SlideShare a Scribd company logo
1 of 69
GTU
CALCULUS
2110014
DEPARTMENT OF
MATHEMATICS
DOUBLE INTEGRALS
Double integrals over
rectangles
Suppose f(x) is defined on a interval [a,b].
Recall the definition of definite integrals of
functions of a single variable
Taking a partition P of [a, b] into subintervals:
bxxxxa nn
=<<<<= −110

letand],[inpointstheChoose 1 ii
xx− 1−
−=∆ iii
xxx
Using the areas of the small rectangles to approximate the
areas of the curve sided echelons
i
n
i
i
xxf ∆∑=1
*
)(
}max{ i
xP ∆=
i
n
i
i
b
a
P
xxfdxxf ∆∑∫ =
=→ 1
*
0
)(lim)(
and summing them, we have
(1)
(2)
Double integral of a function of two variables defined
on a closed rectangle like the following
},|),{(],[],[ 2
dycbxaRyxdcbaR ≤≤≤≤∈=×=
Taking a partition of the rectangle
dyyyyc
bxxxxa
nn
mm
=<<<<=
=<<<<=
−
−
110
110


∑ ∑= =
∆
m
i
n
j
ijijij
Ayxf1 1
**
),(
),( **
ijij
yxChoosing a point in Rij and form the
double Riemann sum
(3)
(4) DEFINITION The double integral of f over the
rectangle R is defined as
∑ ∑∫∫ = =→
∆=
m
i
n
j
ijijijP
AyxfdAyxf 1 1
**
0
),(lim),(
if this limit exists
Using Riemann sum can be approximately evaluate a double
integral as in the following example.
EXAMPLE 1 Find an approximate value for the integral
},20,20|),{(where,)3( 2
≤≤≤≤=∫∫ − yxyxRdAyxR by computing
the double Riemann sum with partition pines x=1 and x=3/2
and taking ),( **
ijij
yx to be the center of each rectangle.
Solution The partition is shown as above Figure. The area of
each subrectangle is ,
2
1
=∆ ij
A ),( **
ijij
yx is the center Rij,
and f(x,y)=x-3y2
. So the corresponding Riemann sum is
( ) ( ) ( ) ( )
875.11
),(),(),(),(
),(),(),(),(
),(
8
95
2
1
16
123
2
1
16
51
2
1
16
139
2
1
16
67
4
7
2
3
4
5
2
3
4
7
2
1
4
5
2
1
22211211
22
*
22
*
2221
*
21
*
2112
*
12
*
1211
*
11
*
11
2
1
2
1
**
−=−=
−+−−−=
∆+∆+∆+∆=
∆+∆+∆+∆=
∑∑ ∆
++
= =
AfAfAfAf
AyxfAyxfAyxfAyxf
Ayxf
i j
ijijij
∫∫ −≈−R
dAyx 875.11)3(
haveweThus
2
∑ ∑ ∑ ∑= = = =
∆=
m
i
n
j
m
i
n
j
ijijijij
Ayxfv1 1 1 1
**
),(
Interpretation of double integrals as volumes
∑∑ ==
∆ ≈
m
i
n
j
ij ij ij
A y x f V11
* *
) , ((5)
(6) THEOREM If and f is continuous on
the rectangle R, then the volume of the solid that
lies above R and under the surface is
0),( ≥yxf
) , (y x f z=
∫∫=
R
dAyxfV ),(
EXAMPLE 2
Estimate the volume of the solid that lies above the square
and below the elliptic paraboloid .
Use the partition of R into four squares and choose
to be the upper right corner of .
Sketch the solid and the approximating rectangle boxes.
]2,0[]2,0[ ×=R 22
216 yxz −−=
),( **
ijij
yx ij
R
the volume by the Riemann sum, we have
34)1(4)1(10)1(7)1(13
)2,2()1,2()2,1()1,1( 22211211
=+++=
∆+∆+∆+∆≈ AfAfAfAfV
This is the volume of the approximating rectangular
boxes shown as above.
Solution The partition and the graph of the function are
as the above. The area of each square is 1.Approximating
∫∫∫∫∫∫ +=+
RRR
dAyxgdAyxfdAyxgyxf ),(),()],(),([
∫∫∫∫ =
RR
dAyxfcdAyxcf ),(),(
),(),( yxgyxf ≥ ,, Ryx ∈
∫∫∫∫ ≥
RR
dAyxgdAyxf ),(),(
( 7 )
( 8 )
( 9 )If for all
The properties of the double integrals
then
EXERCISES 13.1
Page 837
1. 3. 15.16
13.2 Iterated Integrals
to calculate
∫∫R
dAyxf ),( :],[],[ dcbaR ×=
x dyyxfxA
d
c∫= ),()( .y
dxxA
b
a∫ )(
The double integral can be obtained by evaluating two
single integrals.
The steps to calculate , where
Then calculate
with respect toFix
dxdyyxfdxxA
b
a
d
c
b
a ∫ ∫∫ = ]),([)(
dxdyyxfdxdyyxf
b
a
d
c
b
a
d
c ∫ ∫∫ ∫ = ]),([),(
dydxyxfdydxyxf
d
c
b
a
d
c
b
a ∫ ∫∫ ∫ = ]),([),(
(1) (called iterated integral)
(2)
(3) Similarly
EXAMPLE 1 Evaluate the iterated integrals
(See the blackboard)
dydxyxdxdyyxa ∫ ∫∫ ∫
2
1
3
0
23
0
2
1
2
(b))(
(4) Fubini’s Theorem If is continuous on the
rectangle then
More generally, this is true if we assume that
is bounded on , is discontinuous only on
a finite number of smooth curves, and the iterated
integrals exist.
f
},,|),{( dycbxayxR ≤≤≤≤=
dydxyxfdxdyyxfdAyxf
d
c
b
a
b
a
d
c
R
∫ ∫∫ ∫∫∫ == ),(),(),(
f
R f
Interpret the double integral as the
volume V of the solid
∫∫R
dAyxf ),(
where
is the area of a cross-section of S in the
plane through x perpendicular to the x-axis.
Similarly
dyyxfxA
d
c∫= ),()(
)(xA
dxxAV
b
a∫= )(
EXAMPLE 2
Evaluate the double integral dAyxR∫∫ − )3( 2
where }.21,20|),{( ≤≤≤≤= yxyxR
(See the blackboard)
EXAMPLE 3
∫∫R
dAxyy )sin( ],0[]2,1[ π×=REvaluate ,where
Solution 1 If we first integrate with respect to x,
we get
∫∫ =R
dAxyy )sin( dxdyxyy∫ ∫
π
0
2
1
)sin(
∫ −= =
=
π
0
2
1
)]cos([ dyxy x
x
∫ +−=
π
0
)cos2cos( dyyy
] 0sin2sin 02
1
=+−= π
yy
Solution 2 If we first integrate with respect to y, then
∫∫ =R
dAxyy )sin( dydxxyy∫ ∫
2
1 0
)sin(
π
( )dxxyydx∫ ∫ −=
2
1 0
))(cos(1π
dxdyxyxyy xx∫ ∫+−=
2
1 00
])cos(|)cos([ 11 ππ
dxxyx xx∫ +−=
2
1 02 ]|)sin()cos([ 11 π
ππ
dxx
x
x
x
∫ −=
2
1 2 ][ )cos()sin( πππ
∫−∫=
2
1
2
1 2
)cos()sin(
dxdx x
x
x
x πππ
∫−∫=
2
1
2
1 2
)sin()sin(
x
xd
x
x
dx
ππ
∫−∫= −
 2
1 2
2
1 2
)sin(2
1
)sin()sin(
dxdx x
x
x
x
x
x πππ 0
2
1
)sin(
=−= 

