SlideShare a Scribd company logo
1 of 85
ISIS Facility, STFC                                                        School of
Rutherford Appleton Laboratory                                     Physical Sciences




   Non-unitary triplet pairing in the
 non-centrosymmetric superconductor
                LaNiC2
                                 Jorge Quintanilla
                                 University of Kent
                      & Rutherford Appleton Laboratory


                         Collaborators: Adrian Hillier (RAL)
                                        Bob Cywinski (Huddersfield)
                                        James F. Annett (Bristol)

                                 Funding: STFC, SEPnet

               Research seminar, University of Loughborough, 26 May 2010
Photo: Eddie Hui-Bon-Hoa, www.shiromi.com




                                       

                         
                                            Unconventional superconductors
Photo: Kenneth G. Libbrecht, snowflakes.com




                                       

                        
                                              Unconventional superconductors
Unconventional superconductors



                                                
Photo: commons.wikimedia.org




                                                
Unconventional superconductors



                                                ‘Unconventional’
                                                  superconductors:
Photo: commons.wikimedia.org




                                                  HTSC, Sr2RuO4,
                                                  PrOs4Sb12, UPt3,
                                                  (UTh)Be13 , ...
LaNiC2
V. K. Pecharsky, L. L. Miller, and Zy, Physical Review B 58, 497 (1998)
W. H. Lee et al., Physica C 266, 138 (1996)

                           specific heat



                                                                          ΔC/TC=1.26
                                                                          (BCS: 1.43)




                   Tc=2.7 K
ISIS
Zero field muon spin relaxation

                            _
                            



              e                       
                   sample
                            e
       forward
       detector
                            backward
                            detector
Zero field μSR at ISIS
                     0.30



                     0.25
                                                LaNiC2
                     0.20


                                        3.0 K
         Asymmetry


                     0.15

                                50 mK
                     0.10



                     0.05



                     0.00
                            0   5          10       15   20

                                        Time (s)


                  2
                  1                          
                                   2 t 2 
     Gz (t)  A0     t exp 
                      1 2 2
                                            exp t   Abckgrd
                                             
                  3 3
                                  2    




Zero field μSR at ISIS
                     0.30



                     0.25
                                                    LaNiC2
                     0.20


                                            3.0 K
         Asymmetry


                     0.15

                                    50 mK
                     0.10



                     0.05



                     0.00
                            0       5          10       15   20

                                            Time (s)


                  2
                  1                          
                                   2 t 2 
     Gz (t)  A0     t exp 
                      1 2 2
                                            exp t   Abckgrd
                                             
                  3 3
                                  2    
                                Nuclear contribution
                                  (Kubo-Toyabe)

Zero field μSR at ISIS
                     0.30



                     0.25
                                                    LaNiC2
                     0.20


                                            3.0 K
         Asymmetry


                     0.15

                                    50 mK
                     0.10



                     0.05



                     0.00
                            0       5          10       15        20

                                            Time (s)


                  2
                  1                          
                                   2 t 2 
     Gz (t)  A0     t exp 
                      1 2 2
                                            exp t   Abckgrd
                                             
                  3 3
                                  2    
                                Nuclear contribution     Electronic
                                  (Kubo-Toyabe)         contribution

Relaxation due to nuclear moments

           0.10


                                                               Nuclear relaxation rate σ is
           0.08
                                                               constant as a function of
                                                               temperature.
           0.06
                                                                            (⇒ static muons)
s-1)




           0.04
                                                               A0, Abckg also T-independent.
           0.02                                                The only T-dependence is
                                                               in .
           0.00
               0.0   0.5   1.0   1.5   2.0   2.5   3.0   3.5

                             Temperature (K)
Relaxation due to electronic moments                                  _
                                                                             




                                                               e                            


                                                                              e
                                   (longitudinal)                   sample
                                                    forward
                                                    detector
                                                                                  backward
                                                                                  detector



    Moment
    size                                                              Timescale:
    ~ 0.1G                                                            > 10-4s
                                                                      ~
    (~ 0.01μB)




Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Relaxation due to electronic moments                                  _
                                                                             




                                                               e                            


                                                                              e
                                   (longitudinal)                   sample
                                                    forward
                                                    detector
                                                                                  backward
                                                                                  detector



    Moment
    size                                                              Timescale:
    ~ 0.1G                                                            > 10-4s
                                                                      ~
    (~ 0.01μB)




Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Relaxation due to electronic moments                                  _
                                                                             




                                                               e                            


                                                                              e
                                   (longitudinal)                   sample
                                                    forward
                                                    detector
                                                                                  backward
                                                                                  detector



    Moment
    size                                                              Timescale:
    ~ 0.1G                                                            > 10-4s
                                                                      ~
    (~ 0.01μB)




Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Relaxation due to electronic moments                                                                          _
                                                                                                                     




                                                                                                       e                            


                                                                                                                      e
                                                                           (longitudinal)                   sample
                                                                                            forward
                                                                                            detector
                                                                                                                          backward
                                                                                                                          detector



    Moment
    size                                                                                                      Timescale:
    ~ 0.1G                                                                                                    > 10-4s
                                                                                                              ~
    (~ 0.01μB)




                            Spontaneous, quasi-static fields appearing at Tc
                        ⇒ superconducting state breaks time-reversal symmetry
                                     [ c.f. Sr2RuO4 - Luke et al., Nature (1998) ]
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Symmetry of the gap function




See J.F. Annett Adv. Phys. 1990.
Symmetry of the gap function




See J.F. Annett Adv. Phys. 1990.
Symmetry of the gap function




See J.F. Annett Adv. Phys. 1990.
Symmetry of the gap function




See J.F. Annett Adv. Phys. 1990.
Symmetry of the gap function




See J.F. Annett Adv. Phys. 1990.
Symmetry of the gap function




                                             k    k 
                                   k   
                                   ˆ
                                                                
                                              k    k 


See J.F. Annett Adv. Phys. 1990.
Neutron diffraction
                        35000


                        30000
                                 Data from
                        25000    D1B @ ILL
Intensity (arb units)




                        20000


                        15000


                        10000


                        5000
                                                                             Orthorhombic Amm2 C2v
                           0
                            30      40       50       60   70          80          a=3.96 Å
                                                                                   b=4.58 Å
                                                      o
                                                  2 
                                                                                   c=6.20 Å

Note no inversion centre.
C.f. CePt3Si (1), Li2Pt3B & Li2Pd3B                             (2),   ...
(1) Bauer et al. PRL’04 (2) Yuan et al. PRL’06
Singlet or triplet?
         0  0   x  id y
                      d                 dz     
k  
ˆ                                          
         
         0 0   dz               dx  id y 
          singlet           triplet
       [ 0(k) even ]     [ d(k) odd ]
Singlet or triplet?
            0  0   x  id y
                         d                  dz     
   k  
   ˆ                                           
            
            0 0   dz                dx  id y 
                singlet         triplet
             [ 0(k) even ]   [ d(k) odd ]

Assume SOC very small:
Singlet or triplet?
            0  0   x  id y
                         d                                 dz   
   k  
   ˆ                                                        
            
            0 0   dz                             dx  id y 
                singlet                      triplet
             [ 0(k) even ]              [ d(k) odd ]

Assume SOC very small:     , ' k   
                                         spin
                                          , '   
                                                  orbit
                                                          k 
Singlet or triplet?
             0  0   x  id y
                          d                                  dz   
    k  
    ˆ                                                         
             
             0 0   dz                              dx  id y 
                  singlet                      triplet
               [ 0(k) even ]              [ d(k) odd ]

Assume SOC very small:       , ' k   
                                           spin
                                            , '   
                                                    orbit
                                                            k 
Impose Pauli’s exclusion principle:
Singlet or triplet?
            0  0   x  id y
                         d                             dz    
   k  
   ˆ                                                     
            
            0 0   dz                          dx  id y 
                 singlet                  triplet
              [ 0(k) even ]           [ d(k) odd ]

Assume SOC very small:     , ' k     k 
                                       spin
                                        , '
                                                orbit


Impose Pauli’s exclusion principle:  , ' k   ', k




                         
Singlet or triplet?
            0  0   x  id y
                         d                             dz    
   k  
   ˆ                                                     
            
            0 0   dz                          dx  id y 
                 singlet                  triplet
              [ 0(k) even ]           [ d(k) odd ]

Assume SOC very small:     , ' k     k 
                                       spin
                                        , '
                                                orbit


Impose Pauli’s exclusion principle:  , ' k   ', k
  k either singlet
    ˆ


                         
Singlet or triplet?
            0  0   x  id y
                         d                             dz    
   k  
   ˆ                                                     
            
            0 0   dz                          dx  id y 
                 singlet                  triplet
              [ 0(k) even ]           [ d(k) odd ]

Assume SOC very small:     , ' k     k 
                                       spin
                                        , '
                                                orbit


Impose Pauli’s exclusion principle:  , ' k   ', k
  k either singlet  , ' k    0 k i y
    ˆ                                             ˆ

                         
Singlet or triplet?
            0  0   x  id y
                         d                             dz    
   k  
   ˆ                                                     
            
            0 0   dz                          dx  id y 
                 singlet                  triplet
              [ 0(k) even ]           [ d(k) odd ]

