SlideShare a Scribd company logo
1 of 58
Download to read offline
ISIS Facility, STFC                                                       School of
Rutherford Appleton Laboratory                                    Physical Sciences




        Puzzling pairing in the
 non-centrosymmetric superconductor
                LaNiC2
                                 Jorge Quintanilla
                           SEPnet, University of Kent
       Hubbard Theory Centre, Rutherford Appleton Laboratory

                       Collaborators: Adrian Hillier (RAL)
                                      Bob Cywinski (Huddersfield)
                                      James F. Annett (Bristol)
                                      Bayan Mazidian (Bristol and RAL)

                                 Funding: STFC, SEPnet

                   CMMP’10, University of Warwick, 15 December 2010
LaNiC2 – a weakly-correlated, paramagnetic
                superconductor?
                        W. H. Lee et al., Physica C 266, 138 (1996)
           V. K. Pecharsky, L. L. Miller, and Zy, Physical Review B 58, 497 (1998)


      specific heat                                               susceptibility




              ΔC/TC=1.26
Tc=2.7 K      (BCS: 1.43)
ISIS




       muSR
Relaxation due to electronic moments                                  _
                                                                             




                                                               e                            


                                                                              e
                                   (longitudinal)                   sample
                                                    forward
                                                    detector
                                                                                  backward
                                                                                  detector



    Moment
    size                                                              Timescale:
    ~ 0.1G                                                            > 10-4s
                                                                      ~
    (~ 0.01μB)




Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Relaxation due to electronic moments                                  _
                                                                             




                                                               e                            


                                                                              e
                                   (longitudinal)                   sample
                                                    forward
                                                    detector
                                                                                  backward
                                                                                  detector



    Moment
    size                                                              Timescale:
    ~ 0.1G                                                            > 10-4s
                                                                      ~
    (~ 0.01μB)




Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Relaxation due to electronic moments                                  _
                                                                             




                                                               e                            


                                                                              e
                                   (longitudinal)                   sample
                                                    forward
                                                    detector
                                                                                  backward
                                                                                  detector



    Moment
    size                                                              Timescale:
    ~ 0.1G                                                            > 10-4s
                                                                      ~
    (~ 0.01μB)




Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Relaxation due to electronic moments                                                                          _
                                                                                                                     




                                                                                                       e                            


                                                                                                                      e
                                                                           (longitudinal)                   sample
                                                                                            forward
                                                                                            detector
                                                                                                                          backward
                                                                                                                          detector



    Moment
    size                                                                                                      Timescale:
    ~ 0.1G                                                                                                    > 10-4s
                                                                                                              ~
    (~ 0.01μB)




                            Spontaneous, quasi-static fields appearing at Tc
                        ⇒ superconducting state breaks time-reversal symmetry
                                     [ c.f. Sr2RuO4 - Luke et al., Nature (1998) ]
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
CMMP’10, Warwick, 15 Dec 2010                           blogs.kent.ac.uk/strongcorrelations




               Symmetry of the gap function




                                             k    k 
                                   k   
                                   ˆ
                                                                
                                              k    k 


See J.F. Annett Adv. Phys. 1990.
Neutron diffraction
                        35000


                        30000
                                 Data from
                        25000    D1B @ ILL
Intensity (arb units)




                        20000


                        15000


                        10000


                        5000
                                                                             Orthorhombic Amm2 C2v
                           0
                            30      40       50       60   70          80          a=3.96 Å
                                                                                   b=4.58 Å
                                                      o
                                                  2 
                                                                                   c=6.20 Å

Note no inversion centre.
C.f. CePt3Si (1), Li2Pt3B & Li2Pd3B                             (2),   ...
(1) Bauer et al. PRL’04 (2) Yuan et al. PRL’06
CMMP’10, Warwick, 15 Dec 2010                                 blogs.kent.ac.uk/strongcorrelations


                         Singlet, triplet, or both?


                      0  0   x  id y
                                   d                             dz   
             k  
             ˆ                                                    
                      
                      0 0   dz                         dx  id y 
                                   singlet         triplet
                                [ 0(k) even ]   [ d(k) odd ]
CMMP’10, Warwick, 15 Dec 2010                                           blogs.kent.ac.uk/strongcorrelations


                         Singlet, triplet, or both?
      Neglect (for now!) spin-orbit coupling:




      Singlet and triplet representations of SO(3):
                                    Γns = - (Γns)T , Γnt = + (Γnt)T

      Impose Pauli’s exclusion principle:                , ' k   ', k
             k
              ˆ                 either singlet    , ' k    0 k i y
                                                                          ˆ
                                    or triplet    , ' k   dk .σi y
                                                                       ˆ ˆ
                                         
CMMP’10, Warwick, 15 Dec 2010                        blogs.kent.ac.uk/strongcorrelations


                                   Character table

                                              180o




Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
CMMP’10, Warwick, 15 Dec 2010                                         blogs.kent.ac.uk/strongcorrelations


                                      Character table
                                C2v      Symmetries and     Sample basis
                                         their characters     functions
                        Irreducible  E C2 v         ’v    Even       Odd
                      representation
                                A1       1 1    1    1        1             Z
                                A2       1 1    -1   -1      XY        XYZ
                                B1       1 -1   1    -1      XZ             X
                                B2       1 -1 -1     1       YZ             Y



                      These must be combined with the singlet and triplet
                      representations of SO(3).



Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
CMMP’10, Warwick, 15 Dec 2010                                   blogs.kent.ac.uk/strongcorrelations




                     Possible order parameters
                   SO(3)xC2v         Gap function        Gap function
                                       (unitary)         (non-unitary)
                         1A
                              1         (k)=1                  -
                         1A
                              2        (k)=kxkY                -
                         1B
                              1        (k)=kXkZ                -
                         1B
                              2        (k)=kYkZ                -
                         3A          d(k)=(0,0,1)kZ       d(k)=(1,i,0)kZ
                              1
                         3A        d(k)=(0,0,1)kXkYkZ   d(k)=(1,i,0)kXkYkZ
                              2
                         3B          d(k)=(0,0,1)kX       d(k)=(1,i,0)kX
                              1
                         3B          d(k)=(0,0,1)kY       d(k)=(1,i,0)kY
                              2




Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
CMMP’10, Warwick, 15 Dec 2010                                   blogs.kent.ac.uk/strongcorrelations




                     Possible order parameters
                   SO(3)xC2v         Gap function        Gap function
                                       (unitary)         (non-unitary)
                         1A
                              1         (k)=1                  -
                         1A
                              2        (k)=kxkY                -
                         1B
                              1        (k)=kXkZ                -
                         1B
                              2        (k)=kYkZ                -
                         3A          d(k)=(0,0,1)kZ       d(k)=(1,i,0)kZ
                              1
                         3A        d(k)=(0,0,1)kXkYkZ   d(k)=(1,i,0)kXkYkZ
                              2
                         3B          d(k)=(0,0,1)kX       d(k)=(1,i,0)kX
                              1
                         3B          d(k)=(0,0,1)kY       d(k)=(1,i,0)kY
                              2




Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
CMMP’10, Warwick, 15 Dec 2010                                   blogs.kent.ac.uk/strongcorrelations




                     Possible order parameters
                   SO(3)xC2v         Gap function        Gap function
                                       (unitary)         (non-unitary)
                         1A
                              1         (k)=1                  -
                         1A
                              2        (k)=kxkY                -
                         1B
                              1        (k)=kXkZ                -
                         1B
                              2        (k)=kYkZ                -
                         3A          d(k)=(0,0,1)kZ       d(k)=(1,i,0)kZ
                              1
                         3A        d(k)=(0,0,1)kXkYkZ   d(k)=(1,i,0)kXkYkZ
                              2
                         3B          d(k)=(0,0,1)kX       d(k)=(1,i,0)kX
                              1
                         3B          d(k)=(0,0,1)kY       d(k)=(1,i,0)kY
                              2




Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
CMMP’10, Warwick, 15 Dec 2010                                       blogs.kent.ac.uk/strongcorrelations




                     Possible order parameters
                   SO(3)xC2v              Gap function       Gap function
                                            (unitary)        (non-unitary)
                         1A
                              1              (k)=1                 -
                         1A
                              2             (k)=kxkY               -
                         1B
                              1             (k)=kXkZ               -
                         1B
                              2             (k)=kYkZ               -
                         3A              d(k)=(0,0,1)kZ       d(k)=(1,i,0)kZ
                              1
                         3A            d(k)=(0,0,1)kXkYkZ   d(k)=(1,i,0)kXkYkZ
                              2
                         3B              d(k)=(0,0,1)kX       d(k)=(1,i,0)kX
                              1
                         3B              d(k)=(0,0,1)kY       d(k)=(1,i,0)kY
                              2




                                   Non-unitary
                                    d x d* ≠ 0
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
CMMP’10, Warwick, 15 Dec 2010                                        blogs.kent.ac.uk/strongcorrelations




                     Possible order parameters
                   SO(3)xC2v              Gap function       Gap function
                                            (unitary)        (non-unitary)
                         1A
                              1              (k)=1                  -
                         1A
                              2             (k)=kxkY                -
                                                            breaks only SO(3) x U(1) x T              *
                         1B
                              1             (k)=kXkZ                -
                         1B
                              2             (k)=kYkZ                -
                         3A              d(k)=(0,0,1)kZ       d(k)=(1,i,0)kZ
                              1
                         3A            d(k)=(0,0,1)kXkYkZ   d(k)=(1,i,0)kXkYkZ
                              2
                         3B              d(k)=(0,0,1)kX       d(k)=(1,i,0)kX
                              1
                         3B              d(k)=(0,0,1)kY       d(k)=(1,i,0)kY
                              2


* C.f. Li2Pd3B & Li2Pt3B,
H. Q. Yuan et al. PRL’06
                                   Non-unitary
                                    d x d* ≠ 0
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
CMMP’10, Warwick, 15 Dec 2010                           blogs.kent.ac.uk/strongcorrelations




                                Non-unitary pairing
       Spin-up superfluid
       coexisting with spin-             ˆ       0  0 0 
                                                        or 
       down Fermi liquid.                   0        0    
                                                     0      
CMMP’10, Warwick, 15 Dec 2010                           blogs.kent.ac.uk/strongcorrelations




                                Non-unitary pairing
       Spin-up superfluid
       coexisting with spin-             ˆ       0  0 0 
                                                        or 
       down Fermi liquid.                   0        0    
                                                     0      


                                         C.f.
CMMP’10, Warwick, 15 Dec 2010                               blogs.kent.ac.uk/strongcorrelations




                                Non-unitary pairing
       Spin-up superfluid
       coexisting with spin-             ˆ         0  0 0 
                                                          or 
       down Fermi liquid.                   0          0    
                                                       0      


                                         C.f.

