SlideShare a Scribd company logo
1 of 70
Download to read offline
Overview and Motivation
Reverberation Chambers
EMC Measurements
in Reverberation Chambers
Mathias Magdowski
Chair for Electromagnetic Compatibility
Institute for Medical Engineering
Otto von Guericke University Magdeburg, Germany
July 22, 2020
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview Over Other Test Environments
Motivation
Table of Contents
Overview Over Other Test Environments
(a) Open Area Test Site (Cambridge) (b) Semi-Anechoic Chamber
(Magdeburg)
(c) Fully-Anechoic Room (Gent) (d) GTEM Cell (Magdeburg)
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview Over Other Test Environments
Motivation
Table of Contents
Motivation
Carl Edward Baum in
Microwave Memo No. 3:
“The Microwave Oven Theorem
– All Power to the Chicken”
What is the difference
between a microwave
oven and a mode
stirred chamber?
The former cooks
chicken, the later
cooks electronics.
Figure: Carl Edward Baum
(1940 – 2010)
Source:
http://www.ece.unm.edu/summa/
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview Over Other Test Environments
Motivation
Table of Contents
1 Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Setup
Figure: Schematic setup of a reverberation chamber (top view)
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Draw a Good Stirrer Design!
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Pros and Cons
Pros:
high Q −→ high E field strength with low input P
relatively low costs
statistical uniform field −→ robust tests
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Pros and Cons
Pros:
high Q −→ high E field strength with low input P
relatively low costs
statistical uniform field −→ robust tests
Cons:
statistics necessary
no statement about directivity and polarization possible
EUT loads the chamber and lowers Q
comparison with established test environments
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Setup
Figure: Typical Reverberation Chamber (IEC 61000-4-21)
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Reverberation Chambers in Magdeburg
Figure: Large reverberation chamber in Magdeburg
Key figures:
built in 1998, dimensions of 7.9 m × 6.5 m × 3.5 m
first cavity resonance at 30 MHz
lowest usable frequency at 250 MHz
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Reverberation Chambers in Magdeburg
Figure: Small reverberation chamber in Magdeburg
Key figures:
built in 2003, dimensions of 1.5 m × 1.2 m × 0.9 m
first cavity resonance at 160 MHz
lowest usable frequency at 1 GHz
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Reverberation Chambers in Magdeburg
Figure: Tiny reverberation chamber in Magdeburg
Key figures:
built in 2006, dimensions of 60 cm × 58 cm × 56 cm
first cavity resonance at 360 MHz
lowest usable frequency at 2 GHz
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Literature
Generic technical standard IEC 61000-4-21:
1. Edition from 2003, 2. Edition from 2011
explains the validation and measurements
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Literature
Generic technical standard IEC 61000-4-21:
1. Edition from 2003, 2. Edition from 2011
explains the validation and measurements
Book:
Hans Georg Krauthäuser: “Grundlagen und Anwendungen
von Modenverwirbelungskammern”
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Literature
Generic technical standard IEC 61000-4-21:
1. Edition from 2003, 2. Edition from 2011
explains the validation and measurements
Book:
Hans Georg Krauthäuser: “Grundlagen und Anwendungen
von Modenverwirbelungskammern”
Other standards:
ISO 11452-11:2010 (automotive)
RTCA DO-160 (aircraft)
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Intermediate Overview
1 Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Empty Rectangular Cavity Resonator
a
b
c
x
y
z
Cavity resonances:
f =
c0
2
l
a
2
+
m
b
2
+
n
c
2
l, m and n are non-negative integers, of which no more than
one may be zero
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Resonant Frequencies
f in MHz l m n
29.8635 1 1 0
44.4060 2 1 0
46.8424 1 0 1
48.6416 0 1 1
49.8724 1 2 0
52.2113 1 1 1
57.2213 2 0 1
59.7270 2 2 0
61.4165 3 1 0
61.6935 2 1 1
Table: First 10 resonant frequencies of the large reverberation
chamber in Magdeburg with the dimensions of 7.9 m × 6.5 m × 3.5 m
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Number of Resonant Frequencies
0 50 100 150 200 250 300
100
101
102
103
Frequency, f (in MHz)
Cumulatednumberofmodes
Figure: Cumulated number of modes for the large reverberation
chamber in Magdeburg
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Number of Resonant Frequencies
0 50 100 150 200 250 300
100
101
102
103
Frequency, f (in MHz)
Cumulatednumberofmodes
Figure: Cumulated number of modes for the large reverberation
chamber in Magdeburg
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Quality Factor
Q =
ω · stored energy
average power loss
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Quality Factor
Q =
ω · stored energy
average power loss
What will cause losses?
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Quality Factor
Q =
ω · stored energy
average power loss
What will cause losses?
Losses:
within the dielectric (very small in air)
at the walls (material: copper, aluminum, steel)
by loading the chamber (scatterers as the stirrer, antennas,
cables, EUT, monitoring equipment, . . . )
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Bandwidth of the Resonant Frequencies
Relation between bandwidth and quality factor:
Q =
Resonant Frequency
Bandwidth
=
1
relative Bandwidth
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Bandwidth of the Resonant Frequencies
Relation between bandwidth and quality factor:
Q =
Resonant Frequency
Bandwidth
=
1
relative Bandwidth
Consequences of a finite quality factor:
finite resonance magnification
field can be excited outside of the resonant frequencies
modes can overlap
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Undermoding at “Low” Frequencies
124 124.5 125 125.5 126
10−2
10−1
100
101
Frequency, f (in MHz)
Fieldstrength(normalized)
Superposition
Figure: Schematic modal structure in the large reverberation chamber
in Magdeburg around 125 MHz at a quality factor of Q = 1000
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Overmoding at “High” Frequencies
249 249.5 250 250.5 251
10−2
10−1
100
101
Frequency, f (in MHz)
Fieldstrength(normalized)
Superposition
Figure: Schematic modal structure in the large reverberation chamber
in Magdeburg around 250 MHz at a quality factor of Q = 1000
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Undermoding Due to a High Quality Factor
249 249.5 250 250.5 251
10−2
10−1
100
101
Frequency, f (in MHz)
Fieldstrength(normalized)
Superposition
Figure: Schematic modal structure in the large reverberation chamber
in Magdeburg around 250 MHz at a quality factor of Q = 10 000
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Cavity Resonator −→ Reverberation Chamber
How to stir the field?
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Cavity Resonator −→ Reverberation Chamber
How to stir the field?
Changes of the electromagnetic boundary conditions:
mechanical stirrer
moving walls
replacing the transmitting antenna
switching between several antennas
Narrow band frequency changes:
only for immunity testing
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Vibrating Intrinsic Reverberation Chamber
(a) Demonstration with neon tubes (b) In-situ test on a ship
Source: Prof. Leferink, University of Twente and THALES,
Netherlands
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Oscillating Wall Stirrer
Figure: Reverberation chamber with an oscillating wall stirrer at the
Laboratory of Electromagnetic Compatibility, School of Mechanical
Engineering, Southeast University, Nanjing, China
Source: https://dx.doi.org/10.1109/TEMC.2020.2983981
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Terminology
Reverberation chamber =
mode-stirred chamber
mode-tuned chamber
overmoded cavity
reverberating enclosure
electrically large, complex cavity
Modenverwirbelungskammer
Feldvariable Kammer
. . .
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Statistical Properties of the Field
Homogeneity:
independence of location
free placement of the EUT in the working volume
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Statistical Properties of the Field
Homogeneity:
independence of location
free placement of the EUT in the working volume
Isotropy:
independence of direction
free alignment of the EUT and attached cables