Assume SOC very small:     , ' k     k 
                                       spin
                                        , '
                                                orbit


Impose Pauli’s exclusion principle:  , ' k   ', k
  k either singlet  , ' k    0 k i y
    ˆ                                             ˆ
                  or triplet
                         
Singlet or triplet?
            0  0   x  id y
                         d                               dz    
   k  
   ˆ                                                       
            
            0 0   dz                            dx  id y 
                 singlet                    triplet
              [ 0(k) even ]            [ d(k) odd ]

Assume SOC very small:     , ' k     k 
                                         spin
                                          , '
                                                  orbit


Impose Pauli’s exclusion principle:  , ' k   ', k
  k either singlet  , ' k    0 k i y
    ˆ                                             ˆ
                  or triplet    , ' k   dk .σi y
                                                     ˆ ˆ
                         
Character table




Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Character table




Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Character table




Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Character table

                                              180o




Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Character table

                             C2v      Symmetries and     Sample basis
                                      their characters     functions
                       Irreducible  E C2 v       ’v    Even     Odd
                     representation
                             A1       1 1    1    1       1         Z
                             A2       1 1    -1   -1     XY        XYZ
                              B1      1 -1   1    -1     XZ         X
                              B2      1 -1 -1     1      YZ         Y




Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Possible order parameters
                  SO(3)xC2v          Gap function        Gap function
                                       (unitary)         (non-unitary)
                       1A
                            1           (k)=1                  -
                       1A
                            2          (k)=kxkY                -
                       1B
                            1          (k)=kXkZ                -
                       1B
                            2          (k)=kYkZ                -
                       3A            d(k)=(0,0,1)kZ       d(k)=(1,i,0)kZ
                            1
                       3A          d(k)=(0,0,1)kXkYkZ   d(k)=(1,i,0)kXkYkZ
                            2
                       3B            d(k)=(0,0,1)kX       d(k)=(1,i,0)kX
                            1
                       3B            d(k)=(0,0,1)kY       d(k)=(1,i,0)kY
                            2




Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Possible order parameters
                  SO(3)xC2v          Gap function        Gap function
                                       (unitary)         (non-unitary)
                       1A
                            1           (k)=1                  -
                       1A
                            2          (k)=kxkY                -
                       1B
                            1          (k)=kXkZ                -
                       1B
                            2          (k)=kYkZ                -
                       3A            d(k)=(0,0,1)kZ       d(k)=(1,i,0)kZ
                            1
                       3A          d(k)=(0,0,1)kXkYkZ   d(k)=(1,i,0)kXkYkZ
                            2
                       3B            d(k)=(0,0,1)kX       d(k)=(1,i,0)kX
                            1
                       3B            d(k)=(0,0,1)kY       d(k)=(1,i,0)kY
                            2




Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Possible order parameters
                  SO(3)xC2v          Gap function        Gap function
                                       (unitary)         (non-unitary)
                       1A
                            1           (k)=1                  -
                       1A
                            2          (k)=kxkY                -
                       1B
                            1          (k)=kXkZ                -
                       1B
                            2          (k)=kYkZ                -
                       3A            d(k)=(0,0,1)kZ       d(k)=(1,i,0)kZ
                            1
                       3A          d(k)=(0,0,1)kXkYkZ   d(k)=(1,i,0)kXkYkZ
                            2
                       3B            d(k)=(0,0,1)kX       d(k)=(1,i,0)kX
                            1
                       3B            d(k)=(0,0,1)kY       d(k)=(1,i,0)kY
                            2




Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Possible order parameters
                  SO(3)xC2v          Gap function        Gap function
                                       (unitary)         (non-unitary)
                       1A
                            1           (k)=1                   -
                       1A
                            2          (k)=kxkY                 -
                                                        breaks only SO(3) x U(1) x T   *
                       1B
                            1          (k)=kXkZ                 -
                       1B
                            2          (k)=kYkZ                 -
                       3A            d(k)=(0,0,1)kZ       d(k)=(1,i,0)kZ
                            1
                       3A          d(k)=(0,0,1)kXkYkZ   d(k)=(1,i,0)kXkYkZ
                            2
                       3B            d(k)=(0,0,1)kX       d(k)=(1,i,0)kX
                            1
                       3B            d(k)=(0,0,1)kY       d(k)=(1,i,0)kY
                            2