                                                The A1 phase of
                                                liquid 3He.
CMMP’10, Warwick, 15 Dec 2010                                                       blogs.kent.ac.uk/strongcorrelations




                                Non-unitary pairing
       Spin-up superfluid
       coexisting with spin-                            ˆ               0  0 0 
                                                                               or 
       down Fermi liquid.                                  0                0    
                                                                            0      


                                                        C.f.

                                                               The A1 phase of
                                                               liquid 3He.
                                                               Ferromagnetic
                      F. Hardy et al., Physica B 359-
                                61, 1111-13 (2005)             superconductors.
                                                                    [ See A. de Visser in Encyclopedia of
                                                                Materials: Science and Technology (Eds.
                                                                 K. H. J. Buschow et al.), Elsevier, 2010 ]
CMMP’10, Warwick, 15 Dec 2010                                       blogs.kent.ac.uk/strongcorrelations




            Ferromagnetic superconductors




                          But LaNiC2 is a paramagnet !


A. de Visser in Encyclopedia of Materials: Science and Technology
(Eds. K. H. J. Buschow et al.), Elsevier, 2010
CMMP’10, Warwick, 15 Dec 2010        blogs.kent.ac.uk/strongcorrelations




       Isn’t there a more simple explanation?
CMMP’10, Warwick, 15 Dec 2010                                         blogs.kent.ac.uk/strongcorrelations




          The role of spin-orbit coupling (SOC)
                                 , ' k   spin ' orbit k 
                                                 ,
                                              
           Gap function may have both singlet and triplet components

                             0          0   d x  id y          dz     
                    k   
                    ˆ
                                             d
                              0      0          z           d x  id y 
                                                                            
       • However, if we have a centre of inversion
                    basis functions either even or odd under inversion
                     still have either singlet or triplet pairing (at Tc)
       • No centre of inversion: may have singlet and triplet (even at Tc)
CMMP’10, Warwick, 15 Dec 2010                 blogs.kent.ac.uk/strongcorrelations




          The role of spin-orbit coupling (SOC)
                           G = [SO(3)×Gc]×U(1)×T
CMMP’10, Warwick, 15 Dec 2010                 blogs.kent.ac.uk/strongcorrelations




          The role of spin-orbit coupling (SOC)
                           G = [SO(3)×Gc]×U(1)×T
CMMP’10, Warwick, 15 Dec 2010                 blogs.kent.ac.uk/strongcorrelations




          The role of spin-orbit coupling (SOC)
                           G = [SO(3)×Gc]×U(1)×T
CMMP’10, Warwick, 15 Dec 2010                 blogs.kent.ac.uk/strongcorrelations




          The role of spin-orbit coupling (SOC)
                           G = [SO(3)×Gc]×U(1)×T
CMMP’10, Warwick, 15 Dec 2010                 blogs.kent.ac.uk/strongcorrelations




          The role of spin-orbit coupling (SOC)
                           G = [SO(3)×Gc]×U(1)×T
CMMP’10, Warwick, 15 Dec 2010                     blogs.kent.ac.uk/strongcorrelations




          The role of spin-orbit coupling (SOC)
                                G = Gc,J×U(1)×T
CMMP’10, Warwick, 15 Dec 2010                     blogs.kent.ac.uk/strongcorrelations




          The role of spin-orbit coupling (SOC)
                                G = Gc,J×U(1)×T
CMMP’10, Warwick, 15 Dec 2010                     blogs.kent.ac.uk/strongcorrelations




          The role of spin-orbit coupling (SOC)
                                G = Gc,J×U(1)×T
CMMP’10, Warwick, 15 Dec 2010                                      blogs.kent.ac.uk/strongcorrelations




          The role of spin-orbit coupling (SOC)
                                                                       z
        E.g. reflection through a vertical
        plane perpendicular to the y axis:
                    v, J  I C2y, J




                                                             y                                  x


Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
CMMP’10, Warwick, 15 Dec 2010                                      blogs.kent.ac.uk/strongcorrelations




          The role of spin-orbit coupling (SOC)
                                                                       z
        E.g. reflection through a vertical
        plane perpendicular to the y axis:
                    v, J  I C2y, J




                                                             y                                  x


Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
CMMP’10, Warwick, 15 Dec 2010                                      blogs.kent.ac.uk/strongcorrelations




          The role of spin-orbit coupling (SOC)
                                                                       z
        E.g. reflection through a vertical
        plane perpendicular to the y axis:
                    v, J  I C2y, J




                                                             y                                  x


Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
CMMP’10, Warwick, 15 Dec 2010                                      blogs.kent.ac.uk/strongcorrelations




          The role of spin-orbit coupling (SOC)
                                                                       z
        E.g. reflection through a vertical
        plane perpendicular to the y axis:
                    v, J  I C2y, J




                                                             y                                  x


Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
CMMP’10, Warwick, 15 Dec 2010                                      blogs.kent.ac.uk/strongcorrelations




          The role of spin-orbit coupling (SOC)
                                                                       z
        E.g. reflection through a vertical
        plane perpendicular to the y axis:
                    v, J  I C2y, J

        This affects d(k) (a vector under
        spin rotations).



