SlideShare a Scribd company logo
1 of 46
Gas
Sweetening
&
Dehydration
Process
Presented by: Aniruddh Singh Shekhawat
•Introduction
•H2S & it’s need of processing
•Gas Sweetening Process
•Gas dehydration Process
•Recap
What is Sour Gas?
Sour Gas is a Natural Hydrocarbon gas with acid gases; most
commonly Carbon dioxide, hydrogen sulphide & to some extent
mercaptans.
Natural Gas
Non-Hydrocarbon
(Acid Gas)
Hydrocarbon
Industrial
effects
Corrosion
Environmental
effects
Acid rain,
Poisoning
Gas Terminal
GSU DPDU
CFU
GDU
LPGU
KRU
CWU
SRU
36” 42”
Sulfur
Sweet
gas to
HBJ PL
Sweet gas
to Local
consumers
LPG
ARN
HC
SKO
ACID GAS
SOUR GAS
SOUR
COND
From Offshore
HSD
ATF
• H2S is a highly toxic & Colourless flammable gas
• Corrosive to all metals (less corrosive to SS)
• Can cause catalyst poisoning in refinery processes
• On combustion forms toxic gas SO2.
• 4.3% LEL and 45% HEL by volume with an auto-
ignition temperature of 500oF (292oC)
• Heavier than air (1.18 times heavier)
• It may accumulate in dangerous concentrations in
drains, valve pits, vessels and tanks.
• Has no heating value.
•Yet constitutes a volume-filler
• Corrosive in presence of water.
• Promotes hydrate formation.
CO2
Note: The composition of components is from ADMA Company
Components Mole Fraction
at I/L
Mole Fraction at
O/L
Hydrogen Sulphide
Methane
Ethane
Propane
Isobutane
nbutane
IsoPentane
nPentane
Hexane
Carbon Dioxide
0.013%
81.7%
6.34%
3.72%
0.70 %
0.86%
0.15%
0.13%
0.05%
6.30%
0.0004%
82.8%
6.39%
3.77%
0.74%
0.84%
0.16%
0.15%
0.07%
4.9%
Significant factors are;
1. Type & conc. of impurities.
2. Degree of removal of impurities or
selectivity of acid component removal.
3. Volume of the Gas stream.
4. Temp. & Pr. Conditions
5. HC Composition.
6. Economics
1. Non-regenerative
2. Regenerative process
• Physical absorption-water wash,
selexol, fluor solvent etc.
• Chemical absorption- The alkonol-
amine processes
3. Regenerative process with elemental
sulphur recovery
PHASE I
TRAIN #
PHASE II
PHASE III
PHASE III A
CAPACITY
31
32
33
34
35
36
37
38
5.6 MMSCMD each
5.6 MMSCMD each
5.6 MMSCMD each
6.3 MMSCMD each
Amine type Chemical
formula
Mol. Wt. Vapour
pressure at
370C
Removal
capacity
%
MEA (Mono ethanol
amine)
HO C2H4NH2 61.08 1.05 100
DEA (Diethanol amine) (HOC2H4)2NH 105.14 0.058 58
TEA (Triethanol amine) (HOC2H4)3N 148.19 0.0063 41
DGA (Di glycolamine) H(OC2H4)2NH2 105.14 0.160 58
DIPA (Di-isopropanol
amine)
(HOC3H6)2NH 133.19 0.010 46
MDEA (Methyl diethanol
amine)
(HOC2H4)2NH3 119.17 0.0061 51
P301A/B, MULTISTAGE CENTRIFUGAL
PUMP
E305 PREHEATER
V301
INLET
KOD
SWEET GAS OUT
V302
OUTLET
KOD
SWEET GAS TO
GDU
SOUR GAS FROM SLUG CATCHER
ABSORBER
COLUMN
C301
TRAY 9
TRAY 7
TRAY 5
TRAY 3
TRAY 1
SOUR GAS IN
“RICH” MDEA TO V303
MP FLASH DRUM
MDEA TANK
T301
H2S Absorption
E306
COOLER
LV112
SDV104
PV & FV101
MDEA
Methyl Di Ethanol Amine
+ H2S MDEA-H, HS
+ -
Amino Hydro Sulphide
High Press.
Low Temp
Absorption :
Regeneration :
MDEA-H, HS
Low Press.
High Temp
MDEA
Methyl Di Ethanol Amine
+ H2S
+ -
• MDEA reacts instantaneously with H2S
• H2S reacts to yield Hydro sulphide by proton transfer.
• H2S + Amine(R2NH2)  HS- + (Amine) H+
• CO2 can only react if it dissolves in water to form
bicarbonate ion.
• Then this ion undergoes acid-base reaction with the
amine to yield
H2O + CO2  H2CO3 & CO2 + HO-  HCO3-
• These acids then react with amine to form amine
bicarbonate (HCO3-, RNH2+) and amine carbonate.
CO2 + H2O + R2NCH3  R2NCH4+ + HCO3-
(Slow reaction)
H2S reacts to give amine hydrosulfide:
1. H2S + R2NH ↔ HS - , R2NH2+