* C.f. Li2Pd3B & Li2Pt3B,
H. Q. Yuan et al. PRL’06

Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Possible order parameters
                  SO(3)xC2v               Gap function       Gap function
                                            (unitary)        (non-unitary)
                       1A
                            1                (k)=1                  -
                       1A
                            2               (k)=kxkY                -
                                                            breaks only SO(3) x U(1) x T   *
                       1B
                            1               (k)=kXkZ                -
                       1B
                            2               (k)=kYkZ                -
                       3A                d(k)=(0,0,1)kZ       d(k)=(1,i,0)kZ
                            1
                       3A              d(k)=(0,0,1)kXkYkZ   d(k)=(1,i,0)kXkYkZ
                            2
                       3B                d(k)=(0,0,1)kX       d(k)=(1,i,0)kX
                            1
                       3B                d(k)=(0,0,1)kY       d(k)=(1,i,0)kY
                            2


* C.f. Li2Pd3B & Li2Pt3B,
H. Q. Yuan et al. PRL’06
                                   Non-unitary
                                    d x d* ≠ 0
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Non-unitary pairing
Spin-up superfluid
coexisting with spin-   ˆ       0  0 0 
                                       or 
down Fermi liquid.         0        0    
                                    0      
Non-unitary pairing
Spin-up superfluid
coexisting with spin-   ˆ       0  0 0 
                                       or 
down Fermi liquid.         0        0    
                                    0      


                        C.f.
Non-unitary pairing
Spin-up superfluid
coexisting with spin-   ˆ         0  0 0 
                                         or 
down Fermi liquid.         0          0    
                                      0      


                        C.f.

                               The A1 phase of
                               liquid 3He.
Non-unitary pairing
Spin-up superfluid
coexisting with spin-                     ˆ               0  0 0 
                                                                 or 
down Fermi liquid.                           0                0    
                                                              0      


                                          C.f.

                                                 The A1 phase of
                                                 liquid 3He.
                                                 Ferromagnetic
        F. Hardy et al., Physica B 359-
                  61, 1111-13 (2005)             superconductors.
                                                      [ See A. de Visser in Encyclopedia of
                                                  Materials: Science and Technology (Eds.
                                                   K. H. J. Buschow et al.), Elsevier, 2010 ]
Ferromagnetic superconductors




A. de Visser in Encyclopedia of Materials: Science and Technology
(Eds. K. H. J. Buschow et al.), Elsevier, 2010
But LaNiC2 is a paramagnet !
V. K. Pecharsky, L. L. Miller, and Zy, Physical Review B 58, 497 (1998)
W. H. Lee et al., Physica C 266, 138 (1996)




                        Pauli paramagnet
                                (constant
                           susceptibility)
Isn’t there a more simple explanation?
The role of spin-orbit coupling (SOC)
                   , ' k   spin ' orbit k 
                                   ,
                                
  Gap function may have both singlet and triplet components

                0         0   d x  id y          dz     
       k   
       ˆ
                               d
                 0     0          z           d x  id y 
                                                              
• Centre of inversion:
       basis functions either even or odd under inversion
        still have either singlet or triplet pairing
• No centre of inversion: may have singlet and triplet
The role of spin-orbit coupling (SOC)
• Simplest noncentrosymmetric system: a surface.            Gor'kov & Rashba,
                                                            PRL, 87, 037004 (2001)
• Rashba term in the Hamiltonian:


• Split Fermi surface:
                               k    k for spin 
                      k   
                               k    k for spin 
• In general, form & strength of SOC depend on details of electronic structure.
• There’s a zoo of phenomenologies for noncentrosymmetric superconductors:
         Triplet: CePt3Si
         Singlet (conventional): Li2Pd3B, BaPtSi3, Re3W
         Singlet-triplet admixture: Li2Pt3B
The role of spin-orbit coupling (SOC)
• Electronic structure of LaNiC2:




      Laverock, Haynes, Utfeld & Dugdale,   Subedi & Singh,         Hase & Yanagisawa,
      PRB, 80, 125111 (2009)                PRB 80, 092506 (2009)   JPSJ 78, 084724 (2009)
The role of spin-orbit coupling (SOC)
• Electronic structure of LaNiC2:




      Laverock, Haynes, Utfeld & Dugdale,   Subedi & Singh,               Hase &
      PRB, 80, 125111 (2009)                PRB 80, 092506 (2009)
                                                                          Yanagisawa,
• Hase & Yanagisawa in particular have estimated                          JPSJ 78,
                        ~ 3.1 mRy ~ ħwD ~ 400 K >> Tc = 2.7 K            084724 (2009)
• This is ~ ½ the value for CePt3Si for which Tc = 0.4 - 0.7 K.                Hasegawa & Taniguchi,
                                                                               JPSJ 78, 074717 (2009)
• But in CePt3Si there seems to be a pure spin triplet state, with SOC acting as pair-breaker.
• In fact de Haas-van Alphen oscillations fail to detect SOC splitting. Hashimoto et al., JPCM
                                                                                16, L287 (2004)
The role of spin-orbit coupling (SOC)
     G = [SO(3)×Gc]×U(1)×T
The role of spin-orbit coupling (SOC)
     G = [SO(3)×Gc]×U(1)×T
The role of spin-orbit coupling (SOC)
     G = [SO(3)×Gc]×U(1)×T
The role of spin-orbit coupling (SOC)
     G = [SO(3)×Gc]×U(1)×T
The role of spin-orbit coupling (SOC)
     G = [SO(3)×Gc]×U(1)×T
The role of spin-orbit coupling (SOC)
         G = Gc,J×U(1)×T
The role of spin-orbit coupling (SOC)
         G = Gc,J×U(1)×T
The role of spin-orbit coupling (SOC)
         G = Gc,J×U(1)×T
The role of spin-orbit coupling (SOC)
                                                                  z
      E.g. reflection through a vertical
      plane perpendicular to the y axis:
                v, J  I C2y, J