                                                             y                                  x


Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
CMMP’10, Warwick, 15 Dec 2010                                      blogs.kent.ac.uk/strongcorrelations




          The role of spin-orbit coupling (SOC)
                                                                       z
        E.g. reflection through a vertical
        plane perpendicular to the y axis:
                    v, J  I C2y, J

        This affects d(k) (a vector under
        spin rotations).


        It does not affect 0(k) (a scalar).
                                                             y                                  x


Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
CMMP’10, Warwick, 15 Dec 2010                                                blogs.kent.ac.uk/strongcorrelations




          The role of spin-orbit coupling (SOC)

              C2v,Jno t            Gap function,                      Gap function,
                                singlet component                  triplet component
                 A1         (k) = A                     d(k) = (Bky,Ckx,Dkxkykz)
                 A2          (k) = AkxkY                d(k) = (Bkx,Cky,Dkz)
                  B1         (k) = AkXkZ                d(k) = (Bkxkykz,Ckz,Dky)
                  B2         (k) = AkYkZ                d(k) = (Bkz, Ckxkykz,Dkx)




Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
CMMP’10, Warwick, 15 Dec 2010                                                 blogs.kent.ac.uk/strongcorrelations




          The role of spin-orbit coupling (SOC)

              C2v,Jno t            Gap function,                      Gap function,
                                singlet component                  triplet component
                 A1         (k) = A                     d(k) = (Bky,Ckx,Dkxkykz)
                 A2          (k) = AkxkY                d(k) = (Bkx,Cky,Dkz)
                  B1         (k) = AkXkZ                d(k) = (Bkxkykz,Ckz,Dky)
                  B2         (k) = AkYkZ                d(k) = (Bkz, Ckxkykz,Dkx)


                                None of these break time-reversal symmetry!




Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
CMMP’10, Warwick, 15 Dec 2010                                            blogs.kent.ac.uk/strongcorrelations




                        How could this happen?
                            k    0 k i y  dk .σi y
                            ˆ                 ˆ           ˆ ˆ

      Gap matrices evolve smoothly as SOC is turned on.

      E.g.           Ai y
                        ˆ                                                      ( 1A1 )

                             ˆ                                 ˆ ˆ
                        A i y  Bk y , Ck x , Dk x k y k z .σ i y         ( A1 )
                                for B = C = D = 0




Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
CMMP’10, Warwick, 15 Dec 2010                                            blogs.kent.ac.uk/strongcorrelations




                        How could this happen?
      Some instabilities split in two under the influence of SOC:


      E.g.     1, i,0k z .σi y
                             ˆ ˆ                                                        ( 3A1(b) )


                 
                              ˆ                                   
                  Ak y k z i y  Bk z , Ck x k y k z , Dk x .σ i y 
                                                                 ˆ ˆ
                                                                                       ( B2 )
                      with A, B, C, D  0,1,0,0                    

                        i
                                      ˆ                                 
                          Ak x k z i y  Bk x k y k z , Ck z , Dk y .σ i y 
                                                                         ˆ ˆ
                                                                                 ( B1 )
                               with A, B, C, D  0,0,1,0                   


Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
CMMP’10, Warwick, 15 Dec 2010                                                    blogs.kent.ac.uk/strongcorrelations


               Relativistic and non-relativistic
            instabilities: a complex relationship
                  1A                        A1
                    1
                  1A                        A2
                    2
                                                    3A (b)
                                                                                                B2
                  1B                                  1
                    1                       B1                                                  B1
                  1B                        B2                                                  B1
                    2                               3A (b)
                                                      2
                                                                                                B2
                3A (a)
                                            A2      3B (b)
                                                                                                A2
                  1
                                                      1
                3A (a)                      A1                                                  A1
                  2
                                                                                                A1
                3B (a)
                  1
                                            B2      3B (b)
                                                      2
                                                                                                A2
                3B (a)
                  2
                                            B1
                                                               spin-orbit coupling

                      spin-orbit coupling

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
CMMP’10, Warwick, 15 Dec 2010                                                        blogs.kent.ac.uk/strongcorrelations


                    Relativistic and non-relativistic
                 instabilities: a complex relationship
                    A1                                       A2   B1                                         B2

      singlet
     Pairing               1A                     1A                   1B                         1B
 instabilities                  1                      2                    1                          2



non-unitary
                                     3B                                         3A
      triplet                             1(b)                                       1(b)
     pairing                         3B                                         3A
instabilities                             2(b)                                       2(b)


      unitary
       triplet
                         3A                      3A                3B                            3B
      pairing
                              1(a)                    2(a)              1(a)                          2(a)
 instabilities
CMMP’10, Warwick, 15 Dec 2010                                               blogs.kent.ac.uk/strongcorrelations


          The role of spin-orbit coupling (SOC)
       The second (lower-Tc) instability can be symmetry-breaking
       because it is no longer an instability of the normal state:

                                     B2                    The experiments show a
                                  (kz,0,0)                 transition straight into the
                3A    (b)
                  1                                        broken TRS phase
               (k ,ik ,0)            B1                            ⇒ SOC must be small in
                 z z
                                  i(0,kz,0)
                                                                                  LaNiC2
                                                           N.B. singlet component must
                                                           be very small too.
                            SOC



Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
CMMP’10, Warwick, 15 Dec 2010           blogs.kent.ac.uk/strongcorrelations

                                Recap
CMMP’10, Warwick, 15 Dec 2010                           blogs.kent.ac.uk/strongcorrelations

                                       Recap
                          What have we learned about LaNiC2?
CMMP’10, Warwick, 15 Dec 2010                                    blogs.kent.ac.uk/strongcorrelations

                                          Recap
                          What have we learned about LaNiC2?
                                  Experimental observation:
                                  the superconducting state
                                breaks time-reversal symmetry.
CMMP’10, Warwick, 15 Dec 2010                                    blogs.kent.ac.uk/strongcorrelations

                                          Recap
                          What have we learned about LaNiC2?
                                  Experimental observation:
                                  the superconducting state
                                breaks time-reversal symmetry.