CO2 can react directly with amine to form
an amine carbonate:
2. CO2 + 2R2NH ↔ R2NCOO-, R2NH2+
3. CO2 + H2O ↔ H2CO3
4. CO2 + HO- ↔ HCO3-
5. These acids then react with the amine
to form amine bicarbonate (HCO3,-
RNH2+) and amine carbonate (CO2,
(R2NH2+)2).
The overall reaction depends upon contact
time.Contact time depends on………
• The gas flow rate
• The liquid height above plate area (Weir
height)
• Number of active trays
• Only parameter that can be varied is the
number of active trays.
PV218
PV216
TO FLARE
TO FUEL GAS
HEADER
LV215
FV205
‘LEAN’ AMINE
“RICH” MDEA TO V303
MP FLASH DRUM
C303
COL.
MP FLASH DRUM
V303
TO C302
TC558
E302 A/B
COOLER REGENERATED AMINE
FROM C302
E301A/B PHE
TO TANK 301
PLATE HEAT EXCHANGERS
ACID GAS OUT
V304
REFLUX
KOD
REGENERATOR
COLUMN
C302
SOUR GAS IN
E303
COOLER
SOUR GAS IN
“RICH” MDEA FROM V303 THRU’ E301
PV326
PV327
TO FLARE
P304A/B
TO SRU
LV330
LV327
SDV309
E304
REBOILER
REGENERATED AMINE TO TANK
REBOILERS
Kettle-type Reboiler Heat Exchanger Model
H2S C1 C2 C3 iC4 nC4 iC5 CO2
6800
to
6900
1.48 0.2 .02 .02 .03 .16 98.25
X301M
FV221
P303A/B
P307
FV522
V311
DM
WATER
SUPPLY
T303
STIRRER
Charcoal Bed
CATRIDGE
PRECOAT
PSV1525
PSV1523
PSV1524
MDEA TANK
T301
X302
• Precoat filter is designed to filter solids such as
iron sulphides & iron carbonates
• V311 holds a bed of charcoal as part of filtration
package
• Then the stream (20% of the total MDEA flow in
the system) passes thru’ activated charcoal filter
removing odour, impurities, colour &
hydrocarbon.
• X 301 & X302 are precoat & cartridge type filters
• Then the cartridge takes any entrained micro
solids
LL103
ANTIFOAM TANK
V361
(Dimethylpolysiloxanic oil)
FUEL GAS BLANKETP361A/B
LL301
FLARE GAS
LH302
TO FLARE
P362A/B
FLARE GAS KOD
V362
TO
SLOP
TANK
FUEL GAS
FROM C303
FUEL
GAS
KOD
V363
FUEL GAS
LV403
PV601
METHANOL
TANK
LH602
LL602
P363A/B
ANTIFOAM RETURN
FUEL GAS
FROM C303
LHH224 LLL109 PB101
LL111
SOV1104
LLL109 PB101
LL111
SOV1101
SOV1102
PB101
SOV1318
(PV327)
SOV1216
(PV216)
SOV1317
(FV309)
P303A/B ST
MP FL DRM V303 C301 ABSORBER
C301 BTM SDV104
I/L SDV
LL334
P304A/B ST
LLL109 PB101
LL111
SOV1205
SOV1206
P301A
P301B
SOV1309
(FV309)
LL335
P305 ST
PB121
PL561
AB-BYPASS SWITCH
FL104
SOV1205
LL549 LH110 LH219 PB111
PB112
LL329 PB118
V304 REF DRM
V305 SUMP (PANEL PUSH BUTTON)
T301 TANK ABSORBER O/L KOD
V302
C302 REG CLMN (UNLATCHING SWITCH)
EQUIP
DETAIL
SOUR
GAS
HEATER
E305
SOUR
GAS KOD
V301
ABSORBE
R COLMN
C301
FUEL GAS
STRIPPER
C303
RICH
AMINE
FLASH
DRUM
V303
SWEET
GAS
COOLER
E306
FLARE
GAS
HEATER
E307
LEAN
AMINE
STORAGE
TANK
T301
DUTY 4.655 X
1.1 MM
KCAL/H
NA NA NA NA 0.778 X 1.1
MM
KCAL/H
0.905 X
1.1 MM
KCAL/H
NA
DIMENSIO
N (MM)
NA 3300 DIA X
4850TL
31OO OD
X 11850 H
510 DIA X
4000 H
2200 DIA X
6000TL
NA NA 6000 DIA X
9000 H
DESIGN
PRESSUR
EKG/CM2
NA 83 83 10 10 NA NA ATM
DESIGN
TEMP
DEGREE
CELSIUS
NA 49 75 75 75 NA NA 60
EQUIP
DETAIL
TREATED
GAS KOD
V302
KETTLE
TYPE
REBOILER
E304
REGEN.
COL. C302
FUEL GAS
STRIPPER
C303
PLATE TYP
AMINE-
AMINE EX.
E301A/B
OVERHEAD
CONDSR
E303
REFLUX
DRUM
V304
LEAN
AMINE
COOLER
E302A/B
DUTY NA 13.77 X
1.2MM
KCAL/H
NA NA 7.96X 1.1
MMCAL/H
6.91
MMCAL/H
NA 5.14 X 1.1
MM
KCAL/HR
DIMENSION
(MM)
3300 DIA
X 4200H
NA 2900 OD X
19150 H
510 DIA X
4000 H
NA NA 1400X
3000H
NA
DESIGN
PRESSURE
KG/CM2
82.05 (S/T):
6.5XFV/9X
FV
KG/CM2G
6.5 &
VACUUM
10 NA (S/T): 6.5
FV/7.5
6.5 & FV (S/T):
6.5/7.5
DESIGN
TEMP
DEGREE
CELSIUS
53 (S/T):
144/200
195 75 NA (S/T): 127/58 95 (S/T): 88/58
Adsorption is the process of removing impurities from a gas
stream by means of a solid material called adsorbent that has