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Statistical Properties of the Field
Homogeneity:
independence of location
free placement of the EUT in the working volume
Isotropy:
independence of direction
free alignment of the EUT and attached cables
Ergodicity:
interchangeability of different statistical ensembles
e. g. stirrer positions, spatial points, neighboring
frequencies, etc.
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Intermediate Overview
1 Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Chamber Field Uniformity and Loading Validation
Goal:
verification of a sufficiently small field inhomogeneity in the
working volume
determination of the lowest usable frequency (LUF)
for the empty and maximum loaded chamber
Maximum chamber loading verification:
simulate the chamber loading by the EUT
using a sufficient amount of absorbers
EUT loading ≤ maximum loading
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Chamber Validation With the EUT in Place
Goal:
analyze the loading by the EUT
loading ≤ maximum loading
Same procedure as empty chamber validation with the
following simplifications:
no field probe measurements
only one locations of the reference antenna
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Radiated Immunity Testing
Determination of the chamber input power:
setting of the required field strength ETest
feeding of a certain forward power
PInput ∼ E2
Test (1)
Proportionality factor results from:
empty chamber validation
validation with the EUT in place
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Performing an Immunity Test
Preparation:
remove unnecessary absorbing materials → high Q
no wooden tables, carpets, wall and floor coverings
Procedure:
logarithmic frequency spacing with 100
frequencies/decade
same minimum numbers of stirrer steps as during
validation
appropriate dwell time per frequency and stirrer step
no stirring in conjunction with swept frequency testing
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Radiated Emission Measurement
Based on the measurement of the average received power:
Prad =
ηTX · PAveRec
CVF
(2)
Variables:
ηTX efficiency of the transmitting antenna (75 % to 90 %)
PAveRec average received power at the reference antenna
CVF chamber validation factor from the validation with the
EUT (switched off) in place
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Intermediate Overview
1 Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
What is Meant by the “Electric Field”?
c
E
H
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
What is Meant by the “Electric Field”?
c
E
H
Linearly polarized plane wave with the amplitude E0:
amplitude of the Cartesian field component is E0
total electric field strength is E0
minimum, average and maximum field strength is E0
minimum, average and maximum squared magnitude is E2
0
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
What is Meant by the “Electric Field”?
c
E
H
Linearly polarized plane wave with the amplitude E0:
amplitude of the Cartesian field component is E0
total electric field strength is E0
minimum, average and maximum field strength is E0
minimum, average and maximum squared magnitude is E2
0
This is not valid for a reverberant field!
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Electrical Size of an Equipment Under Test
a
Definition as k · a:
k: wave number, k = 2πf
c = 2π
λ
a: radius of the smallest sphere
surrounding the EUT
Questions:
What belongs to the EUT (case, cables, . . . )?
Which line length has to be considered?
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Electrical Small EUTs
Condition: k · a ≤ 1
Figure: Radiation pattern of a small dipole (Source: Wikipedia)
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Electrical Large EUTs
Condition: k · a > 1
Figure: Radiation pattern (planar cut) of a practical EUT (Source:
Magnus Höijer, FOI)
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Electrical Large EUTs
Condition: k · a > 1
Figure: Radiation pattern (planar cut) of a practical EUT (Source:
Magnus Höijer, FOI)
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Transition From Electrically Small to Electrically Large
Frequency f Wave Number k k · a Radius a Diameter d
in GHz in m−1 in cm in cm
0.03 0.6 1.0 159.2 318.3
0.10 2.1 1.0 47.8 95.5
0.20 4.2 1.0 23.9 47.7
0.50 10.5 1.0 9.6 19.1
1.0 20.9 1.0 4.8 9.6
2.0 41.9 1.0 2.4 4.8
5.0 104.7 1.0 0.9 1.9
10.0 209.4 1.0 0.5 1.0
Table: Example values for an electrical EUT size of k · a = 1 (Source:
Perry Wilson, NIST)
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Sampling
Frequency f Wave Number k Radius a k · a Orientations
in GHz in m−1 in cm
0.03 0.6 0.25 0.2 12
0.10 2.1 0.25 0.5 12
0.20 4.2 0.25 1.1 13
0.50 10.5 0.25 2.6 48
1.0 20.9 0.25 5.2 152
2.0 41.9 0.25 10.5 522
5.0 104.7 0.25 26.2 2951
10.0 209.4 0.25 52.4 11 385
Table: Number of independent orientation for an object with 50 cm
diameter (Source: Perry Wilson, NIST)
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Comparison
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Comparison
Environment: deterministic
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Comparison
Environment: deterministic
EUT: random
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Comparison
Environment: deterministic
EUT: random
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Comparison
Environment: deterministic
EUT: random
Environment: random
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Comparison
Environment: deterministic
EUT: random
Environment: random
EUT: deterministic
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Measurements With a Practical EUT
(a) in the reverberation chamber (b) in the semi-anechoic chamber
Figure: Utilized equipment under test (Source: Matthias Hirte, OVGU)
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Measurements With a Practical EUT
200 300 400 500 600 700 800 900 1 000
55
60
65
70
75
Frequency in MHz
FieldstrengthindBµVm−1
Measurement in the semi-anechoic chamber
Measurement in the reverberation chamber
Figure: Comparison of the emission measurement in different
environments, directivity = 1 (Source: Matthias Hirte, OVGU)
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Measurements With a Practical EUT
200 300 400 500 600 700 800 900 1 000
55
60
65
70
75
Frequency in MHz
FieldstrengthindBµVm−1
10° steps
90° steps
Figure: Comparison of the emission measurement for different
turntable steps (Source: Matthias Hirte, OVGU)
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Semi-Anechoic vs. Reverberation Chamber
Property Semi-Anechoic Reverberation
Chamber Chamber
Field plane wave multiple reflections
Polarization linear unknown
Correlation length very long short (λ
2 )
Incident direction known all directions
Field impedance 377 Ω unknown
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
SAC vs. GTEM vs. RVC
Property Semi-Anechoic
Chamber
GTEM Reverberation
Chamber
f Range above 30 MHz
(10 m test
distance)
from 0 Hz above “Lowest
usable frequen-
cy” (LUF)
Problems test in the
near field
at low f
standing
waves at
medium f
no statistic
uniform field
a low f
Test Time increases
with f
increases
with f
stays constant
EUT V large small medium
Costs high low low
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
More Fundamental Question
What is a good measurand for emission?
field strength in V m−1 (in a certain distance)
power flux density in W m−2 (in a certain distance)
total radiated power W (independent of the distance)
In which environment is the measurement performed?
reflection-free environment
environment with reflections
highly reflective environment
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Final Question
All Power to the Chicken?
PInput = PWall + PStirrer + PChicken
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Final Question
All Power to the Chicken?
PInput = PWall + PStirrer + PChicken
PWall = 0
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Final Question
All Power to the Chicken?
PInput = PWall + PStirrer + PChicken
PWall = 0
PStirrer = 0
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Final Question
All Power to the Chicken?
PInput = PWall + PStirrer + PChicken
PWall = 0
PStirrer = 0
PInput = PChicken
Mathias Magdowski EMC Measurements in Reverberation Chambers
Overview and Motivation
Reverberation Chambers
Overview
Theoretical Fundamentals
Normative Validation and Measurements
Comparison With Other Test Environments
Thank you very much for your attention!
Are there more questions?
Mathias Magdowski EMC Measurements in Reverberation Chambers

