの基礎から最新鋭の技術まで 〜​
SSII2022 [TS3] コンテンツ制作を支援する機械学習技術​〜 イラストレーションやデザインの基礎から最新鋭の技術まで 〜​SSII2022 [TS3] コンテンツ制作を支援する機械学習技術​〜 イラストレーションやデザインの基礎から最新鋭の技術まで 〜​
SSII2022 [TS3] コンテンツ制作を支援する機械学習技術​〜 イラストレーションやデザインの基礎から最新鋭の技術まで 〜​
 
SSII2022 [TS2] 自律移動ロボットのためのロボットビジョン〜 オープンソースの自動運転ソフトAutowareを解説 〜
SSII2022 [TS2] 自律移動ロボットのためのロボットビジョン〜 オープンソースの自動運転ソフトAutowareを解説 〜SSII2022 [TS2] 自律移動ロボットのためのロボットビジョン〜 オープンソースの自動運転ソフトAutowareを解説 〜
SSII2022 [TS2] 自律移動ロボットのためのロボットビジョン〜 オープンソースの自動運転ソフトAutowareを解説 〜
 
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
 
SSII2022 [OS3-04] Human-in-the-Loop 機械学習
SSII2022 [OS3-04] Human-in-the-Loop 機械学習SSII2022 [OS3-04] Human-in-the-Loop 機械学習
SSII2022 [OS3-04] Human-in-the-Loop 機械学習
 
SSII2022 [OS3-03] スケーラブルなロボット学習システムに向けて
SSII2022 [OS3-03] スケーラブルなロボット学習システムに向けてSSII2022 [OS3-03] スケーラブルなロボット学習システムに向けて
SSII2022 [OS3-03] スケーラブルなロボット学習システムに向けて
 
SSII2022 [OS3-02] Federated Learningの基礎と応用
SSII2022 [OS3-02] Federated Learningの基礎と応用SSII2022 [OS3-02] Federated Learningの基礎と応用
SSII2022 [OS3-02] Federated Learningの基礎と応用
 
SSII2022 [OS3-01] 深層学習のための効率的なデータ収集と活用
SSII2022 [OS3-01] 深層学習のための効率的なデータ収集と活用SSII2022 [OS3-01] 深層学習のための効率的なデータ収集と活用
SSII2022 [OS3-01] 深層学習のための効率的なデータ収集と活用
 
SSII2022 [OS2-01] イメージング最前線
SSII2022 [OS2-01] イメージング最前線SSII2022 [OS2-01] イメージング最前線
SSII2022 [OS2-01] イメージング最前線
 
SSII2022 [OS1-01] AI時代のチームビルディング
SSII2022 [OS1-01] AI時代のチームビルディングSSII2022 [OS1-01] AI時代のチームビルディング
SSII2022 [OS1-01] AI時代のチームビルディング
 
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
 
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
 
SSII2021 [SS2] Deepfake Generation and Detection – An Overview (ディープフェイクの生成と検出)
SSII2021 [SS2] Deepfake Generation and Detection – An Overview (ディープフェイクの生成と検出)SSII2021 [SS2] Deepfake Generation and Detection – An Overview (ディープフェイクの生成と検出)
SSII2021 [SS2] Deepfake Generation and Detection – An Overview (ディープフェイクの生成と検出)
 
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
 
SSII2021 [TS3] 機械学習のアノテーションにおける データ収集​ 〜 精度向上のための仕組み・倫理や社会性バイアス 〜
SSII2021 [TS3] 機械学習のアノテーションにおける データ収集​ 〜 精度向上のための仕組み・倫理や社会性バイアス 〜SSII2021 [TS3] 機械学習のアノテーションにおける データ収集​ 〜 精度向上のための仕組み・倫理や社会性バイアス 〜
SSII2021 [TS3] 機械学習のアノテーションにおける データ収集​ 〜 精度向上のための仕組み・倫理や社会性バイアス 〜
 
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
 
SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~
SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~
SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~
 
SSII2021 [OS3-03] 画像と点群を用いた、森林という広域空間のゾーニングと施業管理
SSII2021 [OS3-03] 画像と点群を用いた、森林という広域空間のゾーニングと施業管理SSII2021 [OS3-03] 画像と点群を用いた、森林という広域空間のゾーニングと施業管理
SSII2021 [OS3-03] 画像と点群を用いた、森林という広域空間のゾーニングと施業管理
 
SSII2021 [OS3-02] BIM/CIMにおいて安価に点群を取得する目的とその利活用
SSII2021 [OS3-02] BIM/CIMにおいて安価に点群を取得する目的とその利活用SSII2021 [OS3-02] BIM/CIMにおいて安価に点群を取得する目的とその利活用
SSII2021 [OS3-02] BIM/CIMにおいて安価に点群を取得する目的とその利活用
 
SSII2021 [OS3-01] 設備や環境の高品質計測点群取得と自動モデル化技術
SSII2021 [OS3-01] 設備や環境の高品質計測点群取得と自動モデル化技術SSII2021 [OS3-01] 設備や環境の高品質計測点群取得と自動モデル化技術
SSII2021 [OS3-01] 設備や環境の高品質計測点群取得と自動モデル化技術
 

Recently uploaded

Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介Hyperleger Tokyo Meetup
 
Keywordmap overview material/CINC.co.ltd
Keywordmap overview material/CINC.co.ltdKeywordmap overview material/CINC.co.ltd
Keywordmap overview material/CINC.co.ltdkokinagano2
 
情報を表現するときのポイント
情報を表現するときのポイント情報を表現するときのポイント
情報を表現するときのポイントonozaty
 
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521Satoshi Makita
 
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員Sadaomi Nishi
 
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一瑛一 西口
 
ネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdf
ネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdfネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdf
ネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdfTakayuki Nakayama
 
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。iPride Co., Ltd.
 
LoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアル
LoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアルLoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアル
LoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアルCRI Japan, Inc.
 
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計atsushi061452
 
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑Akihiro Kadohata
 
Intranet Development v1.0 (TSG LIVE! 12 LT )
Intranet Development v1.0 (TSG LIVE! 12 LT )Intranet Development v1.0 (TSG LIVE! 12 LT )
Intranet Development v1.0 (TSG LIVE! 12 LT )iwashiira2ctf
 
2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用
2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用
2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用KLab Inc. / Tech
 
LoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイル
LoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイルLoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイル
LoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイルCRI Japan, Inc.
 

Recently uploaded (14)

Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
 
Keywordmap overview material/CINC.co.ltd
Keywordmap overview material/CINC.co.ltdKeywordmap overview material/CINC.co.ltd
Keywordmap overview material/CINC.co.ltd
 
情報を表現するときのポイント
情報を表現するときのポイント情報を表現するときのポイント
情報を表現するときのポイント
 
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
 
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
 
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
 
ネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdf
ネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdfネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdf
ネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdf
 
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
 
LoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアル
LoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアルLoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアル
LoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアル
 
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
 
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
 
Intranet Development v1.0 (TSG LIVE! 12 LT )
Intranet Development v1.0 (TSG LIVE! 12 LT )Intranet Development v1.0 (TSG LIVE! 12 LT )
Intranet Development v1.0 (TSG LIVE! 12 LT )
 
2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用
2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用
2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用
 
LoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイル
LoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイルLoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイル
LoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイル
 

SSII2020SS: 微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​