special attraction for the impurities.
• Chemical Formula: HO(C2H4O)3H
• Adsorbs water from the Gas until the
equilibrium partial pressure of TEG & water
in the gas is reached.
• Bonding with water forms H-OH
HO-CH2-CH2-O-CH2-CH2-OCH2-CH2-OH
• Results achieved-1 to 2% of moisture by wt
in the outlet
HO ( C2 H4 O )3 H
Triethylene Glycol
(TEG)
H2O
RICH TEG
Adsorption
at
High Press
Low Temp
H2O
Regeneration
at
Low Press
High Temp
PHASE I
TRAIN #
PHASE II
PHASE III
PHASE III A
CAPACITY
41
42
43
44
45
46
47
5.7 MMSCMD each
5.7 MMSCMD each
5.7 MMSCMD each
6.3 MMSCMD each
P401A/B, DOUBLE ACTING
RECIPROCATING PUMP
V404
INLET
KOD
GAS OUT
V401
OUTLET
KOD
SWEET GAS TO
DPD
SWEET GAS FROM GSU
ABSORBER
COLUMN
C401
TRAY 1 TO 9
“RICH” TEG
LV106
SDV104
PV & FV101
SURGE DRUM
V403
REGENERATED TEG FROM E401
E403
COOLER
E402
REBOILER
VAPOUR VENT
TV215
FUEL GAS FOR STRIPPING
(FT202)
TO SURGE DRUM
V403
C403
E401 PHE
HP STEAM
DEGASSERDRUM
V402
CHARCAOLBED
LV116
CATRIDGE FILTER
FUELGAS
‘RICH’TEGFROMC401
C402
REGEN
• The relatively cool TEG from C401 bottom does two things;
• One, it brings down the temperature of the vapour leaving the
C402 top thru’ three way valve
• Two, the other stream goes into the plate heat exchanger E401
to cool the regenerated glycol before going into V303 and in
turn getting itself heated upto 145 deg before entering C402
having 4 bubble cap trays.
• TV 212 controls the temp of reboiler where the TEG at 185 deg
overflows into the attached C403 end mounted on the side of
the reboiler. C403 is a packed column where the hot fuel gas
from V401/402 preheated inside a 2nd coil in E402, strips the
glycol of remaining moisture to achieve 99.7% purity.
• This stripped glycol comes in contact at E401 with the cooler
rich TEG from C401 & reaches 80-deg.
• Stripper gas is piped into E402 & V403 to maintain +ve
pressure.
• The reciprocating TEG pumps attached to V403 completes the
cycle of pumping TEG into the column C401.
LLL105 FL106 PB101
SOV1103
LL218 PB106
P403 ST
LLL105 FL106 PB101
SOV1101
LLL105 FL106 PB101
P401A/B STOP
LLL105 PB101
SOV1102
LLL133 PB101
SOV1105
THH210 PB101
SOV1212
(TV212)
LLL132 PB101
SOV1104
C401 ABSORBER TEG FLOWLOW SWITCH
V404 I/L KOD
V401 DRYGAS SCRUBBER
E402 REBOILER TEMP
SUMP V405
I/L SDV
O/L SDV
C401 BOTTOM
EQUIP
DETAIL
FEED GAS
KOD V404
GLYCOL
ABSORBER
COLUMN C401
DRIED GAS
SCRUBBER
V401
RICH GLY
DEGASSIN
G DRUM
V402
LEAN GLY
TRIM
COOLER
E403
DUTY NA NA NA NA 0.164X1.2MM
KCAL/H
DIMENSION
(MM)
3300 DIA X
3250H
2800 DIA X
9000H
3600 DIDX
4200H
1100 DIA X
3250H
2200 DIA X
6000TL
DESGN
PRESSUREK
G/CM2
81.4 81.4 81.06 10 (S/T): 7.5/ 82
DESIGN
TEMP
DEGREE
CELSIUS
55 60 60 55 (S/T): 60/120
EQUIP
DETAIL
GLYCOL
STRIPPG
COLUMN
C403
GLYCOL
REG. C402
LEAN
GLYCOL
SURGE
DRUM V403
LEAN
GLYCOL
TANK T401
GLY-GLY
HEAT EXCH.
E401A/B
RICH
GLYCOL
REBOILER
E402
DUTY NA NA NA NA 0.627X1.2M
M KCAL/H
0.625X1.2
MM KCAL/H
DIMENSION
(MM)
500 DIAX
2150H
600DX
4200L
(UPPER)
800X2590
(LOWER)
1000 DIA X
4000L
4500 DIA X
3000H
NA NA
DESGN
PRESSURE
KG/CM2
1.1 1.1 1.1 ATM (S/T): 1.0/ 39 (S/T): 1.0/ 39
& FV
DESIGN
TEMP
DEGREE
CELSIUS
240 220(TOP)
240(BTM)
240 60 (S/T):
240/220
(S/T):
240/260
The incoming sour gas is treated by
washing/scrubbing
with aqueous solution MDEA (Methyldiethanolamine).
Selectively removing H2S from 1375ppm (max)
down to 4ppm & limiting CO2 co absorption
to max of 32%.
Processing Acid Gas at SRU for Sulphur Removal.
Removing moisture, entrained or enriched during
sweetening, in Gas Dehydration Unit with TEG upto
-46 deg celsius.
GSU AND GDU