                               Theoretical implications:
                non-unitary triplet pairing ; weak SOC ; split transition.
CMMP’10, Warwick, 15 Dec 2010                                    blogs.kent.ac.uk/strongcorrelations

                                          Recap
                          What have we learned about LaNiC2?
                                  Experimental observation:
                                  the superconducting state
                                breaks time-reversal symmetry.

                               Theoretical implications:
                non-unitary triplet pairing ; weak SOC ; split transition.

                                What do we not know yet?
CMMP’10, Warwick, 15 Dec 2010                                        blogs.kent.ac.uk/strongcorrelations

                                              Recap
                          What have we learned about LaNiC2?
                                      Experimental observation:
                                      the superconducting state
                                    breaks time-reversal symmetry.

                               Theoretical implications:
                non-unitary triplet pairing ; weak SOC ; split transition.

                                    What do we not know yet?
                                 Which of the four pairing symmetries?
CMMP’10, Warwick, 15 Dec 2010                                        blogs.kent.ac.uk/strongcorrelations

                                              Recap
                          What have we learned about LaNiC2?
                                      Experimental observation:
                                      the superconducting state
                                    breaks time-reversal symmetry.

                               Theoretical implications:
                non-unitary triplet pairing ; weak SOC ; split transition.

                                    What do we not know yet?
                                 Which of the four pairing symmetries?

                                          Why non-unitary?
CMMP’10, Warwick, 15 Dec 2010                                        blogs.kent.ac.uk/strongcorrelations

                                              Recap
                          What have we learned about LaNiC2?
                                      Experimental observation:
                                      the superconducting state
                                    breaks time-reversal symmetry.

                               Theoretical implications:
                non-unitary triplet pairing ; weak SOC ; split transition.

                                    What do we not know yet?
                                 Which of the four pairing symmetries?

                                          Why non-unitary?

                                          Take this home:
CMMP’10, Warwick, 15 Dec 2010                                        blogs.kent.ac.uk/strongcorrelations

                                              Recap
                          What have we learned about LaNiC2?
                                      Experimental observation:
                                      the superconducting state
                                    breaks time-reversal symmetry.

                               Theoretical implications:
                non-unitary triplet pairing ; weak SOC ; split transition.

                                    What do we not know yet?
                                 Which of the four pairing symmetries?

                                          Why non-unitary?

                                          Take this home:
                    •There’s more than Rashba to noncentrosymmetric
                                     superconductors
CMMP’10, Warwick, 15 Dec 2010                                        blogs.kent.ac.uk/strongcorrelations

                                              Recap
                          What have we learned about LaNiC2?
                                      Experimental observation:
                                      the superconducting state
                                    breaks time-reversal symmetry.

                               Theoretical implications:
                non-unitary triplet pairing ; weak SOC ; split transition.

                                    What do we not know yet?
                                 Which of the four pairing symmetries?

                                          Why non-unitary?

                                          Take this home:
              •There’s more than Rashba to noncentrosymmetric
                               superconductors
       •There’s more than strong correlations to unconventional pairing
CMMP’10, Warwick, 15 Dec 2010             blogs.kent.ac.uk/strongcorrelations




                                Thanks!

More Related Content

More from Jorge Quintanilla

Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...Jorge Quintanilla
 
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...Jorge Quintanilla
 
Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...Jorge Quintanilla
 
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...Jorge Quintanilla
 
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet SuperconductorsBroken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet SuperconductorsJorge Quintanilla
 
Thermodynamic signatures of topological transitions in nodal superconductors
Thermodynamic signatures of topological transitions in nodal superconductorsThermodynamic signatures of topological transitions in nodal superconductors
Thermodynamic signatures of topological transitions in nodal superconductorsJorge Quintanilla
 
Talk bristol uk-nl_2013_v01_for_web
Talk bristol uk-nl_2013_v01_for_webTalk bristol uk-nl_2013_v01_for_web
Talk bristol uk-nl_2013_v01_for_webJorge Quintanilla
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webJorge Quintanilla
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webJorge Quintanilla
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webJorge Quintanilla
 
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Jorge Quintanilla
 
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Jorge Quintanilla
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011Jorge Quintanilla
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011Jorge Quintanilla
 
Turning data into a puzzle: non-unitary triplet pairing in the non-centrosym...
Turning data into a puzzle:  non-unitary triplet pairing in the non-centrosym...Turning data into a puzzle:  non-unitary triplet pairing in the non-centrosym...
Turning data into a puzzle: non-unitary triplet pairing in the non-centrosym...Jorge Quintanilla
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Jorge Quintanilla
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Jorge Quintanilla
 
New Vistas on Quantum Matter Opened by Dipolar Fermions
New Vistas on Quantum Matter Opened by Dipolar FermionsNew Vistas on Quantum Matter Opened by Dipolar Fermions
New Vistas on Quantum Matter Opened by Dipolar FermionsJorge Quintanilla
 
2010 Quintanilla Loughborough
2010 Quintanilla Loughborough2010 Quintanilla Loughborough
2010 Quintanilla LoughboroughJorge Quintanilla
 

More from Jorge Quintanilla (19)

Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
 
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
 
Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...
 
