SlideShare a Scribd company logo
1 of 32
Rational design of non- covalently and
covalently binding enzyme inhibitors
Presented by: Rashu Raju
M. Pharmacy
Department of Pharmachemistry
1
Contents
 Rational design of covalently binding enzyme inhibitors
 Types
 Rational design of noncovalently binding enzyme
inhibitors
 Forces Involved in Forming the Enzyme Inhibitor
Complex
2
Rational design of covalently binding enzyme
inhibitors
 Irreversible inhibitor or covalently bonded enzyme inhibitors binds at or
near the active site of the enzyme irreversibly, usually by covalent bonds, so
it can’t dissociate from the enzyme.
 Irreversible inhibitors combine with the functional groups of the amino
acids in the active site, irreversibly.
 Irreversible inhibitors occupy or destroy the active sites of the enzyme
permanently and decrease the reaction rate.
3
 Irreversible enzyme inhibitors are those, which combine
with or destroy a functional group on the enzyme
molecule that is necessary for its catalytic activity. These
inhibitors will form an irreversible covalent bond with the
active site of enzymes.
 These are useful in elucidating functional groups at the
enzyme active site because they modify the functional
groups, which can be identified.
4
The targets for these inhibitors are the chemically reactive groups found within the
enzyme’s active site.
Most of these are nucleophiles such as
 the –OH groups of serine
 threonine and tyrosine
 the –SH groups of cysteine
 –COOH groups of aspartic acid and glutamic acid residues
 €-amino group of lysine
 the imidazole ring of histidine
 -NH2 and –COOH groups of the enzyme’s N- and Cterminal, respectively.
Arginine has only an electrophilic side chain and it also can be modified with suitable
nucleophilic agents.
5
Types
The covalently binding enzyme inhibitors are categories into
 Chemical modifiers
 Affinity labels,
 Mechanism-based inhibitors
 Pseudoirreversible inhibitors.
6
CHEMICAL MODIFIERS
(Group-specific reagents)
 Chemical modifiers are small organic molecules (generally electrophiles)
that are used to modify the enzyme’s side chains in such away as to produce
a stable covalent bond.
 They are often used to study enzyme inactivation and to identify residues
potentially involved in binding and catalysis.
 These compounds are chemically reactive and may lead to the modification
of both catalytic and nonessential residues of enzyme.
 Example for group specific reagent is diisopropylphosphofluoridate (DIPF).
This modifies only 1 of the 28 serine residues in enzyme acetyl
cholinesterase, implying that this serine residue is especially reactive.
7
8
AFFINITY LABELS
 The affinity labels have a degree of specificity built in. These are substrate
or product analogs that contain an additional chemically reactive moiety.
 They first bind to the enzyme’s active site in a noncovalent fashion.
However, upon formation of the enzyme-inhibitor complex, they react by
different mechanisms with one or more amino acid residues in close
proximity in the enzyme’s active site. This results in covalent bond
formation between the enzyme and inhibitor.
9
 Usually the inhibitor contains an electrophilic moiety that labels/modifies
amino acids containing nucleophilic groups on enzyme active site. Some
have nucleophilic species, which can react either with arginine or with any
tightly bound organic or inorganic low molecular weight cofactors
possessing electrophilic sites.
 In case of affinity labels, the covalent bond formation occurs by an SN2
alkylation-type mechanism, schiff base formation or acylation.
 Affinity labels are used to identify catalytically important residues and some
have become successful therapeutic agents.
10
The design of a potent affinity label requires:
 1. The study of the initial requirements for the inhibitor to bind to the active
site.
 2. Regions of bulk tolerance are determined that are useful for the
introduction of a reactive functional group.
 3. Sometimes, it might be advantageous to place the reactive group at the
end of a spacer arm, particularly if nucleophilic amino acid residue is in
close promixity to the reactive group.
 4. Besides the location and orientation, size and inherent reactivity of the
reactive functional group are critical for its potential as an affinity label.
11
 Eg- Tosyl-L-Phenylalanine chloromethyl ketone (TPCK).
TPCK is used to mimic substrates of chymotrypsin such
as the tosyl-Lphenylalanine methyl ester, thereby
providing a basis of affinity for chymotrypsin active site.
In addition to mimicking a substrate, it contains the
halomethyl ketone moeity provide a point of covalent
attachment. TPCK was shown to irreversibly inhibit
chymotrypsin by specifically labeling a histidine residue.
12
13
Mechanism based inhibitors
 Mechanism-based inactivators have great potential as drugs
because they are designed to be specific toward their target
enzyme. Furthermore, because these compounds are unreactive
until activated within their target enzyme, they are expected to
show little or no cellular toxicity. The design of mechanism
based inhibitors requires an understanding of the binding