More Related Content

What's hot

Chapter 5c -hydrocracking_i
Chapter 5c -hydrocracking_iChapter 5c -hydrocracking_i
Chapter 5c -hydrocracking_iHelena Francis
 
Separator sizing and droplet sizes low shear school - 2017
Separator sizing and droplet sizes   low shear school - 2017Separator sizing and droplet sizes   low shear school - 2017
Separator sizing and droplet sizes low shear school - 2017Low Shear School
 
Amine Gas Treating Unit - Best Practices - Troubleshooting Guide
Amine Gas Treating Unit  - Best Practices - Troubleshooting Guide Amine Gas Treating Unit  - Best Practices - Troubleshooting Guide
Amine Gas Treating Unit - Best Practices - Troubleshooting Guide Gerard B. Hawkins
 
Code of Practice - Centrifugal Pump Operation and Maintenance
Code of Practice - Centrifugal Pump Operation and Maintenance Code of Practice - Centrifugal Pump Operation and Maintenance
Code of Practice - Centrifugal Pump Operation and Maintenance Gerard B. Hawkins
 
A presentation on reformer new
A presentation on reformer newA presentation on reformer new
A presentation on reformer newGowri Shankar
 
Reformer Tube Inspection & Issues Affecting Tube Life
Reformer Tube Inspection & Issues Affecting Tube LifeReformer Tube Inspection & Issues Affecting Tube Life
Reformer Tube Inspection & Issues Affecting Tube LifeThomas Fortinberry
 
Fundamentals of sour water stripping
Fundamentals of sour water strippingFundamentals of sour water stripping
Fundamentals of sour water strippingAbhinav Gupta
 
Refinery Process book.pdf
Refinery Process book.pdfRefinery Process book.pdf
Refinery Process book.pdfMohamed Elba
 
An introduction to Fired Heaters.pdf
An introduction to Fired Heaters.pdfAn introduction to Fired Heaters.pdf
An introduction to Fired Heaters.pdfKarnav Rana
 
Reformer Tube Metallurgy: Design Considerations; Failure Mechanisms; Inspecti...
Reformer Tube Metallurgy: Design Considerations; Failure Mechanisms; Inspecti...Reformer Tube Metallurgy: Design Considerations; Failure Mechanisms; Inspecti...
Reformer Tube Metallurgy: Design Considerations; Failure Mechanisms; Inspecti...Gerard B. Hawkins
 
Refining Process
Refining ProcessRefining Process
Refining ProcessMubarik Rao
 
Le 03 Natural Gas (NG) Transportation and Distribution
Le 03 Natural Gas (NG) Transportation and DistributionLe 03 Natural Gas (NG) Transportation and Distribution
Le 03 Natural Gas (NG) Transportation and DistributionNsulangi Paul
 

What's hot (20)

Refinery process
Refinery process Refinery process
Refinery process
 
Boiler Operation and Maintenance Experiences
Boiler Operation and Maintenance ExperiencesBoiler Operation and Maintenance Experiences
Boiler Operation and Maintenance Experiences
 
Chapter 5c -hydrocracking_i
Chapter 5c -hydrocracking_iChapter 5c -hydrocracking_i
Chapter 5c -hydrocracking_i
 
Separator sizing and droplet sizes low shear school - 2017
Separator sizing and droplet sizes   low shear school - 2017Separator sizing and droplet sizes   low shear school - 2017
Separator sizing and droplet sizes low shear school - 2017
 
Three Phase Separators
Three Phase SeparatorsThree Phase Separators
Three Phase Separators
 
Amine Gas Treating Unit - Best Practices - Troubleshooting Guide
Amine Gas Treating Unit  - Best Practices - Troubleshooting Guide Amine Gas Treating Unit  - Best Practices - Troubleshooting Guide
Amine Gas Treating Unit - Best Practices - Troubleshooting Guide
 
Petroleum refining (1 of 3)
Petroleum refining (1 of 3)Petroleum refining (1 of 3)
Petroleum refining (1 of 3)
 
Code of Practice - Centrifugal Pump Operation and Maintenance
Code of Practice - Centrifugal Pump Operation and Maintenance Code of Practice - Centrifugal Pump Operation and Maintenance
Code of Practice - Centrifugal Pump Operation and Maintenance
 
A presentation on reformer new
A presentation on reformer newA presentation on reformer new
A presentation on reformer new
 
Reformer Tube Inspection & Issues Affecting Tube Life
Reformer Tube Inspection & Issues Affecting Tube LifeReformer Tube Inspection & Issues Affecting Tube Life
Reformer Tube Inspection & Issues Affecting Tube Life
 
Refinery Basic
Refinery Basic Refinery Basic
Refinery Basic
 
Fundamentals of sour water stripping
Fundamentals of sour water strippingFundamentals of sour water stripping
Fundamentals of sour water stripping
 
Heater treater
Heater treaterHeater treater
Heater treater
 
Refinery Process book.pdf
Refinery Process book.pdfRefinery Process book.pdf
Refinery Process book.pdf
 
An introduction to Fired Heaters.pdf
An introduction to Fired Heaters.pdfAn introduction to Fired Heaters.pdf
An introduction to Fired Heaters.pdf
 
Reformer Tube Metallurgy: Design Considerations; Failure Mechanisms; Inspecti...
Reformer Tube Metallurgy: Design Considerations; Failure Mechanisms; Inspecti...Reformer Tube Metallurgy: Design Considerations; Failure Mechanisms; Inspecti...
Reformer Tube Metallurgy: Design Considerations; Failure Mechanisms; Inspecti...
 