More Related Content

What's hot

Lag lead compensator design in frequency domain 7th lecture
Lag lead compensator design in frequency domain  7th lectureLag lead compensator design in frequency domain  7th lecture
Lag lead compensator design in frequency domain 7th lectureKhalaf Gaeid Alshammery
 
7.Active Filters using Opamp
7.Active Filters using Opamp7.Active Filters using Opamp
7.Active Filters using OpampINDIAN NAVY
 
Side Lobe Level (SLL) Reduction Methods in Antenna
Side Lobe Level (SLL) Reduction Methods in AntennaSide Lobe Level (SLL) Reduction Methods in Antenna
Side Lobe Level (SLL) Reduction Methods in AntennaDarshan Bhatt
 
Sampling and Reconstruction of Signal using Aliasing
Sampling and Reconstruction of Signal using AliasingSampling and Reconstruction of Signal using Aliasing
Sampling and Reconstruction of Signal using Aliasingj naga sai
 
Brief Review of Fourier Analysis
Brief Review of Fourier AnalysisBrief Review of Fourier Analysis
Brief Review of Fourier Analysisop205
 
Final tssa design and realization of passive phase shifters
Final tssa design and realization of passive phase shiftersFinal tssa design and realization of passive phase shifters
Final tssa design and realization of passive phase shiftersDr.Joko Suryana
 
CASIO 991 ES Calculator Technique
CASIO 991 ES Calculator TechniqueCASIO 991 ES Calculator Technique
CASIO 991 ES Calculator TechniqueMark Lester Manapol
 
Design of FIR filters
Design of FIR filtersDesign of FIR filters
Design of FIR filtersop205
 
Modern antenna design:A new direction
Modern antenna design:A new directionModern antenna design:A new direction
Modern antenna design:A new direction利 金
 
Electronics decibel
Electronics   decibelElectronics   decibel
Electronics decibelsld1950
 
Fabrication Of Low Power Audio Amplifier Using IC LM386
Fabrication Of Low Power Audio Amplifier Using IC LM386Fabrication Of Low Power Audio Amplifier Using IC LM386
Fabrication Of Low Power Audio Amplifier Using IC LM386Kapil Tapsi
 
Spectrum Analyzer Fundamentals/Advanced Spectrum Analysis
Spectrum Analyzer Fundamentals/Advanced Spectrum AnalysisSpectrum Analyzer Fundamentals/Advanced Spectrum Analysis
Spectrum Analyzer Fundamentals/Advanced Spectrum AnalysisRohde & Schwarz North America
 
Angle modulation
Angle modulationAngle modulation
Angle modulationUmang Gupta
 
Amplitude modulation, Generation of AM signals
Amplitude modulation, Generation of AM signalsAmplitude modulation, Generation of AM signals
Amplitude modulation, Generation of AM signalsWaqas Afzal
 
simulation of RLS and LMS in matlab
simulation of RLS and LMS in matlabsimulation of RLS and LMS in matlab
simulation of RLS and LMS in matlabGKGanesh2
 
Understanding rf circuits with multisim 10
Understanding rf circuits with multisim 10Understanding rf circuits with multisim 10
Understanding rf circuits with multisim 10Dikshya Rath
 

What's hot (20)

Comparator
ComparatorComparator
Comparator
 
Lag lead compensator design in frequency domain 7th lecture
Lag lead compensator design in frequency domain  7th lectureLag lead compensator design in frequency domain  7th lecture
Lag lead compensator design in frequency domain 7th lecture
 
Cellular communication
Cellular communicationCellular communication
Cellular communication
 
7.Active Filters using Opamp
7.Active Filters using Opamp7.Active Filters using Opamp
7.Active Filters using Opamp
 
Side Lobe Level (SLL) Reduction Methods in Antenna
Side Lobe Level (SLL) Reduction Methods in AntennaSide Lobe Level (SLL) Reduction Methods in Antenna
Side Lobe Level (SLL) Reduction Methods in Antenna
 
Sampling and Reconstruction of Signal using Aliasing
Sampling and Reconstruction of Signal using AliasingSampling and Reconstruction of Signal using Aliasing
Sampling and Reconstruction of Signal using Aliasing
 
Brief Review of Fourier Analysis
Brief Review of Fourier AnalysisBrief Review of Fourier Analysis
Brief Review of Fourier Analysis
 
VLC Simulation
VLC Simulation VLC Simulation
VLC Simulation
 
Final tssa design and realization of passive phase shifters
Final tssa design and realization of passive phase shiftersFinal tssa design and realization of passive phase shifters
Final tssa design and realization of passive phase shifters
 
CASIO 991 ES Calculator Technique
CASIO 991 ES Calculator TechniqueCASIO 991 ES Calculator Technique
CASIO 991 ES Calculator Technique
 
Design of FIR filters
Design of FIR filtersDesign of FIR filters
Design of FIR filters
 
Modern antenna design:A new direction
Modern antenna design:A new directionModern antenna design:A new direction
Modern antenna design:A new direction
 
IIR filter
IIR filterIIR filter
IIR filter
 
Electronics decibel
Electronics   decibelElectronics   decibel
Electronics decibel
 
Fabrication Of Low Power Audio Amplifier Using IC LM386
Fabrication Of Low Power Audio Amplifier Using IC LM386Fabrication Of Low Power Audio Amplifier Using IC LM386
Fabrication Of Low Power Audio Amplifier Using IC LM386
 
Spectrum Analyzer Fundamentals/Advanced Spectrum Analysis
Spectrum Analyzer Fundamentals/Advanced Spectrum AnalysisSpectrum Analyzer Fundamentals/Advanced Spectrum Analysis
Spectrum Analyzer Fundamentals/Advanced Spectrum Analysis
 
Angle modulation
Angle modulationAngle modulation
Angle modulation
 
Amplitude modulation, Generation of AM signals
Amplitude modulation, Generation of AM signalsAmplitude modulation, Generation of AM signals
Amplitude modulation, Generation of AM signals
 
simulation of RLS and LMS in matlab
simulation of RLS and LMS in matlabsimulation of RLS and LMS in matlab
simulation of RLS and LMS in matlab
 
Understanding rf circuits with multisim 10
Understanding rf circuits with multisim 10Understanding rf circuits with multisim 10
Understanding rf circuits with multisim 10
 

Similar to EMC Measurements in Reverberation Chambers

Well Stirred is Half Measured - EMC Tests in Reverberation Chambers
Well Stirred is Half Measured - EMC Tests in Reverberation ChambersWell Stirred is Half Measured - EMC Tests in Reverberation Chambers
Well Stirred is Half Measured - EMC Tests in Reverberation ChambersMathias Magdowski
 
Calculation of conversion factors for the RVC method in accordance with CISPR...
Calculation of conversion factors for the RVC method in accordance with CISPR...Calculation of conversion factors for the RVC method in accordance with CISPR...
Calculation of conversion factors for the RVC method in accordance with CISPR...Mathias Magdowski
 
Robust, Precise, Fast - Chose Two for Radiated EMC Measurements!
Robust, Precise, Fast - Chose Two for Radiated EMC Measurements!Robust, Precise, Fast - Chose Two for Radiated EMC Measurements!
Robust, Precise, Fast - Chose Two for Radiated EMC Measurements!Mathias Magdowski
 
Electromagnetic Compatibility Measurements in Reverberation Chambers
Electromagnetic Compatibility Measurements in Reverberation ChambersElectromagnetic Compatibility Measurements in Reverberation Chambers
Electromagnetic Compatibility Measurements in Reverberation ChambersMathias Magdowski
 
S4 oman wind energy the technology 2016
S4 oman wind energy the technology 2016S4 oman wind energy the technology 2016
S4 oman wind energy the technology 2016CETN
 
High concentration photovoltaics: potentials and challenges
High concentration photovoltaics: potentials and challengesHigh concentration photovoltaics: potentials and challenges
High concentration photovoltaics: potentials and challengesLeonardo ENERGY
 
Study of Large Scale Grid interactive Solar PV power plant
Study of Large Scale Grid interactive Solar PV power plantStudy of Large Scale Grid interactive Solar PV power plant
Study of Large Scale Grid interactive Solar PV power plantShahbaz Makandar A.
 