specificity requirements for the ligand-recognition site of the
enzyme, to promote the formation of the initial non-covalent
enzyme-inhibitor complex E. I.
14
 In addition, the choice of an appropriate latent functional group
requires knowledge of the catalytic mechanism of the target
enzyme with its normal substrate. Finally, covalent bond
formation by the activated inhibitor (1') will strongly depend
on its inherent chemical reactivity, and its proximity to a
susceptible amino acid residue or cofactor.
15
 Mechanism based inhibitors also called suicide substrates and are described as unreactive
compounds. Their structure resembles the structure of a substrate or product of target enzyme.
 Thus these compounds contain a latent reactive functional group that gets activated during the
normal catalysis of the enzyme. During the formation of the initial reversible active E.I
complex and into the formation of the highly reactive species E.I*.
 The reactive species can react with one of the enzyme active site amino acid residues to form a
covalent bond between the enzyme and the inhibitor (E.I**), or be released into the medium to
form product and free enzyme.
 Sometimes, the reaction may occur between the reactive species and the enzyme’s co-factor
resulting in inactivation of enzyme. If the reactive species is electrophilic, it may react with the
active site nuclophile and vice versa, like an affinity label.
 Finally a radical may be generated that has the potential to react with an enzyme radical, or
generate one by hydrogen atom abstraction. Activation of mechanism based inhibitor by its
target enzyme, is formally an example of metabolic activation.
16
 Eg: Of all the classes of enzvmes the pyridoxal phosphate
(PLP)-dependent enzymes have been found to be most
susceptible to mechanism-based inhibitors.
17
Pseudoirreversible inhibitors
 Pseudo irreversible inhibitors are the least common of the covalently
binding enzyme inhibitors. They have some features in common with both
affinity labels and mechanism-based inhibitors but they have one
distinguishing feature; that is,
 The covalent bond formed between the enzyme and the inhibitor is
reversible.
18
 As with the affinity labels, initially they bind to the enzyme's active site in a
non covalent fashion to form an enzyme-inhibitor complex E . I.
 Unlike an affinity label, the pseudo irreversible inhibitor generally possesses
unreactive functional groups.
 As with the mechanism-based inhibitor, the enzyme then starts the catalytic
cycle and an active site residue, usually one involved in covalent catalysis,
reacts with the inhibitor, without producing a highly reactive species, and
forms a covalent bond.
 The covalently bound inhibitor mimics the normal covalent reaction
intermediate occurring during the normal reaction mechanism.
 However, the covalent adduct is far more stable, with half lives on the order
of several hours to days.
19
The free enzyme may then, depending on the ability of the
E-I' bond, be regenerated by hydrolysis or reversal of the
covalent bond.
The utility of a pseudoirreversible inhibitor will be
determined by a combination of
 The rate of formation of the covalent enzyme inhibitor
adduct &
 The half-life for reactivation.
20
RATIONAL DESIGN OF NONCOVALENTLY
BINDING ENZYME INHIBITORS
 Inhibitors bind to the enzyme's active site without forming a covalent bond.
 The affinity and specificity of the inhibitor for the active site will depend on
a combination of binding forces.
 Traditionally, these were analogs of substrates, products or reaction
intermediates.
 Large numbers of enzyme inhibitors were developed by combinatorial
chemistry and rapid screening techniques that bear little or no resemblance
to the substrate or products, yet still bind selectively to their target.
 CADD provide a more focused approach to the design and discovery of
both substrate and non-substrate analog inhibitors
21
 Advanced techniques provides more quickly to novel enzyme inhibitors and
also greatly reduces the number of compounds that must be synthesized.
 Traditionally, an increase in inhibitory or biological activity was achieved
by synthesizing an analog of the substrate and then making gradual
empirical changes in the structure by adding or removing functional groups.
 QSAR methods provide a means of making this empirical testing more
focused. In this technique there is no need to know the structure of the
active site. Instead, computer algorithms are employed to correlate the
biological activity of a series of inhibitors with their chemical structure,
thereby allowing better predictions as to how to change the structure to
obtain a more potent inhibitor.
22
 Based on their kinetics it is possible to distinguish among into rapid
reversible, tight-binding, slowbinding, slow-tight-binding, irreversible and
pseudo irreversible inhibitors.
 Conversely, inhibitors classified on the basis of structure, such as ground-
state analogs, multisubstrate inhibitors and transition-state analogs, which
mimic the structures of substrates and products, reaction intermediates and
transition states, may fall into any of the kinetic categories.
