SlideShare a Scribd company logo
1 of 179
Download to read offline
Broken Time-Reversal Symmetry and Topological Order 
in Triplet Superconductors 
Jorge Quintanilla1,2 
1SEPnet and Hubbard Theory Consortium, University of Kent 
2ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory 
Dresden, 27 November 2014 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 1 / 119
People and Money 
People: James F. Annett (Bristol) , Adrian D. Hillier (RAL) 
Bayan Mazidian (RAL/Bristol) , Bob Cywinski (Huddersfield) . 
Ravi P. Singh , Gheeta Balakrishnan , Don Paul , 
Martin Lees (Birmingham). Amitava Bhattacharyya , 
Devashibai Adroja (RAL). A. M. Strydom (Johannesburg) . 
Naoki Kase, Jun Akimitsu (Aoyama Gakuin). 
Money: STFC (UK) + HEFCE/SEPnet (UK) + UJ and NRF (South Africa) + 
Bristol + Kent. 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 2 / 119
The Hubbard Theory Consortium 
Director: Piers Coleman (RHUL/Rutgers) 
SEPnet fellows: Matthias Eschrig (RHUL/RAL) 
Claudio Castelnovo (RHUL/RAL) 
Jorge Quintanilla (Kent/RAL) 
Associate: Jörg Schmalian (Karlsruhe) 
+ several SEPnet PhD students. 
Strong correlations theory in close 
collaboration with experiments at 
• RAL (ISIS/Diamond) 
• London Centre for Nanotech. 
• RHUL 
Coleman (RHUL/Rutgers) 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 3 / 119 
Eschrig (RHUL/RAL)
Overview 
Two Paradigms in Condensed Matter ... 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 4 / 119
Overview 
Two Paradigms in Condensed Matter ... 
Broken Symmetry 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 4 / 119
Overview 
Two Paradigms in Condensed Matter ... 
Broken Symmetry 
Topological Transitions 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 4 / 119
Overview 
Two Paradigms in Condensed Matter ... 
Broken Symmetry 
Topological Transitions 
... interlock via triplet pairing in superconductors: 
Superconductors 
Broken time-reversal 
symmetry 
Topological 
Triplet transitions 
pairing 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 4 / 119
Overview 
Two Paradigms in Condensed Matter ... 
Broken Symmetry 
Topological Transitions 
... interlock via triplet pairing in superconductors: 
Superconductors 
Broken time-reversal 
symmetry 
Topological 
Triplet transitions 
pairing 
SimpleTheories + Standard Measurements: 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 4 / 119
Overview 
Two Paradigms in Condensed Matter ... 
Broken Symmetry 
Topological Transitions 
... interlock via triplet pairing in superconductors: 
Superconductors 
Broken time-reversal 
symmetry 
Topological 
Triplet transitions 
pairing 
SimpleTheories + Standard Measurements: 
Group Theory / Bogolibov Quasiparticles 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 4 / 119
Overview 
Two Paradigms in Condensed Matter ... 
Broken Symmetry 
Topological Transitions 
... interlock via triplet pairing in superconductors: 
Superconductors 
Broken time-reversal 
symmetry 
Topological 
Triplet transitions 
pairing 
SimpleTheories + Standard Measurements: 
Group Theory / Bogolibov Quasiparticles 
Neutron diffraction / Muon Spin Rotation / Specific Heat / Penetration Depth 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 4 / 119
Outline 
1 Broken time-reversal symmetry in superconductors 
2 Experimental evidence for broken TRS 
3 Singlet, triplet, or both? 
4 A symmetry zoo 
5 Topological transitions in Superconductors 
6 Topological transition state: Li2Pdx Pt3xB 
7 Take-home message 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 5 / 119
Quantum Materials Theory 
1 Broken time-reversal symmetry in superconductors 
2 Experimental evidence for broken TRS 
3 Singlet, triplet, or both? 
4 A symmetry zoo 
5 Topological transitions in Superconductors 
6 Topological transition state: Li2Pdx Pt3xB 
7 Take-home message
Broken symmetry 
 
 
Photo: Eddie Hui-Bon-Hoa, www.shiromi.com 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 7 / 119
Broken symmetry 
 
 
Photo: Eddie Hui-Bon-Hoa, www.shiromi.com 
Photo: Kenneth G. Libbrecht, snowflakes.com 
 
 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 7 / 119
Broken symmetry 
 
 
Photo: Eddie Hui-Bon-Hoa, www.shiromi.com 
Photo: Kenneth G. Libbrecht, snowflakes.com 
 
 
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Photo: commons.wikimedia.org 
Unconventional superconductors 
 
 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 7 / 119
Broken symmetry 
 
 
Photo: Eddie Hui-Bon-Hoa, www.shiromi.com 
Photo: Kenneth G. Libbrecht, snowflakes.com 
 
 
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Photo: commons.wikimedia.org 
Unconventional superconductors 
 
 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 7 / 119
Broken symmetry 
 
 
Photo: Eddie Hui-Bon-Hoa, www.shiromi.com 
Photo: Kenneth G. Libbrecht, snowflakes.com 
 
 
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Photo: commons.wikimedia.org 
Unconventional superconductors 
 
 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 7 / 119
UVinrginciao Tench, v18e Mnarcth i2o011n al Superconductors blogs.kent.ac.uk/strongcorrelations 
Photo: commons.wikimedia.org 
Unconventional superconductors 
 
 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 8 / 119
UVinrginciao Tench, v18e Mnarcth i2o011n al Superconductors blogs.kent.ac.uk/strongcorrelations 
Photo: commons.wikimedia.org 
Unconventional superconductors 
‘Unconventional’ 
superconductors: 
Cuprates, Sr2RuO4, 
PrOs4Sb12, UPt3, 
(UTh)Be13 , ... 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 9 / 119
Time-reversal Symmetry 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 10 / 119
Time-reversal Symmetry 
p 
r 
x 
y 
z 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 11 / 119
Time-reversal Symmetry 
r -p 
x 
y 
z 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 11 / 119
Time-reversal Symmetry 
r -p 
x 
y 
z 
Classical time-reversal symmetry: 
t ! t equivalent to 
r ! r and p ! p 
Also inverts angular momenta. 
True in the absence of friction/magnetic fields. 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 11 / 119
Time-reversal Symmetry 
r -p 
x 
y 
z 
Classical time-reversal symmetry: 
t ! t equivalent to 
r ! r and p ! p 
Also inverts angular momenta. 
True in the absence of friction/magnetic fields. 
Quantum time-reversal symmetry: 
t ! t equivalent to 
y ! y and S ! S. 
True if Hˆ = Hˆ  and spin-invariant. 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 11 / 119
Time-reversal Symmetry 
r -p 
x 
y 
z 
Classical time-reversal symmetry: 
t ! t equivalent to 
r ! r and p ! p 
Also inverts angular momenta. 
True in the absence of friction/magnetic fields. 
Quantum time-reversal symmetry: 
t ! t equivalent to 
y ! y and S ! S. 
True if Hˆ = Hˆ  and spin-invariant. 
For quasi-particles in a superconductor: 
Hˆ = Hˆ 0 + Dcˆ † 
k ˆc† 
k + H.c. ) TRS: D = D 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 11 / 119
Quantum Materials Theory 
1 Broken time-reversal symmetry in superconductors 
2 Experimental evidence for broken TRS 
3 Singlet, triplet, or both? 
4 A symmetry zoo 
5 Topological transitions in Superconductors 
6 Topological transition state: Li2Pdx Pt3xB 
7 Take-home message
Muon Spin Rotation 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 13 / 119
Muon Spin Rotation 
Adrian Hillier 
(Muons group leader, ISIS) 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 14 / 119
Muon Spin Rotation 
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Zero field muon spin relaxation 
_ 
 
e  
e 
backward 
detector 
forward 
detector 
sample 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 15 / 119
Kubo-Toyabe x exponential 
Asymmetry: 
NF  NB 
NF + NB 
= G (t) 
s : randomly-oriented fields (e.g. nuclear moments) 
L :smoothly-modulated fields (e.g. electronic moments) 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 16 / 119
The “classic” examples: UPt3 and Sr2RuO4 
UPt3 
Luke et al. PRL (1993) 
Sr2RuO4 
Luke et al. Nature (1998) 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 17 / 119
Confirmed by Kerr effect 
UPt3 
Schemm et al. Science (2014) 
Sr2RuO4 
Jing Xia et al. PRL (2006) 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 18 / 119
More recent finds: LaNiC2 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 19 / 119
More recent finds: LaNiC2 
Relaxation due to electronic moments 
Moment 
size 
~ 0.1G 
(~ 0.01μB 
) 
Hillier, Quintanilla  Cywinski, 
PRL 102 117007 (2009) 
(longitudinal) 
_ 
 
 e 
e 
backward 
detector 
Timescale: 
 10-4s 
~ 
forward 
detector 
sample 
+ 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 20 / 119
More recent finds: LaNiGa2 
A. D. Hillier, J. Quintanilla, B. Mazidian, J. F. Annett, 
Physical Review Letters 109, 097001 (2012). 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 21 / 119
More recent finds: Re6Zr 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 22 / 119
More recent finds: Lu5Rh6Sn18 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 23 / 119
Quantum Materials Theory 
1 Broken time-reversal symmetry in superconductors 
2 Experimental evidence for broken TRS 
3 Singlet, triplet, or both? 
4 A symmetry zoo 
5 Topological transitions in Superconductors 
6 Topological transition state: Li2Pdx Pt3xB 
7 Take-home message
Singlet, triplet, or both? 
It’s all in the gap function: 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 25 / 119
Singlet, triplet, or both? 
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Symmetry of the gap function 
It’s all in the gap function: 
  
 
 k   k 
 
 
    
  
 
  
  
  
k k 
  
ˆ k 
See J.F. Annett Adv. Phys. 1990. 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 25 / 119
Singlet, triplet, or both? 
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Symmetry of the gap function 
It’s all in the gap function: 
  
 
 k   k 
 
 
    
  
 
  
  
  
k k 
  
ˆ k 
See J.F. Annett Adv. Phys. 1990. Pauli ) 
ˆD 
(k) = ˆD 
T (k) 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 25 / 119
Singlet, triplet, or both? 
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Symmetry of the gap function 
It’s all in the gap function: 
  
 
 k   k 
 
 
    
  
 
  
  
  
k k 
  
ˆ k 
See J.F. Annett Adv. Phys. 1990. Pauli ) 
T (k) Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
ˆD 
(k) = ˆD 
Singlet, triplet, or both? 
 
ˆ k 
 
 
0  0 
 0 0 
 
 
 
  
dx  idy dz 
dz dx  idy 
 
 
 
 
 
 
singlet 
[ 0(k) even ] 
triplet 
[ d(k) odd ] 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 25 / 119
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Singlet, triplet, or both? 
Neglect (for now!) spin-orbit coupling: 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 26 / 119
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Singlet, triplet, or both? 
Neglect (for now!) spin-orbit coupling: 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 27 / 119
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Singlet, triplet, or both? 
Neglect (for now!) spin-orbit coupling: 
Singlet and triplet representations of SO(3): 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 28 / 119
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Singlet, triplet, or both? 
Neglect (for now!) spin-orbit coupling: 
Singlet and triplet representations of SO(3): 
Γn 
s = - (Γn 
s)T , Γn 
t = + (Γn 
t)T 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 29 / 119
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Singlet, triplet, or both? 
Neglect (for now!) spin-orbit coupling: 
Singlet and triplet representations of SO(3): 
Γn 
s = - (Γn 
s)T , Γn 
Impose Pauli’s exclusion principle: 
t = + (Γn 
t)T 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 30 / 119
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Singlet, triplet, or both? 
Impose Pauli’s exclusion principle: 
 
 , 'k  ', k 
Neglect (for now!) spin-orbit coupling: 
Singlet and triplet representations of SO(3): 
Γn 
s = - (Γn 
s)T , Γn 
t = + (Γn 
t)T 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 31 / 119
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Singlet, triplet, or both? 
Singlet and triplet representations of SO(3): 
Γn 
s = - (Γn 
Impose Pauli’s exclusion principle: 
 
 , 'k  ', k 
Neglect (for now!) spin-orbit coupling: 
 
 
ˆ k either singlet 
s)T , Γn 
t = + (Γn 
t)T 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 32 / 119
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Singlet, triplet, or both? 
Singlet and triplet representations of SO(3): 
Γn 
s = - (Γn 
s)T , Γn 
Impose Pauli’s exclusion principle: 
 
t = + (Γn 
t)T 
 , 'k  ', k 
Neglect (for now!) spin-orbit coupling: 
 
 
ˆ k either singlet     y i   ˆ , ' 0  k  k 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 33 / 119
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Singlet, triplet, or both? 
Singlet and triplet representations of SO(3): 
Γn 
s = - (Γn 
Impose Pauli’s exclusion principle: 
 
 , 'k  ', k 
Neglect (for now!) spin-orbit coupling: 
 
 
ˆ k either singlet     y i   ˆ , ' 0  k  k 
or triplet 
s)T , Γn 
t = + (Γn 
t)T 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 34 / 119
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Singlet, triplet, or both? 
Singlet and triplet representations of SO(3): 
Γn 
s = - (Γn 
s)T , Γn 
Impose Pauli’s exclusion principle: 
 
t = + (Γn 
t)T 
 , 'k  ', k 
Neglect (for now!) spin-orbit coupling: 
 
 
ˆ k either singlet     y i   ˆ , ' 0  k  k 
or triplet       y i   .ˆ ˆ , '  k  d k σ 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 35 / 119
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
The role of spin-orbit coupling (SOC) 
Gap function may have both singlet and triplet components 
 
 
 
 
  
d id d 
x y z 
d d id 
   
 
 
  
  
0 k 
 
 
  
z x y 
0 
0 
ˆ 
0 
k k spin orbit 
, ' , '        
 