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
 
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet SuperconductorsBroken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
 
Thermodynamic signatures of topological transitions in nodal superconductors
Thermodynamic signatures of topological transitions in nodal superconductorsThermodynamic signatures of topological transitions in nodal superconductors
Thermodynamic signatures of topological transitions in nodal superconductors
 
Talk bristol uk-nl_2013_v01_for_web
Talk bristol uk-nl_2013_v01_for_webTalk bristol uk-nl_2013_v01_for_web
Talk bristol uk-nl_2013_v01_for_web
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
 
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
 
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
 
Turning data into a puzzle: non-unitary triplet pairing in the non-centrosym...
Turning data into a puzzle:  non-unitary triplet pairing in the non-centrosym...Turning data into a puzzle:  non-unitary triplet pairing in the non-centrosym...
Turning data into a puzzle: non-unitary triplet pairing in the non-centrosym...
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
New Vistas on Quantum Matter Opened by Dipolar Fermions
New Vistas on Quantum Matter Opened by Dipolar FermionsNew Vistas on Quantum Matter Opened by Dipolar Fermions
New Vistas on Quantum Matter Opened by Dipolar Fermions
 
2010 Quintanilla Loughborough
2010 Quintanilla Loughborough2010 Quintanilla Loughborough
2010 Quintanilla Loughborough
 

Puzzling pairing in the non-centrosymmetric superconductor LaNiC2

  • 1. ISIS Facility, STFC School of Rutherford Appleton Laboratory Physical Sciences Puzzling pairing in the non-centrosymmetric superconductor LaNiC2 Jorge Quintanilla SEPnet, University of Kent Hubbard Theory Centre, Rutherford Appleton Laboratory Collaborators: Adrian Hillier (RAL) Bob Cywinski (Huddersfield) James F. Annett (Bristol) Bayan Mazidian (Bristol and RAL) Funding: STFC, SEPnet CMMP’10, University of Warwick, 15 December 2010
  • 2. LaNiC2 – a weakly-correlated, paramagnetic superconductor? W. H. Lee et al., Physica C 266, 138 (1996) V. K. Pecharsky, L. L. Miller, and Zy, Physical Review B 58, 497 (1998) specific heat susceptibility ΔC/TC=1.26 Tc=2.7 K (BCS: 1.43)
  • 3. ISIS muSR
  • 4. Relaxation due to electronic moments _  e  e (longitudinal) sample forward detector backward detector Moment size Timescale: ~ 0.1G > 10-4s ~ (~ 0.01μB) Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 5. Relaxation due to electronic moments _  e  e (longitudinal) sample forward detector backward detector Moment size Timescale: ~ 0.1G > 10-4s ~ (~ 0.01μB) Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 6. Relaxation due to electronic moments _  e  e (longitudinal) sample forward detector backward detector Moment size Timescale: ~ 0.1G > 10-4s ~ (~ 0.01μB) Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 7. Relaxation due to electronic moments _  e  e (longitudinal) sample forward detector backward detector Moment size Timescale: ~ 0.1G > 10-4s ~ (~ 0.01μB) Spontaneous, quasi-static fields appearing at Tc ⇒ superconducting state breaks time-reversal symmetry [ c.f. Sr2RuO4 - Luke et al., Nature (1998) ] Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 8. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Symmetry of the gap function   k    k  k    ˆ     k    k  See J.F. Annett Adv. Phys. 1990.
  • 9. Neutron diffraction 35000 30000 Data from 25000 D1B @ ILL Intensity (arb units) 20000 15000 10000 5000 Orthorhombic Amm2 C2v 0 30 40 50 60 70 80 a=3.96 Å b=4.58 Å o 2  c=6.20 Å Note no inversion centre. C.f. CePt3Si (1), Li2Pt3B & Li2Pd3B (2), ... (1) Bauer et al. PRL’04 (2) Yuan et al. PRL’06
  • 10.
  • 11. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both?  0  0   x  id y d dz  k   ˆ      0 0   dz dx  id y  singlet triplet [ 0(k) even ] [ d(k) odd ]
  • 12. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both? Neglect (for now!) spin-orbit coupling: Singlet and triplet representations of SO(3): Γns = - (Γns)T , Γnt = + (Γnt)T Impose Pauli’s exclusion principle:  , ' k   ', k  k ˆ either singlet  , ' k    0 k i y ˆ or triplet  , ' k   dk .σi y ˆ ˆ 
  • 13. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Character table 180o Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 14. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Character table C2v Symmetries and Sample basis their characters functions Irreducible E C2 v ’v Even Odd representation A1 1 1 1 1 1 Z A2 1 1 -1 -1 XY XYZ B1 1 -1 1 -1 XZ X B2 1 -1 -1 1 YZ Y These must be combined with the singlet and triplet representations of SO(3). Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 15. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Possible order parameters SO(3)xC2v Gap function Gap function (unitary) (non-unitary) 1A 1 (k)=1 - 1A 2 (k)=kxkY - 1B 1 (k)=kXkZ - 1B 2 (k)=kYkZ - 3A d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 1 3A d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 2 3B d(k)=(0,0,1)kX d(k)=(1,i,0)kX 1 3B d(k)=(0,0,1)kY d(k)=(1,i,0)kY 2 Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 16. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Possible order parameters SO(3)xC2v Gap function Gap function (unitary) (non-unitary) 1A 1 (k)=1 - 1A 2 (k)=kxkY - 1B 1 (k)=kXkZ - 1B 2 (k)=kYkZ - 3A d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 1 3A d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 2 3B d(k)=(0,0,1)kX d(k)=(1,i,0)kX 1 3B d(k)=(0,0,1)kY d(k)=(1,i,0)kY 2 Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 17. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Possible order parameters SO(3)xC2v Gap function Gap function (unitary) (non-unitary) 1A 1 (k)=1 - 1A 2 (k)=kxkY - 1B 1 (k)=kXkZ - 1B 2 (k)=kYkZ - 3A d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 1 3A d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 2 3B d(k)=(0,0,1)kX d(k)=(1,i,0)kX 1 3B d(k)=(0,0,1)kY d(k)=(1,i,0)kY 2 Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 18. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Possible order parameters SO(3)xC2v Gap function Gap function (unitary) (non-unitary) 1A 1 (k)=1 - 1A 2 (k)=kxkY - 1B 1 (k)=kXkZ - 1B 2 (k)=kYkZ - 3A d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 1 3A d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 2 3B d(k)=(0,0,1)kX d(k)=(1,i,0)kX 1 3B d(k)=(0,0,1)kY d(k)=(1,i,0)kY 2 Non-unitary d x d* ≠ 0 Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 19. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Possible order parameters SO(3)xC2v Gap function Gap function (unitary) (non-unitary) 1A 1 (k)=1 - 1A 2 (k)=kxkY - breaks only SO(3) x U(1) x T * 1B 1 (k)=kXkZ - 1B 2 (k)=kYkZ - 3A d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 1 3A d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 2 3B d(k)=(0,0,1)kX d(k)=(1,i,0)kX 1 3B d(k)=(0,0,1)kY d(k)=(1,i,0)kY 2 * C.f. Li2Pd3B & Li2Pt3B, H. Q. Yuan et al. PRL’06 Non-unitary d x d* ≠ 0 Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 20. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Non-unitary pairing Spin-up superfluid coexisting with spin- ˆ     0  0 0   or  down Fermi liquid.    0  0     0   
  • 21. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Non-unitary pairing Spin-up superfluid coexisting with spin- ˆ     0  0 0   or  down Fermi liquid.    0  0     0    C.f.
  • 22. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Non-unitary pairing Spin-up superfluid coexisting with spin- ˆ     0  0 0   or  down Fermi liquid.    0  0     0    C.f. The A1 phase of liquid 3He.
  • 23. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Non-unitary pairing Spin-up superfluid coexisting with spin- ˆ     0  0 0   or  down Fermi liquid.    0  0     0    C.f. The A1 phase of liquid 3He. Ferromagnetic F. Hardy et al., Physica B 359- 61, 1111-13 (2005) superconductors. [ See A. de Visser in Encyclopedia of Materials: Science and Technology (Eds. K. H. J. Buschow et al.), Elsevier, 2010 ]
  • 24. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Ferromagnetic superconductors But LaNiC2 is a paramagnet ! A. de Visser in Encyclopedia of Materials: Science and Technology (Eds. K. H. J. Buschow et al.), Elsevier, 2010
  • 25. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Isn’t there a more simple explanation?
  • 26. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC)  , ' k   spin ' orbit k   ,  Gap function may have both singlet and triplet components  0  0   d x  id y dz  k    ˆ  d   0 0  z d x  id y   • However, if we have a centre of inversion basis functions either even or odd under inversion  still have either singlet or triplet pairing (at Tc) • No centre of inversion: may have singlet and triplet (even at Tc)
  • 27. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) G = [SO(3)×Gc]×U(1)×T
  • 28. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) G = [SO(3)×Gc]×U(1)×T
  • 29. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) G = [SO(3)×Gc]×U(1)×T
  • 30. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) G = [SO(3)×Gc]×U(1)×T
  • 31. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) G = [SO(3)×Gc]×U(1)×T
  • 32. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) G = Gc,J×U(1)×T
  • 33. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) G = Gc,J×U(1)×T
  • 34. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) G = Gc,J×U(1)×T
  • 35. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) z E.g. reflection through a vertical plane perpendicular to the y axis:  v, J  I C2y, J y x Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
  • 36. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) z E.g. reflection through a vertical plane perpendicular to the y axis:  v, J  I C2y, J y x Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
  • 37. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) z E.g. reflection through a vertical plane perpendicular to the y axis:  v, J  I C2y, J y x Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
  • 38. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) z E.g. reflection through a vertical plane perpendicular to the y axis:  v, J  I C2y, J y x Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
  • 39. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) z E.g. reflection through a vertical plane perpendicular to the y axis:  v, J  I C2y, J This affects d(k) (a vector under spin rotations). y x Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
  • 40. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) z E.g. reflection through a vertical plane perpendicular to the y axis:  v, J  I C2y, J This affects d(k) (a vector under spin rotations). It does not affect 0(k) (a scalar). y x Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