 However, before this, it is important to have an understanding of the forces
involved in the binding of substrates and inhibitors to an enzyme's active
site.
23
Forces Involved in Forming the EnzymeInhibitor
Complex
 A basic knowledge of the binding forces between an enzyme's active
site and its inhibitors is required to understand the design concepts of
enzyme inhibitors
 The binding of an inhibitor is dependent on a variety of interactions
and it is the sum of these interactions that will determine the degree
of affinity of an inhibitor for the particular enzyme.
 Binding forces are ionic (electrostatic) interactions, ion-dipole and
dipole-dipole interactions, hydrogen bonding, hydrophobic
interactions and Vander Waals interactions.
24
Electrostatic Forces
 All forces between atoms and molecules are electrostatic.
 These forces include ion-ion, ion-dipole and dipole dipole interactions.
 Inhibitors that have charged ions may attract the charged ions in the
enzymes active site.
 At physiological pH, the side-chains of basic residues such as lysine and
arginine and the imidazole ring of histidine will be protonated, whereas the
acidic groups on the side chains of aspartic and glutamic acid residues will
be deprotonated.
 In addition, the N-terminal amino groups and C-terminal carboxylates will
be ionized.
25
Electrostatic Forces
 Ion-dipole interactions describe the interaction
between an ion and the partial charge (δ) of a polar
molecule.
 Dipoles result from unequal sharing of electrons in
bonds. If molecules are close to each other, the
negative pole of one molecule is attracted to the
positive pole of another molecule.
 If a polar molecule is close to a nonpolar molecule, it
can influence the electron cloud of the nonpolar
molecule, making the latter somewhat polar. This
results in an attraction between dipoles of unlike
charges on two different molecules
26
 an enzyme potentially will have several charged groups
available for binding to charged or polarized groups on a
substrate or inhibitor.
 The electrostatic force between the charged atoms will
depend on the distance between the charged groups and
the dielectric constant of the surrounding medium and is
an important consideration when designing potential
enzyme inhibitors.
27
Van der Waals Forces
 Van der waals / nonpolar interactions / London dispersion forces) are the universal attractive
interactions that occur between atoms.
 At any given instant, the electrons surrounding an atom or molecule are not uniformly
distributed; that is, one side of the atom may have a greater electron density than the other
side. This results in a momentary dipole within the atom.
 When two molecules closely approach each other there is an inter-penetration of their electron
clouds. As a result, temporary local fluctuations in the electron density occur, giving rise to a
temporary dipole in each molecule. Thus there will be an attractive force between the two
molecules.
 The magnitude of the force depending on the polarizability of the particular atoms involved
and the distance between each other.
 For example, electronegative oxygen has a much lower polarizability than that of a nonpolar
methylene group.
28
Hydrophobic Interactions
 Most inhibitors have a non-polar portion (alky / aryl) are able to
form an interface with polar portion on the enzyme’s active site and
visa versa.
 When a non-polar compound is dissolved in water, the strong water-
water interactions around the solute lead to an effective "ordering" of
the structure of the solvent. This is entropically unfavorable
(negative entropy of dissolution).
 When a non-polar inhibitor binds to a non-polar region of an
enzyme, all the ordered water molecules become less ordered as they
associate with bulk solvent, leading to an increase in entropy.
29
 Accordingly, any increase in entropy will lead to a decrease in
free energy and stabilization of the enzyme- inhibitor complex.
 It has been calculated that a single methylene-methylene
interaction releases about 0.7 kcl/mol of free energy.
 Even though this figure is not high, given that enzymes and
inhibitors usually have large regions of hydrophobic surface,
this type of bonding may also play a significant role in inhibitor
binding.
30
Hydrogen Bonds
 A hydrogen bond occurs when a proton is shared between two
electronegative atoms (-X-H.Y).
 Electron density is pulled from the hydrogen by X, giving the
hydrogen a partial positive charge that is strongly attracted to
the bonded electrons of Y.
 This bond is usually asymmetric, with one of the heteroatoms,
the hydrogen bond donor, having a normal covalent bond
distance to the proton. The other heteroatom, the hydrogen
bond acceptor, is usually at a shorter distance.
31
 For optimal hydrogen bonding, the atoms should be arranged
linearly.
 A hydrogen bond is a special type of dipole-dipole interaction
and although, these forces can be quite significant in nonpolar
solvents, water greatly diminishes their magnitude.
 For a hydrogen bond to form between an enzyme and an
inhibitor, any hydrogen bonds between the inhibitor and water,
as well as those between the enzyme and water, must be
broken.
32

