SlideShare a Scribd company logo
1 of 76
L N G P R O C E S S I N G P R E S E N T A T I O N
AGENDA
• LNG Process Overview
• Major Process Units
• Calculation of LNG Production Capacity
– LNG4/5 used as an example
– Comparison with other liquefaction processes
• Impact of High Nitrogen Feed Gas
• Rules of Thumb
LNG PROCESS OVERVIEW
LNG TRAIN
GAS LNG
Energy consumption
Energy rejection
LNG Train
Energy rejection
(Condenser)
Cooling
(Evaporator)
Simple Refrigeration Cycle
Pressure
Let-down
ENERGY
PRESSURE
Title :
By :
Date :
Location :
Slide No:
LNG Processing
NWSV
28 June 2005
DRIMS#2039387
‹#›
WHAT IS LNG
Methane Gas Liquefied Natural Gas
Temperature 110 deg C (in reservoir) -162 deg C
Pressure 200 bar (in reservoir) 1 bar
Specific Volume 600 1
Density (kg/m3) 0.75 460
(at 15C and 1 bar)
Natural Gas to LNG
Title :
By :
Date :
Location :
Slide No:
LNG Processing
NWSV
28 June 2005
DRIMS#2039387
‹#›
Specification Typical Value
Methane min. 84 mol% ~ 87 mol%
Ethane balance ~ 8 mol%
Propane balance ~ 3 mol%
Butanes max. 2 mol% ~ 0.8 mol%
Pentanes + max. 0.1 mol% ~ 0 mol%
Mercury max. 10 ng/Sm³ ~ 0 ng/Sm³
Hydrogen Sulphide max. 5 mg/Sm³ ~ 0 mg/Sm³
HHV 1050 - 1170 Btu/ft³ 1110 - 1150 Btu/ft³
LNG Specification
Title :
By :
Date :
Location :
Slide No:
LNG Processing
NWSV
28 June 2005
DRIMS#2039387
‹#›
LNG Specification
Specification US Gas Japan LNG
West. Aust
Pipeline Gas
Main Reason(s)
Higher Heating Value (min) 970 Btu/Scf 1070 Btu/Scf 37.3 MJ/Sm3 Combustion limits
Higher Heating Value (max) 1150 Btu/Scf 1170 Btu/Scf 42.3 MJ/Sm3 Combustion limits
Wobbe (max) - - 47.3 MJ/Sm3 Combustion limits
Wobbe (min) - - 51.0 MJ/Sm3 Combustion limits
Butanes - < 2.0 mol% - Liquid dropout
Pentanes plus < 0.2 mol% < 0.1 mol% - Liquid dropout
Hydrocarbon Dewpoint - - < 0 deg C Liquid dropout
Nitrogen - < 1.0 mol% - Stratification & rollover (LNG)
Carbon Dioxide < 0.1 mol% None 3.6 mol%
Corrosion if water wet / Freeze-out
(LNG)
Oxygen < 0.2 mol% - 0.2 mol% Unwanted combustion
Total Inerts - - 5.5 mol% Minimise “dead” gas
Water - None 48 mg/Sm3 Corrosion / Freeze-out
Hydrogen Sulphide < 5 mg/Sm3 < 5 mg/Sm3 < 2 mg/Sm3 Smell / toxicity
Total Sulphur (unodourised) 16ppm (vol) < 30 mg/Sm3 < 10 mg/Sm3 Smell / toxicity
Solids or impurities
Mercury
- None
<10 ng/Sm3
None Blockages / fouling
Corrosion (LNG)
LNG
Fuel
LPG
C5+
Acid Gas
Where does the feed go?
(Approximate!)
Title :
By :
Date :
Location :
Slide No:
LNG Processing
NWSV
28 June 2005
DRIMS#2039387
‹#›
Karratha Gas Plant Production
Production Mtpa Price A$/te Annual Sales
Value A$ millions
LNG 12.5
(LNG 1-4)
250 3125
Domgas 4.1
(600 TJ/d)
100 408
Condensate 3.78
(100,000 bpd)
560
(US$ 50/bbl)
2180
LPG 0.68
(2000 tpd)
300 204
Notes
1. Cost of petrol at the bowser is A$1/litre or A$1600/te.
• Proven Technology with excellent safety record
– In operation since 1969
– Odourless, colourless, non-corrosive and non toxic
– Non-explosive in liquid or vapour state in unconfined spaces
– No major spillage at sea (108 tankers operating)
– Only one major accident at the 37 operating facilities world-
wide
– Less wear and tear on equipment compared to coal, oil and
nuclear based power plants
– Easy to handle compared to coal and nuclear fuel
• Environmentally friendly
– No ash content
– No sulfur or heavy metals
– No radioactive wastes and power plant decommissioning
complexities
Advantages of LNG
HSE Issues Relating to LNG
MAJOR PROCESS UNITS
Existing
Fractionation
Existing
LNG Storage
& Loading
U4400
Fuel Gas
System
Existing
Flare
Systems
C3
C4
C5+
FEED
LNG
LNG
LNG Train 4
U1100
Acid Gas
Removal
U1300
Dehydration
U1500
Mercury
Removal
U1400
Liquefaction
Karratha Gas Plant
U1250
Thermal
Combustion
Unit
Condensate
Storage
& Loading
U4000
Power
Generation
U1600
Existing
Refrig.
Storage
U4700
Air
U6000
Fire
Fighting
U6400
Drainage
& Effluent
Treating
U4600
Closed
Loop
Cooling
Existing LNG Train
Gas to Perth
Existing Domgas Plant
Existing LNG Train
Existing LNG Train
AGR
Area
U4100
Heated
Water
U4800
Nitrogen
U1200
Sulfinol
Reclaimer
Unit
Karratha Gas plant
From V1303
V1101
P1103 A/B/C
AFA
E1103 A/B/C/D/E
S1101/2/3
Feed
Gas
NNF
To LP Fuel
Acid Gas
to unit 1250
V1104
Water
make-up
P1102 A/B
E1104 A/B Heated
Water
Unit 1100 – Acid Gas removal
E1102
Treated Gas to U1300
C1101A
C1101B
V1103
P1101 A/B/C
C1102
E1101
Solvent Regeneration
Vent Gas
From
U1100
V1251
Condesibles
V1252
Fuel Gas Flash Gas
Oxazolidone
A1251
P1251A/B
K1251
Unit 1250 - Thermal Combustion
1F-1251
C1301A
C1301C
C1301B
V1303
Dried Gas
to Mercury Unit
Unit 1300 - Dehydration
Gas From
Unit 1100
E1301
E1303
K1310
V1301
E1401E1432
V1302
Water / HC to Acid Gas Removal Unit
Flash gas to Fuel Gas System
C1501
Absorber
S1501
Dust Filter
Dried Gas
From U1300
Treated Gas
to Liquefaction
U1400
Unit 1500 - Mercury Removal
U1300 U1500
E1450
E1451
E1452
E1401E1432 E1402 E1403
E1410 E1425 E1420
K1410
K1420
V1410
E1421 E1422 E1423
P1402
E1404
P1401
V1401
C1401
E1406
E1460
E1413
E1405A
GT1420A
GT1410
K1450
C1410
Unit 1400 - Liquefaction
E1424
V1421
E1441 E1440
GAS
LNG
K-1430
V1430
V1431
V1432
V1440
U1800
(existing)
E1405B
GT1420B
HHP
HP
MP
LP
HMR
LMR
Scrub Column MCHE Nitrogen Rejection
Mixed Refrigerant
V1442
E1442
Propane Pre-Cooling
MCHE Heating and Cooling Curves
Temperature
Energy Transferred
0 An awful lot
GAS
LNG
PR
MR
Subcooling by
liquid expander
Ambient
Very cold
U1300 U1500
E1450
E1451
E1452
E1401E1432 E1402 E1403
E1410 E1425 E1420
K1410
K1420
V1410
E1421 E1422 E1423
P1402
E1404
P1401
V1401
C1401
E1406
E1460
E1413
E1405A
GT1420A
GT1410
K1450
C1410
Unit 1400 - Liquefaction
E1424
V1421
E1441 E1440
E1442
GAS
LNG
K-1430
V1442
V1430
V1431
V1432
V1440
U1800
(existing)
E1405B
GT1420B
HHP
HP
MP
LP
HMR
LMR
V4101
Unit 4100- Heated Water System
HP Nitrogen Blanket
P-4101A/B/C
To ATM
E-1301
Fr.7 GT Exhaust Gas
E4103
A-4101
Demin
Water
Consumers
Unit 4400 - Fuel Gas
HW
4E4404
V-4417
V-4422
V-4409
HW
4E4407
V-4410
V-4407
K4402
E4408
To TCU
To Domgas
To Fr.7 GTs
E4406
Flash Gas
from U1100
End Flash Gas
From TOT
To GTGs
LP System
HP System
HHP System
4V-4415
Water
to U1100
Flash Gas
from U1300
Cross-connection
to/from existing LP
fuel gas
Unit 4600 -Fresh Water Cooling System
V4620
GT1410
GT1420A/B
K1410/
1420
P4101A/B/
C/D
4K4402
K1450 K1430 K1310
E4620
From Demin
Water
Distribution
CALCULATION OF LNG
PRODUCTION CAPACITY
(USING LNG4/5 AS AN EXAMPLE)
Calculation of LNG Production Capacity
• LNG TECHMAX production rate RT at a given ambient temperature T is:
– RT = (PGT + PH)T / wT
• wT = specific power at T (typical values shown in Table P1, adjust for actual T
and temp ex MCHE)
• PGT = Gas turbine power at T as shown in Table P2
• PH = Helper motor power
• Annual LNG TECHMAX production capacity (PTECHMAX) is calculated by
summing for all ambient temperatures (T) the product of the TECHMAX rate
at T (RT) and the frequency with which T occurs (FT) i.e.:
– PTECHMAX = T (RT x FT)
• FT is obtained from the ambient temperature profile at the site (i.e. the hours
per year at each temperature) and is plotted in Figure P3 for KGP
• Annual LNG design production capacity (PLNG) is calculated from the product
of annual TECHMAX capacity (PTECHMAX) and overall plant availability (A):
– PLNG = PTECHMAX x A
• Spreadsheet developed to facilitate these calculations
Example - LNG4 Production Capacity
• Select nominal annual LNG design production capacity (PLNG = 4 MTPA)
• Determine average ambient temperature Tav for the site
– For Karratha Tav = 27 + 2 = 29oC (from Figure P3))
• Select refrigeration cycle (C3/MR) and determine specific power at Tav
– wav = 12.0 kW/tpd (from Figure P1)
• Select GT type and number (2 x Frame 7) and determine power output at Tav:
– PGT = 73,000 kW per machine (from Figure P2 or Tables P2 and P3)
• Estimate overall plant availability (A = 0.93)
• Check annual LNG production PLNG rate can be achieved based on Tav:
– PLNG = (PGT + PH)T / wT = 365 x 0.93 x 2 x 73,000 / 12.0 = 4.1 MTPA
• Select helper motor size PH (>= starting load)
– PR = 11,000 kW, MR = 20,000 kW
• Confirm annual LNG production (PLNG) by summing for all ambient temps (T)
the product of the production rate at T (RT), based on the installed power, the
frequency (FT) with which T occurs (from Figure P3) and the overall plant
availability (A):
– PLNG = T (RT x FT) x A = T (((PGT + PH)T / wT) x FT) x A = 4.6 MTPA (rated)
LNG Capacity Definitions
 Design Process Flow Rate*
– Also referred to as Heat and Material Balance Capacity
 Technical Maximum Capacity (TECHMAX)*
– Equivalent to the Design Process Flow Rate for an operating plant
 Guaranteed Capacity*
– Design process flow rate less Process Licensor margin (2.5% for LNG4)
 Nameplate Capacity#
– Design process flow rate less onshore and offshore planned and un-