Refining Process
Refining ProcessRefining Process
Refining Process
 
Centrifugal Compressors
Centrifugal CompressorsCentrifugal Compressors
Centrifugal Compressors
 
Oil Refinery - Processes
Oil Refinery - ProcessesOil Refinery - Processes
Oil Refinery - Processes
 
Le 03 Natural Gas (NG) Transportation and Distribution
Le 03 Natural Gas (NG) Transportation and DistributionLe 03 Natural Gas (NG) Transportation and Distribution
Le 03 Natural Gas (NG) Transportation and Distribution
 

Similar to GSU AND GDU

FYP presentation
FYP presentationFYP presentation
FYP presentationOsama Ahmed
 
220446610-Heaters-Nice-Presetation.pptx
220446610-Heaters-Nice-Presetation.pptx220446610-Heaters-Nice-Presetation.pptx
220446610-Heaters-Nice-Presetation.pptxjesscastillo67
 
Practicing DGA - Diagnóstico DGA
Practicing DGA - Diagnóstico DGAPracticing DGA - Diagnóstico DGA
Practicing DGA - Diagnóstico DGATRANSEQUIPOS S.A.
 
Saipem vs Toyo (ACES21).pptx
Saipem vs Toyo (ACES21).pptxSaipem vs Toyo (ACES21).pptx
Saipem vs Toyo (ACES21).pptxPrateek Mishra
 
Ammonia-PPT GTEs.pptx
Ammonia-PPT GTEs.pptxAmmonia-PPT GTEs.pptx
Ammonia-PPT GTEs.pptxSheikhSaad18
 
DIFF BW TOYO N SAIPEM.pptx
DIFF BW TOYO N SAIPEM.pptxDIFF BW TOYO N SAIPEM.pptx
DIFF BW TOYO N SAIPEM.pptxPrateek Mishra
 
Amm plant description
Amm plant descriptionAmm plant description
Amm plant descriptionameermudasar
 
01 21-2015 basic deaerator science revealed final Desareador de oxigeno.
01 21-2015 basic deaerator science revealed final Desareador de oxigeno.01 21-2015 basic deaerator science revealed final Desareador de oxigeno.
01 21-2015 basic deaerator science revealed final Desareador de oxigeno.lorenzo Monasca
 
1 palmer international consulting_presentation_artc_singapore_2014 (10)
1 palmer international consulting_presentation_artc_singapore_2014 (10)1 palmer international consulting_presentation_artc_singapore_2014 (10)
1 palmer international consulting_presentation_artc_singapore_2014 (10)pipllp
 
ammonia National Fertilizer Limited Bathinda
ammonia National Fertilizer Limited Bathindaammonia National Fertilizer Limited Bathinda
ammonia National Fertilizer Limited BathindaDngL611667
 
Ammonia production from natural gas, haldor topsoe process
Ammonia production from natural gas, haldor topsoe processAmmonia production from natural gas, haldor topsoe process
Ammonia production from natural gas, haldor topsoe processGaurav Soni
 
Ethylene Plant Design Considerations
Ethylene Plant Design ConsiderationsEthylene Plant Design Considerations
Ethylene Plant Design ConsiderationsGerard B. Hawkins
 
Ammonia Presentation On the Urea Ammonia Plant
Ammonia Presentation On the Urea Ammonia PlantAmmonia Presentation On the Urea Ammonia Plant
Ammonia Presentation On the Urea Ammonia PlantMuradAli619307
 
Agc wp-dissolved gases in transformer insulation fluids
Agc wp-dissolved gases in transformer insulation fluidsAgc wp-dissolved gases in transformer insulation fluids
Agc wp-dissolved gases in transformer insulation fluidsAGC International, LLC
 
Combustion and dry low nox 2.6 dln system
Combustion and dry low nox 2.6 dln systemCombustion and dry low nox 2.6 dln system
Combustion and dry low nox 2.6 dln systemFaisal Nadeem
 
Various ammonia technology
Various ammonia technologyVarious ammonia technology
Various ammonia technologyPrem Baboo
 
White - LNG Processing Presentation.ppt
White - LNG Processing Presentation.pptWhite - LNG Processing Presentation.ppt
White - LNG Processing Presentation.pptLemuelGulliver
 

Similar to GSU AND GDU (20)

FYP presentation
FYP presentationFYP presentation
FYP presentation
 
220446610-Heaters-Nice-Presetation.pptx
220446610-Heaters-Nice-Presetation.pptx220446610-Heaters-Nice-Presetation.pptx
220446610-Heaters-Nice-Presetation.pptx
 
Practicing DGA - Diagnóstico DGA
Practicing DGA - Diagnóstico DGAPracticing DGA - Diagnóstico DGA
Practicing DGA - Diagnóstico DGA
 
Saipem vs Toyo (ACES21).pptx
Saipem vs Toyo (ACES21).pptxSaipem vs Toyo (ACES21).pptx
Saipem vs Toyo (ACES21).pptx
 
Ammonia-PPT GTEs.pptx
Ammonia-PPT GTEs.pptxAmmonia-PPT GTEs.pptx
Ammonia-PPT GTEs.pptx
 
DIFF BW TOYO N SAIPEM.pptx
DIFF BW TOYO N SAIPEM.pptxDIFF BW TOYO N SAIPEM.pptx
DIFF BW TOYO N SAIPEM.pptx
 
Amm plant description
Amm plant descriptionAmm plant description
Amm plant description
 
01 21-2015 basic deaerator science revealed final Desareador de oxigeno.
01 21-2015 basic deaerator science revealed final Desareador de oxigeno.01 21-2015 basic deaerator science revealed final Desareador de oxigeno.
01 21-2015 basic deaerator science revealed final Desareador de oxigeno.
 