• However, if we have a centre of inversion 
basis functions either even or odd under inversion 
 still have either singlet or triplet pairing (at Tc) 
Jorge Quintanilla• (NKeont acnednRAtLr)e of inversion: mwawyw .hcoandv-mea ts.oirngglet and triplet (even at TDcre)s den 2014 36 / 119
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
The role of spin-orbit coupling (SOC) 
G = [SO(3)×Gc]×U(1)×T 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 37 / 119
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
The role of spin-orbit coupling (SOC) 
G = [SO(3)×Gc]×U(1)×T 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 38 / 119
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
The role of spin-orbit coupling (SOC) 
G = [SO(3)×Gc]×U(1)×T 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 39 / 119
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
The role of spin-orbit coupling (SOC) 
G = [SO(3)×Gc]×U(1)×T 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 40 / 119
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
The role of spin-orbit coupling (SOC) 
G = [SO(3)×Gc]×U(1)×T 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 41 / 119
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
The role of spin-orbit coupling (SOC) 
G = Gc,J×U(1)×T 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 42 / 119
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
The role of spin-orbit coupling (SOC) 
G = Gc,J×U(1)×T 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 43 / 119
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
The role of spin-orbit coupling (SOC) 
G = Gc,J×U(1)×T 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 44 / 119
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
The role of spin-orbit coupling (SOC) 
E.g. reflection through a vertical 
plane perpendicular to the y axis: 
y 
v J J I C , 2,   
Quintanilla, Hillier, Annett and Cywinski, 
PRB 82, 174511 (2010) 
z 
y x 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 45 / 119
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
The role of spin-orbit coupling (SOC) 
E.g. reflection through a vertical 
plane perpendicular to the y axis: 
y 
v J J I C , 2,   
Quintanilla, Hillier, Annett and Cywinski, 
PRB 82, 174511 (2010) 
z 
y x 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 46 / 119
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
The role of spin-orbit coupling (SOC) 
E.g. reflection through a vertical 
plane perpendicular to the y axis: 
y 
v J J I C , 2,   
Quintanilla, Hillier, Annett and Cywinski, 
PRB 82, 174511 (2010) 
z 
y x 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 47 / 119
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
The role of spin-orbit coupling (SOC) 
E.g. reflection through a vertical 
plane perpendicular to the y axis: 
y 
v J J I C , 2,   
Quintanilla, Hillier, Annett and Cywinski, 
PRB 82, 174511 (2010) 
z 
y x 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 48 / 119
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
The role of spin-orbit coupling (SOC) 
E.g. reflection through a vertical 
plane perpendicular to the y axis: 
y 
v J J I C , 2,   
This affects d(k) (a vector under 
spin rotations). 
Quintanilla, Hillier, Annett and Cywinski, 
PRB 82, 174511 (2010) 
z 
y x 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 49 / 119
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
The role of spin-orbit coupling (SOC) 
E.g. reflection through a vertical 
plane perpendicular to the y axis: 
y 
v J J I C , 2,   
This affects d(k) (a vector under 
spin rotations). 
It does not affect 0(k) (a scalar). 
Quintanilla, Hillier, Annett and Cywinski, 
PRB 82, 174511 (2010) 
z 
y x 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 50 / 119
The role of spin-orbit coupling (SOC) 
When can we have singlet-triplet mixing? 
We must now use basis functions of the double group: 
Gap function may have both singlet and triplet components 
ˆD 
(k) = 
dGå 
n=1 
hnˆG 
n (k) 
 
  
 
 
  
d id d 
x y z 
d d id 
 
   
  
  
0 k 
 
 
  
z x y 
0 
0 
ˆ 
0 
k k spin orbit 
, ' , '        
 
• However, if we have a centre of inversion 
basis functions either even or odd under inversion 
 still have either singlet or triplet pairing (at Tc) 
• No centre of inversion: may have singlet and triplet (even at Tc) 
Crystal symmetry 
Centrosymmetric Non-centrosymmetric 
Spin-orbit coupling Weak N N 
Strong N Y 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 51 / 119
When can we have broken time-reversal symmetry? 
For ˆD 
(k) to be non-trivially complex, it must have more than one 
component: 
ˆD 
(k) = h1ˆG 
1 (k) + h2ˆG 
2 (k) , arg h16= arg h2 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 52 / 119
When can we have broken time-reversal symmetry? 
For ˆD 
(k) to be non-trivially complex, it must have more than one 
component: 
ˆD 
(k) = h1ˆG 
1 (k) + h2ˆG 
2 (k) , arg h16= arg h2 
The instability must therefore take place in an irrep with d  1. 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 52 / 119
When can we have broken time-reversal symmetry? 
For ˆD 
(k) to be non-trivially complex, it must have more than one 
component: 
ˆD 
(k) = h1ˆG 
1 (k) + h2ˆG 
2 (k) , arg h16= arg h2 
The instability must therefore take place in an irrep with d  1. 
Weak spin-orbit coupling: SO(3)  Gc 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 52 / 119
When can we have broken time-reversal symmetry? 
For ˆD 
(k) to be non-trivially complex, it must have more than one 
component: 
ˆD 
(k) = h1ˆG 
1 (k) + h2ˆG 
2 (k) , arg h16= arg h2 
The instability must therefore take place in an irrep with d  1. 
Weak spin-orbit coupling: SO(3)  Gc 
The singlet irrep of SO(3) has d = 1 ) for singlet pairing, the point group Gc 
must have a d  1 irrep. 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 52 / 119
When can we have broken time-reversal symmetry? 
For ˆD 
(k) to be non-trivially complex, it must have more than one 
component: 
ˆD 
(k) = h1ˆG 
1 (k) + h2ˆG 
2 (k) , arg h16= arg h2 
The instability must therefore take place in an irrep with d  1. 
Weak spin-orbit coupling: SO(3)  Gc 
The singlet irrep of SO(3) has d = 1 ) for singlet pairing, the point group Gc 
must have a d  1 irrep. 
The triplet irrep of SO(3) had d = 3 ) for triplet pairing, broken TRS is 
possible even for d = 1 irreps of Gc . 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 52 / 119
When can we have broken time-reversal symmetry? 
For ˆD 
(k) to be non-trivially complex, it must have more than one 
component: 
ˆD 
(k) = h1ˆG 
1 (k) + h2ˆG 
2 (k) , arg h16= arg h2 
The instability must therefore take place in an irrep with d  1. 
Weak spin-orbit coupling: SO(3)  Gc 
The singlet irrep of SO(3) has d = 1 ) for singlet pairing, the point group Gc 
must have a d  1 irrep. 
The triplet irrep of SO(3) had d = 3 ) for triplet pairing, broken TRS is 
possible even for d = 1 irreps of Gc . 
Strong spin-orbit coupling: Gc,J (double group) 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 52 / 119
When can we have broken time-reversal symmetry? 
For ˆD 
(k) to be non-trivially complex, it must have more than one 
component: 
ˆD 
(k) = h1ˆG 
1 (k) + h2ˆG 
2 (k) , arg h16= arg h2 
The instability must therefore take place in an irrep with d  1. 
Weak spin-orbit coupling: SO(3)  Gc 
The singlet irrep of SO(3) has d = 1 ) for singlet pairing, the point group Gc 
must have a d  1 irrep. 
The triplet irrep of SO(3) had d = 3 ) for triplet pairing, broken TRS is 
possible even for d = 1 irreps of Gc . 
Strong spin-orbit coupling: Gc,J (double group) 
The dimensionality of the irreps is the same as for Gc therefore if all irreps are 
d = 1 then there can be no broken TRS. 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 52 / 119
When can we have broken time-reversal symmetry? 
For ˆD 
(k) to be non-trivially complex, it must have more than one 
component: 
ˆD 
(k) = h1ˆG 
1 (k) + h2ˆG 
2 (k) , arg h16= arg h2 
The instability must therefore take place in an irrep with d  1. 
Weak spin-orbit coupling: SO(3)  Gc 
The singlet irrep of SO(3) has d = 1 ) for singlet pairing, the point group Gc 
must have a d  1 irrep. 
The triplet irrep of SO(3) had d = 3 ) for triplet pairing, broken TRS is 
possible even for d = 1 irreps of Gc . 
Strong spin-orbit coupling: Gc,J (double group) 
The dimensionality of the irreps is the same as for Gc therefore if all irreps are 
d = 1 then there can be no broken TRS. 
Broken TRS involves always a d  1 irrep and it requires both the singlet and 
triplet components 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 52 / 119
Quantum Materials Theory 
1 Broken time-reversal symmetry in superconductors 
2 Experimental evidence for broken TRS 
3 Singlet, triplet, or both? 
4 A symmetry zoo 
5 Topological transitions in Superconductors 
6 Topological transition state: Li2Pdx Pt3xB 
7 Take-home message
LaNiC2 
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Character table 
Hillier, Quintanilla  Cywinski, 
PRL 102 117007 (2009) 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 54 / 119
LaNiC2 
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Character table 
Hillier, Quintanilla  Cywinski, 
PRL 102 117007 (2009) 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 55 / 119
LaNiC2 
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Character table 
Hillier, Quintanilla  Cywinski, 
PRL 102 117007 (2009) 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 56 / 119
LaNiC2 
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Character table 
Hillier, Quintanilla  Cywinski, 
PRL 102 117007 (2009) 
180o 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 57 / 119
LaNiC2 
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
C 
2v 
Character table 
Symmetries and 
their characters 
Sample basis 
functions 
Irreducible 
representation 
E C 
2 
v 
’ 
v 
Even Odd 
A 
1 
1 1 1 1 1 Z 
A 
2 
1 1 -1 -1 XY XYZ 
B 
1 
1 -1 1 -1 XZ X 
B 
2 
1 -1 -1 1 YZ Y 
Hillier, Quintanilla  Cywinski, 
PRL 102 117007 (2009) 
All irreps d = 1 
) weak SOC 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 58 / 119
LaNiC2 
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
SO(3)xC 
2v 
Gap function 
(unitary) 
Gap function 
(non-unitary) 
1A 
1 (k)=1 - 
1A 
2 (k)=k 
k 
x 
Y 
- 
1B 
1 (k)=k 
k 
X 
Z 
- 
1B 
2 (k)=k 
k 
Y 
Z 
- 
3A 
1 
d(k)=(0,0,1)k 
Z 
d(k)=(1,i,0)k 
Z 
3A 
2 
d(k)=(0,0,1)k 
k 
X 
k 
Y 
Z 
d(k)=(1,i,0)k 
k 
X 
k 
Y 
Z 
3B 
1 
d(k)=(0,0,1)k 
X 
d(k)=(1,i,0)k 
X 
3B 
2 
d(k)=(0,0,1)k 
Y 
d(k)=(1,i,0)k 
Y 
Possible order parameters 
Hillier, Quintanilla  Cywinski, 
PRL 102 117007 (2009) 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 59 / 119
LaNiC2 
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
SO(3)xC 
2v 
Gap function 
(unitary) 
Gap function 
(non-unitary) 
1A 
1 (k)=1 - 
1A 
2 (k)=k 
k 
x 
Y 
- 
1B 
1 (k)=k 
k 
X 
Z 
- 
1B 
2 (k)=k 
k 
Y 
Z 
- 
3A 
1 
d(k)=(0,0,1)k 
Z 
d(k)=(1,i,0)k 
Z 
3A 
2 
d(k)=(0,0,1)k 
k 
X 
k 
Y 
Z 
d(k)=(1,i,0)k 
k 
X 
k 
Y 
Z 
3B 
1 
d(k)=(0,0,1)k 
X 
d(k)=(1,i,0)k 
X 
3B 
2 
d(k)=(0,0,1)k 
Y 
d(k)=(1,i,0)k 
Y 
Possible order parameters 
Hillier, Quintanilla  Cywinski, 
PRL 102 117007 (2009) 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 60 / 119
LaNiC2 
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
SO(3)xC 
2v 
Gap function 
(unitary) 
Gap function 
(non-unitary) 
1A 
1 (k)=1 - 
1A 
2 (k)=k 
k 
x 
Y 
- 
1B 
1 (k)=k 
k 
X 
Z 
- 
1B 
2 (k)=k 
k 
Y 
Z 
- 
3A 
1 
d(k)=(0,0,1)k 
Z 
d(k)=(1,i,0)k 
Z 
3A 
2 
d(k)=(0,0,1)k 
k 
X 
k 
Y 
Z 
d(k)=(1,i,0)k 
k 
X 
k 
Y 
Z 
3B 
1 
d(k)=(0,0,1)k 
X 
d(k)=(1,i,0)k 
X 
3B 
2 
d(k)=(0,0,1)k 
Y 
d(k)=(1,i,0)k 
Y 
Possible order parameters 
Hillier, Quintanilla  Cywinski, 
PRL 102 117007 (2009) 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 61 / 119
LaNiC2 
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Possible order parameters 
SO(3)xC 
2v 
Gap function 
(unitary) 
Gap function 
(non-unitary) 
1A 
1 (k)=1 - 
1A 
2 (k)=k 
k 
x 
Y 
- 
1B 
1 (k)=k 
k 
X 
Z 
- 
1B 
2 (k)=k 
k 
Y 
Z 
- 
3A 
1 
d(k)=(0,0,1)k 
Z 
d(k)=(1,i,0)k 
Z 
3A 
2 
d(k)=(0,0,1)k 
k 
X 
k 
Y 
Z 
d(k)=(1,i,0)k 
k 
X 
k 
Y 
Z 
3B 
1 
d(k)=(0,0,1)k 
X 
d(k)=(1,i,0)k 
X 
3B 
2 
d(k)=(0,0,1)k 
Y 
d(k)=(1,i,0)k 
Y 
Non-unitary 
d x d* ≠ 0 
Hillier, Quintanilla  Cywinski, 
PRL 102 117007 (2009) 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 62 / 119
LaNiC2 
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Possible order parameters 
SO(3)xC 
2v 
Gap function 
(unitary) 
Gap function 
(non-unitary) 
1A 
1 (k)=1 - 
1A 
2 (k)=k 
k 
x 
Y 
- 
1B 
1 (k)=k 
k 
X 
Z 
- 
1B 
2 (k)=k 
k 
Y 
Z 
- 
3A 
1 
d(k)=(0,0,1)k 
Z 
d(k)=(1,i,0)k 
Z 
3A 
2 
d(k)=(0,0,1)k 
k 
X 
k 
Y 
Z 
d(k)=(1,i,0)k 
k 
X 
k 
Y 
Z 
3B 
1 
d(k)=(0,0,1)k 
X 
d(k)=(1,i,0)k 
X 
3B 
2 
d(k)=(0,0,1)k 
Y 
d(k)=(1,i,0)k 
Y 
Non-unitary 
d x d* ≠ 0 
breaks only SO(3) x U(1) x T 
* C.f. Li2Pd3B  Li2Pt3B, 
H. Q. Yuan et al. PRL’06 
* 
Hillier, Quintanilla  Cywinski, 
PRL 102 117007 (2009) 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 63 / 119
LaNiC2 
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Non-unitary pairing 
Spin-up superfluid 
coexisting with spin-down 
Fermi liquid. 
 