x
xπ
EXAMPLE 4 Find the volume of the solid S that is
bounded by the elliptic paraboloid , the
plane and , and three coordinate planes.2=x2=y
162 22
=++ zyx
We first observe that S is the solid that lies
under the surface 22
216 yxz −−= and the above the
Square ].2,0[]2,0[ ×=R Therefore,
∫∫ −−=
R
dAyxV )216( 22
∫ ∫ −−=
2
0
2
0
22
)216( dxdyyx
[ ]∫ −−=
=
=
2
0
23
2
03
1
216 dyxyxx
x
x
( )∫ −=
2
0
2
43
88
dyy
[ ] 48
2
03
4
3
88 3
=−= yy
Solution
If on , then)()(),( yhxgyxf = ],[],[ dcbaR ×=
dyyhdxxgdAyhxg
d
c
b
a
R
∫∫∫∫ = )()()()(
]
2
,0[]
2
,0[ ππ ×=R
111
][sin]cos[
cossincossin
22
2 2
00
0 0
=⋅=
−=
=∫∫ ∫ ∫
ππ
π π
yx
ydyxdxydAx
R
EXAMPLE 5 , thenIf
EXERCISES 13.2
Page 842
1(2), 6, 10, 16, 17,
13.3 Double integrals over general regions



=
0
),(
),(
yxf
yxF
Dyx ∈),(
DRyx innotbutinis),(
R
To integrate over general regions like
which is bounded, being enclosed in a rectangular region
R .Then we define a new function F with domain R by
(1)
if
if
If F is integrable over R , then we say f is integrable
over D and we define the double integral of f over D by
where is given by Equation 1.
dAyxFdAyxf
RD
∫∫∫∫ = ),(),(
F
(2)
Geometric interpretation
0),( ≥yxfWhen
The volume under f and above D equals to that under
F and above R.
R
Type I regions
)}()(,|),{( 21
xgyxgbxayxD ≤≤≤≤=
(3) If f is continuous on a type I region D such that
)}()(,|),{( 21
xgyxgbxayxD ≤≤≤≤=
dydxyxfdAyxf
b
a
xg
xg
D
∫ ∫∫∫ =
)(
)(
2
1
),(),(
then
)}()(,|),{( 21
yhxyhdycyxD ≤≤≤≤=
(5)
dxdyyxfdAyxf
d
c
yh
yh
D
∫ ∫∫∫ =
)(
)(
2
1
),(),(
Type II regions
(4)
where D is a type II region given by Equation 4
( )dxdyyx
x
x∫ ∫ += −
+1
1
1
2
2
2 )2(
( ) dxyxy
xy
xy
2
2
1
2
1
1
2
+=
=−∫ +=
( )dxxxxxx∫ −−+++= −
1
1
43222
42)1()1(
( )dxxxxx∫ +++−−= −
1
1
234
123
1
123
2
45
3
345
−






+++−−= x
xxxx
15
32
=
• •
it is Type I region!
22
yxz +=
xy 2= .2
xy =
xy
Example 2 Find the volume of the solid that lies under the
paraboloid and above the region D in the
-plane bounded by the line and the parabola
•
•
•
•
}2,20|),{(
IType
2
xyxxyxD ≤≤≤≤= }
2
,40|),{(
IIType
yx
y
yyxD ≤≤≤≤=
Solution 1
∫∫ +D
dAyx )( 22
∫ ∫ +=
2
0
2 22
2 ))((
x
x
dxdyyx
∫
=
=






+=
2
0
2
32
23
1
dxyyx
xy
xy
∫ −−+=
2
0
6433
)2( 3
1
3
8
dxxxxx
∫ +−−=
2
0
346
)( 3
14
3
1
dxxxx ]2
06
7
5
1
21
1 457
xxx +−−= 35
216
=
Solution 2 ∫∫ +D
dAyx )( 22
∫ ∫ +=
4
0 2/
22
)(
y
y
dxdyyx
[ ]∫ +=
=
=
4
0
2/
23
3
1
dyxyx
yx
yx
( )∫ −−+=
4
0
332/52/3
2
1
24
1
3
1
dyyyyy
]4
096
13
7
2
15
2 42/72/5
yyy −+= 35
216
=
Type I
Type II
Example 3 Evaluate , where D is the region bounded
by the line and the parabola
∫∫D
xydA
1−= xy .622
+= xy
D as a type I D as a type II
•
•
•
{ }13,42|),( 2
2
+≤≤−≤≤−= yxyyxD
y
Solution We prefer to express D as a type II
∫∫D
xydA ∫ ∫= −
+
−
4
2
1
3
2
2
y
y
xydxdy ∫ 



= −
+=
−=
4
2
1
3
2
2
2
2
dyy
x
yx
y
x
( )∫ −−+= −
4
2
22
)3()1( 2
1
2
1
dyyyy
( )∫ −++= −
−
4
2
245
8244
5
2
1
dyyyyy
4
23
2
24
1
2
1 2346
4
−




−++−= yyyy
36=
.0and,0,2,22 ====++ zxyxzyx






−≤≤≤≤=
2
1
2
,10|),(
x
y
x
xyxD
Example 4 Find the volume of the tetrahedron bounded by
the planes
D
D
Solution
dAyxV
D
∫∫ −−= )22( ∫ ∫ −−=
−1
0
2
1
2
)22(
x
x dydxyx
[ ]∫ −−=
−=
=
1
0
2
1
2
2
2 dxyxyy
x
y
x
y
( ) ( )( )∫ +−−−−−−= +
1
0
222
4222
112 dxxxx xxxx
( )∫ +−=
1
0
2
12 dxxx
1
0
2
3
3 