planned outages (9.8% for LNG4?)
 Annualised Technical Rundown#
– Less system effects/planning margins (3.5% for LNG4?)
 Annualised Technical Loadable Volume (or ACQ for FOB ships)#
– Less boil-off gas losses (typically 3% for new plant)
* Annualised rate given on a stream day basis
# Annualised rate given on a calendar day basis
Figure P1
Impact of Ambient Temperature on LNG Specific Power
Figure P2
Impact of Ambient Temp on Gas Turbine Performance
Frame 7 Available Power
y = -0.5219x + 88.335
R2
= 1
y = -0.5271x + 87.582
R2
= 1
65
70
75
80
15 20 25 30 35 40
Temperature, o
C
Power,
MW
KT-1430
KT-1410
Figure P3
Impact of Ambient Temperature on LNG Production
Ambient Temperature Distribution
0
1
00
200
300
400
500
600
700
800
900
1
0 1
5 20 25 30 35 40 45
Temperature
o
C
Hours
per
Year
Figure P4
Impact of Ambient Temperature on LNG Production
LNG4 Tmax - Comparisons
10000
10500
11000
11500
12000
12500
13000
13500
14000
14500
15000
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
AmbientTemp (C)
LNG4
Rundown
(TPD)
Design rundown
Daily Averages
Commit LNG4 Tmax
OTS Runs
Uncommitable Upside Tmax
Figure P5
Impact of Ambient Temperature on LNG Production
LNG TECHMAX PRODUCTION
3.50
4.00
4.50
5.00
5.50
0 10 20 30 40 50 60 70 80 90 100
Cumulative Hours %
MTPA
Figure P6
Impact of Ambient Temperature on LNG Production
LNG Production per Train
0
20
40
60
80
100
14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
Temperature, o
C
LNG
Production,
%
Figure P7
Impact of Ambient Temperature on LNG Production
LNG HELPER MOTOR POWER
0.000
5.000
10.000
15.000
20.000
25.000
30.000
10 15 20 25 30 35 40 45
Ambient Temperature, o
C
Helper
Power,
MW
MR Helper PR Helper Total Helper
Figure P8
Impact of Refrigeration Temp on Theoretical
Refrigeration Power
Figure P9
Impact of Temp ex MCHE on LNG Specific Power
LNG4 AGAA Case
Figure P10
Impact of Temp ex MCHE on LNG Production
THEORETICAL INCREASED PRODUCTION (AMBIENT TEMP 27OC)
Table P1a
Base Load Liquefaction Processes
Liquefaction Cycle Specific Power (1) Capacity
Range per
Train, Mtpa
kW/tpd kJ/kg Relative
to C3/MR
Propane Pre-cooled Mixed
Refrigerant (C3/MR)
12.2 1054 1.0 =< 5
Air Products APX 12.0 1035 0.98 =< 9
Double Mixed Refrigerant (DMR) 12.5 1080 1.02 =< 5 (2)
Cascade 14.1 1218 1.16 =< 3.5 (2)
Single Mixed Refrigerant (SMR) 14.5 1253 1.19 =< 3.8 (2)
BHP/Linde cLNG (Propane Pre-
cooled Double N2 Expander)
15.6 1520 1.44 =< 2.2
Notes
1. Specific powers are indicative and will depend on feed and ambient conditions and temp ex MCHE..
2. Larger train capacities possible by installing parallel items of equipment, such as compressors.
3. Data (except for APX) taken from LNG12 Conference Paper 3.3 “Comparison of Base Load
Liquefaction Processes” by K.J. Vink and R. Klein Nagelvoort, Shell International Oil products, B.V.
Table P1b
Small to Medium Scale Liquefaction Processes
Liquefaction Cycle Specific Power (Note 1) Capacity
Range
Mtpa
kW/tpd kJ/kg Relative
to C3/MR
Single Mixed Refrigerant (SMR) 15.3 1318 1.25 0.1 – 1
ABB NicheLNG (Double (Methane and
N2) Expander)
16.9 1460 1.39 0.3 – 1.5
BHP/Linde cLNG (Double N2 Expander) 17.6 1520 1.44 0.3 – 1.5
Pre-cooled Double Expander 15.6 1348 1.28 0.1 – 1.5
Double Expander 19.7 1702 1.61 <0.2
Pre-cooled Single Expander 19.7 1702 1.61 <0.2
Single Expander 23.2 2004 1.90 <0.1
Notes
1. Specific powers are indicative and will depend on feed and ambient conditions and temp ex MCHE.
2. Data taken from published vendor data (ABB and BHP/Linde) and article “Offshore and Smaller Scale
Liquefiers” by G.L. Johnson et al, Costain, published in LNG Journal.
Table P2
Gas Turbine Performance
Iso Power,
MWe
Iso Heat Rate
kJ/kWh
Iso Thermal
Efficiency %
te CO2 / MW
(Note 1)
Waste Heat
MWth/MWe
Frame 5
(PG5371(PA))
26.3 13,080 27.5 0.182 1.73
Frame 6
(M6581(B))
43.5 10825 33.3 0.150 1.25
Frame 7
(M7111(EA)
86.7 11022 32.7 0.153 1.29
LM2500-PE 23.3 9588 37.5 0.133 1.0
LM2500+ 25.9 8948 40.2 0.124 0.87
LM6000 43.1 8701 41.4 0.121 0.81
Trent 51.5 8753 41.1 0.122 0.82
Combined Cycle
(theoretical)
- - >50 <0.1 <0.5
Notes
1. CO2 emissions assume fuel gas LHV 50 MJ/kg and 2.5 kg CO2 produced per kg fuel gas burnt.
2. Waste heat recovery without supplemental firing and assumes 25% of waste heat not recoverable.
3. Data obtained from 1999/2000 Gas Turbine World Handbook and LNG4 vendor data.
Table P3
Gas Turbine De-rating Factors
De-Rating Factor Frame 5 Frame 7 LM6000
Iso Power, kW (PISO) 26,300 86,680 43,100
Inlet Losses (A) 0.99 0.982 0.99
Outlet Losses (B) 0.985 0.995 0.996
Aging (C) 0.97 0.97 0.97
Fouling (D) 0.98 0.98 0.98
TOTAL (A x B x C x D) 0.927 0.929 0.937
Temperature, kW/oC (E) 195 525 600
GT power PGT = PISO x A x B x C x D - E x (T - 15)
Table P4
Overall Cycle / Gas Turbine Efficiency
Frame 5 Frame 6 Frame 7 LM2500+ LM6000 Combined
Cycle
C3/MR 1.19 0.98 1.00 0.81 0.79 <0.65
DMR 1.21 1.00 1.02 0.83 0.81 <0.66
SMR 1.42 1.17 1.19 0.96 0.94 <0.77
Cascade 1.38 1.14 1.16 0.94 0.92 <0.75
NicheLNG 1.65 1.36 1.39 1.13 1.10 <0.90
Pre-cooled
double
expander
1.52 1.26 1.28 1.04 1.01 <0.83
Note: Efficiency indicated is relative to Frame 7 driven C3/MR.
Table P5
Overall Cycle / Gas Turbine CO2 Emissions
Frame 5 Frame 6 Frame 7 LM2500 LM6000 Combined
Cycle
C3/MR 0.30 0.25 0.25 0.20 0.20 <0.16
DMR 0.30 0.25 0.26 0.21 0.20 <0.17
SMR 0.36 0.29 0.30 0.24 0.24 <0.19
Cascade 0.35 0.29 0.29 0.24 0.23 <0.19
Double
Expander
0.41 0.34 0.35 0.28 0.28 <0.23
Pre-cooled
double
expander
0.38 0.32 0.32 0.26 0.25 <0.21
Note: Emissions indicated are te CO2 per te LNG produced by combustion in gas turbines
and do not include CO2 removed from the feed gas.
Title :
By :
Date :
Location :
Slide No:
LNG Processing
NWSV
28 June 2005
DRIMS#2039387
‹#›
Figure P11
Combined Heat and Power
THERMAL EFFICIENCY OF CHP SCHEMES
(FIRED HEATER EFFICIENCY 90%, 25% OF HEAT IN GT EXHAUST NOT RECOVERABLE)
0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
0 10 20 30 40 50 60 70 80 90 100
Power as a % of Total Energy Consumption
Overall
Thermal
Efficiency,
%
GT Efficiency 25% GT Efficiency 30% GT Efficiency 35% GT Efficiency 40%
GT Efficiency 50% Brow se OGP
IMPACT OF HIGH NITROGEN FEED GAS
Impact of High N2 Feed Gas on LNG Production
• A 1% increase in feed gas N2 would increase end flash gas (EFG)
rate by approx 10% (i.e. % of flow ex MCHE that flashes off) for a
given MCHE outlet temp, throughput and MR/PR compression
power – Figure N1
• Conversely, to maintain a fixed amount of EFG, a 1% increase in
feed gas N2 would require the MCHE outlet temperature to be
reduced by 1.5oC – Figure N2
• Each 1oC reduction in MCHE outlet temperature would reduce the
LNG run-down rate by approx 1% for a given MR/PR compression
power – Figure N3
• Therefore a 1% increase in feed gas N2 would reduce LNG
production by approx 1.5% – Figure N4
• Conversely to maintain LNG production would require an approx
10% increase in EFG compression capacity – Figure N5
Figure N1
Impact of N2 on LNG Production
IMPACT OF N2 IN FEED ON EFG PRODUCTION
(FIXED FEED RATEAND TEMP EX MCHE)
8
10
12
14
16
18
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
N2 in Feed, %
EFG
Production,
%
LNG4 LNG1/2/3
Figure N2
Impact of N2 on LNG Production
TEMPERATURE EX MCHE
(FIXED FEED RATEAND CONSTANT EFG CAPACITY)
-150
-145
-140
-135
-130
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
N2 in Feed, %
Temperature,
degC
LNG4 LNG1/2/3
Figure N3
Impact of N2 on LNG Production
Impact of Temp ex MCHE on LNG Rundown Rate
(Rundown Rate Relative to Average Gas (AG) Case)
85.0
90.0
95.0
100.0
105.0
110.0
-160.00 -155.00 -150.00 -145.00 -140.00 -135.00 -130.00 -125.00
Temp. ex MCHE, degC
LNG
Rundown
Rate,
%
LNG4, AG LNG1/2/3, AG LNG4, HN LNG1/2/3, HN
Figure N4
Impact of N2 on LNG Production
IMPACT OF N2 IN FEED ON LNG CAPACITY
(FIXED EFG COMPRESSION CAPACITY)
97
98
99
100
101
102
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
N2 in Feed, %
LNG
Capacity,
%
LNG4 Production LNG1/2/3 Production
Figure N5
Impact of N2 on LNG Production
Impact of EFG Flowrate on LNG Rundown Rate
(Rates are relative to Average Gas (AG) Case)
88
90
92
94
96
98
100
102
104
106
108
30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
EFG Flowrate, %
LNG
Rundown
Rate,
%
LNG4, AG LNG1/2/3, AG LNG4, HN LNG1/2/3, HN
Figure N6
Impact of N2 on LNG Production
N2 CONTENT IN EFG AND LNG
(FIXED FEED RATEAND EFG CAPACITY)
0
5
10
15
20
25
30
35
40
0.0 0.5 1.0 1.5 2.0 2.5 3.0
N2 in Feed, %
%
N2
in
EFG
0.0
0.5
1.0
1.5
2.0
%
N2
in
LNG
LNG4 EFG LNG1/2/3 EFG LNG4 LNG LNG1/2/3 LNG
Impact of High N2 Feed Gas on Domgas
• Most nitrogen in LNG feed gas is flashed off as end flash
gas (EFG)
– If relative amount of EFG increased additional EFG mainly CH4