More Related Content

What's hot

01.Rational Design of Enzyme inhibition.pptx
01.Rational Design of Enzyme inhibition.pptx01.Rational Design of Enzyme inhibition.pptx
01.Rational Design of Enzyme inhibition.pptxPurushothamKN1
 
TRAUBE PURINE SYNTHESIS.pptx
TRAUBE PURINE SYNTHESIS.pptxTRAUBE PURINE SYNTHESIS.pptx
TRAUBE PURINE SYNTHESIS.pptxPratikKapse8
 
Advanced Organic Chemistry - I
Advanced Organic Chemistry - IAdvanced Organic Chemistry - I
Advanced Organic Chemistry - IAjay Kumar
 
Skv Enzyme Kinetics and Principles of Enzyme Inhibition
Skv Enzyme Kinetics and Principles of Enzyme InhibitionSkv Enzyme Kinetics and Principles of Enzyme Inhibition
Skv Enzyme Kinetics and Principles of Enzyme InhibitionSACHINKUMARVISHWAKAR4
 
Synthesis Of Hetero-cyclic Drugs 2
Synthesis Of Hetero-cyclic Drugs 2Synthesis Of Hetero-cyclic Drugs 2
Synthesis Of Hetero-cyclic Drugs 2Nirali Mistry
 
Enantio selectivity in pharmacokinetics
Enantio selectivity in pharmacokineticsEnantio selectivity in pharmacokinetics
Enantio selectivity in pharmacokineticsROHIT PAL
 
Aoc i types of reaction
Aoc i types of reactionAoc i types of reaction
Aoc i types of reactionMangalKamble2
 
Active constituent of drugs used in diabetic therapy
Active constituent of drugs used in diabetic therapyActive constituent of drugs used in diabetic therapy
Active constituent of drugs used in diabetic therapyAkshay Kank
 
Global and local restrictions Peptidomimetics
Global and local restrictions Peptidomimetics Global and local restrictions Peptidomimetics
Global and local restrictions Peptidomimetics ASHOK GAUTAM
 
ENZYME INHIBITION
ENZYME INHIBITIONENZYME INHIBITION
ENZYME INHIBITIONBinuja S.S
 
SYNTHETIC REAGENTS AND APPLICATION
SYNTHETIC REAGENTS AND APPLICATIONSYNTHETIC REAGENTS AND APPLICATION
SYNTHETIC REAGENTS AND APPLICATIONBinuja S.S
 
Side reaction in peptide synthesis
Side reaction in peptide synthesisSide reaction in peptide synthesis
Side reaction in peptide synthesissuraj wanjari
 
DHFR ENZYME AND ITS INHIBITORS .
DHFR ENZYME AND ITS INHIBITORS .DHFR ENZYME AND ITS INHIBITORS .
DHFR ENZYME AND ITS INHIBITORS .MansiPanwar14
 
Combating Drug resistance
Combating Drug resistanceCombating Drug resistance
Combating Drug resistanceHarendra Bisht
 

What's hot (20)

Ugi Reaction
Ugi ReactionUgi Reaction
Ugi Reaction
 
01.Rational Design of Enzyme inhibition.pptx
01.Rational Design of Enzyme inhibition.pptx01.Rational Design of Enzyme inhibition.pptx
01.Rational Design of Enzyme inhibition.pptx
 
TRAUBE PURINE SYNTHESIS.pptx
TRAUBE PURINE SYNTHESIS.pptxTRAUBE PURINE SYNTHESIS.pptx
TRAUBE PURINE SYNTHESIS.pptx
 
Advanced Organic Chemistry - I
Advanced Organic Chemistry - IAdvanced Organic Chemistry - I
Advanced Organic Chemistry - I
 
Skv Enzyme Kinetics and Principles of Enzyme Inhibition
Skv Enzyme Kinetics and Principles of Enzyme InhibitionSkv Enzyme Kinetics and Principles of Enzyme Inhibition
Skv Enzyme Kinetics and Principles of Enzyme Inhibition
 
Synthesis Of Hetero-cyclic Drugs 2
Synthesis Of Hetero-cyclic Drugs 2Synthesis Of Hetero-cyclic Drugs 2
Synthesis Of Hetero-cyclic Drugs 2
 
AMC PPT 4.pptx
AMC PPT 4.pptxAMC PPT 4.pptx
AMC PPT 4.pptx
 
Enantio selectivity in pharmacokinetics
Enantio selectivity in pharmacokineticsEnantio selectivity in pharmacokinetics
Enantio selectivity in pharmacokinetics
 
BROOK REARRANGEMENT
BROOK  REARRANGEMENTBROOK  REARRANGEMENT
BROOK REARRANGEMENT
 
Aoc i types of reaction
Aoc i types of reactionAoc i types of reaction
Aoc i types of reaction
 
Active constituent of drugs used in diabetic therapy
Active constituent of drugs used in diabetic therapyActive constituent of drugs used in diabetic therapy
Active constituent of drugs used in diabetic therapy
 
Stereochemistry
StereochemistryStereochemistry
Stereochemistry
 
Global and local restrictions Peptidomimetics
Global and local restrictions Peptidomimetics Global and local restrictions Peptidomimetics
Global and local restrictions Peptidomimetics
 
ENZYME INHIBITION
ENZYME INHIBITIONENZYME INHIBITION
ENZYME INHIBITION
 
SYNTHETIC REAGENTS AND APPLICATION
SYNTHETIC REAGENTS AND APPLICATIONSYNTHETIC REAGENTS AND APPLICATION
SYNTHETIC REAGENTS AND APPLICATION
 
Side reaction in peptide synthesis
Side reaction in peptide synthesisSide reaction in peptide synthesis
Side reaction in peptide synthesis
 