− −= xxx
3
1
=
Here is wrong in the book!
dydxyx∫ ∫
1
0
1 2
)sin(
{ }1,10|),( ≤≤≤≤= yxxyxD { }yxyyx ≤≤≤≤= 0,10|),(
D as a type I D as a type II
Example 5 Evaluate the iterated integral
Solution If we try to evaluate the integral as it stands, we
.)sin( 2
dyy∫
impossible to do so in finite terms since dyy∫ )sin( 2
elementary function.(See the end of Section 7.6.) So we must
are faced with the task of first evaluating But it is
is not an
change the order of integration. This is accomplished by first
expressing the given iterated integral as a double integral.
∫∫=∫ ∫ D
x
dAydydxy )sin()sin( 21
0
1 2
Where { }1,10|),( ≤≤≤≤= yxxyxD
Using the alternative description of D,
we have { }yxyyxD ≤≤≤≤= 0,10|),(
This enables us to evaluate the integral in the reverse
order:
∫∫=∫ ∫ D
x
dAydydxy )sin()sin( 21
0
1 2
dxdyy
y
∫ ∫=
1
0 0
2
)sin(
[ ]∫=
=
=
1
0 0
2
)sin( dyyx
yx
x
∫=
1
0
2
)sin( dyyy
]1
02
1
)cos( 2
y−=
)1cos1(2
1
−=
Properties of double integrals
∫∫ ∫∫∫∫ +=+
D DD
dAyxgdAyxfdAyxgyxf ),(),()],(),([
∫∫∫∫ =
DD
dAyxfcdAyxcf ),(),(
∫∫∫∫ ≥
DD
dAyxgdAyxf ),(),( .in),(allfor),(),( Dyxyxgyxf ≥
∫∫ ∫∫∫∫ +=
1 2
),(),(),([
D DD
dAyxfdAyxfdAyxf
2121
andwhere DDDDD ∪=
(6)
(7)
(8) if
(9)
if do not overlap except
perhaps on their boundaries like the following:
(10)
(11)
∫∫ =D
DAdA )(1
then,),(allfor),( DyxMyxfm ∈≤≤
)(),()( DMAdAyxfDmA
D
∫∫ ≤≤
, the area of region D.
If
Example 6
2.radiusandregioncenter thedisk withtheiswhere
,integraltheestimateto11PropertyseU
cossin
D
dAeD
yx
∫∫
Solution Since ,1cos1and,1sin1 ≤≤−≤≤− xx we have
,1cossin1 ≤≤− xx and therefore
eeee xx
=≤≤− 11 cossin
thus, using m=e-1
=1/e, M=e, and A(D)=π(2)2
in Property 11
we obtain
πedAeD
yx
4
e
4 cossin
≤∫∫≤
π
Exercises 13.3
Page 850: 7, 9, 11, 33, 35
13.4 DBOUBLE INTEGRALS IN POLAR
COORDINATE
Suppose we want to evaluate a double integral
where is one of regions shown in the following.
,),(∫∫R
dAyxf
R
}20,10|),{( πθθ ≤≤≤≤= rrR(a) }0,21|),{( πθθ ≤≤≤≤= rrR(b)
Recall from Section 9.4 that the polar coordinates
of a point related to the rectangular coordinates ),( θr
θθ sinycos222
rrxyxr ==+=
},|),{( βθαθ ≤≤≤≤= brarR
Do the following partition (called polar partition)
The regions in
the above
figure are
special cases
of a polar rectangle
by the equations:
},|),{( 11 jjiiij
rrrrR θθθθ ≤≤≤≤= −−
)(
2
1
)(
2
1
1
*
1
*
jjjiii rrr θθθ +=+= −−
jii
jiiii
jii
jijiij
rr
rrrr
rr
rrA
θ
θ
θ
θθ
∆∆=
∆−+=
∆−=
∆−∆=∆
−−
−
−
*
11
2
1
2
2
1
2
))((
)(
2
1
2
1
2
1
2
1
1−
−=∆ iii
rrr
The center of this subrectangle
is
and the area is
where
jii
m
i
n
j
jiji
ij
m
i
n
j
jiji
rrrrf
Arrf
θθθ
θθ
∆∆=
∆
∑ ∑
∑ ∑
= =
= =
*
1 1
****
1 1
****
)sin,cos(
)sin,cos(
The typical Riemann sum is
(1)
If we write , then the
above Riemann sum can be written as
which is the Riemann sum of the double integral
Therefore we have
)sin,cos(),( θθθ rrrfrg =
ji
m
i
n
j
ji
rrg θθ ∆∆∑ ∑= =1 1
**
),(
θθβ
α
ddrrg
b
a∫ ∫ ),(
θθθ
θθ
θθ
θθ
β
α
β
α
rdrdrrf
drdrg
rrg
ArrfdAyxf
b
a
b
a
ji
m
i
n
j
jiP
ij
m
i
n
j
jijiR P
∫ ∫
∫ ∫
∑ ∑
∑ ∑∫∫
=
=
∆∆=
∆=
= =→
= =→
)sin,cos(
),(
),(lim
)sin,cos(lim),(
1 1
**
0
1 1
****
0
(2) Change to polar coordinates in a double
integral If is continuous on a polar
rectangle given by
where then
f
R ,,0 βθα ≤≤≤≤≤ bra
,20 παβ ≤−≤
θθθ
β
α
rdrdrrfdAyxf
b
aR ∫ ∫=∫∫ )sin,cos(),(
Caution: Do not forget the factor r in (2)!
Example 1 Evaluate , where is the region
in the upper half-plane bounded by the circles
dAyxR∫∫ + )43( 2
R
.4and,1 2222
=+=+ yxyx
Solution The region R can be described as
}41,0|),{( 22
≤+≤≥= yxyyxR }0,21|),{( πθθ ≤≤≤≤= rr
dAyxR∫∫ + )43( 2
θθθ
π
rdrdrr∫ ∫ += 0
2
1
22
)sin4cos3(
θθθ
π
drdrr∫ ∫ += 0
2
1
232
)sin4cos3(
[ ] θθθ
π
drr
r
r
2
10
243
sincos
=
=∫ += [ ] θθθ
π
d∫ += 0
2
sin15cos7
θθθ
π
d∫ 



−+= 0
)2cos1(
2
15
cos7
2
15
2sin
4
15
2
15
sin7
0
π
θ
θ
θ
π
=

−+=
Example 2 Find the volume of the solid bounded
by the xy-plane and the paraboloid
22
1 yxz −−=
}1|),{( 22
≤+= yxyxD
}20,10|),{( πθθ ≤≤≤≤= rr
dAyxV
D
∫∫ −−= )1( 22
θ
π
rdrdr∫ ∫ −=
2
0
1
0
2
)1(
drrrd∫ ∫ −=
π
θ
2
0
1
0
3
)(
242
2
1
0
42
π
π =