• EFG is compressed and used as fuel gas, excess routed
to Domgas (if available)
• With the high nitrogen levels in the EFG a Nitrogen
Rejection Unit (NRU) may be required to meet the
Domgas inerts spec
– Acceptability of venting NRU waste nitrogen stream (containing
~0.1% hydrocarbon) would need to be confirmed
– CO2 offsets may be required
Possible NRU Process Configuration
• Cryogenic process
– previous work by SGSI
indicated a Cryogenic unit
would be lower cost and more
proven than alternatives such
as PSA
• Single column with heat pump
– Relatively easy to model
– Meets required product
specifications
– However may not be optimum
cryogenic process design for
this application – further work
would be required to evaluate
this
NRU Costs
NRU CAPEX
0
20
40
60
80
100
120
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Feed Flowrate, tpd
CAPEX,
A$
million
RULES OF THUMB
Gas Field
(Exploration & Development)
Pipeline Liquefaction
Plant
Ocean
Transportation
Receiving
Terminal
Gas Utilities/
Power Station
Gas
Processin
g Facilities
LNG
Liquefacti
on Plant
LNG Tank LNG
Loading
Terminal
Ocean
Transportation
LNG Carrier
(Discharging)
LNG
Tank
Gas
Utilities
Pipeline
Pipeline
Receiving
Terminal
LNG Carrier
(Loading)
Power
Station
Gas Fields
Regasificatio
n
Typical Supply Chain of a LNG Import Scheme
Gas
Processin
g Facilities
LNG
Liquefactio
n Plant
LNG Tank LNG
Loading
Terminal
Ocean
Transportation
LNG Carrier
(Discharging)
LNG
Tank
Gas
Utilities
Pipeline
Pipeline
Receiving
Terminal
LNG Carrier
(Loading)
Power
Station
Gas Fields
Regasificatio
n
LNG Supply Chain Rules of Thumb
• Gas reserves required to support an LNG development:
– 1 tcf of gas per Mtpa of LNG over 20 years
– Therefore a 4 Mtpa train would require 4 tcf
– Associated C5+ liquids (MMbbl) = CGR (bbl/mmscf) x tcf of gas
– One cargo pa equivalent to 10 MMSCFD offshore capacity
• Pipeline vs LNG development - determined by distance
from supplier to customer:
– <2500 km: pipeline
– >2500 km: LNG
• Number of ships:
– A 130,000 m3 ship can transport 1 MTPA from NWS to Japan
• Storage tank volumes:
– 1 cargo plus 3 days production (approx.)
Typical LNG CAPEX Breakdown
• LNG Supply Chain
– Upstream Development: 10%
– LNG Plant: 40%
– LNG Transportation: 30%
– Receiving and Re-gasification Terminal: 20%
• LNG Plant
– Pre-treatment: 6%
– Liquefaction: 50%
– Utilities: 16%
– LNG Storage: 18%
– Loading Facilities: 10%
LNG Costs (Australia)
• LNG plant :
– CAPEX = A$ 2900 (Plant Capacity (Mtpa) / 4.2)0.7 x 106
– CAPEX = US$ 520 / tpa LNG
– Note: Approx 1/3 of the CAPEX is materials (equipment and
bulks) and 2/3 is construction labour
• LNG train (liquefaction and pre-treatment):
– CAPEX = A$ 1600 (Train Capacity (Mtpa) / 4.2)0.7 x 106
– CAPEX = US$ 286 / tpa LNG
• OPEX: 3% of CAPEX PA
• Abandonment: 5% of CAPEX
• LNG Price: ~A$250/te
Typical LNG Train Costs (Australia)
0
200
400
600
800
1000
1200
1400
1600
1800
0 2000 4000 6000 8000 10000 12000 14000
Train Capacity, tpd
CAPEX,
A$
millions
Typical LNG Train Costs (Australia)
0
200
400
600
800
1000
1200
1400
1600
1800
2000
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Train Capacity, Mtpa
CAPEX,
A$
/
tpa
Typical LNG Tank Costs (Australia)
0
20
40
60
80
100
120
60 80 100 120 140
LNG Tank Capacity x 1000 m³
LNG
Tank
Capital
Cost,
A$
millions
Single Containment Double Containment Full Containment
Typical LNG Tank Costs (Australia)
0
200
400
600
800
1000
1200
60 80 100 120 140
LNG Tank Capacity x 1000 m³
LNG
Tank
Capital
Cost
/
m
3
,
A$/m
3
Single Containment Double Containment Full Containment
Typical LNG Ship Costs
0
500
1000
1500
2000
2500
3000
3500
20 40 60 80 100 120 140
LNG Ship Capacity x 1000 m³
LNG
Vessel
Capital
Cost
per
m³,
A$/m3
Process Rules of Thumb (1)
• A 1oC increase in MCHE outlet temperature (for a given refrigeration
compression power):
– Increases MCHE throughput by approx 1.5%
– Increases the LNG run-down rate by approx 0.9%
– Increases proportion of MCHE throughput flashing off by approx 0.6%
(i.e. an increase in end flash gas rate of typically 6%)
• A 1oC increase in ambient temperature:
– Increases LNG specific power by approx 1.1%
– Reduces gas turbine output by approx 0.6%
– Reduces LNG production by approx 1.7%
• A 1 bar increase in feed pressure increases LNG production by
approx 0.7%
• A 1% increase in MW increases LNG production by approx 1.4%
Note: all capacity variations are on a mass basis.
Process Rules of Thumb (2)
• A 1% increase in feed gas N2 would increase end flash gas (EFG)
rate by approx 10% (for a given MCHE outlet temp, throughput and
MR/PR compression power)
• A 1% increase in feed gas N2 would require the MCHE outlet temp to
be reduced by 1.5oC to maintain a fixed amount of EFG
– This would reduce LNG production by approx 1.5%
– Conversely to maintain LNG production would require an approx 10%
increase in EFG compression capacity
• A 1% increase in propane condenser UA increases LNG production
by approx 0.3%
• A 15% increase in propane sub-cooler UA increases LNG production
by approx 0.8%
• Hydraulic turbines increase LNG production by ~4%:
– LNG hydraulic turbine ~2%
– MR hydraulic turbine ~2%
Process Rules of Thumb (3)
• Specific power for train 4 (C3/MR process):
– 12 kW/tpd (27oC average ambient, -145oC ex MCHE)
• Fuel gas consumption ~8% of feed flow (C3/MR)
• Mol sieve regeneration flow ~7% of feed gas flow
• CO2 produced by process:
– Combustion: 0.25 t CO2 / t LNG (Frame 7 driven C3/MR)
– From AGRU: 1 mol% CO2 in feed equates to approx 0.03 t CO2 / t LNG
• AGRU regeneration duty:
– Accelerated MDEA: 2400 kW / kg/s CO2 (27.8 kW/tpd CO2)
– Sulfinol: 3400 kW / kg/s CO2 (39.4 kW/tpd CO2)
• BOG losses from storage and loading facilities: ~3% of design rate
• Largest LNG tank capacity 200,000 m3
• Typical LNG train availability 93%
Background Reading / References
1. LNG12 conference paper “Comparison of Base Load Liquefaction Processes”
by K.J. Vink and R. Klein Nagelvoort, Shell International Oil products, B.V. (3.6).
2. LNG12 conference paper “Targeting and Achieving Lower Cost Liquefaction
Plants”, David Jamieson et al, Atlantic LNG (7.1).
3. LNG13 conference paper “Increasing LNG Train Capacity Through Higher
MCHE Outlet Temperatures”, Henri Paradowski and Philip Hagyard, Technip
(PS2-1).
4. LNG13 conference paper “A New Tool – Efficient and Accurate for LNG Plant
Design and Debottlenecking”, Hidefumi Omori et al (PS2-4).
5. “Production of LNG Using Dual Independent Expander Refrigeration Cycles”,
Jorge H. Foglietta, Randall Gas Technologies.
6. “Wheatstone Opportunity – Impact of High Nitrogen Feed Gas on LNG and
Domgas Production”, DRIMS# 1884488.
7. LNG4 Process Induction Presentation (Boris Ertl).
8. Maurutania Presentation, DRIMS# 1748812 (Murthy Eranki).
BACK-UP SLIDES
Table P3
Gas Turbine De-rating Factors
De-Rating Factor Frame 5
G5371(PA)
Frame 6
M6581(B)
Frame 7 LM2500–
PE
LM6000 Trent
Iso Power, kW (PISO) 26,300 43,530 86,680 23,300 43,100 51,460
Inlet Losses (A) 0.99 0.982 0.99
Outlet Losses (B) 0.985 0.995 0.996
Aging (C) 0.97 0.97 0.97
Fouling (D) 0.98 0.98 0.98
TOTAL (A x B x C x D) 0.927 0.929 0.937
Temperature, kW/oC (E) 195 525 90 600 (455?) 470
GT power PGT = PISO x A x B x C x D - E x (T - 15)
Tank designed and constructed so that:
•The primary container contains the refrigerated liquid and the secondary container
contains the vapour under normal operating conditions.
•The secondary container capable both of independently containing the refrigerated
liquid and of controlled venting of the vapour resulting from product leakage after a
credible event.
•The secondary container can be 1 m to 2 m distance from the primary container.
•The outer roof is supported by the secondary container.
FULL CONTAINMENT LNG STORAGE TANK
FULL CONTAINMENT LNG STORAGE TANK
Title :
By :
Date :
Location :
Slide No:
LNG Processing
NWSV
28 June 2005
DRIMS#2039387
‹#›
LNG Receiving and Re-gasification Terminal
Typical LNG Shipping Costs
0
500
1000
1500
2000
2500
3000
0 50 100 150
LNG Ship Capacity x 1000 m³
LNG
Vessel
Capital
cost/m³
of
capacity
0
20
40
60
80
100
120
140
LNG
Tariff
US
C/MMBtu
LNG Vessel Capital Cost US $/m³ capacity Ship Freight in US C/MMBtu
LNG Shipping
• LNG ship capacity 130,000 – 220,000 m3 ?
• Number of ships (N) required:
– N = LNG production pa / (No. round trips pa x ship capacity tonnes)
= MTPA / [365/((2D/24u)+2) x V x 0.46]
Where:
D = distance from LNG plant to customer terminal
u = ship speed (typically 25 km/h)
V = ship capacity in m3 (LNG density approx. 0.46 t/m3)
e.g. A 130,000 m3 ship can transport 1 MTPA from NWS to Japan
(approx. 11,500 km)
• BOG produced in transit: ~3.1% of inventory
– Natural BOG ~2.3%
– Forced BOG ~0.8%