                                                              y       x


Quintanilla, Hillier, Annett and Cywinski, arXiv :1005.1084
The role of spin-orbit coupling (SOC)
                                                                  z
      E.g. reflection through a vertical
      plane perpendicular to the y axis:
                v, J  I C2y, J




                                                              y       x


Quintanilla, Hillier, Annett and Cywinski, arXiv :1005.1084
The role of spin-orbit coupling (SOC)
                                                                  z
      E.g. reflection through a vertical
      plane perpendicular to the y axis:
                v, J  I C2y, J




                                                              y       x


Quintanilla, Hillier, Annett and Cywinski, arXiv :1005.1084
The role of spin-orbit coupling (SOC)
                                                                  z
      E.g. reflection through a vertical
      plane perpendicular to the y axis:
                v, J  I C2y, J




                                                              y       x


Quintanilla, Hillier, Annett and Cywinski, arXiv :1005.1084
The role of spin-orbit coupling (SOC)
                                                                  z
      E.g. reflection through a vertical
      plane perpendicular to the y axis:
                v, J  I C2y, J

      This affects d(k) (a vector under
      spin rotations).



                                                              y       x


Quintanilla, Hillier, Annett and Cywinski, arXiv :1005.1084
The role of spin-orbit coupling (SOC)
                                                                  z
      E.g. reflection through a vertical
      plane perpendicular to the y axis:
                v, J  I C2y, J

      This affects d(k) (a vector under
      spin rotations).


      It does not affect 0(k) (a scalar).
                                                              y       x


Quintanilla, Hillier, Annett and Cywinski, arXiv :1005.1084
The role of spin-orbit coupling (SOC)

           C2v,Jno t         Gap function,                          Gap function,
                          singlet component                      triplet component
              A1        (k) = A                         d(k) = (Bky,Ckx,Dkxkykz)
              A2         (k) = AkxkY                    d(k) = (Bkx,Cky,Dkz)
              B1         (k) = AkXkZ                    d(k) = (Bkxkykz,Ckz,Dky)
              B2         (k) = AkYkZ                    d(k) = (Bkz, Ckxkykz,Dkx)




Quintanilla, Hillier, Annett and Cywinski, arXiv :1005.1084
The role of spin-orbit coupling (SOC)

           C2v,Jno t         Gap function,                          Gap function,
                          singlet component                      triplet component
              A1        (k) = A                         d(k) = (Bky,Ckx,Dkxkykz)
              A2         (k) = AkxkY                    d(k) = (Bkx,Cky,Dkz)
              B1         (k) = AkXkZ                    d(k) = (Bkxkykz,Ckz,Dky)
              B2         (k) = AkYkZ                    d(k) = (Bkz, Ckxkykz,Dkx)


                            None of these break time-reversal symmetry!




Quintanilla, Hillier, Annett and Cywinski, arXiv :1005.1084
How could this happen?
                        k    0 k i y  dk .σi y
                        ˆ                 ˆ           ˆ ˆ

    Gap matrices in the absence of SOC can be described in terms of
      limiting cases of those in the presence of SOC.

    E.g.         Ai y
                    ˆ                                                ( 1A1 )

                         ˆ                                   
                    A i y  Bk y , Ck x , Dk x k y k z .σ i y
                                                            ˆ ˆ      ( A1 )
                           for B = C = D = 0




Quintanilla, Hillier, Annett and Cywinski, arXiv :1005.1084
How could this happen?
    Some instabilities split in two under the influence of SOC:


    E.g.    1, i,0k z .σi y
                          ˆ ˆ                                                 ( 3A1(b) )