−=
rr
What we have done so far can be extended to the
complicated type of region shown in the following.
(3) If f is continuous on a polar
region of the form
)}()(,|),{( 21
θθβθαθ hrhrD ≤≤≤≤=
θθθ
β
α
θ
θ
rdrdrrf
dAyxf
h
h
D
∫ ∫
∫∫ =
)(2
)(1
)sin,cos(
),(
then
Example 3 Use a double integral to find the area enclosed
by one loop of the four-leaved rose θ2cos=r
}2cos0,
44
|),{( θ
π
θ
π
θ ≤≤≤≤−= rrD
∫ ∫=∫∫= −
4/
4/
2cos
0
)(
π
π
θ
θrdrddADA
D
∫ 



= −
4/
4/
2cos
0
2
2
1π
π
θ
θdr
∫= −
4/
4/
2
2cos
2
1 π
π
θθd
( )∫ −= −
4/
4/
4cos1
4
1 π
π
θθ d
8
4sin
4
1
4
1
4/
4/
π
θθ
π
π
=



+=
−
Example 4 Find the volume of the solid that lies under the
paraboloid , above the plane, and inside
the cylinder
22
yxz += −xy
.222
xyx =+
Solution The solid lies above the disk, whose boundary circle
}cos20,
22
|),{( θ
π
θ
π
θ ≤≤≤≤−= rrD
=∫∫ +=
D
dAyxV )( 22
∫ ∫−
2/
2/
cos2
0
2π
π
θ
θrdrdr
∫ 



= −
2/
2/
cos2
0
4
4
π
π
θ
θd
r
∫= −
2/
2/
4
cos4
π
π
θθd
∫=
2/
0
4
cos8
π
θθd ∫ 




 −
=
2/
0
2
2
2cos1
8
π
θ
θ
d
( )∫ +++=
2/
0
]4cos12cos21[2 2
1π
θθθ d
2
3
22
3
24sin2sin
2
3
2
2/
0
8
1 ππ
θθθ
π
=











=



++=
Exercises 13.4
Page 856: 1, 4, 6, 7, 22

More Related Content

What's hot

B.tech ii unit-1 material curve tracing
B.tech ii unit-1 material curve tracingB.tech ii unit-1 material curve tracing
B.tech ii unit-1 material curve tracingRai University
 
Complex Numbers and Functions. Complex Differentiation
Complex Numbers and Functions. Complex DifferentiationComplex Numbers and Functions. Complex Differentiation
Complex Numbers and Functions. Complex DifferentiationHesham Ali
 
Partial Differentiation
Partial DifferentiationPartial Differentiation
Partial DifferentiationDeep Dalsania
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - NotesDr. Nirav Vyas
 
partialderivatives
partialderivativespartialderivatives
partialderivativesyash patel
 
Two port networks unit ii
Two port networks unit iiTwo port networks unit ii
Two port networks unit iimrecedu
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityMatthew Leingang
 
Linear differential equation
Linear differential equationLinear differential equation
Linear differential equationPratik Sudra
 
Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.pptRaj Parekh
 
Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl VishalVishwakarma59
 
Bessel’s equation
Bessel’s equationBessel’s equation
Bessel’s equationkishor pokar
 
First order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applicationsFirst order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applicationsJayanshu Gundaniya
 
Divergence theorem
Divergence theoremDivergence theorem
Divergence theoremFFMdeMul
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equationsNisarg Amin
 
Funciones de Varias Variables
Funciones de Varias VariablesFunciones de Varias Variables
Funciones de Varias VariablesKike Prieto
 

What's hot (20)

Fourier series
Fourier seriesFourier series
Fourier series
 
B.tech ii unit-1 material curve tracing
B.tech ii unit-1 material curve tracingB.tech ii unit-1 material curve tracing
B.tech ii unit-1 material curve tracing
 
Complex Numbers and Functions. Complex Differentiation
Complex Numbers and Functions. Complex DifferentiationComplex Numbers and Functions. Complex Differentiation
Complex Numbers and Functions. Complex Differentiation
 
Partial Differentiation
Partial DifferentiationPartial Differentiation
Partial Differentiation
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
 
partialderivatives
partialderivativespartialderivatives
partialderivatives
 
Two port networks unit ii
Two port networks unit iiTwo port networks unit ii
Two port networks unit ii
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and Continuity
 
Linear differential equation
Linear differential equationLinear differential equation
Linear differential equation
 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equation
 
Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.ppt
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl
 
Bessel’s equation
Bessel’s equationBessel’s equation
Bessel’s equation
 
First order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applicationsFirst order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applications
 
Divergence theorem
Divergence theoremDivergence theorem
Divergence theorem
 
Double integration
Double integrationDouble integration
Double integration
 
Legendre functions
Legendre functionsLegendre functions
Legendre functions
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equations
 
Funciones de Varias Variables
Funciones de Varias VariablesFunciones de Varias Variables
Funciones de Varias Variables
 

Similar to DOUBLE INTEGRALS PPT GTU CALCULUS (2110014)

Chapter 1 (math 1)
Chapter 1 (math 1)Chapter 1 (math 1)
Chapter 1 (math 1)Amr Mohamed
 
double integral.pptx
double integral.pptxdouble integral.pptx
double integral.pptxssuser521537
 
Notes up to_ch7_sec3
Notes up to_ch7_sec3Notes up to_ch7_sec3
Notes up to_ch7_sec3neenos
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniquesKrishna Gali
 
Double_Integral.pdf
Double_Integral.pdfDouble_Integral.pdf
Double_Integral.pdfd00a7ece
 
Bahan ajar kalkulus integral
Bahan ajar kalkulus integralBahan ajar kalkulus integral
Bahan ajar kalkulus integralgrand_livina_good
 
34032 green func
34032 green func34032 green func
34032 green funcansarixxx
 
1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoioNoorYassinHJamel
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsVjekoslavKovac1
 
Maths-double integrals
Maths-double integralsMaths-double integrals
Maths-double integralsmihir jain
 
Solution set 3
Solution set 3Solution set 3
Solution set 3慧环 赵
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuityPume Ananda
 

Similar to DOUBLE INTEGRALS PPT GTU CALCULUS (2110014) (20)

Chapter 1 (math 1)
Chapter 1 (math 1)Chapter 1 (math 1)
Chapter 1 (math 1)
 
double integral.pptx
double integral.pptxdouble integral.pptx
double integral.pptx
 
Notes up to_ch7_sec3
Notes up to_ch7_sec3Notes up to_ch7_sec3
Notes up to_ch7_sec3
 
Notes up to_ch7_sec3
Notes up to_ch7_sec3Notes up to_ch7_sec3
Notes up to_ch7_sec3
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
Double_Integral.pdf
Double_Integral.pdfDouble_Integral.pdf
Double_Integral.pdf
 