Guidelines and best practices for the commissioning and operation of controll...
Guidelines and best practices for the commissioning and operation of controll...Guidelines and best practices for the commissioning and operation of controll...
Guidelines and best practices for the commissioning and operation of controll...Power System Operation
 
Photovoltaic Module Energy Yield Measurements: Existing Approaches and Best P...
Photovoltaic Module Energy Yield Measurements: Existing Approaches and Best P...Photovoltaic Module Energy Yield Measurements: Existing Approaches and Best P...
Photovoltaic Module Energy Yield Measurements: Existing Approaches and Best P...Leonardo ENERGY
 
Lab view Based Harmonic Analyser
Lab view Based Harmonic AnalyserLab view Based Harmonic Analyser
Lab view Based Harmonic Analysertheijes
 
Chapter - 1 Basic Concepts.pdf
Chapter - 1 Basic Concepts.pdfChapter - 1 Basic Concepts.pdf
Chapter - 1 Basic Concepts.pdfKhalil Alhatab
 

Similar to EMC Measurements in Reverberation Chambers (20)

Well Stirred is Half Measured - EMC Tests in Reverberation Chambers
Well Stirred is Half Measured - EMC Tests in Reverberation ChambersWell Stirred is Half Measured - EMC Tests in Reverberation Chambers
Well Stirred is Half Measured - EMC Tests in Reverberation Chambers
 
Calculation of conversion factors for the RVC method in accordance with CISPR...
Calculation of conversion factors for the RVC method in accordance with CISPR...Calculation of conversion factors for the RVC method in accordance with CISPR...
Calculation of conversion factors for the RVC method in accordance with CISPR...
 
Robust, Precise, Fast - Chose Two for Radiated EMC Measurements!
Robust, Precise, Fast - Chose Two for Radiated EMC Measurements!Robust, Precise, Fast - Chose Two for Radiated EMC Measurements!
Robust, Precise, Fast - Chose Two for Radiated EMC Measurements!
 
Electromagnetic Compatibility Measurements in Reverberation Chambers
Electromagnetic Compatibility Measurements in Reverberation ChambersElectromagnetic Compatibility Measurements in Reverberation Chambers
Electromagnetic Compatibility Measurements in Reverberation Chambers
 
26 schweiger impact_of_spectral_irradiance_on_energy_yield
26 schweiger impact_of_spectral_irradiance_on_energy_yield26 schweiger impact_of_spectral_irradiance_on_energy_yield
26 schweiger impact_of_spectral_irradiance_on_energy_yield
 
S4 oman wind energy the technology 2016
S4 oman wind energy the technology 2016S4 oman wind energy the technology 2016
S4 oman wind energy the technology 2016
 
High concentration photovoltaics: potentials and challenges
High concentration photovoltaics: potentials and challengesHigh concentration photovoltaics: potentials and challenges
High concentration photovoltaics: potentials and challenges
 
Study of Large Scale Grid interactive Solar PV power plant
Study of Large Scale Grid interactive Solar PV power plantStudy of Large Scale Grid interactive Solar PV power plant
Study of Large Scale Grid interactive Solar PV power plant
 
CE and EMC
CE and EMCCE and EMC
CE and EMC
 
Power Quality Standards
Power Quality StandardsPower Quality Standards
Power Quality Standards
 
Guidelines and best practices for the commissioning and operation of controll...
Guidelines and best practices for the commissioning and operation of controll...Guidelines and best practices for the commissioning and operation of controll...
Guidelines and best practices for the commissioning and operation of controll...
 
Photovoltaic Module Energy Yield Measurements: Existing Approaches and Best P...
Photovoltaic Module Energy Yield Measurements: Existing Approaches and Best P...Photovoltaic Module Energy Yield Measurements: Existing Approaches and Best P...
Photovoltaic Module Energy Yield Measurements: Existing Approaches and Best P...
 
Lab view Based Harmonic Analyser
Lab view Based Harmonic AnalyserLab view Based Harmonic Analyser
Lab view Based Harmonic Analyser
 
Circuit Analysis Slides
Circuit Analysis SlidesCircuit Analysis Slides
Circuit Analysis Slides
 
8 r.düpont tüv rheinland-ok
8   r.düpont tüv rheinland-ok8   r.düpont tüv rheinland-ok
8 r.düpont tüv rheinland-ok
 
04 winter(ptb), status and outlook of photo class
04 winter(ptb), status and outlook of photo class04 winter(ptb), status and outlook of photo class
04 winter(ptb), status and outlook of photo class
 
Advanced WEC Controls Webinar June 2016
Advanced WEC Controls Webinar June 2016Advanced WEC Controls Webinar June 2016
Advanced WEC Controls Webinar June 2016
 
Single Phase Meter Testing Overview
Single Phase Meter Testing OverviewSingle Phase Meter Testing Overview
Single Phase Meter Testing Overview
 
Chapter - 1 Basic Concepts.pdf
Chapter - 1 Basic Concepts.pdfChapter - 1 Basic Concepts.pdf
Chapter - 1 Basic Concepts.pdf
 
22 2017 7th-pvpm_herrmann_final
22 2017 7th-pvpm_herrmann_final22 2017 7th-pvpm_herrmann_final
22 2017 7th-pvpm_herrmann_final
 

More from Mathias Magdowski

Do's and Don'ts für mobile Streamsetups - Beitrag zum #ScienceVideoCamp2024 d...
Do's and Don'ts für mobile Streamsetups - Beitrag zum #ScienceVideoCamp2024 d...Do's and Don'ts für mobile Streamsetups - Beitrag zum #ScienceVideoCamp2024 d...
Do's and Don'ts für mobile Streamsetups - Beitrag zum #ScienceVideoCamp2024 d...Mathias Magdowski
 
MINT-Mitmachaktionen und Tage der offenen Labortür - Diskussionsbeitrag zur V...
MINT-Mitmachaktionen und Tage der offenen Labortür - Diskussionsbeitrag zur V...MINT-Mitmachaktionen und Tage der offenen Labortür - Diskussionsbeitrag zur V...
MINT-Mitmachaktionen und Tage der offenen Labortür - Diskussionsbeitrag zur V...Mathias Magdowski
 
Kern-Curriculum und Laborversuche für die EMV-Lehre von heute
Kern-Curriculum und Laborversuche für die EMV-Lehre von heuteKern-Curriculum und Laborversuche für die EMV-Lehre von heute
Kern-Curriculum und Laborversuche für die EMV-Lehre von heuteMathias Magdowski
 