More Related Content

What's hot

compressed natural gas ppt
compressed natural gas pptcompressed natural gas ppt
compressed natural gas pptShivam Kumar
 
Study of n gl recovery
Study of n gl recoveryStudy of n gl recovery
Study of n gl recoveryMohammad Naser
 
Carbon Capture and Storage
Carbon Capture and StorageCarbon Capture and Storage
Carbon Capture and StorageAshokaNarayanan3
 
Hazardous Area Classification.pdf
Hazardous Area Classification.pdfHazardous Area Classification.pdf
Hazardous Area Classification.pdfSMTauseef1
 
Tank Design_training report_mo
Tank Design_training report_moTank Design_training report_mo
Tank Design_training report_moUdayan Biswas
 
The Shell Peterhead CCS Project - an update
The Shell Peterhead CCS Project - an updateThe Shell Peterhead CCS Project - an update
The Shell Peterhead CCS Project - an updateGlobal CCS Institute
 
Introduction to Process Flares
Introduction to Process FlaresIntroduction to Process Flares
Introduction to Process FlaresKarl Kolmetz
 
Basic technology &amp; solutions of LNG
Basic technology &amp; solutions of LNGBasic technology &amp; solutions of LNG
Basic technology &amp; solutions of LNGAbu Bakar Siddiqui
 
Dr. Aborig Lecture- Chapter 3 natural gas processing
Dr. Aborig Lecture- Chapter 3 natural gas processingDr. Aborig Lecture- Chapter 3 natural gas processing
Dr. Aborig Lecture- Chapter 3 natural gas processingamaborig
 
Oil and gas refinery
Oil and gas refineryOil and gas refinery
Oil and gas refineryDipo Elegbs
 
Lng regasification asit
Lng regasification asitLng regasification asit
Lng regasification asitAsit Meher
 
Urea process flow diagram
Urea process flow diagramUrea process flow diagram
Urea process flow diagramPrem Baboo
 
PROJECT REPORT ON VARIOUS MECHANICAL UNITS INVOLVED IN THE BOTTLING OF LPG CY...
PROJECT REPORT ON VARIOUS MECHANICAL UNITS INVOLVED IN THE BOTTLING OF LPG CY...PROJECT REPORT ON VARIOUS MECHANICAL UNITS INVOLVED IN THE BOTTLING OF LPG CY...
PROJECT REPORT ON VARIOUS MECHANICAL UNITS INVOLVED IN THE BOTTLING OF LPG CY...Mohit Dhull
 
The best overview of CO2 EOR I've seen crabtree
The best overview of CO2 EOR I've seen crabtreeThe best overview of CO2 EOR I've seen crabtree
The best overview of CO2 EOR I've seen crabtreeSteve Wittrig
 

What's hot (20)

compressed natural gas ppt
compressed natural gas pptcompressed natural gas ppt
compressed natural gas ppt
 
Liquid recovery
Liquid recoveryLiquid recovery
Liquid recovery
 
Study of n gl recovery
Study of n gl recoveryStudy of n gl recovery
Study of n gl recovery
 
Carbon Capture and Storage
Carbon Capture and StorageCarbon Capture and Storage
Carbon Capture and Storage
 
Hazardous Area Classification.pdf
Hazardous Area Classification.pdfHazardous Area Classification.pdf
Hazardous Area Classification.pdf
 
Tank Design_training report_mo
Tank Design_training report_moTank Design_training report_mo
Tank Design_training report_mo
 
The Shell Peterhead CCS Project - an update
The Shell Peterhead CCS Project - an updateThe Shell Peterhead CCS Project - an update
The Shell Peterhead CCS Project - an update
 
flare system design.pdf
flare system design.pdfflare system design.pdf
flare system design.pdf
 
Introduction to Process Flares
Introduction to Process FlaresIntroduction to Process Flares
Introduction to Process Flares
 
Basic technology &amp; solutions of LNG
Basic technology &amp; solutions of LNGBasic technology &amp; solutions of LNG
Basic technology &amp; solutions of LNG
 
Cracking the Ethane Cracker
Cracking the Ethane CrackerCracking the Ethane Cracker
Cracking the Ethane Cracker
 
Does Heavy Oil Recovery Need Steam?
Does Heavy Oil Recovery Need Steam?Does Heavy Oil Recovery Need Steam?
Does Heavy Oil Recovery Need Steam?
 
Gaseous fuels
Gaseous fuelsGaseous fuels
Gaseous fuels
 
Dr. Aborig Lecture- Chapter 3 natural gas processing
Dr. Aborig Lecture- Chapter 3 natural gas processingDr. Aborig Lecture- Chapter 3 natural gas processing
Dr. Aborig Lecture- Chapter 3 natural gas processing
 
Gaseous fuel PPT
Gaseous fuel PPTGaseous fuel PPT
Gaseous fuel PPT
 
Oil and gas refinery
Oil and gas refineryOil and gas refinery
Oil and gas refinery
 
Lng regasification asit
Lng regasification asitLng regasification asit
Lng regasification asit
 
Urea process flow diagram
Urea process flow diagramUrea process flow diagram
Urea process flow diagram
 
PROJECT REPORT ON VARIOUS MECHANICAL UNITS INVOLVED IN THE BOTTLING OF LPG CY...
PROJECT REPORT ON VARIOUS MECHANICAL UNITS INVOLVED IN THE BOTTLING OF LPG CY...PROJECT REPORT ON VARIOUS MECHANICAL UNITS INVOLVED IN THE BOTTLING OF LPG CY...
PROJECT REPORT ON VARIOUS MECHANICAL UNITS INVOLVED IN THE BOTTLING OF LPG CY...
 