Double integration
Double integrationDouble integration
Double integration
 
Bahan ajar kalkulus integral
Bahan ajar kalkulus integralBahan ajar kalkulus integral
Bahan ajar kalkulus integral
 
Calc 7.1a
Calc 7.1aCalc 7.1a
Calc 7.1a
 
34032 green func
34032 green func34032 green func
34032 green func
 
1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio
 
Ch02 6
Ch02 6Ch02 6
Ch02 6
 
Functions
FunctionsFunctions
Functions
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
 
0 calc7-1
0 calc7-10 calc7-1
0 calc7-1
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 
Maths-double integrals
Maths-double integralsMaths-double integrals
Maths-double integrals
 
Solution set 3
Solution set 3Solution set 3
Solution set 3
 
Functions limits and continuity
Functions limits and continuityFunctions limits and continuity
Functions limits and continuity
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 

More from Panchal Anand

Mercedes benz service centre training report
Mercedes benz service centre training reportMercedes benz service centre training report
Mercedes benz service centre training reportPanchal Anand
 
LISTENING ABILITY GTU COMMUNICATION SKILLS (2110002)
LISTENING  ABILITY GTU COMMUNICATION SKILLS (2110002)LISTENING  ABILITY GTU COMMUNICATION SKILLS (2110002)
LISTENING ABILITY GTU COMMUNICATION SKILLS (2110002)Panchal Anand
 
GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...
GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...
GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...Panchal Anand
 
Contributor Personality Development 2990001 GTU PPT ,What is enlightened self...
Contributor Personality Development 2990001 GTU PPT ,What is enlightened self...Contributor Personality Development 2990001 GTU PPT ,What is enlightened self...
Contributor Personality Development 2990001 GTU PPT ,What is enlightened self...Panchal Anand
 
Contributor Personality Development 2990001 GTU PPT
Contributor Personality Development 2990001 GTU PPTContributor Personality Development 2990001 GTU PPT
Contributor Personality Development 2990001 GTU PPTPanchal Anand
 
Numerical solution of ordinary differential equations GTU CVNM PPT
Numerical solution of ordinary differential equations GTU CVNM PPTNumerical solution of ordinary differential equations GTU CVNM PPT
Numerical solution of ordinary differential equations GTU CVNM PPTPanchal Anand
 
Plastic Ceramic and Glass Processing ppt GTU MANUFACTURING PROCESSES - 2
Plastic Ceramic and Glass Processing ppt GTU MANUFACTURING PROCESSES - 2Plastic Ceramic and Glass Processing ppt GTU MANUFACTURING PROCESSES - 2
Plastic Ceramic and Glass Processing ppt GTU MANUFACTURING PROCESSES - 2Panchal Anand
 
Transportation engineering, GTU Elements Of Civil Engineering
Transportation engineering, GTU Elements Of Civil EngineeringTransportation engineering, GTU Elements Of Civil Engineering
Transportation engineering, GTU Elements Of Civil EngineeringPanchal Anand
 
GTU Forest resources Environmental Studies PPT
GTU Forest resources Environmental Studies PPTGTU Forest resources Environmental Studies PPT
GTU Forest resources Environmental Studies PPTPanchal Anand
 

More from Panchal Anand (9)

Mercedes benz service centre training report
Mercedes benz service centre training reportMercedes benz service centre training report
Mercedes benz service centre training report
 
LISTENING ABILITY GTU COMMUNICATION SKILLS (2110002)
LISTENING  ABILITY GTU COMMUNICATION SKILLS (2110002)LISTENING  ABILITY GTU COMMUNICATION SKILLS (2110002)
LISTENING ABILITY GTU COMMUNICATION SKILLS (2110002)
 
GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...
GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...
GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...
 
Contributor Personality Development 2990001 GTU PPT ,What is enlightened self...
Contributor Personality Development 2990001 GTU PPT ,What is enlightened self...Contributor Personality Development 2990001 GTU PPT ,What is enlightened self...
Contributor Personality Development 2990001 GTU PPT ,What is enlightened self...
 
Contributor Personality Development 2990001 GTU PPT
Contributor Personality Development 2990001 GTU PPTContributor Personality Development 2990001 GTU PPT
Contributor Personality Development 2990001 GTU PPT
 
Numerical solution of ordinary differential equations GTU CVNM PPT
Numerical solution of ordinary differential equations GTU CVNM PPTNumerical solution of ordinary differential equations GTU CVNM PPT
Numerical solution of ordinary differential equations GTU CVNM PPT
 
Plastic Ceramic and Glass Processing ppt GTU MANUFACTURING PROCESSES - 2
Plastic Ceramic and Glass Processing ppt GTU MANUFACTURING PROCESSES - 2Plastic Ceramic and Glass Processing ppt GTU MANUFACTURING PROCESSES - 2
Plastic Ceramic and Glass Processing ppt GTU MANUFACTURING PROCESSES - 2
 
Transportation engineering, GTU Elements Of Civil Engineering
Transportation engineering, GTU Elements Of Civil EngineeringTransportation engineering, GTU Elements Of Civil Engineering
Transportation engineering, GTU Elements Of Civil Engineering
 
GTU Forest resources Environmental Studies PPT
GTU Forest resources Environmental Studies PPTGTU Forest resources Environmental Studies PPT
GTU Forest resources Environmental Studies PPT
 

Recently uploaded

pipeline in computer architecture design
pipeline in computer architecture  designpipeline in computer architecture  design
pipeline in computer architecture designssuser87fa0c1
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage examplePragyanshuParadkar1
 

Recently uploaded (20)

pipeline in computer architecture design
pipeline in computer architecture  designpipeline in computer architecture  design
pipeline in computer architecture design
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage example
 

DOUBLE INTEGRALS PPT GTU CALCULUS (2110014)