DHFR ENZYME AND ITS INHIBITORS .
DHFR ENZYME AND ITS INHIBITORS .DHFR ENZYME AND ITS INHIBITORS .
DHFR ENZYME AND ITS INHIBITORS .
 
analog design.pptx
analog design.pptxanalog design.pptx
analog design.pptx
 
Combating Drug resistance
Combating Drug resistanceCombating Drug resistance
Combating Drug resistance
 
peptidomimetics.pdf
peptidomimetics.pdfpeptidomimetics.pdf
peptidomimetics.pdf
 

Similar to Rational design of non- covalently and covalently binding.pptx

Enzyme inhibitors, reversible_and_irreversible
Enzyme inhibitors, reversible_and_irreversibleEnzyme inhibitors, reversible_and_irreversible
Enzyme inhibitors, reversible_and_irreversibleansari nazeef
 
brief description on enzymes and biological catalysis
brief description on enzymes and biological catalysisbrief description on enzymes and biological catalysis
brief description on enzymes and biological catalysisdamtewgirma
 
02- Enzymes structure and function.pptx
02- Enzymes structure and function.pptx02- Enzymes structure and function.pptx
02- Enzymes structure and function.pptxHagerAttiya1
 
ENZYME - by rahil (ciu)
ENZYME - by rahil (ciu)ENZYME - by rahil (ciu)
ENZYME - by rahil (ciu)sagarraj2003u
 
ENZYME INHIBITION MORE INTERESTING IN CHEMISTRY WAY
ENZYME INHIBITION MORE INTERESTING IN CHEMISTRY WAYENZYME INHIBITION MORE INTERESTING IN CHEMISTRY WAY
ENZYME INHIBITION MORE INTERESTING IN CHEMISTRY WAYShikha Popali
 
Riversible enzyme inhibitors
Riversible enzyme inhibitorsRiversible enzyme inhibitors
Riversible enzyme inhibitorsMahendra G S
 
Molecular design using biological selection
Molecular design using biological selectionMolecular design using biological selection
Molecular design using biological selectionIbrahimAslam2
 
Shazad Regulation Of Enzyme updated 2.pptx
Shazad Regulation Of Enzyme updated 2.pptxShazad Regulation Of Enzyme updated 2.pptx
Shazad Regulation Of Enzyme updated 2.pptxRahulVishwakarma722529
 
Basics of Enzyme Catalysis
Basics of Enzyme CatalysisBasics of Enzyme Catalysis
Basics of Enzyme CatalysisFahad Ullah
 
Coenzymes and Cofactors -pg.pptx
Coenzymes and Cofactors -pg.pptxCoenzymes and Cofactors -pg.pptx
Coenzymes and Cofactors -pg.pptxGetahunAlega
 

Similar to Rational design of non- covalently and covalently binding.pptx (20)

Enzyme inhibitors, reversible_and_irreversible
Enzyme inhibitors, reversible_and_irreversibleEnzyme inhibitors, reversible_and_irreversible
Enzyme inhibitors, reversible_and_irreversible
 
brief description on enzymes and biological catalysis
brief description on enzymes and biological catalysisbrief description on enzymes and biological catalysis
brief description on enzymes and biological catalysis
 
Enzyme unit 4 5
Enzyme unit 4  5Enzyme unit 4  5
Enzyme unit 4 5
 
Enzymes
EnzymesEnzymes
Enzymes
 
02- Enzymes structure and function.pptx
02- Enzymes structure and function.pptx02- Enzymes structure and function.pptx
02- Enzymes structure and function.pptx
 
1s.ENZYMES.pptx
1s.ENZYMES.pptx1s.ENZYMES.pptx
1s.ENZYMES.pptx
 
Enzymes notes, enzyme chapter
Enzymes notes, enzyme chapterEnzymes notes, enzyme chapter
Enzymes notes, enzyme chapter
 
ENZYME - by rahil (ciu)
ENZYME - by rahil (ciu)ENZYME - by rahil (ciu)
ENZYME - by rahil (ciu)
 
ENZYME INHIBITION MORE INTERESTING IN CHEMISTRY WAY
ENZYME INHIBITION MORE INTERESTING IN CHEMISTRY WAYENZYME INHIBITION MORE INTERESTING IN CHEMISTRY WAY
ENZYME INHIBITION MORE INTERESTING IN CHEMISTRY WAY
 
Enzyme Inhibitors
Enzyme InhibitorsEnzyme Inhibitors
Enzyme Inhibitors
 
Riversible enzyme inhibitors
Riversible enzyme inhibitorsRiversible enzyme inhibitors
Riversible enzyme inhibitors
 
Enzyme inhibitors
Enzyme inhibitorsEnzyme inhibitors
Enzyme inhibitors
 
Regulation of enzyme activity
Regulation of enzyme activityRegulation of enzyme activity
Regulation of enzyme activity
 