0 0 
   
 
  
0 
The A1 phase of 
liquid 3He. 
 
  
 
  
 
 
  
 
  
 
 
0 
or 
0 0 
ˆ 
C.f. 
Also FM SC - but this is a paramagnet! 
A. D. Hillier, J. Quintanilla and R. Cywinski, Physical Review Letters (2009). 
J. Quintanilla, J. F. Annett, A. D. Hillier, R. Cywinski, Physical Review B (2010). 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 64 / 119
LaNiGa2 
Centrosymmetric, but again all irreps d = 1 ) again weak SOC and non-unitary 
triplet 
A.D. Hillier, J. Quintanilla, B. Mazidian, J.F. Annett, and R. Cywinski, PRL 109, 097001 
(2012). 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 65 / 119 
A new family of superconductors?
Why non-unitary? 
Generic Landau theory for a triplet superconductor (1D irrep): 
F = a jhj2 + 
b 
2
h4
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 66 / 119
Why non-unitary? 
Generic Landau theory for a triplet superconductor (1D irrep): 
F = a jhj2 + 
b 
2
h4
+ b0 jh hj2 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 66 / 119
Why non-unitary? 
Generic Landau theory for a triplet superconductor (1D irrep): 
F = a jhj2 + 
b 
2
h4
+ b0 jh hj2 + 
m2 
2c 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 66 / 119
Why non-unitary? 
Generic Landau theory for a triplet superconductor (1D irrep): 
F = a jhj2 + 
b 
2
h4
+ b0 jh hj2 + 
m2 
2c 
+ b00m (ih h) . 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 66 / 119
Why non-unitary? 
Generic Landau theory for a triplet superconductor (1D irrep): 
F = a jhj2 + 
b 
2
h4
+ b0 jh hj2 + 
m2 
2c 
+ b00m (ih h) . 
Magnetisation as a sub-dominant order parameter: 
Superconductivity 
magnetisation 
Temperature 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 66 / 119
Why non-unitary? 
Generic Landau theory for a triplet superconductor (1D irrep): 
F = a jhj2 + 
b 
2
h4
+ b0 jh hj2 + 
m2 
2c 
+ b00m (ih h) . 
Magnetisation as a sub-dominant order parameter: 
Superconductivity 
magnetisation 
Temperature 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 66 / 119
Why non-unitary? 
Generic Landau theory for a triplet superconductor (1D irrep): 
F = a jhj2 + 
b 
2
h4
+ b0 jh hj2 + 
m2 
2c 
+ b00m (ih h) . 
Magnetisation as a sub-dominant order parameter: 
Superconductivity 
magnetisation 
Temperature 
Theory (left): A. D. Hillier, J. Quintanilla, B. Mazidian, J. F. Annett, PRL 109, 097001 (2012). 
Experiment (right): Akihiko Sumiyama et al., JPSJ (2014). 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 66 / 119
Re6Zr 
Td group: 
noncentrosymmetric; 
d = 1, 2, 3 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 67 / 119
Re6Zr 
Td group: 
noncentrosymmetric; 
d = 1, 2, 3 
) can have broken TRS with strong SOC 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 67 / 119
Re6Zr 
Td group: 
noncentrosymmetric; 
d = 1, 2, 3 
) can have broken TRS with strong SOC 
) broken TRS with singlet-triplet mixing 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 67 / 119
Re6Zr 
Td group: 
noncentrosymmetric; 
d = 1, 2, 3 
) can have broken TRS with strong SOC 
) broken TRS with singlet-triplet mixing 
E irrep (d = 2) ) 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 67 / 119
Re6Zr 
Td group: 
noncentrosymmetric; 
d = 1, 2, 3 
) can have broken TRS with strong SOC 
) broken TRS with singlet-triplet mixing 
E irrep (d = 2) ) 
F1, F2 irreps (d = 3) ) several more mixed singlet-triplet states. 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 67 / 119
Lu5Rh6Sn18 
Group D4h: 
centrosymmetric ) no singlet-triplet mixing;1 
d = 1, 2, 3 
) can have broken TRS with strong SOC. 
Only two states allowed: 1Eg (c) (singlet) and Eu(c) (triplet). 
1c.f. recent ARPES-based claim for Sr2RuO4: C.N. Veenstra et al., PRL 112, 
127002 (2014). + 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 68 / 119
Lu5Rh6Sn18 
Singlet state: 
k k y x 
kz 
Triplet: 
kz 
ky 
kx 
ky 
kz 
kx 
ky 
kx 
kz 
kz 
ky 
kx 
ky 
kz 
kx 
ky 
kx 
kz 
kz 
ky 
kx 
ky 
kz 
kx 
N.B. “shallow” point nodes. 
These results should apply just as well to Sr2RuO4, in the regime of strong 
spin-orbit coupling [see Veenstra et al. results + ]. 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 69 / 119
Quantum Materials Theory 
1 Broken time-reversal symmetry in superconductors 
2 Experimental evidence for broken TRS 
3 Singlet, triplet, or both? 
4 A symmetry zoo 
5 Topological transitions in Superconductors 
6 Topological transition state: Li2Pdx Pt3xB 
7 Take-home message
A bowl is not a mug 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 71 / 119
A bowl is not a mug 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 71 / 119
A bowl is not a mug 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 71 / 119
A bowl is not a mug 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 71 / 119
A bowl is not a mug 
? 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 71 / 119
A bowl is not a mug 
? 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 71 / 119
A bowl is not a mug 
? 
Is there a thermodynamic signature? 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 71 / 119
Power laws in nodal superconductors 
Low-temperature specific heat of a superconductor gives information on the 
spectrum of low-lying excitations: 
Fully gapped Point nodes Line nodes 
Cv  eD/T Cv  T3 Cv  T2 
D 
This simple idea has been around for a while.2 
Widely used to fit experimental data on unconventional superconductors.3 
2Anderson  Morel (1961), Leggett (1975) 
3Sigrist, Ueda (’89), Annett (’90), MacKenzie  Maeno (’03) 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 72 / 119
Linear nodes 
It all comes from the density of states: + 
g (E)  En1 ) Cv  Tn 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 73 / 119
Linear nodes 
It all comes from the density of states: + 
g (E)  En1 ) Cv  Tn 
linear 
point node line node 
D2k= I1 
 
kx 
jj 
2 + ky 
jj 
2 
 
D2k 
= I1kx 
jj 
2 
g(E) = E2 
2(2p)2I1 
pI2 
g(E) = LE 
(2p)3pI1 
pI2 
n = 3 n = 2 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 73 / 119
Linear nodes 
It all comes from the density of states: + 
g (E)  En1 ) Cv  Tn 
linear 
point node line node 
D2k= I1 
 
kx 
jj 
2 + ky 
jj 
2 
 
D2k 
= I1kx 
jj 
2 
g(E) = E2 
2(2p)2I1 
pI2 
g(E) = LE 
(2p)3pI1 
pI2 
n = 3 n = 2 
Key assumption: linear increase of the gap away from the node 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 73 / 119
Shallow nodes 
Relax the linear assumption and we also get different exponents: 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 74 / 119
Shallow nodes 
Relax the linear assumption and we also get different exponents: 
shallow 
point node line node 
D2k 
= I1(kx 
jj 
2 + ky 
jj 
2 
)2 D2k 
= I1kx 
jj 
4 
g(E) = E 
2(2p)2pI1 
pI2 
g(E) = L 
p 
E 
(2p)3I 
1 
4 
1 
pI2 
n = 2 n = 1.5 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 74 / 119
Shallow nodes 
Relax the linear assumption and we also get different exponents: 
shallow 
point node line node 
D2k 
= I1(kx 
jj 
2 + ky 
jj 
2 
)2 D2k 
= I1kx 
jj 
4 
g(E) = E 
2(2p)2pI1 
pI2 
g(E) = L 
p 
E 
(2p)3I 
1 
4 
1 
pI2 
n = 2 n = 1.5 
Shallow point nodes first discussed (speculatively) by Leggett [1979]. 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 74 / 119
Shallow nodes 
Relax the linear assumption and we also get different exponents: 
shallow 
point node line node 
D2k 
= I1(kx 
jj 
2 + ky 
jj 
2 
)2 D2k 
= I1kx 
jj 
4 
g(E) = E 
2(2p)2pI1 
pI2 
g(E) = L 
p 
E 
(2p)3I 
1 
4 
1 
pI2 
n = 2 n = 1.5 
Shallow point nodes first discussed (speculatively) by Leggett [1979]. 
A shallow point node may be required by symmetry e.g. the proposed E2u 
pairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)] and our 
own result for R5Rh6Sn18 [A. Bhattacharyya, D. T. Adroja, JQ et al. 
(unpublished)]. 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 74 / 119
Shallow nodes 
Relax the linear assumption and we also get different exponents: 
shallow 
point node line node 
D2k 
= I1(kx 
jj 
2 + ky 
jj 
2 
)2 D2k 
= I1kx 
jj 
4 
g(E) = E 
2(2p)2pI1 
pI2 
g(E) = L 
p 
E 
(2p)3I 
1 
4 
1 
pI2 
n = 2 n = 1.5 
Shallow point nodes first discussed (speculatively) by Leggett [1979]. 
A shallow point node may be required by symmetry e.g. the proposed E2u 
pairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)] and our 
own result for R5Rh6Sn18 [A. Bhattacharyya, D. T. Adroja, JQ et al. 
(unpublished)]. 
A shallow line node may result at the boundary between gapless and line node 
behaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. + 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 74 / 119
Line crossings 
A different power law is expected at line crossings 
(e.g. d-wave pairing on a spherical Fermi surface): 
crossing 
of linear line nodes 
D2k 
= I1 
 
kx 
jj 
2  ky 
jj 
2 
2 
or I1kx 
jj 
2ky 
jj 
2 
g(E) = 
E(1+2lnj 
L+ 
1 
4 
1 
p 
E/I 
1 
4 
1 
p 
E/I 
j) 
(2p)3pI1I2 
 E0.8 
n = 1.8 ( 2 !!) 
+ 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 75 / 119
Crossing of shallow line nodes 
When shallow lines cross we get an even lower exponent: 
crossing 
of shallow line nodes 
D2k= I1 
 
kx 
jj 
2  ky 
jj 
2 
4 
or I1kx 
jj 
4ky 
jj 
4 
g (E) = 
p 
E(1+2lnj 
L+E 
14 
/I 
18 
1 
E 
14 
/I 
18 
1 
j) 
(2p)3I 
1 
4 
1 
pI2 
 E0.4 
n = 1.4 * 
* c.f. gapless excitations of a Fermi liquid: g (E) = constant ) n = 1 
+ 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 76 / 119
Numerics 
n = d ln Cv/d lnT 
4.5 
4 
3.5 
3 
2.5 
2 
1.5 
1 
linear point node 
shallow point node 
linear line node 
crossing of linear line nodes 
shallow line node 
crossing of shallow line nodes 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 
n 
T / T 
c 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 77 / 119
A generic mechanism 
We propose that shallow nodes will exist generically at topological phase 
transitions in superocnductors with multi-component order parameters: 
D0 
D1 
Fermi Sea 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 78 / 119
A generic mechanism 
We propose that shallow nodes will exist generically at quantum phase 
transitions in superocnductors with multi-component order parameters: 
D1 
Fermi Sea 
D0 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 79 / 119
A generic mechanism 
We propose that shallow nodes will exist generically at quantum phase 
transitions in superocnductors with multi-component order parameters: 
D1 
Fermi Sea 
D0 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 80 / 119
A generic mechanism 
We propose that shallow nodes will exist generically at quantum phase 
transitions in superocnductors with multi-component order parameters: 
D1 
Fermi Sea 
D0 
Linear 
nodes 
Linear 
nodes 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 81 / 119
A generic mechanism 
We propose that shallow nodes will exist generically at quantum phase 
transitions in superocnductors with multi-component order parameters: 
D1 
Fermi Sea 
D0 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 82 / 119
A generic mechanism 
We propose that shallow nodes will exist generically at quantum phase 
transitions in superocnductors with multi-component order parameters: 
D1 
Fermi Sea 
D0 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 83 / 119
A generic mechanism 
We propose that shallow nodes will exist generically at quantum phase 
transitions in superocnductors with multi-component order parameters: 
D1 
Fermi Sea 
D0 
Shallow 
node 
Shallow 
node 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 84 / 119
Quantum Materials Theory 
1 Broken time-reversal symmetry in superconductors 
2 Experimental evidence for broken TRS 
3 Singlet, triplet, or both? 
4 A symmetry zoo 
5 Topological transitions in Superconductors 
6 Topological transition state: Li2Pdx Pt3xB 
7 Take-home message
Singlet-triplet mixing in noncentrosymmetric 
superconductors 
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Singlet, triplet, or both? 
Non-centrosymmetric superconductors are the multi-component order 
parameter supercondcutors par excellence: 
 
ˆ k 
 
 
0  0 
 0 0 
 
 
 
  
dx  idy dz 
dz dx  idy 
 
 
 
 
 
 
singlet 
[ 0(k) even ] 
triplet 
[ d(k) odd ] 
4Batkova et al. JPCM (2010) 
5Zuev et al. PRB (2007) 
6Adrian D. Hillier, JQ and R. Cywinski PRL (2009) 
7Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012) 
8Bauer et al. PRL (2004) 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 86 / 119
Singlet-triplet mixing in noncentrosymmetric 
superconductors 
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Singlet, triplet, or both? 
Non-centrosymmetric superconductors are the multi-component order 
parameter supercondcutors par excellence: 
 
ˆ k 
 
 
0  0 
 0 0 
 
 
 
  
dx  idy dz 
dz dx  idy 
 
 
 
 
 
 
singlet 
[ 0(k) even ] 
triplet 
[ d(k) odd ] 
In practice, there is a varied phenomenology: 
4Batkova et al. JPCM (2010) 
5Zuev et al. PRB (2007) 
6Adrian D. Hillier, JQ and R. Cywinski PRL (2009) 
7Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012) 
8Bauer et al. PRL (2004) 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 86 / 119
Singlet-triplet mixing in noncentrosymmetric 
superconductors 
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations 
Singlet, triplet, or both? 
Non-centrosymmetric superconductors are the multi-component order 
parameter supercondcutors par excellence: 
 
ˆ k 
 
 
0  0 
 0 0 
 
 
 
  
dx  idy dz 
dz dx  idy 
 
 
 
 
 
 
singlet 
[ 0(k) even ] 
triplet 
[ d(k) odd ] 
In practice, there is a varied phenomenology: 
Some are conventional (singlet) superconductors: 
BaPtSi34, Re3W5,... 
Others seem to be correlated, purely triplet superconductors: + 
LaNiC26 (c.f. centrosymmetric LaNiGa27) + , CePtr3Si (?) 8 
4Batkova et al. JPCM (2010) 
5Zuev et al. PRB (2007) 
6Adrian D. Hillier, JQ and R. Cywinski PRL (2009) 
7Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012) 
8Bauer et al. PRL (2004) 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 86 / 119
Li2PdxPt3xB: tunable singlet-triplet mixing 
The Li2Pdx Pt3xB family (0  x  3; cubic point group O) provides a tunable 
realisation of this singlet-triplet mixing: 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 87 / 119
Li2PdxPt3xB: tunable singlet-triplet mixing 
The Li2Pdx Pt3xB family (0  x  3; cubic point group O) provides a tunable 
realisation of this singlet-triplet mixing: 
Pd is a lighter element with weak spin-orbit coupling (Tc  7K) 
Pt is a heavier element with strong spin orbit coupling (Tc  2.7K) 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 87 / 119
Li2PdxPt3xB: tunable singlet-triplet mixing 
The Li2Pdx Pt3xB family (0  x  3; cubic point group O) provides a tunable 
realisation of this singlet-triplet mixing: 
Pd is a lighter element with weak spin-orbit coupling (Tc  7K) 
Pt is a heavier element with strong spin orbit coupling (Tc  2.7K) 
The series goes from fully-gapped 
(x = 3) to nodal (x = 0): 
H.Q. Yuan et al., 
Phys. Rev. Lett. 97, 017006 (2006). 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 87 / 119
Li2PdxPt3xB: tunable singlet-triplet mixing 
The Li2Pdx Pt3xB family (0  x  3; cubic point group O) provides a tunable 
realisation of this singlet-triplet mixing: 
Pd is a lighter element with weak spin-orbit coupling (Tc  7K) 
Pt is a heavier element with strong spin orbit coupling (Tc  2.7K) 
The series goes from fully-gapped 
(x = 3) to nodal (x = 0): 
H.Q. Yuan et al., 
Phys. Rev. Lett. 97, 017006 (2006). 
NMR suggests nodal state a triplet: 
M.Nishiyama et al., 
Phys. Rev. Lett. 98, 047002 (2007) 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 87 / 119
Li2PdxPt3xB: Phase diagram 
Bogoliubov Hamiltonian with Rashba spin-orbit coupling: 
H(k) = 
 ˆh(k) ˆD 
(k) 
ˆD 
†(k) ˆhT (k) 
 