  • 1. GTU
  • 4. Double integrals over rectangles Suppose f(x) is defined on a interval [a,b]. Recall the definition of definite integrals of functions of a single variable
  • 5. Taking a partition P of [a, b] into subintervals: bxxxxa nn =<<<<= −110  letand],[inpointstheChoose 1 ii xx− 1− −=∆ iii xxx Using the areas of the small rectangles to approximate the areas of the curve sided echelons
  • 6. i n i i xxf ∆∑=1 * )( }max{ i xP ∆= i n i i b a P xxfdxxf ∆∑∫ = =→ 1 * 0 )(lim)( and summing them, we have (1) (2)
  • 7. Double integral of a function of two variables defined on a closed rectangle like the following },|),{(],[],[ 2 dycbxaRyxdcbaR ≤≤≤≤∈=×= Taking a partition of the rectangle dyyyyc bxxxxa nn mm =<<<<= =<<<<= − − 110 110  
  • 8.
  • 9. ∑ ∑= = ∆ m i n j ijijij Ayxf1 1 ** ),( ),( ** ijij yxChoosing a point in Rij and form the double Riemann sum (3)
  • 10. (4) DEFINITION The double integral of f over the rectangle R is defined as ∑ ∑∫∫ = =→ ∆= m i n j ijijijP AyxfdAyxf 1 1 ** 0 ),(lim),( if this limit exists
  • 11. Using Riemann sum can be approximately evaluate a double integral as in the following example. EXAMPLE 1 Find an approximate value for the integral },20,20|),{(where,)3( 2 ≤≤≤≤=∫∫ − yxyxRdAyxR by computing the double Riemann sum with partition pines x=1 and x=3/2 and taking ),( ** ijij yx to be the center of each rectangle.
  • 12. Solution The partition is shown as above Figure. The area of each subrectangle is , 2 1 =∆ ij A ),( ** ijij yx is the center Rij, and f(x,y)=x-3y2 . So the corresponding Riemann sum is ( ) ( ) ( ) ( ) 875.11 ),(),(),(),( ),(),(),(),( ),( 8 95 2 1 16 123 2 1 16 51 2 1 16 139 2 1 16 67 4 7 2 3 4 5 2 3 4 7 2 1 4 5 2 1 22211211 22 * 22 * 2221 * 21 * 2112 * 12 * 1211 * 11 * 11 2 1 2 1 ** −=−= −+−−−= ∆+∆+∆+∆= ∆+∆+∆+∆= ∑∑ ∆ ++ = = AfAfAfAf AyxfAyxfAyxfAyxf Ayxf i j ijijij ∫∫ −≈−R dAyx 875.11)3( haveweThus 2
  • 13. ∑ ∑ ∑ ∑= = = = ∆= m i n j m i n j ijijijij Ayxfv1 1 1 1 ** ),( Interpretation of double integrals as volumes ∑∑ == ∆ ≈ m i n j ij ij ij A y x f V11 * * ) , ((5)
  • 14. (6) THEOREM If and f is continuous on the rectangle R, then the volume of the solid that lies above R and under the surface is 0),( ≥yxf ) , (y x f z= ∫∫= R dAyxfV ),(
  • 15. EXAMPLE 2 Estimate the volume of the solid that lies above the square and below the elliptic paraboloid . Use the partition of R into four squares and choose to be the upper right corner of . Sketch the solid and the approximating rectangle boxes. ]2,0[]2,0[ ×=R 22 216 yxz −−= ),( ** ijij yx ij R
  • 16. the volume by the Riemann sum, we have 34)1(4)1(10)1(7)1(13 )2,2()1,2()2,1()1,1( 22211211 =+++= ∆+∆+∆+∆≈ AfAfAfAfV This is the volume of the approximating rectangular boxes shown as above. Solution The partition and the graph of the function are as the above. The area of each square is 1.Approximating
  • 17. ∫∫∫∫∫∫ +=+ RRR dAyxgdAyxfdAyxgyxf ),(),()],(),([ ∫∫∫∫ = RR dAyxfcdAyxcf ),(),( ),(),( yxgyxf ≥ ,, Ryx ∈ ∫∫∫∫ ≥ RR dAyxgdAyxf ),(),( ( 7 ) ( 8 ) ( 9 )If for all The properties of the double integrals then
  • 19. 13.2 Iterated Integrals to calculate ∫∫R dAyxf ),( :],[],[ dcbaR ×= x dyyxfxA d c∫= ),()( .y dxxA b a∫ )( The double integral can be obtained by evaluating two single integrals. The steps to calculate , where Then calculate with respect toFix
  • 20. dxdyyxfdxxA b a d c b a ∫ ∫∫ = ]),([)( dxdyyxfdxdyyxf b a d c b a d c ∫ ∫∫ ∫ = ]),([),( dydxyxfdydxyxf d c b a d c b a ∫ ∫∫ ∫ = ]),([),( (1) (called iterated integral) (2) (3) Similarly
  • 21. EXAMPLE 1 Evaluate the iterated integrals (See the blackboard) dydxyxdxdyyxa ∫ ∫∫ ∫ 2 1 3 0 23 0 2 1 2 (b))(
  • 22. (4) Fubini’s Theorem If is continuous on the rectangle then More generally, this is true if we assume that is bounded on , is discontinuous only on a finite number of smooth curves, and the iterated integrals exist. f },,|),{( dycbxayxR ≤≤≤≤= dydxyxfdxdyyxfdAyxf d c b a b a d c R ∫ ∫∫ ∫∫∫ == ),(),(),( f R f
  • 23. Interpret the double integral as the volume V of the solid ∫∫R dAyxf ),(
  • 24. where is the area of a cross-section of S in the plane through x perpendicular to the x-axis. Similarly dyyxfxA d c∫= ),()( )(xA dxxAV b a∫= )(
  • 25. EXAMPLE 2 Evaluate the double integral dAyxR∫∫ − )3( 2 where }.21,20|),{( ≤≤≤≤= yxyxR (See the blackboard)
  • 26. EXAMPLE 3 ∫∫R dAxyy )sin( ],0[]2,1[ π×=REvaluate ,where
  • 27. Solution 1 If we first integrate with respect to x, we get ∫∫ =R dAxyy )sin( dxdyxyy∫ ∫ π 0 2 1 )sin( ∫ −= = = π 0 2 1 )]cos([ dyxy x x ∫ +−= π 0 )cos2cos( dyyy ] 0sin2sin 02 1 =+−= π yy