The best overview of CO2 EOR I've seen crabtree
The best overview of CO2 EOR I've seen crabtreeThe best overview of CO2 EOR I've seen crabtree
The best overview of CO2 EOR I've seen crabtree
 

Similar to White - LNG Processing Presentation.ppt

1 palmer international consulting_presentation_artc_singapore_2014 (10)
1 palmer international consulting_presentation_artc_singapore_2014 (10)1 palmer international consulting_presentation_artc_singapore_2014 (10)
1 palmer international consulting_presentation_artc_singapore_2014 (10)pipllp
 
GE Small Scale Lng solutions
GE Small Scale  Lng solutionsGE Small Scale  Lng solutions
GE Small Scale Lng solutionsAndy Varoshiotis
 
P&U Operations Review Presentation_14032019.pptx
P&U Operations Review Presentation_14032019.pptxP&U Operations Review Presentation_14032019.pptx
P&U Operations Review Presentation_14032019.pptxAastharaj16
 
Use of nitrogen purge in flare and vent systems
Use of nitrogen purge in flare and vent systemsUse of nitrogen purge in flare and vent systems
Use of nitrogen purge in flare and vent systemsLanphuong Pham
 
Innovation of LNG Carrier-Propulsion and BOG handling technology (LNG Warring...
Innovation of LNG Carrier-Propulsion and BOG handling technology (LNG Warring...Innovation of LNG Carrier-Propulsion and BOG handling technology (LNG Warring...
Innovation of LNG Carrier-Propulsion and BOG handling technology (LNG Warring...BenedictSong1
 
Sweetening and sulfur recovery of sour associated gas in the middle east
Sweetening and sulfur recovery of sour associated gas in the middle eastSweetening and sulfur recovery of sour associated gas in the middle east
Sweetening and sulfur recovery of sour associated gas in the middle eastFrames
 
Powerstream Turbo chiller
Powerstream Turbo chillerPowerstream Turbo chiller
Powerstream Turbo chillerKaltra_DE
 
Refrigeranti a basso GWP per il condizionamento e le pompe di calore - B. Bel...
Refrigeranti a basso GWP per il condizionamento e le pompe di calore - B. Bel...Refrigeranti a basso GWP per il condizionamento e le pompe di calore - B. Bel...
Refrigeranti a basso GWP per il condizionamento e le pompe di calore - B. Bel...Centro Studi Galileo
 
Presentasi oil-refinery-process-rev0
Presentasi oil-refinery-process-rev0Presentasi oil-refinery-process-rev0
Presentasi oil-refinery-process-rev0Nofiar Rachman
 
12 Chiller Performance.ppt
12 Chiller Performance.ppt12 Chiller Performance.ppt
12 Chiller Performance.pptSaleemAhmed31902
 
Daikin Dhont - R-32 refrigerant installation & design aspects
Daikin   Dhont - R-32 refrigerant installation & design aspectsDaikin   Dhont - R-32 refrigerant installation & design aspects
Daikin Dhont - R-32 refrigerant installation & design aspectsCentro Studi Galileo
 
Industrial_Gas_Turbines_EN
Industrial_Gas_Turbines_ENIndustrial_Gas_Turbines_EN
Industrial_Gas_Turbines_ENFran Dubois
 
CatFT(r) Fischer-Tropsch Process presentation
CatFT(r) Fischer-Tropsch Process presentationCatFT(r) Fischer-Tropsch Process presentation
CatFT(r) Fischer-Tropsch Process presentationThomas Holcombe
 
Combustion and dry low nox 2.6 dln system
Combustion and dry low nox 2.6 dln systemCombustion and dry low nox 2.6 dln system
Combustion and dry low nox 2.6 dln systemFaisal Nadeem
 
Syngas to Electricity - Martin van 't Hoff
Syngas to Electricity - Martin van 't HoffSyngas to Electricity - Martin van 't Hoff
Syngas to Electricity - Martin van 't HoffEBAconference
 
Desirable as run information system for energy efficiency of utility clas...
Desirable as run information system  for energy efficiency  of  utility  clas...Desirable as run information system  for energy efficiency  of  utility  clas...
Desirable as run information system for energy efficiency of utility clas...D.Pawan Kumar
 

Similar to White - LNG Processing Presentation.ppt (20)

1 palmer international consulting_presentation_artc_singapore_2014 (10)
1 palmer international consulting_presentation_artc_singapore_2014 (10)1 palmer international consulting_presentation_artc_singapore_2014 (10)
1 palmer international consulting_presentation_artc_singapore_2014 (10)
 
Final Presentation
Final PresentationFinal Presentation
Final Presentation
 
GE Small Scale Lng solutions
GE Small Scale  Lng solutionsGE Small Scale  Lng solutions
GE Small Scale Lng solutions
 
P&U Operations Review Presentation_14032019.pptx
P&U Operations Review Presentation_14032019.pptxP&U Operations Review Presentation_14032019.pptx
P&U Operations Review Presentation_14032019.pptx
 
Use of nitrogen purge in flare and vent systems
Use of nitrogen purge in flare and vent systemsUse of nitrogen purge in flare and vent systems
Use of nitrogen purge in flare and vent systems
 
Innovation of LNG Carrier-Propulsion and BOG handling technology (LNG Warring...
Innovation of LNG Carrier-Propulsion and BOG handling technology (LNG Warring...Innovation of LNG Carrier-Propulsion and BOG handling technology (LNG Warring...
Innovation of LNG Carrier-Propulsion and BOG handling technology (LNG Warring...
 
Sweetening and sulfur recovery of sour associated gas in the middle east
Sweetening and sulfur recovery of sour associated gas in the middle eastSweetening and sulfur recovery of sour associated gas in the middle east
Sweetening and sulfur recovery of sour associated gas in the middle east
 
Powerstream Turbo chiller
Powerstream Turbo chillerPowerstream Turbo chiller
Powerstream Turbo chiller
 
Refrigeranti a basso GWP per il condizionamento e le pompe di calore - B. Bel...
Refrigeranti a basso GWP per il condizionamento e le pompe di calore - B. Bel...Refrigeranti a basso GWP per il condizionamento e le pompe di calore - B. Bel...
Refrigeranti a basso GWP per il condizionamento e le pompe di calore - B. Bel...
 
Presentasi oil-refinery-process-rev0
Presentasi oil-refinery-process-rev0Presentasi oil-refinery-process-rev0
Presentasi oil-refinery-process-rev0
 
Lean Six Sigma Project.pptx
Lean Six Sigma Project.pptxLean Six Sigma Project.pptx
Lean Six Sigma Project.pptx
 
12 Chiller Performance.ppt
12 Chiller Performance.ppt12 Chiller Performance.ppt
12 Chiller Performance.ppt
 
Siemens Industrial Gas Turbines
Siemens Industrial Gas TurbinesSiemens Industrial Gas Turbines
Siemens Industrial Gas Turbines
 
Daikin Dhont - R-32 refrigerant installation & design aspects
Daikin   Dhont - R-32 refrigerant installation & design aspectsDaikin   Dhont - R-32 refrigerant installation & design aspects
Daikin Dhont - R-32 refrigerant installation & design aspects
 
Industrial_Gas_Turbines_EN
Industrial_Gas_Turbines_ENIndustrial_Gas_Turbines_EN
Industrial_Gas_Turbines_EN
 
CatFT(r) Fischer-Tropsch Process presentation
CatFT(r) Fischer-Tropsch Process presentationCatFT(r) Fischer-Tropsch Process presentation
CatFT(r) Fischer-Tropsch Process presentation
 
GSU AND GDU
GSU AND GDUGSU AND GDU
GSU AND GDU
 
Combustion and dry low nox 2.6 dln system
Combustion and dry low nox 2.6 dln systemCombustion and dry low nox 2.6 dln system
Combustion and dry low nox 2.6 dln system
 
Syngas to Electricity - Martin van 't Hoff
Syngas to Electricity - Martin van 't HoffSyngas to Electricity - Martin van 't Hoff
Syngas to Electricity - Martin van 't Hoff
 
Desirable as run information system for energy efficiency of utility clas...
Desirable as run information system  for energy efficiency  of  utility  clas...Desirable as run information system  for energy efficiency  of  utility  clas...
Desirable as run information system for energy efficiency of utility clas...
 

Recently uploaded

MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 

Recently uploaded (20)

MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 

White - LNG Processing Presentation.ppt

  • 1. L N G P R O C E S S I N G P R E S E N T A T I O N
  • 2. AGENDA • LNG Process Overview • Major Process Units • Calculation of LNG Production Capacity – LNG4/5 used as an example – Comparison with other liquefaction processes • Impact of High Nitrogen Feed Gas • Rules of Thumb
  • 4. LNG TRAIN GAS LNG Energy consumption Energy rejection LNG Train
  • 6. Title : By : Date : Location : Slide No: LNG Processing NWSV 28 June 2005 DRIMS#2039387 ‹#› WHAT IS LNG Methane Gas Liquefied Natural Gas Temperature 110 deg C (in reservoir) -162 deg C Pressure 200 bar (in reservoir) 1 bar Specific Volume 600 1 Density (kg/m3) 0.75 460 (at 15C and 1 bar) Natural Gas to LNG
  • 7. Title : By : Date : Location : Slide No: LNG Processing NWSV 28 June 2005 DRIMS#2039387 ‹#› Specification Typical Value Methane min. 84 mol% ~ 87 mol% Ethane balance ~ 8 mol% Propane balance ~ 3 mol% Butanes max. 2 mol% ~ 0.8 mol% Pentanes + max. 0.1 mol% ~ 0 mol% Mercury max. 10 ng/Sm³ ~ 0 ng/Sm³ Hydrogen Sulphide max. 5 mg/Sm³ ~ 0 mg/Sm³ HHV 1050 - 1170 Btu/ft³ 1110 - 1150 Btu/ft³ LNG Specification
  • 8. Title : By : Date : Location : Slide No: LNG Processing NWSV 28 June 2005 DRIMS#2039387 ‹#› LNG Specification Specification US Gas Japan LNG West. Aust Pipeline Gas Main Reason(s) Higher Heating Value (min) 970 Btu/Scf 1070 Btu/Scf 37.3 MJ/Sm3 Combustion limits Higher Heating Value (max) 1150 Btu/Scf 1170 Btu/Scf 42.3 MJ/Sm3 Combustion limits Wobbe (max) - - 47.3 MJ/Sm3 Combustion limits Wobbe (min) - - 51.0 MJ/Sm3 Combustion limits Butanes - < 2.0 mol% - Liquid dropout Pentanes plus < 0.2 mol% < 0.1 mol% - Liquid dropout Hydrocarbon Dewpoint - - < 0 deg C Liquid dropout Nitrogen - < 1.0 mol% - Stratification & rollover (LNG) Carbon Dioxide < 0.1 mol% None 3.6 mol% Corrosion if water wet / Freeze-out (LNG) Oxygen < 0.2 mol% - 0.2 mol% Unwanted combustion Total Inerts - - 5.5 mol% Minimise “dead” gas Water - None 48 mg/Sm3 Corrosion / Freeze-out Hydrogen Sulphide < 5 mg/Sm3 < 5 mg/Sm3 < 2 mg/Sm3 Smell / toxicity Total Sulphur (unodourised) 16ppm (vol) < 30 mg/Sm3 < 10 mg/Sm3 Smell / toxicity Solids or impurities Mercury - None <10 ng/Sm3 None Blockages / fouling Corrosion (LNG)
  • 9. LNG Fuel LPG C5+ Acid Gas Where does the feed go? (Approximate!)
  • 10. Title : By : Date : Location : Slide No: LNG Processing NWSV 28 June 2005 DRIMS#2039387 ‹#› Karratha Gas Plant Production Production Mtpa Price A$/te Annual Sales Value A$ millions LNG 12.5 (LNG 1-4) 250 3125 Domgas 4.1 (600 TJ/d) 100 408 Condensate 3.78 (100,000 bpd) 560 (US$ 50/bbl) 2180 LPG 0.68 (2000 tpd) 300 204 Notes 1. Cost of petrol at the bowser is A$1/litre or A$1600/te.
  • 11. • Proven Technology with excellent safety record – In operation since 1969 – Odourless, colourless, non-corrosive and non toxic – Non-explosive in liquid or vapour state in unconfined spaces – No major spillage at sea (108 tankers operating) – Only one major accident at the 37 operating facilities world- wide – Less wear and tear on equipment compared to coal, oil and nuclear based power plants – Easy to handle compared to coal and nuclear fuel • Environmentally friendly – No ash content – No sulfur or heavy metals – No radioactive wastes and power plant decommissioning complexities Advantages of LNG HSE Issues Relating to LNG
  • 13. Existing Fractionation Existing LNG Storage & Loading U4400 Fuel Gas System Existing Flare Systems C3 C4 C5+ FEED LNG LNG LNG Train 4 U1100 Acid Gas Removal U1300 Dehydration U1500 Mercury Removal U1400 Liquefaction Karratha Gas Plant U1250 Thermal Combustion Unit Condensate Storage & Loading U4000 Power Generation U1600 Existing Refrig. Storage U4700 Air U6000 Fire Fighting U6400 Drainage & Effluent Treating U4600 Closed Loop Cooling Existing LNG Train Gas to Perth Existing Domgas Plant Existing LNG Train Existing LNG Train AGR Area U4100 Heated Water U4800 Nitrogen U1200 Sulfinol Reclaimer Unit
  • 15. From V1303 V1101 P1103 A/B/C AFA E1103 A/B/C/D/E S1101/2/3 Feed Gas NNF To LP Fuel Acid Gas to unit 1250 V1104 Water make-up P1102 A/B E1104 A/B Heated Water Unit 1100 – Acid Gas removal E1102 Treated Gas to U1300 C1101A C1101B V1103 P1101 A/B/C C1102 E1101 Solvent Regeneration
  • 16. Vent Gas From U1100 V1251 Condesibles V1252 Fuel Gas Flash Gas Oxazolidone A1251 P1251A/B K1251 Unit 1250 - Thermal Combustion 1F-1251
  • 17. C1301A C1301C C1301B V1303 Dried Gas to Mercury Unit Unit 1300 - Dehydration Gas From Unit 1100 E1301 E1303 K1310 V1301 E1401E1432 V1302 Water / HC to Acid Gas Removal Unit Flash gas to Fuel Gas System
  • 18. C1501 Absorber S1501 Dust Filter Dried Gas From U1300 Treated Gas to Liquefaction U1400 Unit 1500 - Mercury Removal
  • 19. U1300 U1500 E1450 E1451 E1452 E1401E1432 E1402 E1403 E1410 E1425 E1420 K1410 K1420 V1410 E1421 E1422 E1423 P1402 E1404 P1401 V1401 C1401 E1406 E1460 E1413 E1405A GT1420A GT1410 K1450 C1410 Unit 1400 - Liquefaction E1424 V1421 E1441 E1440 GAS LNG K-1430 V1430 V1431 V1432 V1440 U1800 (existing) E1405B GT1420B HHP HP MP LP HMR LMR Scrub Column MCHE Nitrogen Rejection Mixed Refrigerant V1442 E1442 Propane Pre-Cooling
  • 20. MCHE Heating and Cooling Curves Temperature Energy Transferred 0 An awful lot GAS LNG PR MR Subcooling by liquid expander Ambient Very cold
  • 21. U1300 U1500 E1450 E1451 E1452 E1401E1432 E1402 E1403 E1410 E1425 E1420 K1410 K1420 V1410 E1421 E1422 E1423 P1402 E1404 P1401 V1401 C1401 E1406 E1460 E1413 E1405A GT1420A GT1410 K1450 C1410 Unit 1400 - Liquefaction E1424 V1421 E1441 E1440 E1442 GAS LNG K-1430 V1442 V1430 V1431 V1432 V1440 U1800 (existing) E1405B GT1420B HHP HP MP LP HMR LMR
  • 22. V4101 Unit 4100- Heated Water System HP Nitrogen Blanket P-4101A/B/C To ATM E-1301 Fr.7 GT Exhaust Gas E4103 A-4101 Demin Water Consumers
  • 23. Unit 4400 - Fuel Gas HW 4E4404 V-4417 V-4422 V-4409 HW 4E4407 V-4410 V-4407 K4402 E4408 To TCU To Domgas To Fr.7 GTs E4406 Flash Gas from U1100 End Flash Gas From TOT To GTGs LP System HP System HHP System 4V-4415 Water to U1100 Flash Gas from U1300 Cross-connection to/from existing LP fuel gas
  • 24. Unit 4600 -Fresh Water Cooling System V4620 GT1410 GT1420A/B K1410/ 1420 P4101A/B/ C/D 4K4402 K1450 K1430 K1310 E4620 From Demin Water Distribution
  • 25. CALCULATION OF LNG PRODUCTION CAPACITY (USING LNG4/5 AS AN EXAMPLE)
  • 26. Calculation of LNG Production Capacity • LNG TECHMAX production rate RT at a given ambient temperature T is: – RT = (PGT + PH)T / wT • wT = specific power at T (typical values shown in Table P1, adjust for actual T and temp ex MCHE) • PGT = Gas turbine power at T as shown in Table P2 • PH = Helper motor power • Annual LNG TECHMAX production capacity (PTECHMAX) is calculated by summing for all ambient temperatures (T) the product of the TECHMAX rate at T (RT) and the frequency with which T occurs (FT) i.e.: – PTECHMAX = T (RT x FT) • FT is obtained from the ambient temperature profile at the site (i.e. the hours per year at each temperature) and is plotted in Figure P3 for KGP • Annual LNG design production capacity (PLNG) is calculated from the product of annual TECHMAX capacity (PTECHMAX) and overall plant availability (A): – PLNG = PTECHMAX x A • Spreadsheet developed to facilitate these calculations
  • 27. Example - LNG4 Production Capacity • Select nominal annual LNG design production capacity (PLNG = 4 MTPA) • Determine average ambient temperature Tav for the site – For Karratha Tav = 27 + 2 = 29oC (from Figure P3)) • Select refrigeration cycle (C3/MR) and determine specific power at Tav – wav = 12.0 kW/tpd (from Figure P1) • Select GT type and number (2 x Frame 7) and determine power output at Tav: – PGT = 73,000 kW per machine (from Figure P2 or Tables P2 and P3) • Estimate overall plant availability (A = 0.93) • Check annual LNG production PLNG rate can be achieved based on Tav: – PLNG = (PGT + PH)T / wT = 365 x 0.93 x 2 x 73,000 / 12.0 = 4.1 MTPA • Select helper motor size PH (>= starting load) – PR = 11,000 kW, MR = 20,000 kW • Confirm annual LNG production (PLNG) by summing for all ambient temps (T) the product of the production rate at T (RT), based on the installed power, the frequency (FT) with which T occurs (from Figure P3) and the overall plant availability (A): – PLNG = T (RT x FT) x A = T (((PGT + PH)T / wT) x FT) x A = 4.6 MTPA (rated)
  • 28. LNG Capacity Definitions  Design Process Flow Rate* – Also referred to as Heat and Material Balance Capacity  Technical Maximum Capacity (TECHMAX)* – Equivalent to the Design Process Flow Rate for an operating plant  Guaranteed Capacity* – Design process flow rate less Process Licensor margin (2.5% for LNG4)  Nameplate Capacity# – Design process flow rate less onshore and offshore planned and un- planned outages (9.8% for LNG4?)  Annualised Technical Rundown# – Less system effects/planning margins (3.5% for LNG4?)  Annualised Technical Loadable Volume (or ACQ for FOB ships)# – Less boil-off gas losses (typically 3% for new plant) * Annualised rate given on a stream day basis # Annualised rate given on a calendar day basis