ˆh(k) = #kI + gk  s 
ˆD 
(k) = [D0 (k) + d (k)  ˆs 
] iˆs 
y (most general gap matrix) 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 88 / 119
Li2PdxPt3xB: Phase diagram 
Bogoliubov Hamiltonian with Rashba spin-orbit coupling: 
H(k) = 
 ˆh(k) ˆD 
(k) 
ˆD 
†(k) ˆhT (k) 
 
ˆh(k) = #kI + gk  s 
ˆD 
(k) = [D0 (k) + d (k)  ˆs 
] iˆs 
y (most general gap matrix) 
Assuming j#kj  jgkj  jd (k)j the quasi-particle spectrum is 
E = 
8 
: 
q 
2 
(#k  m + jg2 kj)+ (D0 (k) + jd (k)j); and 
 
q 
(#k  m  jgkj)2 + (D0 (k)  jd (k)j)2 . 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 88 / 119
Li2PdxPt3xB: Phase diagram 
Bogoliubov Hamiltonian with Rashba spin-orbit coupling: 
H(k) = 
 ˆh(k) ˆD 
(k) 
ˆD 
†(k) ˆhT (k) 
 
ˆh(k) = #kI + gk  s 
ˆD 
(k) = [D0 (k) + d (k)  ˆs 
] iˆs 
y (most general gap matrix) 
Assuming j#kj  jgkj  jd (k)j the quasi-particle spectrum is 
E = 
8 
: 
q 
2 
(#k  m + jg2 kj)+ (D0 (k) + jd (k)j); and 
 
q 
(#k  m  jgkj)2 + (D0 (k)  jd (k)j)2 . 
Take most symmetric (A1) irreducible representation: + 
D0 (k) = D0 
d(k) = D0  f 
A (x) (kx , ky , kz )  B (x) 
 
kx 
 
k2 
y + k2 
z 
 
, ky 
 
k2 
z + k2 
x 
 
, kz 
 
k2 
x + k2 
y 
 
g 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 88 / 119
Li2PdxPt3xB: Phase diagram 
Treat A and B as independent tuning parameters and study quasiparticle 
spectrum. We find a very rich phase diagram with topollogically-distinct phases:9 
9C. Beri, PRB (2010); A. Schnyder, S. Ryu, PRB(R) (2011); A. Schnyder et al., 
PRBJorg(e2Q0u1in2ta)n;illaB(.KeMntaanzdidRiAaLn) , JQ, A.D. Hillierw,wJw..cFo.ndA-mnatn.oergtt, arXiv:1302.2161. Dresden 2014 89 / 119
Li2PdxPt3xB: Phase diagram 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 90 / 119
Li2PdxPt3xB: Phase diagram 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 91 / 119
Li2PdxPt3xB: Phase diagram 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 92 / 119
Li2PdxPt3xB: Phase diagram 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 93 / 119
Detecting the topological transitions 
4 33 7 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 94 / 119
Detecting the topological transitions 
4 33 7 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 95 / 119
Li2PdxPt3xB: predicted specific heat power-laws 
4 3 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 96 / 119
Li2PdxPt3xB: predicted specific heat power-laws 
5 
n = 2 j 
n = 2 
n = 1.8 
n = 1.4 
4 
3 
11 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 97 / 119
Li2PdxPt3xB: predicted specific heat power-laws 
3 
Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 98 / 119

More Related Content

What's hot

Quantum Theory of Magnetism- Heisenberg Model
Quantum Theory of Magnetism- Heisenberg ModelQuantum Theory of Magnetism- Heisenberg Model
Quantum Theory of Magnetism- Heisenberg ModelSara Khorshidian
 
The all-electron GW method based on WIEN2k: Implementation and applications.
The all-electron GW method based on WIEN2k: Implementation and applications.The all-electron GW method based on WIEN2k: Implementation and applications.
The all-electron GW method based on WIEN2k: Implementation and applications.ABDERRAHMANE REGGAD
 
Η ΒΑΣΙΚΗ ΔΙΣΚΟΘΗΚΗ μια σωστή αρχή - ΛΕΣΧΗ ΤΟΥ ΔΙΣΚΟΥ 1991
Η ΒΑΣΙΚΗ ΔΙΣΚΟΘΗΚΗ μια σωστή αρχή - ΛΕΣΧΗ ΤΟΥ ΔΙΣΚΟΥ 1991Η ΒΑΣΙΚΗ ΔΙΣΚΟΘΗΚΗ μια σωστή αρχή - ΛΕΣΧΗ ΤΟΥ ΔΙΣΚΟΥ 1991
Η ΒΑΣΙΚΗ ΔΙΣΚΟΘΗΚΗ μια σωστή αρχή - ΛΕΣΧΗ ΤΟΥ ΔΙΣΚΟΥ 1991HOME
 
Chapter2 introduction to quantum mechanics
Chapter2 introduction to quantum mechanicsChapter2 introduction to quantum mechanics
Chapter2 introduction to quantum mechanicsK. M.
 
Maxwell equations and propagation in anisotropic media
Maxwell equations and propagation in anisotropic mediaMaxwell equations and propagation in anisotropic media
Maxwell equations and propagation in anisotropic mediaSolo Hermelin
 
Laplace equation
Laplace equationLaplace equation
Laplace equationalexkhan129
 
Multiferroic materials
Multiferroic materialsMultiferroic materials
Multiferroic materialsghulamalisajid
 
Band structure(2)
Band structure(2)Band structure(2)
Band structure(2)David David
 
Introduction to Special theory of relativity
Introduction to Special theory of relativityIntroduction to Special theory of relativity
Introduction to Special theory of relativityROHIT PANJABI
 
Linear vector space
Linear vector spaceLinear vector space
Linear vector spaceSafiya Amer
 
Drude Model-Dielectric constant of metals
Drude Model-Dielectric constant of metalsDrude Model-Dielectric constant of metals
Drude Model-Dielectric constant of metalsGandhimathi Muthuselvam
 
The Physics of Transparent Conducting Oxides
The Physics of Transparent Conducting OxidesThe Physics of Transparent Conducting Oxides
The Physics of Transparent Conducting OxidesUniversity of Liverpool
 

What's hot (20)

Quantum Theory of Magnetism- Heisenberg Model
Quantum Theory of Magnetism- Heisenberg ModelQuantum Theory of Magnetism- Heisenberg Model
Quantum Theory of Magnetism- Heisenberg Model
 
The all-electron GW method based on WIEN2k: Implementation and applications.
The all-electron GW method based on WIEN2k: Implementation and applications.The all-electron GW method based on WIEN2k: Implementation and applications.
The all-electron GW method based on WIEN2k: Implementation and applications.
 
Η ΒΑΣΙΚΗ ΔΙΣΚΟΘΗΚΗ μια σωστή αρχή - ΛΕΣΧΗ ΤΟΥ ΔΙΣΚΟΥ 1991
Η ΒΑΣΙΚΗ ΔΙΣΚΟΘΗΚΗ μια σωστή αρχή - ΛΕΣΧΗ ΤΟΥ ΔΙΣΚΟΥ 1991Η ΒΑΣΙΚΗ ΔΙΣΚΟΘΗΚΗ μια σωστή αρχή - ΛΕΣΧΗ ΤΟΥ ΔΙΣΚΟΥ 1991
Η ΒΑΣΙΚΗ ΔΙΣΚΟΘΗΚΗ μια σωστή αρχή - ΛΕΣΧΗ ΤΟΥ ΔΙΣΚΟΥ 1991
 
Chapter2 introduction to quantum mechanics
Chapter2 introduction to quantum mechanicsChapter2 introduction to quantum mechanics
Chapter2 introduction to quantum mechanics
 
Maxwell equations and propagation in anisotropic media
Maxwell equations and propagation in anisotropic mediaMaxwell equations and propagation in anisotropic media
Maxwell equations and propagation in anisotropic media
 
NANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFTNANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFT
 
Laplace equation
Laplace equationLaplace equation
Laplace equation
 
Hall effect
Hall effectHall effect
Hall effect
 
Multiferroic materials
Multiferroic materialsMultiferroic materials
Multiferroic materials
 
Band structure(2)
Band structure(2)Band structure(2)
Band structure(2)
 
Introduction to Special theory of relativity
Introduction to Special theory of relativityIntroduction to Special theory of relativity
Introduction to Special theory of relativity
 
Linear vector space
Linear vector spaceLinear vector space
Linear vector space
 
Approximations in DFT
Approximations in DFTApproximations in DFT
Approximations in DFT
 
Dielectrics and microwaves
Dielectrics and microwavesDielectrics and microwaves
Dielectrics and microwaves
 
UCSD NANO106 - 12 - X-ray diffraction
UCSD NANO106 - 12 - X-ray diffractionUCSD NANO106 - 12 - X-ray diffraction
UCSD NANO106 - 12 - X-ray diffraction
 
Drude Model-Dielectric constant of metals
Drude Model-Dielectric constant of metalsDrude Model-Dielectric constant of metals
Drude Model-Dielectric constant of metals
 
Superconductors
SuperconductorsSuperconductors
Superconductors
 
The Physics of Transparent Conducting Oxides
The Physics of Transparent Conducting OxidesThe Physics of Transparent Conducting Oxides
The Physics of Transparent Conducting Oxides
 
Four probe-method
Four probe-methodFour probe-method
Four probe-method
 
Magnetic properties of materials
Magnetic properties of materialsMagnetic properties of materials
Magnetic properties of materials
 

Viewers also liked

Topological quantumcomputation
Topological quantumcomputationTopological quantumcomputation
Topological quantumcomputationJoshua Herman
 
Grassellino - Application of Muon Spin Rotation to studies of cavity performa...
Grassellino - Application of Muon Spin Rotation to studies of cavity performa...Grassellino - Application of Muon Spin Rotation to studies of cavity performa...
Grassellino - Application of Muon Spin Rotation to studies of cavity performa...thinfilmsworkshop
 
muSR at TRIUMF - keynote presentation
muSR at TRIUMF - keynote presentationmuSR at TRIUMF - keynote presentation
muSR at TRIUMF - keynote presentationJHBrewer
 
Muong-2BeamStorageMagnetBFieldShaping
Muong-2BeamStorageMagnetBFieldShapingMuong-2BeamStorageMagnetBFieldShaping
Muong-2BeamStorageMagnetBFieldShapingGeorge Ressinger
 
Methods of Muon Spin Rotation/Relaxation/Resonance (muSR)
Methods of Muon Spin Rotation/Relaxation/Resonance (muSR)Methods of Muon Spin Rotation/Relaxation/Resonance (muSR)
Methods of Muon Spin Rotation/Relaxation/Resonance (muSR)JHBrewer
 
Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
Brandt - Superconductors and Vortices at Radio Frequency Magnetic FieldsBrandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fieldsthinfilmsworkshop
 
Dgk ahmedabad - presentation - superconductors - 04.11.2011
Dgk   ahmedabad - presentation - superconductors - 04.11.2011Dgk   ahmedabad - presentation - superconductors - 04.11.2011
Dgk ahmedabad - presentation - superconductors - 04.11.2011Mazhar Laliwala
 
Superconductors And their Applications
Superconductors And their ApplicationsSuperconductors And their Applications
Superconductors And their ApplicationsHirra Sultan
 
Superconductors and NANOTECHNOLOGY
Superconductors and NANOTECHNOLOGYSuperconductors and NANOTECHNOLOGY
Superconductors and NANOTECHNOLOGYA K Mishra
 
Superconductivity of materials
Superconductivity of materialsSuperconductivity of materials
Superconductivity of materialsSmit Parikh
 
Superconductivity and new superconductors
Superconductivity and new superconductorsSuperconductivity and new superconductors
Superconductivity and new superconductorsSupravat Pratihar
 
Introduction to High temperature superconductors
Introduction to High temperature superconductorsIntroduction to High temperature superconductors
Introduction to High temperature superconductorsdutt4190
 
Superconductors and Superconductivity
Superconductors and SuperconductivitySuperconductors and Superconductivity
Superconductors and SuperconductivityJayanshu Gundaniya
 
Superconductivity
SuperconductivitySuperconductivity
Superconductivityad1729
 

Viewers also liked (17)

Topological quantumcomputation
Topological quantumcomputationTopological quantumcomputation
Topological quantumcomputation
 
Grassellino - Application of Muon Spin Rotation to studies of cavity performa...
Grassellino - Application of Muon Spin Rotation to studies of cavity performa...Grassellino - Application of Muon Spin Rotation to studies of cavity performa...
Grassellino - Application of Muon Spin Rotation to studies of cavity performa...
 
muSR at TRIUMF - keynote presentation
muSR at TRIUMF - keynote presentationmuSR at TRIUMF - keynote presentation
muSR at TRIUMF - keynote presentation
 
Muong-2BeamStorageMagnetBFieldShaping
Muong-2BeamStorageMagnetBFieldShapingMuong-2BeamStorageMagnetBFieldShaping
Muong-2BeamStorageMagnetBFieldShaping
 
Methods of Muon Spin Rotation/Relaxation/Resonance (muSR)
Methods of Muon Spin Rotation/Relaxation/Resonance (muSR)Methods of Muon Spin Rotation/Relaxation/Resonance (muSR)
Methods of Muon Spin Rotation/Relaxation/Resonance (muSR)
 
Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
Brandt - Superconductors and Vortices at Radio Frequency Magnetic FieldsBrandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
 
Dgk ahmedabad - presentation - superconductors - 04.11.2011
Dgk   ahmedabad - presentation - superconductors - 04.11.2011Dgk   ahmedabad - presentation - superconductors - 04.11.2011
Dgk ahmedabad - presentation - superconductors - 04.11.2011
 