1 palmer international consulting_presentation_artc_singapore_2014 (10)
1 palmer international consulting_presentation_artc_singapore_2014 (10)1 palmer international consulting_presentation_artc_singapore_2014 (10)
1 palmer international consulting_presentation_artc_singapore_2014 (10)
 
ammonia National Fertilizer Limited Bathinda
ammonia National Fertilizer Limited Bathindaammonia National Fertilizer Limited Bathinda
ammonia National Fertilizer Limited Bathinda
 
DGA
DGADGA
DGA
 
Ammonia production from natural gas, haldor topsoe process
Ammonia production from natural gas, haldor topsoe processAmmonia production from natural gas, haldor topsoe process
Ammonia production from natural gas, haldor topsoe process
 
Ethylene Plant Design Considerations
Ethylene Plant Design ConsiderationsEthylene Plant Design Considerations
Ethylene Plant Design Considerations
 
CO2 REVAL SECTION .2022.pptx
CO2 REVAL SECTION .2022.pptxCO2 REVAL SECTION .2022.pptx
CO2 REVAL SECTION .2022.pptx
 
Ammonia Presentation On the Urea Ammonia Plant
Ammonia Presentation On the Urea Ammonia PlantAmmonia Presentation On the Urea Ammonia Plant
Ammonia Presentation On the Urea Ammonia Plant
 
Agc wp-dissolved gases in transformer insulation fluids
Agc wp-dissolved gases in transformer insulation fluidsAgc wp-dissolved gases in transformer insulation fluids
Agc wp-dissolved gases in transformer insulation fluids
 
Combustion and dry low nox 2.6 dln system
Combustion and dry low nox 2.6 dln systemCombustion and dry low nox 2.6 dln system
Combustion and dry low nox 2.6 dln system
 
Various ammonia technology
Various ammonia technologyVarious ammonia technology
Various ammonia technology
 
White - LNG Processing Presentation.ppt
White - LNG Processing Presentation.pptWhite - LNG Processing Presentation.ppt
White - LNG Processing Presentation.ppt
 