Wie man ein gutes Paper (für das LEGO-Praktikum) schreibt
Wie man ein gutes Paper (für das LEGO-Praktikum) schreibtWie man ein gutes Paper (für das LEGO-Praktikum) schreibt
Wie man ein gutes Paper (für das LEGO-Praktikum) schreibtMathias Magdowski
 
Use ChatGPT in Electrical Engineering (!?) - Contribution to the event "AI To...
Use ChatGPT in Electrical Engineering (!?) - Contribution to the event "AI To...Use ChatGPT in Electrical Engineering (!?) - Contribution to the event "AI To...
Use ChatGPT in Electrical Engineering (!?) - Contribution to the event "AI To...Mathias Magdowski
 
ChatGPT nutzen in der Elektrotechnik (!?) - Beitrag zur Veranstaltung "KI-Too...
ChatGPT nutzen in der Elektrotechnik (!?) - Beitrag zur Veranstaltung "KI-Too...ChatGPT nutzen in der Elektrotechnik (!?) - Beitrag zur Veranstaltung "KI-Too...
ChatGPT nutzen in der Elektrotechnik (!?) - Beitrag zur Veranstaltung "KI-Too...Mathias Magdowski
 
Chancen und Herausforderungen von ChatGPT - Wie kann mir ChatGPT helfen, mein...
Chancen und Herausforderungen von ChatGPT - Wie kann mir ChatGPT helfen, mein...Chancen und Herausforderungen von ChatGPT - Wie kann mir ChatGPT helfen, mein...
Chancen und Herausforderungen von ChatGPT - Wie kann mir ChatGPT helfen, mein...Mathias Magdowski
 
Digitale Tools in hybriden Lehrformaten einsetzen Beitrag zu den Hochschuldid...
Digitale Tools in hybriden Lehrformaten einsetzen Beitrag zu den Hochschuldid...Digitale Tools in hybriden Lehrformaten einsetzen Beitrag zu den Hochschuldid...
Digitale Tools in hybriden Lehrformaten einsetzen Beitrag zu den Hochschuldid...Mathias Magdowski
 
Hybride Lehrformate erfolgreich gestalten - Beitrag zum Workshop on E-Learnin...
Hybride Lehrformate erfolgreich gestalten - Beitrag zum Workshop on E-Learnin...Hybride Lehrformate erfolgreich gestalten - Beitrag zum Workshop on E-Learnin...
Hybride Lehrformate erfolgreich gestalten - Beitrag zum Workshop on E-Learnin...Mathias Magdowski
 
Why the Wire is on Fire - Electromagnetic Field Coupling to Transmission Lines
Why the Wire is on Fire - Electromagnetic Field Coupling to Transmission LinesWhy the Wire is on Fire - Electromagnetic Field Coupling to Transmission Lines
Why the Wire is on Fire - Electromagnetic Field Coupling to Transmission LinesMathias Magdowski
 
Akademische Integrität bei Laborprotokollen - Plagiate proaktiv vermeiden und...
Akademische Integrität bei Laborprotokollen - Plagiate proaktiv vermeiden und...Akademische Integrität bei Laborprotokollen - Plagiate proaktiv vermeiden und...
Akademische Integrität bei Laborprotokollen - Plagiate proaktiv vermeiden und...Mathias Magdowski
 
Chancen und Herausforderungen von ChatGPT in der ingenieurwissenschaftlichen ...
Chancen und Herausforderungen von ChatGPT in der ingenieurwissenschaftlichen ...Chancen und Herausforderungen von ChatGPT in der ingenieurwissenschaftlichen ...
Chancen und Herausforderungen von ChatGPT in der ingenieurwissenschaftlichen ...Mathias Magdowski
 
Wie kann mir ChatGPT helfen, meine Elektrotechnik-Prüfung zu bestehen?
Wie kann mir ChatGPT helfen, meine Elektrotechnik-Prüfung zu bestehen?Wie kann mir ChatGPT helfen, meine Elektrotechnik-Prüfung zu bestehen?
Wie kann mir ChatGPT helfen, meine Elektrotechnik-Prüfung zu bestehen?Mathias Magdowski
 
Prüfungen, in denen Studierende gern zeigen, was sie können - Online-Workshop...
Prüfungen, in denen Studierende gern zeigen, was sie können - Online-Workshop...Prüfungen, in denen Studierende gern zeigen, was sie können - Online-Workshop...
Prüfungen, in denen Studierende gern zeigen, was sie können - Online-Workshop...Mathias Magdowski
 
Offene und alternative Prüfungsformate - Schulinterne Lehrer*innen-Fortbildun...
Offene und alternative Prüfungsformate - Schulinterne Lehrer*innen-Fortbildun...Offene und alternative Prüfungsformate - Schulinterne Lehrer*innen-Fortbildun...
Offene und alternative Prüfungsformate - Schulinterne Lehrer*innen-Fortbildun...Mathias Magdowski
 
Appetit auf Hybrid? - Praktische Rezepte für Technik und Didaktik in synchron...
Appetit auf Hybrid? - Praktische Rezepte für Technik und Didaktik in synchron...Appetit auf Hybrid? - Praktische Rezepte für Technik und Didaktik in synchron...
Appetit auf Hybrid? - Praktische Rezepte für Technik und Didaktik in synchron...Mathias Magdowski
 
Alternative Prüfungsformate - Online-Workshop für das Netzwerk hdw nrw
Alternative Prüfungsformate - Online-Workshop für das Netzwerk hdw nrwAlternative Prüfungsformate - Online-Workshop für das Netzwerk hdw nrw
Alternative Prüfungsformate - Online-Workshop für das Netzwerk hdw nrwMathias Magdowski
 
Gute Lehre in hybriden Szenarien für heterogene Zielgruppen - Best-Practice-B...
Gute Lehre in hybriden Szenarien für heterogene Zielgruppen - Best-Practice-B...Gute Lehre in hybriden Szenarien für heterogene Zielgruppen - Best-Practice-B...
Gute Lehre in hybriden Szenarien für heterogene Zielgruppen - Best-Practice-B...Mathias Magdowski
 
Hybride Lehrformate zum Mitmachen - Vor-Ort- und Online-Teilnehmende gleicher...
Hybride Lehrformate zum Mitmachen - Vor-Ort- und Online-Teilnehmende gleicher...Hybride Lehrformate zum Mitmachen - Vor-Ort- und Online-Teilnehmende gleicher...
Hybride Lehrformate zum Mitmachen - Vor-Ort- und Online-Teilnehmende gleicher...Mathias Magdowski
 
Erfahrungen aus einer Open-Web-Präsenzprüfung mit Online-Einreichung in den G...
Erfahrungen aus einer Open-Web-Präsenzprüfung mit Online-Einreichung in den G...Erfahrungen aus einer Open-Web-Präsenzprüfung mit Online-Einreichung in den G...
Erfahrungen aus einer Open-Web-Präsenzprüfung mit Online-Einreichung in den G...Mathias Magdowski
 

More from Mathias Magdowski (20)

Do's and Don'ts für mobile Streamsetups - Beitrag zum #ScienceVideoCamp2024 d...
Do's and Don'ts für mobile Streamsetups - Beitrag zum #ScienceVideoCamp2024 d...Do's and Don'ts für mobile Streamsetups - Beitrag zum #ScienceVideoCamp2024 d...
Do's and Don'ts für mobile Streamsetups - Beitrag zum #ScienceVideoCamp2024 d...
 