  • 29. Figure P1 Impact of Ambient Temperature on LNG Specific Power
  • 30. Figure P2 Impact of Ambient Temp on Gas Turbine Performance Frame 7 Available Power y = -0.5219x + 88.335 R2 = 1 y = -0.5271x + 87.582 R2 = 1 65 70 75 80 15 20 25 30 35 40 Temperature, o C Power, MW KT-1430 KT-1410
  • 31. Figure P3 Impact of Ambient Temperature on LNG Production Ambient Temperature Distribution 0 1 00 200 300 400 500 600 700 800 900 1 0 1 5 20 25 30 35 40 45 Temperature o C Hours per Year
  • 32. Figure P4 Impact of Ambient Temperature on LNG Production LNG4 Tmax - Comparisons 10000 10500 11000 11500 12000 12500 13000 13500 14000 14500 15000 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 AmbientTemp (C) LNG4 Rundown (TPD) Design rundown Daily Averages Commit LNG4 Tmax OTS Runs Uncommitable Upside Tmax
  • 33. Figure P5 Impact of Ambient Temperature on LNG Production LNG TECHMAX PRODUCTION 3.50 4.00 4.50 5.00 5.50 0 10 20 30 40 50 60 70 80 90 100 Cumulative Hours % MTPA
  • 34. Figure P6 Impact of Ambient Temperature on LNG Production LNG Production per Train 0 20 40 60 80 100 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 Temperature, o C LNG Production, %
  • 35. Figure P7 Impact of Ambient Temperature on LNG Production LNG HELPER MOTOR POWER 0.000 5.000 10.000 15.000 20.000 25.000 30.000 10 15 20 25 30 35 40 45 Ambient Temperature, o C Helper Power, MW MR Helper PR Helper Total Helper
  • 36. Figure P8 Impact of Refrigeration Temp on Theoretical Refrigeration Power
  • 37. Figure P9 Impact of Temp ex MCHE on LNG Specific Power LNG4 AGAA Case
  • 38. Figure P10 Impact of Temp ex MCHE on LNG Production THEORETICAL INCREASED PRODUCTION (AMBIENT TEMP 27OC)
  • 39. Table P1a Base Load Liquefaction Processes Liquefaction Cycle Specific Power (1) Capacity Range per Train, Mtpa kW/tpd kJ/kg Relative to C3/MR Propane Pre-cooled Mixed Refrigerant (C3/MR) 12.2 1054 1.0 =< 5 Air Products APX 12.0 1035 0.98 =< 9 Double Mixed Refrigerant (DMR) 12.5 1080 1.02 =< 5 (2) Cascade 14.1 1218 1.16 =< 3.5 (2) Single Mixed Refrigerant (SMR) 14.5 1253 1.19 =< 3.8 (2) BHP/Linde cLNG (Propane Pre- cooled Double N2 Expander) 15.6 1520 1.44 =< 2.2 Notes 1. Specific powers are indicative and will depend on feed and ambient conditions and temp ex MCHE.. 2. Larger train capacities possible by installing parallel items of equipment, such as compressors. 3. Data (except for APX) taken from LNG12 Conference Paper 3.3 “Comparison of Base Load Liquefaction Processes” by K.J. Vink and R. Klein Nagelvoort, Shell International Oil products, B.V.
  • 40. Table P1b Small to Medium Scale Liquefaction Processes Liquefaction Cycle Specific Power (Note 1) Capacity Range Mtpa kW/tpd kJ/kg Relative to C3/MR Single Mixed Refrigerant (SMR) 15.3 1318 1.25 0.1 – 1 ABB NicheLNG (Double (Methane and N2) Expander) 16.9 1460 1.39 0.3 – 1.5 BHP/Linde cLNG (Double N2 Expander) 17.6 1520 1.44 0.3 – 1.5 Pre-cooled Double Expander 15.6 1348 1.28 0.1 – 1.5 Double Expander 19.7 1702 1.61 <0.2 Pre-cooled Single Expander 19.7 1702 1.61 <0.2 Single Expander 23.2 2004 1.90 <0.1 Notes 1. Specific powers are indicative and will depend on feed and ambient conditions and temp ex MCHE. 2. Data taken from published vendor data (ABB and BHP/Linde) and article “Offshore and Smaller Scale Liquefiers” by G.L. Johnson et al, Costain, published in LNG Journal.
  • 41. Table P2 Gas Turbine Performance Iso Power, MWe Iso Heat Rate kJ/kWh Iso Thermal Efficiency % te CO2 / MW (Note 1) Waste Heat MWth/MWe Frame 5 (PG5371(PA)) 26.3 13,080 27.5 0.182 1.73 Frame 6 (M6581(B)) 43.5 10825 33.3 0.150 1.25 Frame 7 (M7111(EA) 86.7 11022 32.7 0.153 1.29 LM2500-PE 23.3 9588 37.5 0.133 1.0 LM2500+ 25.9 8948 40.2 0.124 0.87 LM6000 43.1 8701 41.4 0.121 0.81 Trent 51.5 8753 41.1 0.122 0.82 Combined Cycle (theoretical) - - >50 <0.1 <0.5 Notes 1. CO2 emissions assume fuel gas LHV 50 MJ/kg and 2.5 kg CO2 produced per kg fuel gas burnt. 2. Waste heat recovery without supplemental firing and assumes 25% of waste heat not recoverable. 3. Data obtained from 1999/2000 Gas Turbine World Handbook and LNG4 vendor data.
  • 42. Table P3 Gas Turbine De-rating Factors De-Rating Factor Frame 5 Frame 7 LM6000 Iso Power, kW (PISO) 26,300 86,680 43,100 Inlet Losses (A) 0.99 0.982 0.99 Outlet Losses (B) 0.985 0.995 0.996 Aging (C) 0.97 0.97 0.97 Fouling (D) 0.98 0.98 0.98 TOTAL (A x B x C x D) 0.927 0.929 0.937 Temperature, kW/oC (E) 195 525 600 GT power PGT = PISO x A x B x C x D - E x (T - 15)
  • 43. Table P4 Overall Cycle / Gas Turbine Efficiency Frame 5 Frame 6 Frame 7 LM2500+ LM6000 Combined Cycle C3/MR 1.19 0.98 1.00 0.81 0.79 <0.65 DMR 1.21 1.00 1.02 0.83 0.81 <0.66 SMR 1.42 1.17 1.19 0.96 0.94 <0.77 Cascade 1.38 1.14 1.16 0.94 0.92 <0.75 NicheLNG 1.65 1.36 1.39 1.13 1.10 <0.90 Pre-cooled double expander 1.52 1.26 1.28 1.04 1.01 <0.83 Note: Efficiency indicated is relative to Frame 7 driven C3/MR.
  • 44. Table P5 Overall Cycle / Gas Turbine CO2 Emissions Frame 5 Frame 6 Frame 7 LM2500 LM6000 Combined Cycle C3/MR 0.30 0.25 0.25 0.20 0.20 <0.16 DMR 0.30 0.25 0.26 0.21 0.20 <0.17 SMR 0.36 0.29 0.30 0.24 0.24 <0.19 Cascade 0.35 0.29 0.29 0.24 0.23 <0.19 Double Expander 0.41 0.34 0.35 0.28 0.28 <0.23 Pre-cooled double expander 0.38 0.32 0.32 0.26 0.25 <0.21 Note: Emissions indicated are te CO2 per te LNG produced by combustion in gas turbines and do not include CO2 removed from the feed gas.
  • 45. Title : By : Date : Location : Slide No: LNG Processing NWSV 28 June 2005 DRIMS#2039387 ‹#› Figure P11 Combined Heat and Power THERMAL EFFICIENCY OF CHP SCHEMES (FIRED HEATER EFFICIENCY 90%, 25% OF HEAT IN GT EXHAUST NOT RECOVERABLE) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 0 10 20 30 40 50 60 70 80 90 100 Power as a % of Total Energy Consumption Overall Thermal Efficiency, % GT Efficiency 25% GT Efficiency 30% GT Efficiency 35% GT Efficiency 40% GT Efficiency 50% Brow se OGP
  • 46. IMPACT OF HIGH NITROGEN FEED GAS
  • 47. Impact of High N2 Feed Gas on LNG Production • A 1% increase in feed gas N2 would increase end flash gas (EFG) rate by approx 10% (i.e. % of flow ex MCHE that flashes off) for a given MCHE outlet temp, throughput and MR/PR compression power – Figure N1 • Conversely, to maintain a fixed amount of EFG, a 1% increase in feed gas N2 would require the MCHE outlet temperature to be reduced by 1.5oC – Figure N2 • Each 1oC reduction in MCHE outlet temperature would reduce the LNG run-down rate by approx 1% for a given MR/PR compression power – Figure N3 • Therefore a 1% increase in feed gas N2 would reduce LNG production by approx 1.5% – Figure N4 • Conversely to maintain LNG production would require an approx 10% increase in EFG compression capacity – Figure N5
  • 48. Figure N1 Impact of N2 on LNG Production IMPACT OF N2 IN FEED ON EFG PRODUCTION (FIXED FEED RATEAND TEMP EX MCHE) 8 10 12 14 16 18 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 N2 in Feed, % EFG Production, % LNG4 LNG1/2/3
  • 49. Figure N2 Impact of N2 on LNG Production TEMPERATURE EX MCHE (FIXED FEED RATEAND CONSTANT EFG CAPACITY) -150 -145 -140 -135 -130 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 N2 in Feed, % Temperature, degC LNG4 LNG1/2/3
  • 50. Figure N3 Impact of N2 on LNG Production Impact of Temp ex MCHE on LNG Rundown Rate (Rundown Rate Relative to Average Gas (AG) Case) 85.0 90.0 95.0 100.0 105.0 110.0 -160.00 -155.00 -150.00 -145.00 -140.00 -135.00 -130.00 -125.00 Temp. ex MCHE, degC LNG Rundown Rate, % LNG4, AG LNG1/2/3, AG LNG4, HN LNG1/2/3, HN
  • 51. Figure N4 Impact of N2 on LNG Production IMPACT OF N2 IN FEED ON LNG CAPACITY (FIXED EFG COMPRESSION CAPACITY) 97 98 99 100 101 102 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 N2 in Feed, % LNG Capacity, % LNG4 Production LNG1/2/3 Production
  • 52. Figure N5 Impact of N2 on LNG Production Impact of EFG Flowrate on LNG Rundown Rate (Rates are relative to Average Gas (AG) Case) 88 90 92 94 96 98 100 102 104 106 108 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 EFG Flowrate, % LNG Rundown Rate, % LNG4, AG LNG1/2/3, AG LNG4, HN LNG1/2/3, HN
  • 53. Figure N6 Impact of N2 on LNG Production N2 CONTENT IN EFG AND LNG (FIXED FEED RATEAND EFG CAPACITY) 0 5 10 15 20 25 30 35 40 0.0 0.5 1.0 1.5 2.0 2.5 3.0 N2 in Feed, % % N2 in EFG 0.0 0.5 1.0 1.5 2.0 % N2 in LNG LNG4 EFG LNG1/2/3 EFG LNG4 LNG LNG1/2/3 LNG