Superconductors And their Applications
Superconductors And their ApplicationsSuperconductors And their Applications
Superconductors And their Applications
 
CH 8 _ M A Islam_Superconductors
CH 8 _ M A Islam_SuperconductorsCH 8 _ M A Islam_Superconductors
CH 8 _ M A Islam_Superconductors
 
Superconductors and NANOTECHNOLOGY
Superconductors and NANOTECHNOLOGYSuperconductors and NANOTECHNOLOGY
Superconductors and NANOTECHNOLOGY
 
Superconductivity of materials
Superconductivity of materialsSuperconductivity of materials
Superconductivity of materials
 
Superconductivity and new superconductors
Superconductivity and new superconductorsSuperconductivity and new superconductors
Superconductivity and new superconductors
 
Introduction to High temperature superconductors
Introduction to High temperature superconductorsIntroduction to High temperature superconductors
Introduction to High temperature superconductors
 
Superconductors and Superconductivity
Superconductors and SuperconductivitySuperconductors and Superconductivity
Superconductors and Superconductivity
 
Superconductivity
SuperconductivitySuperconductivity
Superconductivity
 
muSR at TRIUMF
muSR at TRIUMFmuSR at TRIUMF
muSR at TRIUMF
 
Superconductivity
SuperconductivitySuperconductivity
Superconductivity
 

Similar to Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors

New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...Jorge Quintanilla
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webJorge Quintanilla
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webJorge Quintanilla
 
Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...Jorge Quintanilla
 
Non linear electron dynamics in solids
Non linear electron dynamics in solidsNon linear electron dynamics in solids
Non linear electron dynamics in solidsClaudio Attaccalite
 
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Jorge Quintanilla
 
Talk at Tsinghua University, Beijing, 27 June 2016
Talk at Tsinghua University, Beijing, 27 June 2016Talk at Tsinghua University, Beijing, 27 June 2016
Talk at Tsinghua University, Beijing, 27 June 2016Miguel D Bustamante
 
Photoionization Modeling of Warm Absorbing Outflows in Active Galactic Nuclei
Photoionization Modeling of Warm Absorbing Outflows in Active Galactic NucleiPhotoionization Modeling of Warm Absorbing Outflows in Active Galactic Nuclei
Photoionization Modeling of Warm Absorbing Outflows in Active Galactic NucleiAshkbiz Danehkar
 
2020_04 - Marzari Fireside 1 (annotated slides).pdf
2020_04 - Marzari Fireside 1 (annotated slides).pdf2020_04 - Marzari Fireside 1 (annotated slides).pdf
2020_04 - Marzari Fireside 1 (annotated slides).pdfAbhishekRaj480679
 
PhD Defense Slides
PhD Defense SlidesPhD Defense Slides
PhD Defense Slidesacadien
 
Julian_Toronto_cifar_2012.pdf
Julian_Toronto_cifar_2012.pdfJulian_Toronto_cifar_2012.pdf
Julian_Toronto_cifar_2012.pdfssuser836d21
 
Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Anubhav Jain
 
A universal matter-wave interferometer with optical gratings in the time domain
A universal matter-wave interferometer with optical gratings in the time domainA universal matter-wave interferometer with optical gratings in the time domain
A universal matter-wave interferometer with optical gratings in the time domainPhysikUndMusik
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...Lake Como School of Advanced Studies
 

Similar to Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors (20)

New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
 
Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...
 
Non linear electron dynamics in solids
Non linear electron dynamics in solidsNon linear electron dynamics in solids
Non linear electron dynamics in solids
 
Kent_2007
Kent_2007Kent_2007
Kent_2007
 
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
 
Talk at Tsinghua University, Beijing, 27 June 2016
Talk at Tsinghua University, Beijing, 27 June 2016Talk at Tsinghua University, Beijing, 27 June 2016
Talk at Tsinghua University, Beijing, 27 June 2016
 
Photoionization Modeling of Warm Absorbing Outflows in Active Galactic Nuclei
Photoionization Modeling of Warm Absorbing Outflows in Active Galactic NucleiPhotoionization Modeling of Warm Absorbing Outflows in Active Galactic Nuclei
Photoionization Modeling of Warm Absorbing Outflows in Active Galactic Nuclei
 
2020_04 - Marzari Fireside 1 (annotated slides).pdf
2020_04 - Marzari Fireside 1 (annotated slides).pdf2020_04 - Marzari Fireside 1 (annotated slides).pdf
2020_04 - Marzari Fireside 1 (annotated slides).pdf
 
giessen short
giessen shortgiessen short
giessen short
 
PhD Defense Slides
PhD Defense SlidesPhD Defense Slides
PhD Defense Slides
 
dortmund2
dortmund2dortmund2
dortmund2
 
Julian_Toronto_cifar_2012.pdf
Julian_Toronto_cifar_2012.pdfJulian_Toronto_cifar_2012.pdf
Julian_Toronto_cifar_2012.pdf
 
Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...
 
Biermann clusters
Biermann clustersBiermann clusters
Biermann clusters
 
From unconventional to extreme to functional materials.
From unconventional to extreme to functional materials.From unconventional to extreme to functional materials.
From unconventional to extreme to functional materials.
 
A universal matter-wave interferometer with optical gratings in the time domain
A universal matter-wave interferometer with optical gratings in the time domainA universal matter-wave interferometer with optical gratings in the time domain
A universal matter-wave interferometer with optical gratings in the time domain
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
 
8792022.ppt
8792022.ppt8792022.ppt
8792022.ppt
 

More from Jorge Quintanilla

Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...Jorge Quintanilla
 
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...Jorge Quintanilla
 
Thermodynamic signatures of topological transitions in nodal superconductors
Thermodynamic signatures of topological transitions in nodal superconductorsThermodynamic signatures of topological transitions in nodal superconductors
Thermodynamic signatures of topological transitions in nodal superconductorsJorge Quintanilla
 
Talk bristol uk-nl_2013_v01_for_web
Talk bristol uk-nl_2013_v01_for_webTalk bristol uk-nl_2013_v01_for_web
Talk bristol uk-nl_2013_v01_for_webJorge Quintanilla
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webJorge Quintanilla
 
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Jorge Quintanilla
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011Jorge Quintanilla
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011Jorge Quintanilla
 
Turning data into a puzzle: non-unitary triplet pairing in the non-centrosym...
Turning data into a puzzle:  non-unitary triplet pairing in the non-centrosym...Turning data into a puzzle:  non-unitary triplet pairing in the non-centrosym...
Turning data into a puzzle: non-unitary triplet pairing in the non-centrosym...Jorge Quintanilla
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Jorge Quintanilla
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Jorge Quintanilla
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Jorge Quintanilla
 
New Vistas on Quantum Matter Opened by Dipolar Fermions
New Vistas on Quantum Matter Opened by Dipolar FermionsNew Vistas on Quantum Matter Opened by Dipolar Fermions
New Vistas on Quantum Matter Opened by Dipolar FermionsJorge Quintanilla
 
2010 Quintanilla Loughborough
2010 Quintanilla Loughborough2010 Quintanilla Loughborough
2010 Quintanilla LoughboroughJorge Quintanilla
 

More from Jorge Quintanilla (14)

Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
 
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
 
Thermodynamic signatures of topological transitions in nodal superconductors
Thermodynamic signatures of topological transitions in nodal superconductorsThermodynamic signatures of topological transitions in nodal superconductors
Thermodynamic signatures of topological transitions in nodal superconductors
 
Talk bristol uk-nl_2013_v01_for_web
Talk bristol uk-nl_2013_v01_for_webTalk bristol uk-nl_2013_v01_for_web
Talk bristol uk-nl_2013_v01_for_web
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
 
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
 
Turning data into a puzzle: non-unitary triplet pairing in the non-centrosym...
Turning data into a puzzle:  non-unitary triplet pairing in the non-centrosym...Turning data into a puzzle:  non-unitary triplet pairing in the non-centrosym...
Turning data into a puzzle: non-unitary triplet pairing in the non-centrosym...
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
New Vistas on Quantum Matter Opened by Dipolar Fermions
New Vistas on Quantum Matter Opened by Dipolar FermionsNew Vistas on Quantum Matter Opened by Dipolar Fermions
New Vistas on Quantum Matter Opened by Dipolar Fermions
 
2010 Quintanilla Loughborough
2010 Quintanilla Loughborough2010 Quintanilla Loughborough
2010 Quintanilla Loughborough
 

Recently uploaded

Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxBroad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxjana861314
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000Sapana Sha
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINsankalpkumarsahoo174
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencySheetal Arora
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfSumit Kumar yadav
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSSLeenakshiTyagi
 

Recently uploaded (20)

Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxBroad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdf
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSS
 

Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors

  • 1. Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors Jorge Quintanilla1,2 1SEPnet and Hubbard Theory Consortium, University of Kent 2ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory Dresden, 27 November 2014 Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 1 / 119
  • 2. People and Money People: James F. Annett (Bristol) , Adrian D. Hillier (RAL) Bayan Mazidian (RAL/Bristol) , Bob Cywinski (Huddersfield) . Ravi P. Singh , Gheeta Balakrishnan , Don Paul , Martin Lees (Birmingham). Amitava Bhattacharyya , Devashibai Adroja (RAL). A. M. Strydom (Johannesburg) . Naoki Kase, Jun Akimitsu (Aoyama Gakuin). Money: STFC (UK) + HEFCE/SEPnet (UK) + UJ and NRF (South Africa) + Bristol + Kent. Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 2 / 119
  • 3. The Hubbard Theory Consortium Director: Piers Coleman (RHUL/Rutgers) SEPnet fellows: Matthias Eschrig (RHUL/RAL) Claudio Castelnovo (RHUL/RAL) Jorge Quintanilla (Kent/RAL) Associate: Jörg Schmalian (Karlsruhe) + several SEPnet PhD students. Strong correlations theory in close collaboration with experiments at • RAL (ISIS/Diamond) • London Centre for Nanotech. • RHUL Coleman (RHUL/Rutgers) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 3 / 119 Eschrig (RHUL/RAL)
  • 4. Overview Two Paradigms in Condensed Matter ... Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 4 / 119
  • 5. Overview Two Paradigms in Condensed Matter ... Broken Symmetry Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 4 / 119
  • 6. Overview Two Paradigms in Condensed Matter ... Broken Symmetry Topological Transitions Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 4 / 119
  • 7. Overview Two Paradigms in Condensed Matter ... Broken Symmetry Topological Transitions ... interlock via triplet pairing in superconductors: Superconductors Broken time-reversal symmetry Topological Triplet transitions pairing Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 4 / 119
  • 8. Overview Two Paradigms in Condensed Matter ... Broken Symmetry Topological Transitions ... interlock via triplet pairing in superconductors: Superconductors Broken time-reversal symmetry Topological Triplet transitions pairing SimpleTheories + Standard Measurements: Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 4 / 119
  • 9. Overview Two Paradigms in Condensed Matter ... Broken Symmetry Topological Transitions ... interlock via triplet pairing in superconductors: Superconductors Broken time-reversal symmetry Topological Triplet transitions pairing SimpleTheories + Standard Measurements: Group Theory / Bogolibov Quasiparticles Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 4 / 119
  • 10. Overview Two Paradigms in Condensed Matter ... Broken Symmetry Topological Transitions ... interlock via triplet pairing in superconductors: Superconductors Broken time-reversal symmetry Topological Triplet transitions pairing SimpleTheories + Standard Measurements: Group Theory / Bogolibov Quasiparticles Neutron diffraction / Muon Spin Rotation / Specific Heat / Penetration Depth Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 4 / 119
  • 11. Outline 1 Broken time-reversal symmetry in superconductors 2 Experimental evidence for broken TRS 3 Singlet, triplet, or both? 4 A symmetry zoo 5 Topological transitions in Superconductors 6 Topological transition state: Li2Pdx Pt3xB 7 Take-home message Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 5 / 119
  • 12. Quantum Materials Theory 1 Broken time-reversal symmetry in superconductors 2 Experimental evidence for broken TRS 3 Singlet, triplet, or both? 4 A symmetry zoo 5 Topological transitions in Superconductors 6 Topological transition state: Li2Pdx Pt3xB 7 Take-home message
  • 13. Broken symmetry   Photo: Eddie Hui-Bon-Hoa, www.shiromi.com Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 7 / 119
  • 14. Broken symmetry   Photo: Eddie Hui-Bon-Hoa, www.shiromi.com Photo: Kenneth G. Libbrecht, snowflakes.com   Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 7 / 119
  • 15. Broken symmetry   Photo: Eddie Hui-Bon-Hoa, www.shiromi.com Photo: Kenneth G. Libbrecht, snowflakes.com   Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Photo: commons.wikimedia.org Unconventional superconductors   Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 7 / 119
  • 16. Broken symmetry   Photo: Eddie Hui-Bon-Hoa, www.shiromi.com Photo: Kenneth G. Libbrecht, snowflakes.com   Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Photo: commons.wikimedia.org Unconventional superconductors   Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 7 / 119
  • 17. Broken symmetry   Photo: Eddie Hui-Bon-Hoa, www.shiromi.com Photo: Kenneth G. Libbrecht, snowflakes.com   Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Photo: commons.wikimedia.org Unconventional superconductors   Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 7 / 119
  • 18. UVinrginciao Tench, v18e Mnarcth i2o011n al Superconductors blogs.kent.ac.uk/strongcorrelations Photo: commons.wikimedia.org Unconventional superconductors   Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 8 / 119
  • 19. UVinrginciao Tench, v18e Mnarcth i2o011n al Superconductors blogs.kent.ac.uk/strongcorrelations Photo: commons.wikimedia.org Unconventional superconductors ‘Unconventional’ superconductors: Cuprates, Sr2RuO4, PrOs4Sb12, UPt3, (UTh)Be13 , ... Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 9 / 119
  • 20. Time-reversal Symmetry Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 10 / 119
  • 21. Time-reversal Symmetry p r x y z Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 11 / 119
  • 22. Time-reversal Symmetry r -p x y z Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 11 / 119
  • 23. Time-reversal Symmetry r -p x y z Classical time-reversal symmetry: t ! t equivalent to r ! r and p ! p Also inverts angular momenta. True in the absence of friction/magnetic fields. Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 11 / 119
  • 24. Time-reversal Symmetry r -p x y z Classical time-reversal symmetry: t ! t equivalent to r ! r and p ! p Also inverts angular momenta. True in the absence of friction/magnetic fields. Quantum time-reversal symmetry: t ! t equivalent to y ! y and S ! S. True if Hˆ = Hˆ and spin-invariant. Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 11 / 119
  • 25. Time-reversal Symmetry r -p x y z Classical time-reversal symmetry: t ! t equivalent to r ! r and p ! p Also inverts angular momenta. True in the absence of friction/magnetic fields. Quantum time-reversal symmetry: t ! t equivalent to y ! y and S ! S. True if Hˆ = Hˆ and spin-invariant. For quasi-particles in a superconductor: Hˆ = Hˆ 0 + Dcˆ † k ˆc† k + H.c. ) TRS: D = D Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 11 / 119
  • 26. Quantum Materials Theory 1 Broken time-reversal symmetry in superconductors 2 Experimental evidence for broken TRS 3 Singlet, triplet, or both? 4 A symmetry zoo 5 Topological transitions in Superconductors 6 Topological transition state: Li2Pdx Pt3xB 7 Take-home message
  • 27. Muon Spin Rotation Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 13 / 119
  • 28. Muon Spin Rotation Adrian Hillier (Muons group leader, ISIS) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 14 / 119
  • 29. Muon Spin Rotation Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Zero field muon spin relaxation _  e  e backward detector forward detector sample Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 15 / 119
  • 30. Kubo-Toyabe x exponential Asymmetry: NF NB NF + NB = G (t) s : randomly-oriented fields (e.g. nuclear moments) L :smoothly-modulated fields (e.g. electronic moments) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 16 / 119
  • 31. The “classic” examples: UPt3 and Sr2RuO4 UPt3 Luke et al. PRL (1993) Sr2RuO4 Luke et al. Nature (1998) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 17 / 119
  • 32. Confirmed by Kerr effect UPt3 Schemm et al. Science (2014) Sr2RuO4 Jing Xia et al. PRL (2006) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 18 / 119
  • 33. More recent finds: LaNiC2 Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 19 / 119
  • 34. More recent finds: LaNiC2 Relaxation due to electronic moments Moment size ~ 0.1G (~ 0.01μB ) Hillier, Quintanilla Cywinski, PRL 102 117007 (2009) (longitudinal) _   e e backward detector Timescale: 10-4s ~ forward detector sample + Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 20 / 119
  • 35. More recent finds: LaNiGa2 A. D. Hillier, J. Quintanilla, B. Mazidian, J. F. Annett, Physical Review Letters 109, 097001 (2012). Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 21 / 119
  • 36. More recent finds: Re6Zr Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 22 / 119
  • 37. More recent finds: Lu5Rh6Sn18 Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 23 / 119
  • 38. Quantum Materials Theory 1 Broken time-reversal symmetry in superconductors 2 Experimental evidence for broken TRS 3 Singlet, triplet, or both? 4 A symmetry zoo 5 Topological transitions in Superconductors 6 Topological transition state: Li2Pdx Pt3xB 7 Take-home message
  • 39. Singlet, triplet, or both? It’s all in the gap function: Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 25 / 119
  • 40. Singlet, triplet, or both? Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Symmetry of the gap function It’s all in the gap function:     k   k                k k   ˆ k See J.F. Annett Adv. Phys. 1990. Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 25 / 119
  • 41. Singlet, triplet, or both? Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Symmetry of the gap function It’s all in the gap function:     k   k                k k   ˆ k See J.F. Annett Adv. Phys. 1990. Pauli ) ˆD (k) = ˆD T (k) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 25 / 119
  • 42. Singlet, triplet, or both? Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Symmetry of the gap function It’s all in the gap function:     k   k                k k   ˆ k See J.F. Annett Adv. Phys. 1990. Pauli ) T (k) Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations ˆD (k) = ˆD Singlet, triplet, or both?  ˆ k   0  0  0 0      dx  idy dz dz dx  idy       singlet [ 0(k) even ] triplet [ d(k) odd ] Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 25 / 119
  • 43. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both? Neglect (for now!) spin-orbit coupling: Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 26 / 119
  • 44. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both? Neglect (for now!) spin-orbit coupling: Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 27 / 119
  • 45. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both? Neglect (for now!) spin-orbit coupling: Singlet and triplet representations of SO(3): Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 28 / 119
  • 46. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both? Neglect (for now!) spin-orbit coupling: Singlet and triplet representations of SO(3): Γn s = - (Γn s)T , Γn t = + (Γn t)T Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 29 / 119
  • 47. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both? Neglect (for now!) spin-orbit coupling: Singlet and triplet representations of SO(3): Γn s = - (Γn s)T , Γn Impose Pauli’s exclusion principle: t = + (Γn t)T Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 30 / 119
  • 48. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both? Impose Pauli’s exclusion principle:   , 'k  ', k Neglect (for now!) spin-orbit coupling: Singlet and triplet representations of SO(3): Γn s = - (Γn s)T , Γn t = + (Γn t)T Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 31 / 119
  • 49. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both? Singlet and triplet representations of SO(3): Γn s = - (Γn Impose Pauli’s exclusion principle:   , 'k  ', k Neglect (for now!) spin-orbit coupling:   ˆ k either singlet s)T , Γn t = + (Γn t)T Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 32 / 119
  • 50. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both? Singlet and triplet representations of SO(3): Γn s = - (Γn s)T , Γn Impose Pauli’s exclusion principle:  t = + (Γn t)T  , 'k  ', k Neglect (for now!) spin-orbit coupling:   ˆ k either singlet     y i   ˆ , ' 0  k  k Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 33 / 119
  • 51. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both? Singlet and triplet representations of SO(3): Γn s = - (Γn Impose Pauli’s exclusion principle:   , 'k  ', k Neglect (for now!) spin-orbit coupling:   ˆ k either singlet     y i   ˆ , ' 0  k  k or triplet s)T , Γn t = + (Γn t)T Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 34 / 119
  • 52. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both? Singlet and triplet representations of SO(3): Γn s = - (Γn s)T , Γn Impose Pauli’s exclusion principle:  t = + (Γn t)T  , 'k  ', k Neglect (for now!) spin-orbit coupling:   ˆ k either singlet     y i   ˆ , ' 0  k  k or triplet       y i   .ˆ ˆ , '  k  d k σ Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 35 / 119
  • 53. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) Gap function may have both singlet and triplet components       d id d x y z d d id          0 k     z x y 0 0 ˆ 0 k k spin orbit , ' , '         • However, if we have a centre of inversion basis functions either even or odd under inversion  still have either singlet or triplet pairing (at Tc) Jorge Quintanilla• (NKeont acnednRAtLr)e of inversion: mwawyw .hcoandv-mea ts.oirngglet and triplet (even at TDcre)s den 2014 36 / 119
  • 54. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) G = [SO(3)×Gc]×U(1)×T Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 37 / 119
  • 55. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) G = [SO(3)×Gc]×U(1)×T Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 38 / 119
  • 56. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) G = [SO(3)×Gc]×U(1)×T Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 39 / 119
  • 57. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) G = [SO(3)×Gc]×U(1)×T Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 40 / 119
  • 58. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) G = [SO(3)×Gc]×U(1)×T Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 41 / 119
  • 59. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) G = Gc,J×U(1)×T Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 42 / 119
  • 60. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) G = Gc,J×U(1)×T Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 43 / 119
  • 61. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) G = Gc,J×U(1)×T Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 44 / 119
  • 62. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) E.g. reflection through a vertical plane perpendicular to the y axis: y v J J I C , 2,   Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010) z y x Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 45 / 119
  • 63. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) E.g. reflection through a vertical plane perpendicular to the y axis: y v J J I C , 2,   Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010) z y x Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 46 / 119
  • 64. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) E.g. reflection through a vertical plane perpendicular to the y axis: y v J J I C , 2,   Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010) z y x Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 47 / 119
  • 65. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) E.g. reflection through a vertical plane perpendicular to the y axis: y v J J I C , 2,   Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010) z y x Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 48 / 119
  • 66. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) E.g. reflection through a vertical plane perpendicular to the y axis: y v J J I C , 2,   This affects d(k) (a vector under spin rotations). Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010) z y x Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 49 / 119
  • 67. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) E.g. reflection through a vertical plane perpendicular to the y axis: y v J J I C , 2,   This affects d(k) (a vector under spin rotations). It does not affect 0(k) (a scalar). Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010) z y x Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 50 / 119
  • 68. The role of spin-orbit coupling (SOC) When can we have singlet-triplet mixing? We must now use basis functions of the double group: Gap function may have both singlet and triplet components ˆD (k) = dGå n=1 hnˆG n (k)        d id d x y z d d id         0 k     z x y 0 0 ˆ 0 k k spin orbit , ' , '         • However, if we have a centre of inversion basis functions either even or odd under inversion  still have either singlet or triplet pairing (at Tc) • No centre of inversion: may have singlet and triplet (even at Tc) Crystal symmetry Centrosymmetric Non-centrosymmetric Spin-orbit coupling Weak N N Strong N Y Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 51 / 119
  • 69. When can we have broken time-reversal symmetry? For ˆD (k) to be non-trivially complex, it must have more than one component: ˆD (k) = h1ˆG 1 (k) + h2ˆG 2 (k) , arg h16= arg h2 Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 52 / 119