Enzymes
EnzymesEnzymes
Enzymes
 
.pptx
.pptx.pptx
.pptx
 
Molecular design using biological selection
Molecular design using biological selectionMolecular design using biological selection
Molecular design using biological selection
 
Enzyme
Enzyme Enzyme
Enzyme
 
Shazad Regulation Of Enzyme updated 2.pptx
Shazad Regulation Of Enzyme updated 2.pptxShazad Regulation Of Enzyme updated 2.pptx
Shazad Regulation Of Enzyme updated 2.pptx
 
Basics of Enzyme Catalysis
Basics of Enzyme CatalysisBasics of Enzyme Catalysis
Basics of Enzyme Catalysis
 
Coenzymes and Cofactors -pg.pptx
Coenzymes and Cofactors -pg.pptxCoenzymes and Cofactors -pg.pptx
Coenzymes and Cofactors -pg.pptx
 

Recently uploaded

ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........LeaCamillePacle
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
Romantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxRomantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxsqpmdrvczh
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 

Recently uploaded (20)

OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Romantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxRomantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptx
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 

Rational design of non- covalently and covalently binding.pptx

  • 1. Rational design of non- covalently and covalently binding enzyme inhibitors Presented by: Rashu Raju M. Pharmacy Department of Pharmachemistry 1
  • 2. Contents  Rational design of covalently binding enzyme inhibitors  Types  Rational design of noncovalently binding enzyme inhibitors  Forces Involved in Forming the Enzyme Inhibitor Complex 2
  • 3. Rational design of covalently binding enzyme inhibitors  Irreversible inhibitor or covalently bonded enzyme inhibitors binds at or near the active site of the enzyme irreversibly, usually by covalent bonds, so it can’t dissociate from the enzyme.  Irreversible inhibitors combine with the functional groups of the amino acids in the active site, irreversibly.  Irreversible inhibitors occupy or destroy the active sites of the enzyme permanently and decrease the reaction rate. 3
  • 4.  Irreversible enzyme inhibitors are those, which combine with or destroy a functional group on the enzyme molecule that is necessary for its catalytic activity. These inhibitors will form an irreversible covalent bond with the active site of enzymes.  These are useful in elucidating functional groups at the enzyme active site because they modify the functional groups, which can be identified. 4
  • 5. The targets for these inhibitors are the chemically reactive groups found within the enzyme’s active site. Most of these are nucleophiles such as  the –OH groups of serine  threonine and tyrosine  the –SH groups of cysteine  –COOH groups of aspartic acid and glutamic acid residues  €-amino group of lysine  the imidazole ring of histidine  -NH2 and –COOH groups of the enzyme’s N- and Cterminal, respectively. Arginine has only an electrophilic side chain and it also can be modified with suitable nucleophilic agents. 5
  • 6. Types The covalently binding enzyme inhibitors are categories into  Chemical modifiers  Affinity labels,  Mechanism-based inhibitors  Pseudoirreversible inhibitors. 6
  • 7. CHEMICAL MODIFIERS (Group-specific reagents)  Chemical modifiers are small organic molecules (generally electrophiles) that are used to modify the enzyme’s side chains in such away as to produce a stable covalent bond.  They are often used to study enzyme inactivation and to identify residues potentially involved in binding and catalysis.  These compounds are chemically reactive and may lead to the modification of both catalytic and nonessential residues of enzyme.  Example for group specific reagent is diisopropylphosphofluoridate (DIPF). This modifies only 1 of the 28 serine residues in enzyme acetyl cholinesterase, implying that this serine residue is especially reactive. 7
  • 8. 8
  • 9. AFFINITY LABELS  The affinity labels have a degree of specificity built in. These are substrate or product analogs that contain an additional chemically reactive moiety.  They first bind to the enzyme’s active site in a noncovalent fashion. However, upon formation of the enzyme-inhibitor complex, they react by different mechanisms with one or more amino acid residues in close proximity in the enzyme’s active site. This results in covalent bond formation between the enzyme and inhibitor. 9
  • 10.  Usually the inhibitor contains an electrophilic moiety that labels/modifies amino acids containing nucleophilic groups on enzyme active site. Some have nucleophilic species, which can react either with arginine or with any tightly bound organic or inorganic low molecular weight cofactors possessing electrophilic sites.  In case of affinity labels, the covalent bond formation occurs by an SN2 alkylation-type mechanism, schiff base formation or acylation.  Affinity labels are used to identify catalytically important residues and some have become successful therapeutic agents. 10
  • 11. The design of a potent affinity label requires:  1. The study of the initial requirements for the inhibitor to bind to the active site.  2. Regions of bulk tolerance are determined that are useful for the introduction of a reactive functional group.  3. Sometimes, it might be advantageous to place the reactive group at the end of a spacer arm, particularly if nucleophilic amino acid residue is in close promixity to the reactive group.  4. Besides the location and orientation, size and inherent reactivity of the reactive functional group are critical for its potential as an affinity label. 11