  • 54. Impact of High N2 Feed Gas on Domgas • Most nitrogen in LNG feed gas is flashed off as end flash gas (EFG) – If relative amount of EFG increased additional EFG mainly CH4 • EFG is compressed and used as fuel gas, excess routed to Domgas (if available) • With the high nitrogen levels in the EFG a Nitrogen Rejection Unit (NRU) may be required to meet the Domgas inerts spec – Acceptability of venting NRU waste nitrogen stream (containing ~0.1% hydrocarbon) would need to be confirmed – CO2 offsets may be required
  • 55. Possible NRU Process Configuration • Cryogenic process – previous work by SGSI indicated a Cryogenic unit would be lower cost and more proven than alternatives such as PSA • Single column with heat pump – Relatively easy to model – Meets required product specifications – However may not be optimum cryogenic process design for this application – further work would be required to evaluate this
  • 56. NRU Costs NRU CAPEX 0 20 40 60 80 100 120 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 Feed Flowrate, tpd CAPEX, A$ million
  • 58. Gas Field (Exploration & Development) Pipeline Liquefaction Plant Ocean Transportation Receiving Terminal Gas Utilities/ Power Station Gas Processin g Facilities LNG Liquefacti on Plant LNG Tank LNG Loading Terminal Ocean Transportation LNG Carrier (Discharging) LNG Tank Gas Utilities Pipeline Pipeline Receiving Terminal LNG Carrier (Loading) Power Station Gas Fields Regasificatio n Typical Supply Chain of a LNG Import Scheme Gas Processin g Facilities LNG Liquefactio n Plant LNG Tank LNG Loading Terminal Ocean Transportation LNG Carrier (Discharging) LNG Tank Gas Utilities Pipeline Pipeline Receiving Terminal LNG Carrier (Loading) Power Station Gas Fields Regasificatio n
  • 59. LNG Supply Chain Rules of Thumb • Gas reserves required to support an LNG development: – 1 tcf of gas per Mtpa of LNG over 20 years – Therefore a 4 Mtpa train would require 4 tcf – Associated C5+ liquids (MMbbl) = CGR (bbl/mmscf) x tcf of gas – One cargo pa equivalent to 10 MMSCFD offshore capacity • Pipeline vs LNG development - determined by distance from supplier to customer: – <2500 km: pipeline – >2500 km: LNG • Number of ships: – A 130,000 m3 ship can transport 1 MTPA from NWS to Japan • Storage tank volumes: – 1 cargo plus 3 days production (approx.)
  • 60. Typical LNG CAPEX Breakdown • LNG Supply Chain – Upstream Development: 10% – LNG Plant: 40% – LNG Transportation: 30% – Receiving and Re-gasification Terminal: 20% • LNG Plant – Pre-treatment: 6% – Liquefaction: 50% – Utilities: 16% – LNG Storage: 18% – Loading Facilities: 10%
  • 61. LNG Costs (Australia) • LNG plant : – CAPEX = A$ 2900 (Plant Capacity (Mtpa) / 4.2)0.7 x 106 – CAPEX = US$ 520 / tpa LNG – Note: Approx 1/3 of the CAPEX is materials (equipment and bulks) and 2/3 is construction labour • LNG train (liquefaction and pre-treatment): – CAPEX = A$ 1600 (Train Capacity (Mtpa) / 4.2)0.7 x 106 – CAPEX = US$ 286 / tpa LNG • OPEX: 3% of CAPEX PA • Abandonment: 5% of CAPEX • LNG Price: ~A$250/te
  • 62. Typical LNG Train Costs (Australia) 0 200 400 600 800 1000 1200 1400 1600 1800 0 2000 4000 6000 8000 10000 12000 14000 Train Capacity, tpd CAPEX, A$ millions
  • 63. Typical LNG Train Costs (Australia) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Train Capacity, Mtpa CAPEX, A$ / tpa
  • 64. Typical LNG Tank Costs (Australia) 0 20 40 60 80 100 120 60 80 100 120 140 LNG Tank Capacity x 1000 m³ LNG Tank Capital Cost, A$ millions Single Containment Double Containment Full Containment
  • 65. Typical LNG Tank Costs (Australia) 0 200 400 600 800 1000 1200 60 80 100 120 140 LNG Tank Capacity x 1000 m³ LNG Tank Capital Cost / m 3 , A$/m 3 Single Containment Double Containment Full Containment
  • 66. Typical LNG Ship Costs 0 500 1000 1500 2000 2500 3000 3500 20 40 60 80 100 120 140 LNG Ship Capacity x 1000 m³ LNG Vessel Capital Cost per m³, A$/m3
  • 67. Process Rules of Thumb (1) • A 1oC increase in MCHE outlet temperature (for a given refrigeration compression power): – Increases MCHE throughput by approx 1.5% – Increases the LNG run-down rate by approx 0.9% – Increases proportion of MCHE throughput flashing off by approx 0.6% (i.e. an increase in end flash gas rate of typically 6%) • A 1oC increase in ambient temperature: – Increases LNG specific power by approx 1.1% – Reduces gas turbine output by approx 0.6% – Reduces LNG production by approx 1.7% • A 1 bar increase in feed pressure increases LNG production by approx 0.7% • A 1% increase in MW increases LNG production by approx 1.4% Note: all capacity variations are on a mass basis.
  • 68. Process Rules of Thumb (2) • A 1% increase in feed gas N2 would increase end flash gas (EFG) rate by approx 10% (for a given MCHE outlet temp, throughput and MR/PR compression power) • A 1% increase in feed gas N2 would require the MCHE outlet temp to be reduced by 1.5oC to maintain a fixed amount of EFG – This would reduce LNG production by approx 1.5% – Conversely to maintain LNG production would require an approx 10% increase in EFG compression capacity • A 1% increase in propane condenser UA increases LNG production by approx 0.3% • A 15% increase in propane sub-cooler UA increases LNG production by approx 0.8% • Hydraulic turbines increase LNG production by ~4%: – LNG hydraulic turbine ~2% – MR hydraulic turbine ~2%
  • 69. Process Rules of Thumb (3) • Specific power for train 4 (C3/MR process): – 12 kW/tpd (27oC average ambient, -145oC ex MCHE) • Fuel gas consumption ~8% of feed flow (C3/MR) • Mol sieve regeneration flow ~7% of feed gas flow • CO2 produced by process: – Combustion: 0.25 t CO2 / t LNG (Frame 7 driven C3/MR) – From AGRU: 1 mol% CO2 in feed equates to approx 0.03 t CO2 / t LNG • AGRU regeneration duty: – Accelerated MDEA: 2400 kW / kg/s CO2 (27.8 kW/tpd CO2) – Sulfinol: 3400 kW / kg/s CO2 (39.4 kW/tpd CO2) • BOG losses from storage and loading facilities: ~3% of design rate • Largest LNG tank capacity 200,000 m3 • Typical LNG train availability 93%
  • 70. Background Reading / References 1. LNG12 conference paper “Comparison of Base Load Liquefaction Processes” by K.J. Vink and R. Klein Nagelvoort, Shell International Oil products, B.V. (3.6). 2. LNG12 conference paper “Targeting and Achieving Lower Cost Liquefaction Plants”, David Jamieson et al, Atlantic LNG (7.1). 3. LNG13 conference paper “Increasing LNG Train Capacity Through Higher MCHE Outlet Temperatures”, Henri Paradowski and Philip Hagyard, Technip (PS2-1). 4. LNG13 conference paper “A New Tool – Efficient and Accurate for LNG Plant Design and Debottlenecking”, Hidefumi Omori et al (PS2-4). 5. “Production of LNG Using Dual Independent Expander Refrigeration Cycles”, Jorge H. Foglietta, Randall Gas Technologies. 6. “Wheatstone Opportunity – Impact of High Nitrogen Feed Gas on LNG and Domgas Production”, DRIMS# 1884488. 7. LNG4 Process Induction Presentation (Boris Ertl). 8. Maurutania Presentation, DRIMS# 1748812 (Murthy Eranki).
  • 72. Table P3 Gas Turbine De-rating Factors De-Rating Factor Frame 5 G5371(PA) Frame 6 M6581(B) Frame 7 LM2500– PE LM6000 Trent Iso Power, kW (PISO) 26,300 43,530 86,680 23,300 43,100 51,460 Inlet Losses (A) 0.99 0.982 0.99 Outlet Losses (B) 0.985 0.995 0.996 Aging (C) 0.97 0.97 0.97 Fouling (D) 0.98 0.98 0.98 TOTAL (A x B x C x D) 0.927 0.929 0.937 Temperature, kW/oC (E) 195 525 90 600 (455?) 470 GT power PGT = PISO x A x B x C x D - E x (T - 15)
  • 73. Tank designed and constructed so that: •The primary container contains the refrigerated liquid and the secondary container contains the vapour under normal operating conditions. •The secondary container capable both of independently containing the refrigerated liquid and of controlled venting of the vapour resulting from product leakage after a credible event. •The secondary container can be 1 m to 2 m distance from the primary container. •The outer roof is supported by the secondary container. FULL CONTAINMENT LNG STORAGE TANK FULL CONTAINMENT LNG STORAGE TANK
  • 74. Title : By : Date : Location : Slide No: LNG Processing NWSV 28 June 2005 DRIMS#2039387 ‹#› LNG Receiving and Re-gasification Terminal
  • 75. Typical LNG Shipping Costs 0 500 1000 1500 2000 2500 3000 0 50 100 150 LNG Ship Capacity x 1000 m³ LNG Vessel Capital cost/m³ of capacity 0 20 40 60 80 100 120 140 LNG Tariff US C/MMBtu LNG Vessel Capital Cost US $/m³ capacity Ship Freight in US C/MMBtu
  • 76. LNG Shipping • LNG ship capacity 130,000 – 220,000 m3 ? • Number of ships (N) required: – N = LNG production pa / (No. round trips pa x ship capacity tonnes) = MTPA / [365/((2D/24u)+2) x V x 0.46] Where: D = distance from LNG plant to customer terminal u = ship speed (typically 25 km/h) V = ship capacity in m3 (LNG density approx. 0.46 t/m3) e.g. A 130,000 m3 ship can transport 1 MTPA from NWS to Japan (approx. 11,500 km) • BOG produced in transit: ~3.1% of inventory – Natural BOG ~2.3% – Forced BOG ~0.8%