  • 28. Solution 2 If we first integrate with respect to y, then ∫∫ =R dAxyy )sin( dydxxyy∫ ∫ 2 1 0 )sin( π ( )dxxyydx∫ ∫ −= 2 1 0 ))(cos(1π dxdyxyxyy xx∫ ∫+−= 2 1 00 ])cos(|)cos([ 11 ππ dxxyx xx∫ +−= 2 1 02 ]|)sin()cos([ 11 π ππ dxx x x x ∫ −= 2 1 2 ][ )cos()sin( πππ ∫−∫= 2 1 2 1 2 )cos()sin( dxdx x x x x πππ ∫−∫= 2 1 2 1 2 )sin()sin( x xd x x dx ππ ∫−∫= −  2 1 2 2 1 2 )sin(2 1 )sin()sin( dxdx x x x x x x πππ 0 2 1 )sin( =−=   x xπ
  • 29. EXAMPLE 4 Find the volume of the solid S that is bounded by the elliptic paraboloid , the plane and , and three coordinate planes.2=x2=y 162 22 =++ zyx
  • 30. We first observe that S is the solid that lies under the surface 22 216 yxz −−= and the above the Square ].2,0[]2,0[ ×=R Therefore, ∫∫ −−= R dAyxV )216( 22 ∫ ∫ −−= 2 0 2 0 22 )216( dxdyyx [ ]∫ −−= = = 2 0 23 2 03 1 216 dyxyxx x x ( )∫ −= 2 0 2 43 88 dyy [ ] 48 2 03 4 3 88 3 =−= yy Solution
  • 31. If on , then)()(),( yhxgyxf = ],[],[ dcbaR ×= dyyhdxxgdAyhxg d c b a R ∫∫∫∫ = )()()()(
  • 32. ] 2 ,0[] 2 ,0[ ππ ×=R 111 ][sin]cos[ cossincossin 22 2 2 00 0 0 =⋅= −= =∫∫ ∫ ∫ ππ π π yx ydyxdxydAx R EXAMPLE 5 , thenIf
  • 34. 13.3 Double integrals over general regions    = 0 ),( ),( yxf yxF Dyx ∈),( DRyx innotbutinis),( R To integrate over general regions like which is bounded, being enclosed in a rectangular region R .Then we define a new function F with domain R by (1) if if
  • 35. If F is integrable over R , then we say f is integrable over D and we define the double integral of f over D by where is given by Equation 1. dAyxFdAyxf RD ∫∫∫∫ = ),(),( F (2)
  • 36. Geometric interpretation 0),( ≥yxfWhen The volume under f and above D equals to that under F and above R. R
  • 37. Type I regions )}()(,|),{( 21 xgyxgbxayxD ≤≤≤≤= (3) If f is continuous on a type I region D such that )}()(,|),{( 21 xgyxgbxayxD ≤≤≤≤= dydxyxfdAyxf b a xg xg D ∫ ∫∫∫ = )( )( 2 1 ),(),( then
  • 38. )}()(,|),{( 21 yhxyhdycyxD ≤≤≤≤= (5) dxdyyxfdAyxf d c yh yh D ∫ ∫∫∫ = )( )( 2 1 ),(),( Type II regions (4) where D is a type II region given by Equation 4
  • 39. ( )dxdyyx x x∫ ∫ += − +1 1 1 2 2 2 )2( ( ) dxyxy xy xy 2 2 1 2 1 1 2 += =−∫ += ( )dxxxxxx∫ −−+++= − 1 1 43222 42)1()1( ( )dxxxxx∫ +++−−= − 1 1 234 123 1 123 2 45 3 345 −       +++−−= x xxxx 15 32 = • • it is Type I region!
  • 40. 22 yxz += xy 2= .2 xy = xy Example 2 Find the volume of the solid that lies under the paraboloid and above the region D in the -plane bounded by the line and the parabola • • • • }2,20|),{( IType 2 xyxxyxD ≤≤≤≤= } 2 ,40|),{( IIType yx y yyxD ≤≤≤≤=
  • 41.
  • 42. Solution 1 ∫∫ +D dAyx )( 22 ∫ ∫ += 2 0 2 22 2 ))(( x x dxdyyx ∫ = =       += 2 0 2 32 23 1 dxyyx xy xy ∫ −−+= 2 0 6433 )2( 3 1 3 8 dxxxxx ∫ +−−= 2 0 346 )( 3 14 3 1 dxxxx ]2 06 7 5 1 21 1 457 xxx +−−= 35 216 = Solution 2 ∫∫ +D dAyx )( 22 ∫ ∫ += 4 0 2/ 22 )( y y dxdyyx [ ]∫ += = = 4 0 2/ 23 3 1 dyxyx yx yx ( )∫ −−+= 4 0 332/52/3 2 1 24 1 3 1 dyyyyy ]4 096 13 7 2 15 2 42/72/5 yyy −+= 35 216 = Type I Type II
  • 43. Example 3 Evaluate , where D is the region bounded by the line and the parabola ∫∫D xydA 1−= xy .622 += xy D as a type I D as a type II • • •
  • 44. { }13,42|),( 2 2 +≤≤−≤≤−= yxyyxD y Solution We prefer to express D as a type II ∫∫D xydA ∫ ∫= − + − 4 2 1 3 2 2 y y xydxdy ∫     = − += −= 4 2 1 3 2 2 2 2 dyy x yx y x ( )∫ −−+= − 4 2 22 )3()1( 2 1 2 1 dyyyy ( )∫ −++= − − 4 2 245 8244 5 2 1 dyyyyy 4 23 2 24 1 2 1 2346 4 −     −++−= yyyy 36=
  • 46. Solution dAyxV D ∫∫ −−= )22( ∫ ∫ −−= −1 0 2 1 2 )22( x x dydxyx [ ]∫ −−= −= = 1 0 2 1 2 2 2 dxyxyy x y x y ( ) ( )( )∫ +−−−−−−= + 1 0 222 4222 112 dxxxx xxxx ( )∫ +−= 1 0 2 12 dxxx 1 0 2 3 3     − −= xxx 3 1 = Here is wrong in the book!
  • 47. dydxyx∫ ∫ 1 0 1 2 )sin( { }1,10|),( ≤≤≤≤= yxxyxD { }yxyyx ≤≤≤≤= 0,10|),( D as a type I D as a type II Example 5 Evaluate the iterated integral
  • 48. Solution If we try to evaluate the integral as it stands, we .)sin( 2 dyy∫ impossible to do so in finite terms since dyy∫ )sin( 2 elementary function.(See the end of Section 7.6.) So we must are faced with the task of first evaluating But it is is not an change the order of integration. This is accomplished by first expressing the given iterated integral as a double integral. ∫∫=∫ ∫ D x dAydydxy )sin()sin( 21 0 1 2 Where { }1,10|),( ≤≤≤≤= yxxyxD Using the alternative description of D, we have { }yxyyxD ≤≤≤≤= 0,10|),(