nb
nbnb
nb
 

GSU AND GDU

  • 2. •Introduction •H2S & it’s need of processing •Gas Sweetening Process •Gas dehydration Process •Recap
  • 3. What is Sour Gas? Sour Gas is a Natural Hydrocarbon gas with acid gases; most commonly Carbon dioxide, hydrogen sulphide & to some extent mercaptans. Natural Gas Non-Hydrocarbon (Acid Gas) Hydrocarbon
  • 5. Gas Terminal GSU DPDU CFU GDU LPGU KRU CWU SRU 36” 42” Sulfur Sweet gas to HBJ PL Sweet gas to Local consumers LPG ARN HC SKO ACID GAS SOUR GAS SOUR COND From Offshore HSD ATF
  • 6. • H2S is a highly toxic & Colourless flammable gas • Corrosive to all metals (less corrosive to SS) • Can cause catalyst poisoning in refinery processes • On combustion forms toxic gas SO2. • 4.3% LEL and 45% HEL by volume with an auto- ignition temperature of 500oF (292oC) • Heavier than air (1.18 times heavier) • It may accumulate in dangerous concentrations in drains, valve pits, vessels and tanks.
  • 7. • Has no heating value. •Yet constitutes a volume-filler • Corrosive in presence of water. • Promotes hydrate formation. CO2
  • 8. Note: The composition of components is from ADMA Company Components Mole Fraction at I/L Mole Fraction at O/L Hydrogen Sulphide Methane Ethane Propane Isobutane nbutane IsoPentane nPentane Hexane Carbon Dioxide 0.013% 81.7% 6.34% 3.72% 0.70 % 0.86% 0.15% 0.13% 0.05% 6.30% 0.0004% 82.8% 6.39% 3.77% 0.74% 0.84% 0.16% 0.15% 0.07% 4.9%
  • 9. Significant factors are; 1. Type & conc. of impurities. 2. Degree of removal of impurities or selectivity of acid component removal. 3. Volume of the Gas stream. 4. Temp. & Pr. Conditions 5. HC Composition. 6. Economics
  • 10. 1. Non-regenerative 2. Regenerative process • Physical absorption-water wash, selexol, fluor solvent etc. • Chemical absorption- The alkonol- amine processes 3. Regenerative process with elemental sulphur recovery
  • 11.
  • 12. PHASE I TRAIN # PHASE II PHASE III PHASE III A CAPACITY 31 32 33 34 35 36 37 38 5.6 MMSCMD each 5.6 MMSCMD each 5.6 MMSCMD each 6.3 MMSCMD each
  • 13.
  • 14. Amine type Chemical formula Mol. Wt. Vapour pressure at 370C Removal capacity % MEA (Mono ethanol amine) HO C2H4NH2 61.08 1.05 100 DEA (Diethanol amine) (HOC2H4)2NH 105.14 0.058 58 TEA (Triethanol amine) (HOC2H4)3N 148.19 0.0063 41 DGA (Di glycolamine) H(OC2H4)2NH2 105.14 0.160 58 DIPA (Di-isopropanol amine) (HOC3H6)2NH 133.19 0.010 46 MDEA (Methyl diethanol amine) (HOC2H4)2NH3 119.17 0.0061 51
  • 15. P301A/B, MULTISTAGE CENTRIFUGAL PUMP E305 PREHEATER V301 INLET KOD SWEET GAS OUT V302 OUTLET KOD SWEET GAS TO GDU SOUR GAS FROM SLUG CATCHER ABSORBER COLUMN C301 TRAY 9 TRAY 7 TRAY 5 TRAY 3 TRAY 1 SOUR GAS IN “RICH” MDEA TO V303 MP FLASH DRUM MDEA TANK T301 H2S Absorption E306 COOLER LV112 SDV104 PV & FV101
  • 16.
  • 17. MDEA Methyl Di Ethanol Amine + H2S MDEA-H, HS + - Amino Hydro Sulphide High Press. Low Temp Absorption : Regeneration : MDEA-H, HS Low Press. High Temp MDEA Methyl Di Ethanol Amine + H2S + -
  • 18. • MDEA reacts instantaneously with H2S • H2S reacts to yield Hydro sulphide by proton transfer. • H2S + Amine(R2NH2)  HS- + (Amine) H+ • CO2 can only react if it dissolves in water to form bicarbonate ion. • Then this ion undergoes acid-base reaction with the amine to yield H2O + CO2  H2CO3 & CO2 + HO-  HCO3- • These acids then react with amine to form amine bicarbonate (HCO3-, RNH2+) and amine carbonate. CO2 + H2O + R2NCH3  R2NCH4+ + HCO3- (Slow reaction)
  • 19. H2S reacts to give amine hydrosulfide: 1. H2S + R2NH ↔ HS - , R2NH2+ CO2 can react directly with amine to form an amine carbonate: 2. CO2 + 2R2NH ↔ R2NCOO-, R2NH2+ 3. CO2 + H2O ↔ H2CO3 4. CO2 + HO- ↔ HCO3- 5. These acids then react with the amine to form amine bicarbonate (HCO3,- RNH2+) and amine carbonate (CO2, (R2NH2+)2).
  • 20. The overall reaction depends upon contact time.Contact time depends on……… • The gas flow rate • The liquid height above plate area (Weir height) • Number of active trays • Only parameter that can be varied is the number of active trays.
  • 21. PV218 PV216 TO FLARE TO FUEL GAS HEADER LV215 FV205 ‘LEAN’ AMINE “RICH” MDEA TO V303 MP FLASH DRUM C303 COL. MP FLASH DRUM V303 TO C302 TC558 E302 A/B COOLER REGENERATED AMINE FROM C302 E301A/B PHE TO TANK 301
  • 23. ACID GAS OUT V304 REFLUX KOD REGENERATOR COLUMN C302 SOUR GAS IN E303 COOLER SOUR GAS IN “RICH” MDEA FROM V303 THRU’ E301 PV326 PV327 TO FLARE P304A/B TO SRU LV330 LV327 SDV309 E304 REBOILER REGENERATED AMINE TO TANK
  • 25. H2S C1 C2 C3 iC4 nC4 iC5 CO2 6800 to 6900 1.48 0.2 .02 .02 .03 .16 98.25
  • 27. • Precoat filter is designed to filter solids such as iron sulphides & iron carbonates • V311 holds a bed of charcoal as part of filtration package • Then the stream (20% of the total MDEA flow in the system) passes thru’ activated charcoal filter removing odour, impurities, colour & hydrocarbon. • X 301 & X302 are precoat & cartridge type filters • Then the cartridge takes any entrained micro solids
  • 28. LL103 ANTIFOAM TANK V361 (Dimethylpolysiloxanic oil) FUEL GAS BLANKETP361A/B LL301 FLARE GAS LH302 TO FLARE P362A/B FLARE GAS KOD V362 TO SLOP TANK FUEL GAS FROM C303 FUEL GAS KOD V363 FUEL GAS LV403 PV601 METHANOL TANK LH602 LL602 P363A/B ANTIFOAM RETURN FUEL GAS FROM C303