             
                          ˆ                                   
              Ak y k z i y  Bk z , Ck x k y k z , Dk x .σ i y 
                                                             ˆ ˆ
                                                                             ( B2 )
                  with A, B, C, D  0,1,0,0                    

                    i
                                  ˆ                                 
                      Ak x k z i y  Bk x k y k z , Ck z , Dk y .σ i y 
                                                                     ˆ ˆ
                                                                             ( B1 )
                           with A, B, C, D  0,0,1,0                   


Quintanilla, Hillier, Annett and Cywinski, arXiv :1005.1084
Relativistic and non-relativistic
                instabilities: a complex relationship
                   A1                                       A2   B1                                    B2

     singlet
    Pairing              1A                      1A                   1B                    1B
instabilities                 1                       2                    1                     2



non-unitary
                                    3B                                         3A
      triplet                            1(b)                                       1(b)
     pairing                        3B                                         3A
instabilities                            2(b)                                       2(b)


     unitary
      triplet
                        3A                      3A                3B                       3B
     pairing
                             1(a)                    2(a)              1(a)                     2(a)
instabilities
Relativistic and non-relativistic
         instabilities: a complex relationship
               1A                        A1
                 1
               1A                        A2
                 2
                                                    3A (b)
                                                                                    B2
               1B                                     1
                 1                       B1                                         B1
               1B                        B2                                         B1
                 2                                  3A (b)
                                                      2
                                                                                    B2
             3A (a)
                                         A2         3B (b)
                                                                                    A2
               1
                                                      1
             3A (a)                      A1                                         A1
               2
                                                                                    A1
             3B (a)
               1
                                         B2         3B (b)
                                                      2
                                                                                    A2
             3B (a)
               2
                                         B1
                                                              spin-orbit coupling

                  spin-orbit coupling

Quintanilla, Hillier, Annett and Cywinski, arXiv :1005.1084
The role of spin-orbit coupling (SOC)
     The second (lower-Tc) instability can be symmetry-breaking
     because it is no longer an instability of the normal state:

                                   B2                         The experiments show a
                                (kz,0,0)                      transition straight into the
             3A    (b)
               1                                              broken TRS phase
            (k ,ik ,0)             B1                              ⇒ SOC must be small in
              z z
                               i(0,kz,0)
                                                                                  LaNiC2
                                                              N.B. singlet component must
                                                              be very small too.
                         SOC



Quintanilla, Hillier, Annett and Cywinski, arXiv :1005.1084
Summary
Summary
What have we learned about LaNiC2?
Summary
What have we learned about LaNiC2?
       Experimental observation:
       the superconducting state
     breaks time-reversal symmetry.
Summary
     What have we learned about LaNiC2?
              Experimental observation:
              the superconducting state
            breaks time-reversal symmetry.

               Theoretical implications:
non-unitary triplet pairing ; weak SOC ; split transition.
Summary
     What have we learned about LaNiC2?
              Experimental observation:
              the superconducting state
            breaks time-reversal symmetry.

               Theoretical implications:
non-unitary triplet pairing ; weak SOC ; split transition.

           What do we not know yet?
Summary
     What have we learned about LaNiC2?
              Experimental observation:
              the superconducting state
            breaks time-reversal symmetry.

               Theoretical implications:
non-unitary triplet pairing ; weak SOC ; split transition.

           What do we not know yet?
              Which pairing symmetry?
Summary
     What have we learned about LaNiC2?
              Experimental observation:
              the superconducting state
            breaks time-reversal symmetry.

               Theoretical implications:
non-unitary triplet pairing ; weak SOC ; split transition.

           What do we not know yet?
              Which pairing symmetry?

                  Why non-unitary?
Summary
     What have we learned about LaNiC2?
              Experimental observation:
              the superconducting state
            breaks time-reversal symmetry.

               Theoretical implications:
non-unitary triplet pairing ; weak SOC ; split transition.

           What do we not know yet?
              Which pairing symmetry?

                  Why non-unitary?

                  Take this home:
Summary
     What have we learned about LaNiC2?
              Experimental observation:
              the superconducting state
            breaks time-reversal symmetry.

               Theoretical implications:
non-unitary triplet pairing ; weak SOC ; split transition.

           What do we not know yet?
              Which pairing symmetry?

                  Why non-unitary?

                  Take this home:
            There’s more than Rashba to
        noncentrosymmetric superconductors
Thanks!