MINT-Mitmachaktionen und Tage der offenen Labortür - Diskussionsbeitrag zur V...
MINT-Mitmachaktionen und Tage der offenen Labortür - Diskussionsbeitrag zur V...MINT-Mitmachaktionen und Tage der offenen Labortür - Diskussionsbeitrag zur V...
MINT-Mitmachaktionen und Tage der offenen Labortür - Diskussionsbeitrag zur V...
 
Kern-Curriculum und Laborversuche für die EMV-Lehre von heute
Kern-Curriculum und Laborversuche für die EMV-Lehre von heuteKern-Curriculum und Laborversuche für die EMV-Lehre von heute
Kern-Curriculum und Laborversuche für die EMV-Lehre von heute
 
Wie man ein gutes Paper (für das LEGO-Praktikum) schreibt
Wie man ein gutes Paper (für das LEGO-Praktikum) schreibtWie man ein gutes Paper (für das LEGO-Praktikum) schreibt
Wie man ein gutes Paper (für das LEGO-Praktikum) schreibt
 
Use ChatGPT in Electrical Engineering (!?) - Contribution to the event "AI To...
Use ChatGPT in Electrical Engineering (!?) - Contribution to the event "AI To...Use ChatGPT in Electrical Engineering (!?) - Contribution to the event "AI To...
Use ChatGPT in Electrical Engineering (!?) - Contribution to the event "AI To...
 
ChatGPT nutzen in der Elektrotechnik (!?) - Beitrag zur Veranstaltung "KI-Too...
ChatGPT nutzen in der Elektrotechnik (!?) - Beitrag zur Veranstaltung "KI-Too...ChatGPT nutzen in der Elektrotechnik (!?) - Beitrag zur Veranstaltung "KI-Too...
ChatGPT nutzen in der Elektrotechnik (!?) - Beitrag zur Veranstaltung "KI-Too...
 
Chancen und Herausforderungen von ChatGPT - Wie kann mir ChatGPT helfen, mein...
Chancen und Herausforderungen von ChatGPT - Wie kann mir ChatGPT helfen, mein...Chancen und Herausforderungen von ChatGPT - Wie kann mir ChatGPT helfen, mein...
Chancen und Herausforderungen von ChatGPT - Wie kann mir ChatGPT helfen, mein...
 
Digitale Tools in hybriden Lehrformaten einsetzen Beitrag zu den Hochschuldid...
Digitale Tools in hybriden Lehrformaten einsetzen Beitrag zu den Hochschuldid...Digitale Tools in hybriden Lehrformaten einsetzen Beitrag zu den Hochschuldid...
Digitale Tools in hybriden Lehrformaten einsetzen Beitrag zu den Hochschuldid...
 
Hybride Lehrformate erfolgreich gestalten - Beitrag zum Workshop on E-Learnin...
Hybride Lehrformate erfolgreich gestalten - Beitrag zum Workshop on E-Learnin...Hybride Lehrformate erfolgreich gestalten - Beitrag zum Workshop on E-Learnin...
Hybride Lehrformate erfolgreich gestalten - Beitrag zum Workshop on E-Learnin...
 
Why the Wire is on Fire - Electromagnetic Field Coupling to Transmission Lines
Why the Wire is on Fire - Electromagnetic Field Coupling to Transmission LinesWhy the Wire is on Fire - Electromagnetic Field Coupling to Transmission Lines
Why the Wire is on Fire - Electromagnetic Field Coupling to Transmission Lines
 
Akademische Integrität bei Laborprotokollen - Plagiate proaktiv vermeiden und...
Akademische Integrität bei Laborprotokollen - Plagiate proaktiv vermeiden und...Akademische Integrität bei Laborprotokollen - Plagiate proaktiv vermeiden und...
Akademische Integrität bei Laborprotokollen - Plagiate proaktiv vermeiden und...
 
Chancen und Herausforderungen von ChatGPT in der ingenieurwissenschaftlichen ...
Chancen und Herausforderungen von ChatGPT in der ingenieurwissenschaftlichen ...Chancen und Herausforderungen von ChatGPT in der ingenieurwissenschaftlichen ...
Chancen und Herausforderungen von ChatGPT in der ingenieurwissenschaftlichen ...
 
Wie kann mir ChatGPT helfen, meine Elektrotechnik-Prüfung zu bestehen?
Wie kann mir ChatGPT helfen, meine Elektrotechnik-Prüfung zu bestehen?Wie kann mir ChatGPT helfen, meine Elektrotechnik-Prüfung zu bestehen?
Wie kann mir ChatGPT helfen, meine Elektrotechnik-Prüfung zu bestehen?
 
Prüfungen, in denen Studierende gern zeigen, was sie können - Online-Workshop...
Prüfungen, in denen Studierende gern zeigen, was sie können - Online-Workshop...Prüfungen, in denen Studierende gern zeigen, was sie können - Online-Workshop...
Prüfungen, in denen Studierende gern zeigen, was sie können - Online-Workshop...
 
Offene und alternative Prüfungsformate - Schulinterne Lehrer*innen-Fortbildun...
Offene und alternative Prüfungsformate - Schulinterne Lehrer*innen-Fortbildun...Offene und alternative Prüfungsformate - Schulinterne Lehrer*innen-Fortbildun...
Offene und alternative Prüfungsformate - Schulinterne Lehrer*innen-Fortbildun...
 
Appetit auf Hybrid? - Praktische Rezepte für Technik und Didaktik in synchron...
Appetit auf Hybrid? - Praktische Rezepte für Technik und Didaktik in synchron...Appetit auf Hybrid? - Praktische Rezepte für Technik und Didaktik in synchron...
Appetit auf Hybrid? - Praktische Rezepte für Technik und Didaktik in synchron...
 
Alternative Prüfungsformate - Online-Workshop für das Netzwerk hdw nrw
Alternative Prüfungsformate - Online-Workshop für das Netzwerk hdw nrwAlternative Prüfungsformate - Online-Workshop für das Netzwerk hdw nrw
Alternative Prüfungsformate - Online-Workshop für das Netzwerk hdw nrw
 
Gute Lehre in hybriden Szenarien für heterogene Zielgruppen - Best-Practice-B...
Gute Lehre in hybriden Szenarien für heterogene Zielgruppen - Best-Practice-B...Gute Lehre in hybriden Szenarien für heterogene Zielgruppen - Best-Practice-B...
Gute Lehre in hybriden Szenarien für heterogene Zielgruppen - Best-Practice-B...
 
Hybride Lehrformate zum Mitmachen - Vor-Ort- und Online-Teilnehmende gleicher...
Hybride Lehrformate zum Mitmachen - Vor-Ort- und Online-Teilnehmende gleicher...Hybride Lehrformate zum Mitmachen - Vor-Ort- und Online-Teilnehmende gleicher...
Hybride Lehrformate zum Mitmachen - Vor-Ort- und Online-Teilnehmende gleicher...
 
Erfahrungen aus einer Open-Web-Präsenzprüfung mit Online-Einreichung in den G...
Erfahrungen aus einer Open-Web-Präsenzprüfung mit Online-Einreichung in den G...Erfahrungen aus einer Open-Web-Präsenzprüfung mit Online-Einreichung in den G...
Erfahrungen aus einer Open-Web-Präsenzprüfung mit Online-Einreichung in den G...
 