  • 12.  Eg- Tosyl-L-Phenylalanine chloromethyl ketone (TPCK). TPCK is used to mimic substrates of chymotrypsin such as the tosyl-Lphenylalanine methyl ester, thereby providing a basis of affinity for chymotrypsin active site. In addition to mimicking a substrate, it contains the halomethyl ketone moeity provide a point of covalent attachment. TPCK was shown to irreversibly inhibit chymotrypsin by specifically labeling a histidine residue. 12
  • 13. 13
  • 14. Mechanism based inhibitors  Mechanism-based inactivators have great potential as drugs because they are designed to be specific toward their target enzyme. Furthermore, because these compounds are unreactive until activated within their target enzyme, they are expected to show little or no cellular toxicity. The design of mechanism based inhibitors requires an understanding of the binding specificity requirements for the ligand-recognition site of the enzyme, to promote the formation of the initial non-covalent enzyme-inhibitor complex E. I. 14
  • 15.  In addition, the choice of an appropriate latent functional group requires knowledge of the catalytic mechanism of the target enzyme with its normal substrate. Finally, covalent bond formation by the activated inhibitor (1') will strongly depend on its inherent chemical reactivity, and its proximity to a susceptible amino acid residue or cofactor. 15
  • 16.  Mechanism based inhibitors also called suicide substrates and are described as unreactive compounds. Their structure resembles the structure of a substrate or product of target enzyme.  Thus these compounds contain a latent reactive functional group that gets activated during the normal catalysis of the enzyme. During the formation of the initial reversible active E.I complex and into the formation of the highly reactive species E.I*.  The reactive species can react with one of the enzyme active site amino acid residues to form a covalent bond between the enzyme and the inhibitor (E.I**), or be released into the medium to form product and free enzyme.  Sometimes, the reaction may occur between the reactive species and the enzyme’s co-factor resulting in inactivation of enzyme. If the reactive species is electrophilic, it may react with the active site nuclophile and vice versa, like an affinity label.  Finally a radical may be generated that has the potential to react with an enzyme radical, or generate one by hydrogen atom abstraction. Activation of mechanism based inhibitor by its target enzyme, is formally an example of metabolic activation. 16
  • 17.  Eg: Of all the classes of enzvmes the pyridoxal phosphate (PLP)-dependent enzymes have been found to be most susceptible to mechanism-based inhibitors. 17
  • 18. Pseudoirreversible inhibitors  Pseudo irreversible inhibitors are the least common of the covalently binding enzyme inhibitors. They have some features in common with both affinity labels and mechanism-based inhibitors but they have one distinguishing feature; that is,  The covalent bond formed between the enzyme and the inhibitor is reversible. 18
  • 19.  As with the affinity labels, initially they bind to the enzyme's active site in a non covalent fashion to form an enzyme-inhibitor complex E . I.  Unlike an affinity label, the pseudo irreversible inhibitor generally possesses unreactive functional groups.  As with the mechanism-based inhibitor, the enzyme then starts the catalytic cycle and an active site residue, usually one involved in covalent catalysis, reacts with the inhibitor, without producing a highly reactive species, and forms a covalent bond.  The covalently bound inhibitor mimics the normal covalent reaction intermediate occurring during the normal reaction mechanism.  However, the covalent adduct is far more stable, with half lives on the order of several hours to days. 19
  • 20. The free enzyme may then, depending on the ability of the E-I' bond, be regenerated by hydrolysis or reversal of the covalent bond. The utility of a pseudoirreversible inhibitor will be determined by a combination of  The rate of formation of the covalent enzyme inhibitor adduct &  The half-life for reactivation. 20
  • 21. RATIONAL DESIGN OF NONCOVALENTLY BINDING ENZYME INHIBITORS  Inhibitors bind to the enzyme's active site without forming a covalent bond.  The affinity and specificity of the inhibitor for the active site will depend on a combination of binding forces.  Traditionally, these were analogs of substrates, products or reaction intermediates.  Large numbers of enzyme inhibitors were developed by combinatorial chemistry and rapid screening techniques that bear little or no resemblance to the substrate or products, yet still bind selectively to their target.  CADD provide a more focused approach to the design and discovery of both substrate and non-substrate analog inhibitors 21
  • 22.  Advanced techniques provides more quickly to novel enzyme inhibitors and also greatly reduces the number of compounds that must be synthesized.  Traditionally, an increase in inhibitory or biological activity was achieved by synthesizing an analog of the substrate and then making gradual empirical changes in the structure by adding or removing functional groups.  QSAR methods provide a means of making this empirical testing more focused. In this technique there is no need to know the structure of the active site. Instead, computer algorithms are employed to correlate the biological activity of a series of inhibitors with their chemical structure, thereby allowing better predictions as to how to change the structure to obtain a more potent inhibitor. 22