  • 70. When can we have broken time-reversal symmetry? For ˆD (k) to be non-trivially complex, it must have more than one component: ˆD (k) = h1ˆG 1 (k) + h2ˆG 2 (k) , arg h16= arg h2 The instability must therefore take place in an irrep with d 1. Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 52 / 119
  • 71. When can we have broken time-reversal symmetry? For ˆD (k) to be non-trivially complex, it must have more than one component: ˆD (k) = h1ˆG 1 (k) + h2ˆG 2 (k) , arg h16= arg h2 The instability must therefore take place in an irrep with d 1. Weak spin-orbit coupling: SO(3) Gc Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 52 / 119
  • 72. When can we have broken time-reversal symmetry? For ˆD (k) to be non-trivially complex, it must have more than one component: ˆD (k) = h1ˆG 1 (k) + h2ˆG 2 (k) , arg h16= arg h2 The instability must therefore take place in an irrep with d 1. Weak spin-orbit coupling: SO(3) Gc The singlet irrep of SO(3) has d = 1 ) for singlet pairing, the point group Gc must have a d 1 irrep. Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 52 / 119
  • 73. When can we have broken time-reversal symmetry? For ˆD (k) to be non-trivially complex, it must have more than one component: ˆD (k) = h1ˆG 1 (k) + h2ˆG 2 (k) , arg h16= arg h2 The instability must therefore take place in an irrep with d 1. Weak spin-orbit coupling: SO(3) Gc The singlet irrep of SO(3) has d = 1 ) for singlet pairing, the point group Gc must have a d 1 irrep. The triplet irrep of SO(3) had d = 3 ) for triplet pairing, broken TRS is possible even for d = 1 irreps of Gc . Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 52 / 119
  • 74. When can we have broken time-reversal symmetry? For ˆD (k) to be non-trivially complex, it must have more than one component: ˆD (k) = h1ˆG 1 (k) + h2ˆG 2 (k) , arg h16= arg h2 The instability must therefore take place in an irrep with d 1. Weak spin-orbit coupling: SO(3) Gc The singlet irrep of SO(3) has d = 1 ) for singlet pairing, the point group Gc must have a d 1 irrep. The triplet irrep of SO(3) had d = 3 ) for triplet pairing, broken TRS is possible even for d = 1 irreps of Gc . Strong spin-orbit coupling: Gc,J (double group) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 52 / 119
  • 75. When can we have broken time-reversal symmetry? For ˆD (k) to be non-trivially complex, it must have more than one component: ˆD (k) = h1ˆG 1 (k) + h2ˆG 2 (k) , arg h16= arg h2 The instability must therefore take place in an irrep with d 1. Weak spin-orbit coupling: SO(3) Gc The singlet irrep of SO(3) has d = 1 ) for singlet pairing, the point group Gc must have a d 1 irrep. The triplet irrep of SO(3) had d = 3 ) for triplet pairing, broken TRS is possible even for d = 1 irreps of Gc . Strong spin-orbit coupling: Gc,J (double group) The dimensionality of the irreps is the same as for Gc therefore if all irreps are d = 1 then there can be no broken TRS. Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 52 / 119
  • 76. When can we have broken time-reversal symmetry? For ˆD (k) to be non-trivially complex, it must have more than one component: ˆD (k) = h1ˆG 1 (k) + h2ˆG 2 (k) , arg h16= arg h2 The instability must therefore take place in an irrep with d 1. Weak spin-orbit coupling: SO(3) Gc The singlet irrep of SO(3) has d = 1 ) for singlet pairing, the point group Gc must have a d 1 irrep. The triplet irrep of SO(3) had d = 3 ) for triplet pairing, broken TRS is possible even for d = 1 irreps of Gc . Strong spin-orbit coupling: Gc,J (double group) The dimensionality of the irreps is the same as for Gc therefore if all irreps are d = 1 then there can be no broken TRS. Broken TRS involves always a d 1 irrep and it requires both the singlet and triplet components Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 52 / 119
  • 77. Quantum Materials Theory 1 Broken time-reversal symmetry in superconductors 2 Experimental evidence for broken TRS 3 Singlet, triplet, or both? 4 A symmetry zoo 5 Topological transitions in Superconductors 6 Topological transition state: Li2Pdx Pt3xB 7 Take-home message
  • 78. LaNiC2 Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Character table Hillier, Quintanilla Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 54 / 119
  • 79. LaNiC2 Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Character table Hillier, Quintanilla Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 55 / 119
  • 80. LaNiC2 Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Character table Hillier, Quintanilla Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 56 / 119
  • 81. LaNiC2 Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Character table Hillier, Quintanilla Cywinski, PRL 102 117007 (2009) 180o Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 57 / 119
  • 82. LaNiC2 Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations C 2v Character table Symmetries and their characters Sample basis functions Irreducible representation E C 2 v ’ v Even Odd A 1 1 1 1 1 1 Z A 2 1 1 -1 -1 XY XYZ B 1 1 -1 1 -1 XZ X B 2 1 -1 -1 1 YZ Y Hillier, Quintanilla Cywinski, PRL 102 117007 (2009) All irreps d = 1 ) weak SOC Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 58 / 119
  • 83. LaNiC2 Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations SO(3)xC 2v Gap function (unitary) Gap function (non-unitary) 1A 1 (k)=1 - 1A 2 (k)=k k x Y - 1B 1 (k)=k k X Z - 1B 2 (k)=k k Y Z - 3A 1 d(k)=(0,0,1)k Z d(k)=(1,i,0)k Z 3A 2 d(k)=(0,0,1)k k X k Y Z d(k)=(1,i,0)k k X k Y Z 3B 1 d(k)=(0,0,1)k X d(k)=(1,i,0)k X 3B 2 d(k)=(0,0,1)k Y d(k)=(1,i,0)k Y Possible order parameters Hillier, Quintanilla Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 59 / 119
  • 84. LaNiC2 Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations SO(3)xC 2v Gap function (unitary) Gap function (non-unitary) 1A 1 (k)=1 - 1A 2 (k)=k k x Y - 1B 1 (k)=k k X Z - 1B 2 (k)=k k Y Z - 3A 1 d(k)=(0,0,1)k Z d(k)=(1,i,0)k Z 3A 2 d(k)=(0,0,1)k k X k Y Z d(k)=(1,i,0)k k X k Y Z 3B 1 d(k)=(0,0,1)k X d(k)=(1,i,0)k X 3B 2 d(k)=(0,0,1)k Y d(k)=(1,i,0)k Y Possible order parameters Hillier, Quintanilla Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 60 / 119
  • 85. LaNiC2 Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations SO(3)xC 2v Gap function (unitary) Gap function (non-unitary) 1A 1 (k)=1 - 1A 2 (k)=k k x Y - 1B 1 (k)=k k X Z - 1B 2 (k)=k k Y Z - 3A 1 d(k)=(0,0,1)k Z d(k)=(1,i,0)k Z 3A 2 d(k)=(0,0,1)k k X k Y Z d(k)=(1,i,0)k k X k Y Z 3B 1 d(k)=(0,0,1)k X d(k)=(1,i,0)k X 3B 2 d(k)=(0,0,1)k Y d(k)=(1,i,0)k Y Possible order parameters Hillier, Quintanilla Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 61 / 119
  • 86. LaNiC2 Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Possible order parameters SO(3)xC 2v Gap function (unitary) Gap function (non-unitary) 1A 1 (k)=1 - 1A 2 (k)=k k x Y - 1B 1 (k)=k k X Z - 1B 2 (k)=k k Y Z - 3A 1 d(k)=(0,0,1)k Z d(k)=(1,i,0)k Z 3A 2 d(k)=(0,0,1)k k X k Y Z d(k)=(1,i,0)k k X k Y Z 3B 1 d(k)=(0,0,1)k X d(k)=(1,i,0)k X 3B 2 d(k)=(0,0,1)k Y d(k)=(1,i,0)k Y Non-unitary d x d* ≠ 0 Hillier, Quintanilla Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 62 / 119
  • 87. LaNiC2 Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Possible order parameters SO(3)xC 2v Gap function (unitary) Gap function (non-unitary) 1A 1 (k)=1 - 1A 2 (k)=k k x Y - 1B 1 (k)=k k X Z - 1B 2 (k)=k k Y Z - 3A 1 d(k)=(0,0,1)k Z d(k)=(1,i,0)k Z 3A 2 d(k)=(0,0,1)k k X k Y Z d(k)=(1,i,0)k k X k Y Z 3B 1 d(k)=(0,0,1)k X d(k)=(1,i,0)k X 3B 2 d(k)=(0,0,1)k Y d(k)=(1,i,0)k Y Non-unitary d x d* ≠ 0 breaks only SO(3) x U(1) x T * C.f. Li2Pd3B Li2Pt3B, H. Q. Yuan et al. PRL’06 * Hillier, Quintanilla Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 63 / 119
  • 88. LaNiC2 Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Non-unitary pairing Spin-up superfluid coexisting with spin-down Fermi liquid.  0 0       0 The A1 phase of liquid 3He.                0 or 0 0 ˆ C.f. Also FM SC - but this is a paramagnet! A. D. Hillier, J. Quintanilla and R. Cywinski, Physical Review Letters (2009). J. Quintanilla, J. F. Annett, A. D. Hillier, R. Cywinski, Physical Review B (2010). Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 64 / 119
  • 89. LaNiGa2 Centrosymmetric, but again all irreps d = 1 ) again weak SOC and non-unitary triplet A.D. Hillier, J. Quintanilla, B. Mazidian, J.F. Annett, and R. Cywinski, PRL 109, 097001 (2012). Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 65 / 119 A new family of superconductors?
  • 90. Why non-unitary? Generic Landau theory for a triplet superconductor (1D irrep): F = a jhj2 + b 2
  • 91.
  • 92. h4
  • 93.
  • 94. Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 66 / 119
  • 95. Why non-unitary? Generic Landau theory for a triplet superconductor (1D irrep): F = a jhj2 + b 2
  • 96.
  • 97. h4
  • 98.
  • 99. + b0 jh hj2 Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 66 / 119
  • 100. Why non-unitary? Generic Landau theory for a triplet superconductor (1D irrep): F = a jhj2 + b 2
  • 101.
  • 102. h4
  • 103.
  • 104. + b0 jh hj2 + m2 2c Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 66 / 119
  • 105. Why non-unitary? Generic Landau theory for a triplet superconductor (1D irrep): F = a jhj2 + b 2
  • 106.
  • 107. h4
  • 108.
  • 109. + b0 jh hj2 + m2 2c + b00m (ih h) . Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 66 / 119
  • 110. Why non-unitary? Generic Landau theory for a triplet superconductor (1D irrep): F = a jhj2 + b 2
  • 111.
  • 112. h4
  • 113.
  • 114. + b0 jh hj2 + m2 2c + b00m (ih h) . Magnetisation as a sub-dominant order parameter: Superconductivity magnetisation Temperature Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 66 / 119
  • 115. Why non-unitary? Generic Landau theory for a triplet superconductor (1D irrep): F = a jhj2 + b 2
  • 116.
  • 117. h4
  • 118.
  • 119. + b0 jh hj2 + m2 2c + b00m (ih h) . Magnetisation as a sub-dominant order parameter: Superconductivity magnetisation Temperature Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 66 / 119
  • 120. Why non-unitary? Generic Landau theory for a triplet superconductor (1D irrep): F = a jhj2 + b 2
  • 121.
  • 122. h4
  • 123.
  • 124. + b0 jh hj2 + m2 2c + b00m (ih h) . Magnetisation as a sub-dominant order parameter: Superconductivity magnetisation Temperature Theory (left): A. D. Hillier, J. Quintanilla, B. Mazidian, J. F. Annett, PRL 109, 097001 (2012). Experiment (right): Akihiko Sumiyama et al., JPSJ (2014). Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 66 / 119
  • 125. Re6Zr Td group: noncentrosymmetric; d = 1, 2, 3 Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 67 / 119
  • 126. Re6Zr Td group: noncentrosymmetric; d = 1, 2, 3 ) can have broken TRS with strong SOC Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 67 / 119
  • 127. Re6Zr Td group: noncentrosymmetric; d = 1, 2, 3 ) can have broken TRS with strong SOC ) broken TRS with singlet-triplet mixing Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 67 / 119
  • 128. Re6Zr Td group: noncentrosymmetric; d = 1, 2, 3 ) can have broken TRS with strong SOC ) broken TRS with singlet-triplet mixing E irrep (d = 2) ) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 67 / 119
  • 129. Re6Zr Td group: noncentrosymmetric; d = 1, 2, 3 ) can have broken TRS with strong SOC ) broken TRS with singlet-triplet mixing E irrep (d = 2) ) F1, F2 irreps (d = 3) ) several more mixed singlet-triplet states. Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 67 / 119
  • 130. Lu5Rh6Sn18 Group D4h: centrosymmetric ) no singlet-triplet mixing;1 d = 1, 2, 3 ) can have broken TRS with strong SOC. Only two states allowed: 1Eg (c) (singlet) and Eu(c) (triplet). 1c.f. recent ARPES-based claim for Sr2RuO4: C.N. Veenstra et al., PRL 112, 127002 (2014). + Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 68 / 119
  • 131. Lu5Rh6Sn18 Singlet state: k k y x kz Triplet: kz ky kx ky kz kx ky kx kz kz ky kx ky kz kx ky kx kz kz ky kx ky kz kx N.B. “shallow” point nodes. These results should apply just as well to Sr2RuO4, in the regime of strong spin-orbit coupling [see Veenstra et al. results + ]. Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 69 / 119
  • 132. Quantum Materials Theory 1 Broken time-reversal symmetry in superconductors 2 Experimental evidence for broken TRS 3 Singlet, triplet, or both? 4 A symmetry zoo 5 Topological transitions in Superconductors 6 Topological transition state: Li2Pdx Pt3xB 7 Take-home message
  • 133. A bowl is not a mug Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 71 / 119
  • 134. A bowl is not a mug Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 71 / 119
  • 135. A bowl is not a mug Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 71 / 119
  • 136. A bowl is not a mug Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 71 / 119
  • 137. A bowl is not a mug ? Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 71 / 119
  • 138. A bowl is not a mug ? Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 71 / 119
  • 139. A bowl is not a mug ? Is there a thermodynamic signature? Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 71 / 119
  • 140. Power laws in nodal superconductors Low-temperature specific heat of a superconductor gives information on the spectrum of low-lying excitations: Fully gapped Point nodes Line nodes Cv eD/T Cv T3 Cv T2 D This simple idea has been around for a while.2 Widely used to fit experimental data on unconventional superconductors.3 2Anderson Morel (1961), Leggett (1975) 3Sigrist, Ueda (’89), Annett (’90), MacKenzie Maeno (’03) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 72 / 119
  • 141. Linear nodes It all comes from the density of states: + g (E) En1 ) Cv Tn Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 73 / 119
  • 142. Linear nodes It all comes from the density of states: + g (E) En1 ) Cv Tn linear point node line node D2k= I1 kx jj 2 + ky jj 2 D2k = I1kx jj 2 g(E) = E2 2(2p)2I1 pI2 g(E) = LE (2p)3pI1 pI2 n = 3 n = 2 Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 73 / 119
  • 143. Linear nodes It all comes from the density of states: + g (E) En1 ) Cv Tn linear point node line node D2k= I1 kx jj 2 + ky jj 2 D2k = I1kx jj 2 g(E) = E2 2(2p)2I1 pI2 g(E) = LE (2p)3pI1 pI2 n = 3 n = 2 Key assumption: linear increase of the gap away from the node Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 73 / 119
  • 144. Shallow nodes Relax the linear assumption and we also get different exponents: Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 74 / 119
  • 145. Shallow nodes Relax the linear assumption and we also get different exponents: shallow point node line node D2k = I1(kx jj 2 + ky jj 2 )2 D2k = I1kx jj 4 g(E) = E 2(2p)2pI1 pI2 g(E) = L p E (2p)3I 1 4 1 pI2 n = 2 n = 1.5 Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 74 / 119
  • 146. Shallow nodes Relax the linear assumption and we also get different exponents: shallow point node line node D2k = I1(kx jj 2 + ky jj 2 )2 D2k = I1kx jj 4 g(E) = E 2(2p)2pI1 pI2 g(E) = L p E (2p)3I 1 4 1 pI2 n = 2 n = 1.5 Shallow point nodes first discussed (speculatively) by Leggett [1979]. Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 74 / 119
  • 147. Shallow nodes Relax the linear assumption and we also get different exponents: shallow point node line node D2k = I1(kx jj 2 + ky jj 2 )2 D2k = I1kx jj 4 g(E) = E 2(2p)2pI1 pI2 g(E) = L p E (2p)3I 1 4 1 pI2 n = 2 n = 1.5 Shallow point nodes first discussed (speculatively) by Leggett [1979]. A shallow point node may be required by symmetry e.g. the proposed E2u pairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)] and our own result for R5Rh6Sn18 [A. Bhattacharyya, D. T. Adroja, JQ et al. (unpublished)]. Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 74 / 119
  • 148. Shallow nodes Relax the linear assumption and we also get different exponents: shallow point node line node D2k = I1(kx jj 2 + ky jj 2 )2 D2k = I1kx jj 4 g(E) = E 2(2p)2pI1 pI2 g(E) = L p E (2p)3I 1 4 1 pI2 n = 2 n = 1.5 Shallow point nodes first discussed (speculatively) by Leggett [1979]. A shallow point node may be required by symmetry e.g. the proposed E2u pairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)] and our own result for R5Rh6Sn18 [A. Bhattacharyya, D. T. Adroja, JQ et al. (unpublished)]. A shallow line node may result at the boundary between gapless and line node behaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. + Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 74 / 119
  • 149. Line crossings A different power law is expected at line crossings (e.g. d-wave pairing on a spherical Fermi surface): crossing of linear line nodes D2k = I1 kx jj 2 ky jj 2 2 or I1kx jj 2ky jj 2 g(E) = E(1+2lnj L+ 1 4 1 p E/I 1 4 1 p E/I j) (2p)3pI1I2 E0.8 n = 1.8 ( 2 !!) + Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 75 / 119
  • 150. Crossing of shallow line nodes When shallow lines cross we get an even lower exponent: crossing of shallow line nodes D2k= I1 kx jj 2 ky jj 2 4 or I1kx jj 4ky jj 4 g (E) = p E(1+2lnj L+E 14 /I 18 1 E 14 /I 18 1 j) (2p)3I 1 4 1 pI2 E0.4 n = 1.4 * * c.f. gapless excitations of a Fermi liquid: g (E) = constant ) n = 1 + Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 76 / 119