  • 49. This enables us to evaluate the integral in the reverse order: ∫∫=∫ ∫ D x dAydydxy )sin()sin( 21 0 1 2 dxdyy y ∫ ∫= 1 0 0 2 )sin( [ ]∫= = = 1 0 0 2 )sin( dyyx yx x ∫= 1 0 2 )sin( dyyy ]1 02 1 )cos( 2 y−= )1cos1(2 1 −=
  • 50. Properties of double integrals ∫∫ ∫∫∫∫ +=+ D DD dAyxgdAyxfdAyxgyxf ),(),()],(),([ ∫∫∫∫ = DD dAyxfcdAyxcf ),(),( ∫∫∫∫ ≥ DD dAyxgdAyxf ),(),( .in),(allfor),(),( Dyxyxgyxf ≥ ∫∫ ∫∫∫∫ += 1 2 ),(),(),([ D DD dAyxfdAyxfdAyxf 2121 andwhere DDDDD ∪= (6) (7) (8) if (9) if do not overlap except perhaps on their boundaries like the following:
  • 51. (10) (11) ∫∫ =D DAdA )(1 then,),(allfor),( DyxMyxfm ∈≤≤ )(),()( DMAdAyxfDmA D ∫∫ ≤≤ , the area of region D. If
  • 52. Example 6 2.radiusandregioncenter thedisk withtheiswhere ,integraltheestimateto11PropertyseU cossin D dAeD yx ∫∫ Solution Since ,1cos1and,1sin1 ≤≤−≤≤− xx we have ,1cossin1 ≤≤− xx and therefore eeee xx =≤≤− 11 cossin thus, using m=e-1 =1/e, M=e, and A(D)=π(2)2 in Property 11 we obtain πedAeD yx 4 e 4 cossin ≤∫∫≤ π
  • 53. Exercises 13.3 Page 850: 7, 9, 11, 33, 35
  • 54. 13.4 DBOUBLE INTEGRALS IN POLAR COORDINATE Suppose we want to evaluate a double integral where is one of regions shown in the following. ,),(∫∫R dAyxf R }20,10|),{( πθθ ≤≤≤≤= rrR(a) }0,21|),{( πθθ ≤≤≤≤= rrR(b)
  • 55. Recall from Section 9.4 that the polar coordinates of a point related to the rectangular coordinates ),( θr θθ sinycos222 rrxyxr ==+= },|),{( βθαθ ≤≤≤≤= brarR Do the following partition (called polar partition) The regions in the above figure are special cases of a polar rectangle by the equations:
  • 56.
  • 57. },|),{( 11 jjiiij rrrrR θθθθ ≤≤≤≤= −− )( 2 1 )( 2 1 1 * 1 * jjjiii rrr θθθ +=+= −− jii jiiii jii jijiij rr rrrr rr rrA θ θ θ θθ ∆∆= ∆−+= ∆−= ∆−∆=∆ −− − − * 11 2 1 2 2 1 2 ))(( )( 2 1 2 1 2 1 2 1 1− −=∆ iii rrr The center of this subrectangle is and the area is where
  • 58. jii m i n j jiji ij m i n j jiji rrrrf Arrf θθθ θθ ∆∆= ∆ ∑ ∑ ∑ ∑ = = = = * 1 1 **** 1 1 **** )sin,cos( )sin,cos( The typical Riemann sum is (1)
  • 59. If we write , then the above Riemann sum can be written as which is the Riemann sum of the double integral Therefore we have )sin,cos(),( θθθ rrrfrg = ji m i n j ji rrg θθ ∆∆∑ ∑= =1 1 ** ),( θθβ α ddrrg b a∫ ∫ ),(
  • 60. θθθ θθ θθ θθ β α β α rdrdrrf drdrg rrg ArrfdAyxf b a b a ji m i n j jiP ij m i n j jijiR P ∫ ∫ ∫ ∫ ∑ ∑ ∑ ∑∫∫ = = ∆∆= ∆= = =→ = =→ )sin,cos( ),( ),(lim )sin,cos(lim),( 1 1 ** 0 1 1 **** 0
  • 61. (2) Change to polar coordinates in a double integral If is continuous on a polar rectangle given by where then f R ,,0 βθα ≤≤≤≤≤ bra ,20 παβ ≤−≤ θθθ β α rdrdrrfdAyxf b aR ∫ ∫=∫∫ )sin,cos(),(
  • 62. Caution: Do not forget the factor r in (2)!
  • 63. Example 1 Evaluate , where is the region in the upper half-plane bounded by the circles dAyxR∫∫ + )43( 2 R .4and,1 2222 =+=+ yxyx Solution The region R can be described as }41,0|),{( 22 ≤+≤≥= yxyyxR }0,21|),{( πθθ ≤≤≤≤= rr dAyxR∫∫ + )43( 2 θθθ π rdrdrr∫ ∫ += 0 2 1 22 )sin4cos3( θθθ π drdrr∫ ∫ += 0 2 1 232 )sin4cos3( [ ] θθθ π drr r r 2 10 243 sincos = =∫ += [ ] θθθ π d∫ += 0 2 sin15cos7 θθθ π d∫     −+= 0 )2cos1( 2 15 cos7 2 15 2sin 4 15 2 15 sin7 0 π θ θ θ π =  −+=
  • 64. Example 2 Find the volume of the solid bounded by the xy-plane and the paraboloid 22 1 yxz −−= }1|),{( 22 ≤+= yxyxD }20,10|),{( πθθ ≤≤≤≤= rr dAyxV D ∫∫ −−= )1( 22 θ π rdrdr∫ ∫ −= 2 0 1 0 2 )1( drrrd∫ ∫ −= π θ 2 0 1 0 3 )( 242 2 1 0 42 π π =    −= rr
  • 65. What we have done so far can be extended to the complicated type of region shown in the following. (3) If f is continuous on a polar region of the form )}()(,|),{( 21 θθβθαθ hrhrD ≤≤≤≤= θθθ β α θ θ rdrdrrf dAyxf h h D ∫ ∫ ∫∫ = )(2 )(1 )sin,cos( ),( then
  • 66. Example 3 Use a double integral to find the area enclosed by one loop of the four-leaved rose θ2cos=r }2cos0, 44 |),{( θ π θ π θ ≤≤≤≤−= rrD ∫ ∫=∫∫= − 4/ 4/ 2cos 0 )( π π θ θrdrddADA D ∫     = − 4/ 4/ 2cos 0 2 2 1π π θ θdr ∫= − 4/ 4/ 2 2cos 2 1 π π θθd ( )∫ −= − 4/ 4/ 4cos1 4 1 π π θθ d 8 4sin 4 1 4 1 4/ 4/ π θθ π π =    += −
  • 67. Example 4 Find the volume of the solid that lies under the paraboloid , above the plane, and inside the cylinder 22 yxz += −xy .222 xyx =+ Solution The solid lies above the disk, whose boundary circle }cos20, 22 |),{( θ π θ π θ ≤≤≤≤−= rrD
  • 68. =∫∫ += D dAyxV )( 22 ∫ ∫− 2/ 2/ cos2 0 2π π θ θrdrdr ∫     = − 2/ 2/ cos2 0 4 4 π π θ θd r ∫= − 2/ 2/ 4 cos4 π π θθd ∫= 2/ 0 4 cos8 π θθd ∫       − = 2/ 0 2 2 2cos1 8 π θ θ d ( )∫ +++= 2/ 0 ]4cos12cos21[2 2 1π θθθ d 2 3 22 3 24sin2sin 2 3 2 2/ 0 8 1 ππ θθθ π =            =    ++=
  • 69. Exercises 13.4 Page 856: 1, 4, 6, 7, 22