  • 29. LHH224 LLL109 PB101 LL111 SOV1104 LLL109 PB101 LL111 SOV1101 SOV1102 PB101 SOV1318 (PV327) SOV1216 (PV216) SOV1317 (FV309) P303A/B ST MP FL DRM V303 C301 ABSORBER C301 BTM SDV104 I/L SDV
  • 30. LL334 P304A/B ST LLL109 PB101 LL111 SOV1205 SOV1206 P301A P301B SOV1309 (FV309) LL335 P305 ST PB121 PL561 AB-BYPASS SWITCH FL104 SOV1205 LL549 LH110 LH219 PB111 PB112 LL329 PB118 V304 REF DRM V305 SUMP (PANEL PUSH BUTTON) T301 TANK ABSORBER O/L KOD V302 C302 REG CLMN (UNLATCHING SWITCH)
  • 31. EQUIP DETAIL SOUR GAS HEATER E305 SOUR GAS KOD V301 ABSORBE R COLMN C301 FUEL GAS STRIPPER C303 RICH AMINE FLASH DRUM V303 SWEET GAS COOLER E306 FLARE GAS HEATER E307 LEAN AMINE STORAGE TANK T301 DUTY 4.655 X 1.1 MM KCAL/H NA NA NA NA 0.778 X 1.1 MM KCAL/H 0.905 X 1.1 MM KCAL/H NA DIMENSIO N (MM) NA 3300 DIA X 4850TL 31OO OD X 11850 H 510 DIA X 4000 H 2200 DIA X 6000TL NA NA 6000 DIA X 9000 H DESIGN PRESSUR EKG/CM2 NA 83 83 10 10 NA NA ATM DESIGN TEMP DEGREE CELSIUS NA 49 75 75 75 NA NA 60
  • 32. EQUIP DETAIL TREATED GAS KOD V302 KETTLE TYPE REBOILER E304 REGEN. COL. C302 FUEL GAS STRIPPER C303 PLATE TYP AMINE- AMINE EX. E301A/B OVERHEAD CONDSR E303 REFLUX DRUM V304 LEAN AMINE COOLER E302A/B DUTY NA 13.77 X 1.2MM KCAL/H NA NA 7.96X 1.1 MMCAL/H 6.91 MMCAL/H NA 5.14 X 1.1 MM KCAL/HR DIMENSION (MM) 3300 DIA X 4200H NA 2900 OD X 19150 H 510 DIA X 4000 H NA NA 1400X 3000H NA DESIGN PRESSURE KG/CM2 82.05 (S/T): 6.5XFV/9X FV KG/CM2G 6.5 & VACUUM 10 NA (S/T): 6.5 FV/7.5 6.5 & FV (S/T): 6.5/7.5 DESIGN TEMP DEGREE CELSIUS 53 (S/T): 144/200 195 75 NA (S/T): 127/58 95 (S/T): 88/58
  • 33.
  • 34. Adsorption is the process of removing impurities from a gas stream by means of a solid material called adsorbent that has special attraction for the impurities.
  • 35. • Chemical Formula: HO(C2H4O)3H • Adsorbs water from the Gas until the equilibrium partial pressure of TEG & water in the gas is reached. • Bonding with water forms H-OH HO-CH2-CH2-O-CH2-CH2-OCH2-CH2-OH • Results achieved-1 to 2% of moisture by wt in the outlet
  • 36. HO ( C2 H4 O )3 H Triethylene Glycol (TEG) H2O RICH TEG Adsorption at High Press Low Temp H2O Regeneration at Low Press High Temp
  • 37. PHASE I TRAIN # PHASE II PHASE III PHASE III A CAPACITY 41 42 43 44 45 46 47 5.7 MMSCMD each 5.7 MMSCMD each 5.7 MMSCMD each 6.3 MMSCMD each
  • 38. P401A/B, DOUBLE ACTING RECIPROCATING PUMP V404 INLET KOD GAS OUT V401 OUTLET KOD SWEET GAS TO DPD SWEET GAS FROM GSU ABSORBER COLUMN C401 TRAY 1 TO 9 “RICH” TEG LV106 SDV104 PV & FV101 SURGE DRUM V403 REGENERATED TEG FROM E401 E403 COOLER
  • 39.
  • 40. E402 REBOILER VAPOUR VENT TV215 FUEL GAS FOR STRIPPING (FT202) TO SURGE DRUM V403 C403 E401 PHE HP STEAM DEGASSERDRUM V402 CHARCAOLBED LV116 CATRIDGE FILTER FUELGAS ‘RICH’TEGFROMC401 C402 REGEN
  • 41. • The relatively cool TEG from C401 bottom does two things; • One, it brings down the temperature of the vapour leaving the C402 top thru’ three way valve • Two, the other stream goes into the plate heat exchanger E401 to cool the regenerated glycol before going into V303 and in turn getting itself heated upto 145 deg before entering C402 having 4 bubble cap trays. • TV 212 controls the temp of reboiler where the TEG at 185 deg overflows into the attached C403 end mounted on the side of the reboiler. C403 is a packed column where the hot fuel gas from V401/402 preheated inside a 2nd coil in E402, strips the glycol of remaining moisture to achieve 99.7% purity. • This stripped glycol comes in contact at E401 with the cooler rich TEG from C401 & reaches 80-deg. • Stripper gas is piped into E402 & V403 to maintain +ve pressure. • The reciprocating TEG pumps attached to V403 completes the cycle of pumping TEG into the column C401.
  • 42. LLL105 FL106 PB101 SOV1103 LL218 PB106 P403 ST LLL105 FL106 PB101 SOV1101 LLL105 FL106 PB101 P401A/B STOP LLL105 PB101 SOV1102 LLL133 PB101 SOV1105 THH210 PB101 SOV1212 (TV212) LLL132 PB101 SOV1104 C401 ABSORBER TEG FLOWLOW SWITCH V404 I/L KOD V401 DRYGAS SCRUBBER E402 REBOILER TEMP SUMP V405 I/L SDV O/L SDV C401 BOTTOM
  • 43. EQUIP DETAIL FEED GAS KOD V404 GLYCOL ABSORBER COLUMN C401 DRIED GAS SCRUBBER V401 RICH GLY DEGASSIN G DRUM V402 LEAN GLY TRIM COOLER E403 DUTY NA NA NA NA 0.164X1.2MM KCAL/H DIMENSION (MM) 3300 DIA X 3250H 2800 DIA X 9000H 3600 DIDX 4200H 1100 DIA X 3250H 2200 DIA X 6000TL DESGN PRESSUREK G/CM2 81.4 81.4 81.06 10 (S/T): 7.5/ 82 DESIGN TEMP DEGREE CELSIUS 55 60 60 55 (S/T): 60/120
  • 44. EQUIP DETAIL GLYCOL STRIPPG COLUMN C403 GLYCOL REG. C402 LEAN GLYCOL SURGE DRUM V403 LEAN GLYCOL TANK T401 GLY-GLY HEAT EXCH. E401A/B RICH GLYCOL REBOILER E402 DUTY NA NA NA NA 0.627X1.2M M KCAL/H 0.625X1.2 MM KCAL/H DIMENSION (MM) 500 DIAX 2150H 600DX 4200L (UPPER) 800X2590 (LOWER) 1000 DIA X 4000L 4500 DIA X 3000H NA NA DESGN PRESSURE KG/CM2 1.1 1.1 1.1 ATM (S/T): 1.0/ 39 (S/T): 1.0/ 39 & FV DESIGN TEMP DEGREE CELSIUS 240 220(TOP) 240(BTM) 240 60 (S/T): 240/220 (S/T): 240/260
  • 45. The incoming sour gas is treated by washing/scrubbing with aqueous solution MDEA (Methyldiethanolamine). Selectively removing H2S from 1375ppm (max) down to 4ppm & limiting CO2 co absorption to max of 32%. Processing Acid Gas at SRU for Sulphur Removal. Removing moisture, entrained or enriched during sweetening, in Gas Dehydration Unit with TEG upto -46 deg celsius.