  • 23.  Based on their kinetics it is possible to distinguish among into rapid reversible, tight-binding, slowbinding, slow-tight-binding, irreversible and pseudo irreversible inhibitors.  Conversely, inhibitors classified on the basis of structure, such as ground- state analogs, multisubstrate inhibitors and transition-state analogs, which mimic the structures of substrates and products, reaction intermediates and transition states, may fall into any of the kinetic categories.  However, before this, it is important to have an understanding of the forces involved in the binding of substrates and inhibitors to an enzyme's active site. 23
  • 24. Forces Involved in Forming the EnzymeInhibitor Complex  A basic knowledge of the binding forces between an enzyme's active site and its inhibitors is required to understand the design concepts of enzyme inhibitors  The binding of an inhibitor is dependent on a variety of interactions and it is the sum of these interactions that will determine the degree of affinity of an inhibitor for the particular enzyme.  Binding forces are ionic (electrostatic) interactions, ion-dipole and dipole-dipole interactions, hydrogen bonding, hydrophobic interactions and Vander Waals interactions. 24
  • 25. Electrostatic Forces  All forces between atoms and molecules are electrostatic.  These forces include ion-ion, ion-dipole and dipole dipole interactions.  Inhibitors that have charged ions may attract the charged ions in the enzymes active site.  At physiological pH, the side-chains of basic residues such as lysine and arginine and the imidazole ring of histidine will be protonated, whereas the acidic groups on the side chains of aspartic and glutamic acid residues will be deprotonated.  In addition, the N-terminal amino groups and C-terminal carboxylates will be ionized. 25
  • 26. Electrostatic Forces  Ion-dipole interactions describe the interaction between an ion and the partial charge (δ) of a polar molecule.  Dipoles result from unequal sharing of electrons in bonds. If molecules are close to each other, the negative pole of one molecule is attracted to the positive pole of another molecule.  If a polar molecule is close to a nonpolar molecule, it can influence the electron cloud of the nonpolar molecule, making the latter somewhat polar. This results in an attraction between dipoles of unlike charges on two different molecules 26
  • 27.  an enzyme potentially will have several charged groups available for binding to charged or polarized groups on a substrate or inhibitor.  The electrostatic force between the charged atoms will depend on the distance between the charged groups and the dielectric constant of the surrounding medium and is an important consideration when designing potential enzyme inhibitors. 27
  • 28. Van der Waals Forces  Van der waals / nonpolar interactions / London dispersion forces) are the universal attractive interactions that occur between atoms.  At any given instant, the electrons surrounding an atom or molecule are not uniformly distributed; that is, one side of the atom may have a greater electron density than the other side. This results in a momentary dipole within the atom.  When two molecules closely approach each other there is an inter-penetration of their electron clouds. As a result, temporary local fluctuations in the electron density occur, giving rise to a temporary dipole in each molecule. Thus there will be an attractive force between the two molecules.  The magnitude of the force depending on the polarizability of the particular atoms involved and the distance between each other.  For example, electronegative oxygen has a much lower polarizability than that of a nonpolar methylene group. 28
  • 29. Hydrophobic Interactions  Most inhibitors have a non-polar portion (alky / aryl) are able to form an interface with polar portion on the enzyme’s active site and visa versa.  When a non-polar compound is dissolved in water, the strong water- water interactions around the solute lead to an effective "ordering" of the structure of the solvent. This is entropically unfavorable (negative entropy of dissolution).  When a non-polar inhibitor binds to a non-polar region of an enzyme, all the ordered water molecules become less ordered as they associate with bulk solvent, leading to an increase in entropy. 29
  • 30.  Accordingly, any increase in entropy will lead to a decrease in free energy and stabilization of the enzyme- inhibitor complex.  It has been calculated that a single methylene-methylene interaction releases about 0.7 kcl/mol of free energy.  Even though this figure is not high, given that enzymes and inhibitors usually have large regions of hydrophobic surface, this type of bonding may also play a significant role in inhibitor binding. 30
  • 31. Hydrogen Bonds  A hydrogen bond occurs when a proton is shared between two electronegative atoms (-X-H.Y).  Electron density is pulled from the hydrogen by X, giving the hydrogen a partial positive charge that is strongly attracted to the bonded electrons of Y.  This bond is usually asymmetric, with one of the heteroatoms, the hydrogen bond donor, having a normal covalent bond distance to the proton. The other heteroatom, the hydrogen bond acceptor, is usually at a shorter distance. 31
  • 32.  For optimal hydrogen bonding, the atoms should be arranged linearly.  A hydrogen bond is a special type of dipole-dipole interaction and although, these forces can be quite significant in nonpolar solvents, water greatly diminishes their magnitude.  For a hydrogen bond to form between an enzyme and an inhibitor, any hydrogen bonds between the inhibitor and water, as well as those between the enzyme and water, must be broken. 32