Recently uploaded

Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...Call Girls in Nagpur High Profile
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 

Recently uploaded (20)

Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 

EMC Measurements in Reverberation Chambers

  • 1. Overview and Motivation Reverberation Chambers EMC Measurements in Reverberation Chambers Mathias Magdowski Chair for Electromagnetic Compatibility Institute for Medical Engineering Otto von Guericke University Magdeburg, Germany July 22, 2020 Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 2. Overview and Motivation Reverberation Chambers Overview Over Other Test Environments Motivation Table of Contents Overview Over Other Test Environments (a) Open Area Test Site (Cambridge) (b) Semi-Anechoic Chamber (Magdeburg) (c) Fully-Anechoic Room (Gent) (d) GTEM Cell (Magdeburg) Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 3. Overview and Motivation Reverberation Chambers Overview Over Other Test Environments Motivation Table of Contents Motivation Carl Edward Baum in Microwave Memo No. 3: “The Microwave Oven Theorem – All Power to the Chicken” What is the difference between a microwave oven and a mode stirred chamber? The former cooks chicken, the later cooks electronics. Figure: Carl Edward Baum (1940 – 2010) Source: http://www.ece.unm.edu/summa/ Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 4. Overview and Motivation Reverberation Chambers Overview Over Other Test Environments Motivation Table of Contents 1 Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 5. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Setup Figure: Schematic setup of a reverberation chamber (top view) Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 6. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 7. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Draw a Good Stirrer Design! Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 8. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Pros and Cons Pros: high Q −→ high E field strength with low input P relatively low costs statistical uniform field −→ robust tests Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 9. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Pros and Cons Pros: high Q −→ high E field strength with low input P relatively low costs statistical uniform field −→ robust tests Cons: statistics necessary no statement about directivity and polarization possible EUT loads the chamber and lowers Q comparison with established test environments Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 10. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Setup Figure: Typical Reverberation Chamber (IEC 61000-4-21) Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 11. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Reverberation Chambers in Magdeburg Figure: Large reverberation chamber in Magdeburg Key figures: built in 1998, dimensions of 7.9 m × 6.5 m × 3.5 m first cavity resonance at 30 MHz lowest usable frequency at 250 MHz Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 12. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Reverberation Chambers in Magdeburg Figure: Small reverberation chamber in Magdeburg Key figures: built in 2003, dimensions of 1.5 m × 1.2 m × 0.9 m first cavity resonance at 160 MHz lowest usable frequency at 1 GHz Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 13. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Reverberation Chambers in Magdeburg Figure: Tiny reverberation chamber in Magdeburg Key figures: built in 2006, dimensions of 60 cm × 58 cm × 56 cm first cavity resonance at 360 MHz lowest usable frequency at 2 GHz Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 14. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Literature Generic technical standard IEC 61000-4-21: 1. Edition from 2003, 2. Edition from 2011 explains the validation and measurements Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 15. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Literature Generic technical standard IEC 61000-4-21: 1. Edition from 2003, 2. Edition from 2011 explains the validation and measurements Book: Hans Georg Krauthäuser: “Grundlagen und Anwendungen von Modenverwirbelungskammern” Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 16. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Literature Generic technical standard IEC 61000-4-21: 1. Edition from 2003, 2. Edition from 2011 explains the validation and measurements Book: Hans Georg Krauthäuser: “Grundlagen und Anwendungen von Modenverwirbelungskammern” Other standards: ISO 11452-11:2010 (automotive) RTCA DO-160 (aircraft) Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 17. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Intermediate Overview 1 Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 18. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Empty Rectangular Cavity Resonator a b c x y z Cavity resonances: f = c0 2 l a 2 + m b 2 + n c 2 l, m and n are non-negative integers, of which no more than one may be zero Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 19. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Resonant Frequencies f in MHz l m n 29.8635 1 1 0 44.4060 2 1 0 46.8424 1 0 1 48.6416 0 1 1 49.8724 1 2 0 52.2113 1 1 1 57.2213 2 0 1 59.7270 2 2 0 61.4165 3 1 0 61.6935 2 1 1 Table: First 10 resonant frequencies of the large reverberation chamber in Magdeburg with the dimensions of 7.9 m × 6.5 m × 3.5 m Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 20. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Number of Resonant Frequencies 0 50 100 150 200 250 300 100 101 102 103 Frequency, f (in MHz) Cumulatednumberofmodes Figure: Cumulated number of modes for the large reverberation chamber in Magdeburg Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 21. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Number of Resonant Frequencies 0 50 100 150 200 250 300 100 101 102 103 Frequency, f (in MHz) Cumulatednumberofmodes Figure: Cumulated number of modes for the large reverberation chamber in Magdeburg Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 22. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Quality Factor Q = ω · stored energy average power loss Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 23. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Quality Factor Q = ω · stored energy average power loss What will cause losses? Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 24. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Quality Factor Q = ω · stored energy average power loss What will cause losses? Losses: within the dielectric (very small in air) at the walls (material: copper, aluminum, steel) by loading the chamber (scatterers as the stirrer, antennas, cables, EUT, monitoring equipment, . . . ) Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 25. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Bandwidth of the Resonant Frequencies Relation between bandwidth and quality factor: Q = Resonant Frequency Bandwidth = 1 relative Bandwidth Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 26. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Bandwidth of the Resonant Frequencies Relation between bandwidth and quality factor: Q = Resonant Frequency Bandwidth = 1 relative Bandwidth Consequences of a finite quality factor: finite resonance magnification field can be excited outside of the resonant frequencies modes can overlap Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 27. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Undermoding at “Low” Frequencies 124 124.5 125 125.5 126 10−2 10−1 100 101 Frequency, f (in MHz) Fieldstrength(normalized) Superposition Figure: Schematic modal structure in the large reverberation chamber in Magdeburg around 125 MHz at a quality factor of Q = 1000 Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 28. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Overmoding at “High” Frequencies 249 249.5 250 250.5 251 10−2 10−1 100 101 Frequency, f (in MHz) Fieldstrength(normalized) Superposition Figure: Schematic modal structure in the large reverberation chamber in Magdeburg around 250 MHz at a quality factor of Q = 1000 Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 29. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Undermoding Due to a High Quality Factor 249 249.5 250 250.5 251 10−2 10−1 100 101 Frequency, f (in MHz) Fieldstrength(normalized) Superposition Figure: Schematic modal structure in the large reverberation chamber in Magdeburg around 250 MHz at a quality factor of Q = 10 000 Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 30. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Cavity Resonator −→ Reverberation Chamber How to stir the field? Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 31. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Cavity Resonator −→ Reverberation Chamber How to stir the field? Changes of the electromagnetic boundary conditions: mechanical stirrer moving walls replacing the transmitting antenna switching between several antennas Narrow band frequency changes: only for immunity testing Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 32. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Vibrating Intrinsic Reverberation Chamber (a) Demonstration with neon tubes (b) In-situ test on a ship Source: Prof. Leferink, University of Twente and THALES, Netherlands Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 33. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Oscillating Wall Stirrer Figure: Reverberation chamber with an oscillating wall stirrer at the Laboratory of Electromagnetic Compatibility, School of Mechanical Engineering, Southeast University, Nanjing, China Source: https://dx.doi.org/10.1109/TEMC.2020.2983981 Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 34. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Terminology Reverberation chamber = mode-stirred chamber mode-tuned chamber overmoded cavity reverberating enclosure electrically large, complex cavity Modenverwirbelungskammer Feldvariable Kammer . . . Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 35. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Statistical Properties of the Field Homogeneity: independence of location free placement of the EUT in the working volume Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 36. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Statistical Properties of the Field Homogeneity: independence of location free placement of the EUT in the working volume Isotropy: independence of direction free alignment of the EUT and attached cables Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 37. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Statistical Properties of the Field Homogeneity: independence of location free placement of the EUT in the working volume Isotropy: independence of direction free alignment of the EUT and attached cables Ergodicity: interchangeability of different statistical ensembles e. g. stirrer positions, spatial points, neighboring frequencies, etc. Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 38. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Intermediate Overview 1 Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 39. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Chamber Field Uniformity and Loading Validation Goal: verification of a sufficiently small field inhomogeneity in the working volume determination of the lowest usable frequency (LUF) for the empty and maximum loaded chamber Maximum chamber loading verification: simulate the chamber loading by the EUT using a sufficient amount of absorbers EUT loading ≤ maximum loading Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 40. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Chamber Validation With the EUT in Place Goal: analyze the loading by the EUT loading ≤ maximum loading Same procedure as empty chamber validation with the following simplifications: no field probe measurements only one locations of the reference antenna Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 41. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Radiated Immunity Testing Determination of the chamber input power: setting of the required field strength ETest feeding of a certain forward power PInput ∼ E2 Test (1) Proportionality factor results from: empty chamber validation validation with the EUT in place Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 42. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Performing an Immunity Test Preparation: remove unnecessary absorbing materials → high Q no wooden tables, carpets, wall and floor coverings Procedure: logarithmic frequency spacing with 100 frequencies/decade same minimum numbers of stirrer steps as during validation appropriate dwell time per frequency and stirrer step no stirring in conjunction with swept frequency testing Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 43. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Radiated Emission Measurement Based on the measurement of the average received power: Prad = ηTX · PAveRec CVF (2) Variables: ηTX efficiency of the transmitting antenna (75 % to 90 %) PAveRec average received power at the reference antenna CVF chamber validation factor from the validation with the EUT (switched off) in place Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 44. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Intermediate Overview 1 Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 45. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments What is Meant by the “Electric Field”? c E H Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 46. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments What is Meant by the “Electric Field”? c E H Linearly polarized plane wave with the amplitude E0: amplitude of the Cartesian field component is E0 total electric field strength is E0 minimum, average and maximum field strength is E0 minimum, average and maximum squared magnitude is E2 0 Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 47. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments What is Meant by the “Electric Field”? c E H Linearly polarized plane wave with the amplitude E0: amplitude of the Cartesian field component is E0 total electric field strength is E0 minimum, average and maximum field strength is E0 minimum, average and maximum squared magnitude is E2 0 This is not valid for a reverberant field! Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 48. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Electrical Size of an Equipment Under Test a Definition as k · a: k: wave number, k = 2πf c = 2π λ a: radius of the smallest sphere surrounding the EUT Questions: What belongs to the EUT (case, cables, . . . )? Which line length has to be considered? Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 49. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Electrical Small EUTs Condition: k · a ≤ 1 Figure: Radiation pattern of a small dipole (Source: Wikipedia) Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 50. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Electrical Large EUTs Condition: k · a > 1 Figure: Radiation pattern (planar cut) of a practical EUT (Source: Magnus Höijer, FOI) Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 51. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Electrical Large EUTs Condition: k · a > 1 Figure: Radiation pattern (planar cut) of a practical EUT (Source: Magnus Höijer, FOI) Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 52. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Transition From Electrically Small to Electrically Large Frequency f Wave Number k k · a Radius a Diameter d in GHz in m−1 in cm in cm 0.03 0.6 1.0 159.2 318.3 0.10 2.1 1.0 47.8 95.5 0.20 4.2 1.0 23.9 47.7 0.50 10.5 1.0 9.6 19.1 1.0 20.9 1.0 4.8 9.6 2.0 41.9 1.0 2.4 4.8 5.0 104.7 1.0 0.9 1.9 10.0 209.4 1.0 0.5 1.0 Table: Example values for an electrical EUT size of k · a = 1 (Source: Perry Wilson, NIST) Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 53. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Sampling Frequency f Wave Number k Radius a k · a Orientations in GHz in m−1 in cm 0.03 0.6 0.25 0.2 12 0.10 2.1 0.25 0.5 12 0.20 4.2 0.25 1.1 13 0.50 10.5 0.25 2.6 48 1.0 20.9 0.25 5.2 152 2.0 41.9 0.25 10.5 522 5.0 104.7 0.25 26.2 2951 10.0 209.4 0.25 52.4 11 385 Table: Number of independent orientation for an object with 50 cm diameter (Source: Perry Wilson, NIST) Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 54. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Comparison Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 55. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Comparison Environment: deterministic Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 56. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Comparison Environment: deterministic EUT: random Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 57. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Comparison Environment: deterministic EUT: random Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 58. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Comparison Environment: deterministic EUT: random Environment: random Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 59. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Comparison Environment: deterministic EUT: random Environment: random EUT: deterministic Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 60. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Measurements With a Practical EUT (a) in the reverberation chamber (b) in the semi-anechoic chamber Figure: Utilized equipment under test (Source: Matthias Hirte, OVGU) Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 61. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Measurements With a Practical EUT 200 300 400 500 600 700 800 900 1 000 55 60 65 70 75 Frequency in MHz FieldstrengthindBµVm−1 Measurement in the semi-anechoic chamber Measurement in the reverberation chamber Figure: Comparison of the emission measurement in different environments, directivity = 1 (Source: Matthias Hirte, OVGU) Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 62. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Measurements With a Practical EUT 200 300 400 500 600 700 800 900 1 000 55 60 65 70 75 Frequency in MHz FieldstrengthindBµVm−1 10° steps 90° steps Figure: Comparison of the emission measurement for different turntable steps (Source: Matthias Hirte, OVGU) Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 63. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Semi-Anechoic vs. Reverberation Chamber Property Semi-Anechoic Reverberation Chamber Chamber Field plane wave multiple reflections Polarization linear unknown Correlation length very long short (λ 2 ) Incident direction known all directions Field impedance 377 Ω unknown Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 64. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments SAC vs. GTEM vs. RVC Property Semi-Anechoic Chamber GTEM Reverberation Chamber f Range above 30 MHz (10 m test distance) from 0 Hz above “Lowest usable frequen- cy” (LUF) Problems test in the near field at low f standing waves at medium f no statistic uniform field a low f Test Time increases with f increases with f stays constant EUT V large small medium Costs high low low Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 65. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments More Fundamental Question What is a good measurand for emission? field strength in V m−1 (in a certain distance) power flux density in W m−2 (in a certain distance) total radiated power W (independent of the distance) In which environment is the measurement performed? reflection-free environment environment with reflections highly reflective environment Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 66. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Final Question All Power to the Chicken? PInput = PWall + PStirrer + PChicken Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 67. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Final Question All Power to the Chicken? PInput = PWall + PStirrer + PChicken PWall = 0 Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 68. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Final Question All Power to the Chicken? PInput = PWall + PStirrer + PChicken PWall = 0 PStirrer = 0 Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 69. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Final Question All Power to the Chicken? PInput = PWall + PStirrer + PChicken PWall = 0 PStirrer = 0 PInput = PChicken Mathias Magdowski EMC Measurements in Reverberation Chambers
  • 70. Overview and Motivation Reverberation Chambers Overview Theoretical Fundamentals Normative Validation and Measurements Comparison With Other Test Environments Thank you very much for your attention! Are there more questions? Mathias Magdowski EMC Measurements in Reverberation Chambers