More Related Content

Similar to 2010 Quintanilla Loughborough

Lecture 1 introduction
Lecture 1 introductionLecture 1 introduction
Lecture 1 introduction
AllenHermann
 
Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnology
Star Gold
 
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
grssieee
 
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
grssieee
 
227th ACS BZ Oral Presentation
227th ACS  BZ Oral Presentation227th ACS  BZ Oral Presentation
227th ACS BZ Oral Presentation
binzhao2004
 
TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...
TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...
TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...
Christophe Palermo
 
Grassellino - Application of Muon Spin Rotation to studies of cavity performa...
Grassellino - Application of Muon Spin Rotation to studies of cavity performa...Grassellino - Application of Muon Spin Rotation to studies of cavity performa...
Grassellino - Application of Muon Spin Rotation to studies of cavity performa...
thinfilmsworkshop
 

Similar to 2010 Quintanilla Loughborough (20)

Lecture 1 introduction
Lecture 1 introductionLecture 1 introduction
Lecture 1 introduction
 
Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnology
 
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
 
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
 
Anschp38
Anschp38Anschp38
Anschp38
 
Modeling the coupling between cw lasers and a frequency comb in atomic samples
Modeling the coupling between cw lasers and a frequency comb in atomic samplesModeling the coupling between cw lasers and a frequency comb in atomic samples
Modeling the coupling between cw lasers and a frequency comb in atomic samples
 
227th ACS BZ Oral Presentation
227th ACS  BZ Oral Presentation227th ACS  BZ Oral Presentation
227th ACS BZ Oral Presentation
 
2016.06.21 mano ucm NanoFrontMag
2016.06.21 mano ucm NanoFrontMag2016.06.21 mano ucm NanoFrontMag
2016.06.21 mano ucm NanoFrontMag
 
TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...
TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...
TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...
 
SPICE MODEL of LM7824 PSpice in SPICE PARK
SPICE MODEL of LM7824 PSpice in SPICE PARKSPICE MODEL of LM7824 PSpice in SPICE PARK
SPICE MODEL of LM7824 PSpice in SPICE PARK
 
Grassellino - Application of Muon Spin Rotation to studies of cavity performa...
Grassellino - Application of Muon Spin Rotation to studies of cavity performa...Grassellino - Application of Muon Spin Rotation to studies of cavity performa...
Grassellino - Application of Muon Spin Rotation to studies of cavity performa...
 
Super conducter
Super conducterSuper conducter
Super conducter
 
A presentation by Younes Sina: Backscattering spectrometry
A presentation by Younes Sina: Backscattering spectrometry  A presentation by Younes Sina: Backscattering spectrometry
A presentation by Younes Sina: Backscattering spectrometry
 
Younes Sina, Backscattering spectrometry
Younes Sina, Backscattering spectrometry  Younes Sina, Backscattering spectrometry
Younes Sina, Backscattering spectrometry
 
Gn2511881192
Gn2511881192Gn2511881192
Gn2511881192
 
Gn2511881192
Gn2511881192Gn2511881192
Gn2511881192
 
non linear optics
non linear opticsnon linear optics
non linear optics
 
Part 1:Electrostatics
Part 1:ElectrostaticsPart 1:Electrostatics
Part 1:Electrostatics
 
Extreme Rheology- Cardiff- 2009
Extreme Rheology- Cardiff- 2009Extreme Rheology- Cardiff- 2009
Extreme Rheology- Cardiff- 2009
 
Light sensor (on when dark)
Light sensor (on when dark)Light sensor (on when dark)
Light sensor (on when dark)
 

More from Jorge Quintanilla

Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Jorge Quintanilla
 
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet SuperconductorsBroken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Jorge Quintanilla
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
Jorge Quintanilla
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
Jorge Quintanilla
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
Jorge Quintanilla
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
Jorge Quintanilla
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Jorge Quintanilla
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Jorge Quintanilla
 

More from Jorge Quintanilla (19)

Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
 
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
 
Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...
 
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
 
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet SuperconductorsBroken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
 
Thermodynamic signatures of topological transitions in nodal superconductors
Thermodynamic signatures of topological transitions in nodal superconductorsThermodynamic signatures of topological transitions in nodal superconductors
Thermodynamic signatures of topological transitions in nodal superconductors
 
Talk bristol uk-nl_2013_v01_for_web
Talk bristol uk-nl_2013_v01_for_webTalk bristol uk-nl_2013_v01_for_web
Talk bristol uk-nl_2013_v01_for_web
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
 
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
 
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
 
Turning data into a puzzle: non-unitary triplet pairing in the non-centrosym...
Turning data into a puzzle:  non-unitary triplet pairing in the non-centrosym...Turning data into a puzzle:  non-unitary triplet pairing in the non-centrosym...
Turning data into a puzzle: non-unitary triplet pairing in the non-centrosym...
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
New Vistas on Quantum Matter Opened by Dipolar Fermions
New Vistas on Quantum Matter Opened by Dipolar FermionsNew Vistas on Quantum Matter Opened by Dipolar Fermions
New Vistas on Quantum Matter Opened by Dipolar Fermions
 

Recently uploaded

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 

Recently uploaded (20)