  • 151. Numerics n = d ln Cv/d lnT 4.5 4 3.5 3 2.5 2 1.5 1 linear point node shallow point node linear line node crossing of linear line nodes shallow line node crossing of shallow line nodes 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 n T / T c Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 77 / 119
  • 152. A generic mechanism We propose that shallow nodes will exist generically at topological phase transitions in superocnductors with multi-component order parameters: D0 D1 Fermi Sea Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 78 / 119
  • 153. A generic mechanism We propose that shallow nodes will exist generically at quantum phase transitions in superocnductors with multi-component order parameters: D1 Fermi Sea D0 Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 79 / 119
  • 154. A generic mechanism We propose that shallow nodes will exist generically at quantum phase transitions in superocnductors with multi-component order parameters: D1 Fermi Sea D0 Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 80 / 119
  • 155. A generic mechanism We propose that shallow nodes will exist generically at quantum phase transitions in superocnductors with multi-component order parameters: D1 Fermi Sea D0 Linear nodes Linear nodes Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 81 / 119
  • 156. A generic mechanism We propose that shallow nodes will exist generically at quantum phase transitions in superocnductors with multi-component order parameters: D1 Fermi Sea D0 Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 82 / 119
  • 157. A generic mechanism We propose that shallow nodes will exist generically at quantum phase transitions in superocnductors with multi-component order parameters: D1 Fermi Sea D0 Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 83 / 119
  • 158. A generic mechanism We propose that shallow nodes will exist generically at quantum phase transitions in superocnductors with multi-component order parameters: D1 Fermi Sea D0 Shallow node Shallow node Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 84 / 119
  • 159. Quantum Materials Theory 1 Broken time-reversal symmetry in superconductors 2 Experimental evidence for broken TRS 3 Singlet, triplet, or both? 4 A symmetry zoo 5 Topological transitions in Superconductors 6 Topological transition state: Li2Pdx Pt3xB 7 Take-home message
  • 160. Singlet-triplet mixing in noncentrosymmetric superconductors Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both? Non-centrosymmetric superconductors are the multi-component order parameter supercondcutors par excellence:  ˆ k   0  0  0 0      dx  idy dz dz dx  idy       singlet [ 0(k) even ] triplet [ d(k) odd ] 4Batkova et al. JPCM (2010) 5Zuev et al. PRB (2007) 6Adrian D. Hillier, JQ and R. Cywinski PRL (2009) 7Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012) 8Bauer et al. PRL (2004) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 86 / 119
  • 161. Singlet-triplet mixing in noncentrosymmetric superconductors Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both? Non-centrosymmetric superconductors are the multi-component order parameter supercondcutors par excellence:  ˆ k   0  0  0 0      dx  idy dz dz dx  idy       singlet [ 0(k) even ] triplet [ d(k) odd ] In practice, there is a varied phenomenology: 4Batkova et al. JPCM (2010) 5Zuev et al. PRB (2007) 6Adrian D. Hillier, JQ and R. Cywinski PRL (2009) 7Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012) 8Bauer et al. PRL (2004) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 86 / 119
  • 162. Singlet-triplet mixing in noncentrosymmetric superconductors Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both? Non-centrosymmetric superconductors are the multi-component order parameter supercondcutors par excellence:  ˆ k   0  0  0 0      dx  idy dz dz dx  idy       singlet [ 0(k) even ] triplet [ d(k) odd ] In practice, there is a varied phenomenology: Some are conventional (singlet) superconductors: BaPtSi34, Re3W5,... Others seem to be correlated, purely triplet superconductors: + LaNiC26 (c.f. centrosymmetric LaNiGa27) + , CePtr3Si (?) 8 4Batkova et al. JPCM (2010) 5Zuev et al. PRB (2007) 6Adrian D. Hillier, JQ and R. Cywinski PRL (2009) 7Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012) 8Bauer et al. PRL (2004) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 86 / 119
  • 163. Li2PdxPt3xB: tunable singlet-triplet mixing The Li2Pdx Pt3xB family (0 x 3; cubic point group O) provides a tunable realisation of this singlet-triplet mixing: Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 87 / 119
  • 164. Li2PdxPt3xB: tunable singlet-triplet mixing The Li2Pdx Pt3xB family (0 x 3; cubic point group O) provides a tunable realisation of this singlet-triplet mixing: Pd is a lighter element with weak spin-orbit coupling (Tc 7K) Pt is a heavier element with strong spin orbit coupling (Tc 2.7K) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 87 / 119
  • 165. Li2PdxPt3xB: tunable singlet-triplet mixing The Li2Pdx Pt3xB family (0 x 3; cubic point group O) provides a tunable realisation of this singlet-triplet mixing: Pd is a lighter element with weak spin-orbit coupling (Tc 7K) Pt is a heavier element with strong spin orbit coupling (Tc 2.7K) The series goes from fully-gapped (x = 3) to nodal (x = 0): H.Q. Yuan et al., Phys. Rev. Lett. 97, 017006 (2006). Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 87 / 119
  • 166. Li2PdxPt3xB: tunable singlet-triplet mixing The Li2Pdx Pt3xB family (0 x 3; cubic point group O) provides a tunable realisation of this singlet-triplet mixing: Pd is a lighter element with weak spin-orbit coupling (Tc 7K) Pt is a heavier element with strong spin orbit coupling (Tc 2.7K) The series goes from fully-gapped (x = 3) to nodal (x = 0): H.Q. Yuan et al., Phys. Rev. Lett. 97, 017006 (2006). NMR suggests nodal state a triplet: M.Nishiyama et al., Phys. Rev. Lett. 98, 047002 (2007) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 87 / 119
  • 167. Li2PdxPt3xB: Phase diagram Bogoliubov Hamiltonian with Rashba spin-orbit coupling: H(k) = ˆh(k) ˆD (k) ˆD †(k) ˆhT (k) ˆh(k) = #kI + gk s ˆD (k) = [D0 (k) + d (k) ˆs ] iˆs y (most general gap matrix) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 88 / 119
  • 168. Li2PdxPt3xB: Phase diagram Bogoliubov Hamiltonian with Rashba spin-orbit coupling: H(k) = ˆh(k) ˆD (k) ˆD †(k) ˆhT (k) ˆh(k) = #kI + gk s ˆD (k) = [D0 (k) + d (k) ˆs ] iˆs y (most general gap matrix) Assuming j#kj jgkj jd (k)j the quasi-particle spectrum is E = 8 : q 2 (#k m + jg2 kj)+ (D0 (k) + jd (k)j); and q (#k m jgkj)2 + (D0 (k) jd (k)j)2 . Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 88 / 119
  • 169. Li2PdxPt3xB: Phase diagram Bogoliubov Hamiltonian with Rashba spin-orbit coupling: H(k) = ˆh(k) ˆD (k) ˆD †(k) ˆhT (k) ˆh(k) = #kI + gk s ˆD (k) = [D0 (k) + d (k) ˆs ] iˆs y (most general gap matrix) Assuming j#kj jgkj jd (k)j the quasi-particle spectrum is E = 8 : q 2 (#k m + jg2 kj)+ (D0 (k) + jd (k)j); and q (#k m jgkj)2 + (D0 (k) jd (k)j)2 . Take most symmetric (A1) irreducible representation: + D0 (k) = D0 d(k) = D0 f A (x) (kx , ky , kz ) B (x) kx k2 y + k2 z , ky k2 z + k2 x , kz k2 x + k2 y g Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 88 / 119
  • 170. Li2PdxPt3xB: Phase diagram Treat A and B as independent tuning parameters and study quasiparticle spectrum. We find a very rich phase diagram with topollogically-distinct phases:9 9C. Beri, PRB (2010); A. Schnyder, S. Ryu, PRB(R) (2011); A. Schnyder et al., PRBJorg(e2Q0u1in2ta)n;illaB(.KeMntaanzdidRiAaLn) , JQ, A.D. Hillierw,wJw..cFo.ndA-mnatn.oergtt, arXiv:1302.2161. Dresden 2014 89 / 119
  • 171. Li2PdxPt3xB: Phase diagram Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 90 / 119
  • 172. Li2PdxPt3xB: Phase diagram Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 91 / 119
  • 173. Li2PdxPt3xB: Phase diagram Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 92 / 119
  • 174. Li2PdxPt3xB: Phase diagram Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 93 / 119
  • 175. Detecting the topological transitions 4 33 7 Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 94 / 119
  • 176. Detecting the topological transitions 4 33 7 Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 95 / 119
  • 177. Li2PdxPt3xB: predicted specific heat power-laws 4 3 Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 96 / 119
  • 178. Li2PdxPt3xB: predicted specific heat power-laws 5 n = 2 j n = 2 n = 1.8 n = 1.4 4 3 11 Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 97 / 119
  • 179. Li2PdxPt3xB: predicted specific heat power-laws 3 Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 98 / 119
  • 180. Li2PdxPt3xB: predicted specific heat power-laws 3 Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 99 / 119
  • 181. Li2PdxPt3xB: predicted specific heat power-laws 5 n = 2 j n = 2 n = 1.8 n = 1.4 4 3 11 Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 100 / 119
  • 182. Anomalous power laws throughout the phase diagram Does the observation of these effects require fine-tuning? Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 101 / 119
  • 183. Anomalous power laws throughout the phase diagram Does the observation of these effects require fine-tuning? Let’s put these curves on a density plot: Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 101 / 119
  • 184. Anomalous power laws throughout the phase diagram Does the observation of these effects require fine-tuning? Let’s put these curves on a density plot: A = 3 3.6 3.8 4 4.2 4.4 B 0.25 0.2 0.15 0.1 0.05 0 T/Tc 2.2 2.1 2 1.9 1.8 1.7 1.6 Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 101 / 119
  • 185. Anomalous power laws throughout the phase diagram Does the observation of these effects require fine-tuning? Let’s put these curves on a density plot: A = 3 3.6 3.8 4 4.2 4.4 B 0.25 0.2 0.15 0.1 0.05 0 T/Tc 2.2 2.1 2 1.9 1.8 1.7 1.6 The conventional exponent (n = 2 in this example) is only seen below a temperature scale that converges to zero at the transition Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 101 / 119
  • 186. Anomalous power laws throughout the phase diagram Does the observation of these effects require fine-tuning? Let’s put these curves on a density plot: A = 3 3.6 3.8 4 4.2 4.4 B 0.25 0.2 0.15 0.1 0.05 0 T/Tc 2.2 2.1 2 1.9 1.8 1.7 1.6 The conventional exponent (n = 2 in this example) is only seen below a temperature scale that converges to zero at the transition The anomalous exponent (here n = 1.8) is seen everywhere else Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 101 / 119
  • 187. Anomalous power laws throughout the phase diagram Does the observation of these effects require fine-tuning? Let’s put these curves on a density plot: A = 3 3.6 3.8 4 4.2 4.4 B 0.25 0.2 0.15 0.1 0.05 0 T/Tc 2.2 2.1 2 1.9 1.8 1.7 1.6 The conventional exponent (n = 2 in this example) is only seen below a temperature scale that converges to zero at the transition The anomalous exponent (here n = 1.8) is seen everywhere else ) the influence of the topo transition extends throughout the phase diagram Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 101 / 119
  • 188. Anomalous power laws throughout the phase diagram Does the observation of these effects require fine-tuning? Let’s put these curves on a density plot: A = 3 3.6 3.8 4 4.2 4.4 B 0.25 0.2 0.15 0.1 0.05 0 T/Tc 2.2 2.1 2 1.9 1.8 1.7 1.6 The conventional exponent (n = 2 in this example) is only seen below a temperature scale that converges to zero at the transition The anomalous exponent (here n = 1.8) is seen everywhere else ) the influence of the topo transition extends throughout the phase diagram c.f. quantum critical endpoints but here we did not have to fine-tune Tc ! 0 Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 101 / 119
  • 189. Quantum Materials Theory 1 Broken time-reversal symmetry in superconductors 2 Experimental evidence for broken TRS 3 Singlet, triplet, or both? 4 A symmetry zoo 5 Topological transitions in Superconductors 6 Topological transition state: Li2Pdx Pt3xB 7 Take-home message
  • 190. What to take home Superconductors Broken time-reversal symmetry Topological Triplet transitions pairing The relationship between triplet pairing and broken timre-reversal symmetry is complicated Non-unitary triplet pairing breaks time-reversal symmetry and couples to magnetism in a special way Singlet-triplet mixing may induce broken time-reversal symmetry or topological transitions There are bulk signatures of topological transitions The thermodynamic transition is a distinct state Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 103 / 119
  • 191. THANKS! www.cond-mat.org Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 104 / 119
  • 192. Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 105 / 119
  • 193. Spin-orbit coupling in Sr2RuO4 Recent spin-polarised ARPES find strong spin-orbit coupling in Sr2RuO4 [C.N. Veenstra et al., PRL 112, 127002 (2014)]: Veenstra et al.’s claim is that this will lead to singlet-triplet mixing. This seems at odds with our approach. back Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 105 / 119
  • 194. Power laws in nodal superconductors Let’s remember where this came from: Cv = T dS dT = 1 2kBT2åk 0 BB@ Ek T dEk |d{Tz} 0 1 CCA Ek sech2 Ek 2kBT | {z } 4eEk /KBT T2 Z dEg (E) E2eE/kBT at low T g (E) En1 ) Cv Tn Z dee2+n1ee | {z } a number Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 106 / 119
  • 195. Power laws in nodal superconductors Ek = q e2 k + D2k r I2k2? + D kx jj , ky jj 2 on the Fermi surface k || x y x,k k || k | _ D(k || || y) Compute density of states: g(E) = Z Z Z d(Ek E)dkx dky dkz back Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 107 / 119
  • 196. Shallow line nodes in pnictides back Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 108 / 119
  • 197. Logarithm ) power law (n 1 = 0.8) The power-law expression is asymptotically very good at E ! 0: back Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 109 / 119
  • 198. Logarithm ) power law (n 1 = 0.4) The power-law expression is asymptotically very good at E ! 0: back Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 110 / 119
  • 199. LaNiC2 – a weakly-correlated, paramagnetic superconductor? specific heat susceptibility  0 = 6.5 mJ/mol K2 Tc=2.7 K W. H. Lee et al., Physica C 266, 138 (1996) V. K. Pecharsky, L. L. Miller, and Zy, Physical Review B 58, 497 (1998) ΔC/TC=1.26 (BCS: 1.43) c 0 = 22.2 10-6 emu/mol Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 111 / 119
  • 200. Relaxation due to electronic moments Moment size ~ 0.1G (~ 0.01μB ) Hillier, Quintanilla Cywinski, PRL 102 117007 (2009) (longitudinal) _   e e backward detector Timescale: 10-4s ~ forward detector sample Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 112 / 119
  • 201. Relaxation due to electronic moments Moment size ~ 0.1G (~ 0.01μB ) (longitudinal) Spontaneous, quasi-static fields appearing at Tc ⇒ superconducting state breaks time-reversal symmetry Hillier, Quintanilla Cywinski, PRL 102 117007 (2009) [ c.f. Sr2RuO4 - Luke et al., Nature (1998) ] _   e e backward detector Timescale: 10-4s ~ forward detector sample Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 113 / 119
  • 202. LaNiC2 is a non-ceontrsymmetric superconductor Neutron diffraction 35000 30000 25000 20000 15000 10000 5000 0 30 40 50 60 70 80 Intensity (arb units) o  2  Orthorhombic Amm2 C 2v a=3.96 Å b=4.58 Å c=6.20 Å Data from D1B @ ILL Note no inversion centre. C.f. CePt Si (1), Li 3 Pt 2 B Li 3 Pd 2 B (2), ... 3 (1) Bauer et al. PRL’04 (2) Yuan et al. PRL’06 back Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 114 / 119
  • 203. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) C 2v,Jno t Gap function, singlet component Gap function, triplet component A (k) = A d(k) = (Bk 1  ,Ck y ,Dk x k x k y z ) A 2  (k) = Ak k x Y d(k) = (Bk ,Ck x ,Dk y z ) B 1  (k) = Ak k X Z d(k) = (Bk k x k y z ,Ck z ,Dk ) y B 2  (k) = Ak k Y Z d(k) = (Bk , Ck z k x k y ,Dk z ) x Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 115 / 119
  • 204. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) C 2v,Jno t Gap function, singlet component Gap function, triplet component A (k) = A d(k) = (Bk 1  ,Ck y ,Dk x k x k y z ) A 2  (k) = Ak k x Y d(k) = (Bk ,Ck x ,Dk y z ) B 1  (k) = Ak k X Z d(k) = (Bk k x k y z ,Ck z ,Dk ) y B 2  (k) = Ak k Y Z d(k) = (Bk , Ck z k x k y ,Dk z ) x None of these break time-reversal symmetry! Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 116 / 119
  • 205. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Relativistic and non-relativistic instabilities: a complex relationship singlet Pairing instabilities non-unitary triplet pairing instabilities unitary triplet pairing instabilities A1 B1 1A1 1A2 3B1(b) 3B2(b) 3A1(a) 3A2(a) A2 B2 1B1 1B2 3A1(b) 3A2(b) 3B1(a) 3B2(a) Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010) Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 117 / 119
  • 206. Li2PdxPt3xB: Phase diagram Bogoliubov Hamiltonian with Rashba spin-orbit coupling: H(k) = h(k) D(k) D†(k) hT (k) h(k) = #k I + gk s Assuming j#kj jgkj jd (k)j the quasi-particle spectrum is E = 8 : q (#k m + jgk j)2 + (D0 + jd(k)j) 2; and q (#k m jgk j)2 + (D0 jd(k)j) 2 . Take the most symmetric (A1) irreducible representation d(k)/D0 = A (X,Y , Z) B X Y 2 + Z2,Y Z2 + X2 , Z X2 + Y 2 back Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 118 / 119
  • 207. Li2PdxPt3xB: order parameter back Jorge Quintanilla (Kent and RAL) www.cond-mat.org Dresden 2014 119 / 119