  • 41. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) C2v,Jno t Gap function, Gap function, singlet component triplet component A1 (k) = A d(k) = (Bky,Ckx,Dkxkykz) A2  (k) = AkxkY d(k) = (Bkx,Cky,Dkz) B1  (k) = AkXkZ d(k) = (Bkxkykz,Ckz,Dky) B2  (k) = AkYkZ d(k) = (Bkz, Ckxkykz,Dkx) Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
  • 42. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) C2v,Jno t Gap function, Gap function, singlet component triplet component A1 (k) = A d(k) = (Bky,Ckx,Dkxkykz) A2  (k) = AkxkY d(k) = (Bkx,Cky,Dkz) B1  (k) = AkXkZ d(k) = (Bkxkykz,Ckz,Dky) B2  (k) = AkYkZ d(k) = (Bkz, Ckxkykz,Dkx) None of these break time-reversal symmetry! Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
  • 43. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations How could this happen? k    0 k i y  dk .σi y ˆ ˆ ˆ ˆ Gap matrices evolve smoothly as SOC is turned on. E.g. Ai y ˆ ( 1A1 ) ˆ  ˆ ˆ  A i y  Bk y , Ck x , Dk x k y k z .σ i y ( A1 ) for B = C = D = 0 Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
  • 44. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations How could this happen? Some instabilities split in two under the influence of SOC: E.g. 1, i,0k z .σi y ˆ ˆ ( 3A1(b) )  ˆ   Ak y k z i y  Bk z , Ck x k y k z , Dk x .σ i y  ˆ ˆ  ( B2 )  with A, B, C, D  0,1,0,0   i ˆ   Ak x k z i y  Bk x k y k z , Ck z , Dk y .σ i y  ˆ ˆ  ( B1 )  with A, B, C, D  0,0,1,0  Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
  • 45. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Relativistic and non-relativistic instabilities: a complex relationship 1A A1 1 1A A2 2 3A (b) B2 1B 1 1 B1 B1 1B B2 B1 2 3A (b) 2 B2 3A (a) A2 3B (b) A2 1 1 3A (a) A1 A1 2 A1 3B (a) 1 B2 3B (b) 2 A2 3B (a) 2 B1 spin-orbit coupling spin-orbit coupling Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
  • 46. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Relativistic and non-relativistic instabilities: a complex relationship A1 A2 B1 B2 singlet Pairing 1A 1A 1B 1B instabilities 1 2 1 2 non-unitary 3B 3A triplet 1(b) 1(b) pairing 3B 3A instabilities 2(b) 2(b) unitary triplet 3A 3A 3B 3B pairing 1(a) 2(a) 1(a) 2(a) instabilities
  • 47. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) The second (lower-Tc) instability can be symmetry-breaking because it is no longer an instability of the normal state: B2 The experiments show a (kz,0,0) transition straight into the 3A (b) 1 broken TRS phase (k ,ik ,0) B1 ⇒ SOC must be small in z z i(0,kz,0) LaNiC2 N.B. singlet component must be very small too. SOC Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)
  • 48. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Recap
  • 49. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Recap What have we learned about LaNiC2?
  • 50. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Recap What have we learned about LaNiC2?  Experimental observation: the superconducting state breaks time-reversal symmetry.
  • 51. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Recap What have we learned about LaNiC2?  Experimental observation: the superconducting state breaks time-reversal symmetry. Theoretical implications: non-unitary triplet pairing ; weak SOC ; split transition.
  • 52. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Recap What have we learned about LaNiC2?  Experimental observation: the superconducting state breaks time-reversal symmetry. Theoretical implications: non-unitary triplet pairing ; weak SOC ; split transition. What do we not know yet?
  • 53. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Recap What have we learned about LaNiC2?  Experimental observation: the superconducting state breaks time-reversal symmetry. Theoretical implications: non-unitary triplet pairing ; weak SOC ; split transition. What do we not know yet?  Which of the four pairing symmetries?
  • 54. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Recap What have we learned about LaNiC2?  Experimental observation: the superconducting state breaks time-reversal symmetry. Theoretical implications: non-unitary triplet pairing ; weak SOC ; split transition. What do we not know yet?  Which of the four pairing symmetries? Why non-unitary?
  • 55. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Recap What have we learned about LaNiC2?  Experimental observation: the superconducting state breaks time-reversal symmetry. Theoretical implications: non-unitary triplet pairing ; weak SOC ; split transition. What do we not know yet?  Which of the four pairing symmetries? Why non-unitary? Take this home:
  • 56. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Recap What have we learned about LaNiC2?  Experimental observation: the superconducting state breaks time-reversal symmetry. Theoretical implications: non-unitary triplet pairing ; weak SOC ; split transition. What do we not know yet?  Which of the four pairing symmetries? Why non-unitary? Take this home: •There’s more than Rashba to noncentrosymmetric superconductors
  • 57. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Recap What have we learned about LaNiC2?  Experimental observation: the superconducting state breaks time-reversal symmetry. Theoretical implications: non-unitary triplet pairing ; weak SOC ; split transition. What do we not know yet?  Which of the four pairing symmetries? Why non-unitary? Take this home: •There’s more than Rashba to noncentrosymmetric superconductors •There’s more than strong correlations to unconventional pairing
  • 58. CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations Thanks!