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 

2010 Quintanilla Loughborough

  • 1. ISIS Facility, STFC School of Rutherford Appleton Laboratory Physical Sciences Non-unitary triplet pairing in the non-centrosymmetric superconductor LaNiC2 Jorge Quintanilla University of Kent & Rutherford Appleton Laboratory Collaborators: Adrian Hillier (RAL) Bob Cywinski (Huddersfield) James F. Annett (Bristol) Funding: STFC, SEPnet Research seminar, University of Loughborough, 26 May 2010
  • 2. Photo: Eddie Hui-Bon-Hoa, www.shiromi.com   Unconventional superconductors
  • 3. Photo: Kenneth G. Libbrecht, snowflakes.com   Unconventional superconductors
  • 4. Unconventional superconductors  Photo: commons.wikimedia.org 
  • 5. Unconventional superconductors ‘Unconventional’ superconductors: Photo: commons.wikimedia.org HTSC, Sr2RuO4, PrOs4Sb12, UPt3, (UTh)Be13 , ...
  • 6. LaNiC2 V. K. Pecharsky, L. L. Miller, and Zy, Physical Review B 58, 497 (1998) W. H. Lee et al., Physica C 266, 138 (1996) specific heat ΔC/TC=1.26 (BCS: 1.43) Tc=2.7 K
  • 8. Zero field muon spin relaxation _  e  sample e forward detector backward detector
  • 9. Zero field μSR at ISIS 0.30 0.25 LaNiC2 0.20 3.0 K Asymmetry 0.15 50 mK 0.10 0.05 0.00 0 5 10 15 20 Time (s)  2 1    2 t 2  Gz (t)  A0     t exp  1 2 2   exp t   Abckgrd  3 3   2   
  • 10. Zero field μSR at ISIS 0.30 0.25 LaNiC2 0.20 3.0 K Asymmetry 0.15 50 mK 0.10 0.05 0.00 0 5 10 15 20 Time (s)  2 1    2 t 2  Gz (t)  A0     t exp  1 2 2   exp t   Abckgrd  3 3   2   Nuclear contribution (Kubo-Toyabe) 
  • 11. Zero field μSR at ISIS 0.30 0.25 LaNiC2 0.20 3.0 K Asymmetry 0.15 50 mK 0.10 0.05 0.00 0 5 10 15 20 Time (s)  2 1    2 t 2  Gz (t)  A0     t exp  1 2 2   exp t   Abckgrd  3 3   2   Nuclear contribution Electronic (Kubo-Toyabe) contribution 
  • 12. Relaxation due to nuclear moments 0.10 Nuclear relaxation rate σ is 0.08 constant as a function of temperature. 0.06 (⇒ static muons) s-1) 0.04 A0, Abckg also T-independent. 0.02 The only T-dependence is in . 0.00 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Temperature (K)
  • 13. Relaxation due to electronic moments _  e  e (longitudinal) sample forward detector backward detector Moment size Timescale: ~ 0.1G > 10-4s ~ (~ 0.01μB) Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 14. Relaxation due to electronic moments _  e  e (longitudinal) sample forward detector backward detector Moment size Timescale: ~ 0.1G > 10-4s ~ (~ 0.01μB) Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 15. Relaxation due to electronic moments _  e  e (longitudinal) sample forward detector backward detector Moment size Timescale: ~ 0.1G > 10-4s ~ (~ 0.01μB) Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 16. Relaxation due to electronic moments _  e  e (longitudinal) sample forward detector backward detector Moment size Timescale: ~ 0.1G > 10-4s ~ (~ 0.01μB) Spontaneous, quasi-static fields appearing at Tc ⇒ superconducting state breaks time-reversal symmetry [ c.f. Sr2RuO4 - Luke et al., Nature (1998) ] Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 17. Symmetry of the gap function See J.F. Annett Adv. Phys. 1990.
  • 18. Symmetry of the gap function See J.F. Annett Adv. Phys. 1990.
  • 19. Symmetry of the gap function See J.F. Annett Adv. Phys. 1990.
  • 20. Symmetry of the gap function See J.F. Annett Adv. Phys. 1990.
  • 21. Symmetry of the gap function See J.F. Annett Adv. Phys. 1990.
  • 22. Symmetry of the gap function   k    k  k    ˆ     k    k  See J.F. Annett Adv. Phys. 1990.
  • 23. Neutron diffraction 35000 30000 Data from 25000 D1B @ ILL Intensity (arb units) 20000 15000 10000 5000 Orthorhombic Amm2 C2v 0 30 40 50 60 70 80 a=3.96 Å b=4.58 Å o 2  c=6.20 Å Note no inversion centre. C.f. CePt3Si (1), Li2Pt3B & Li2Pd3B (2), ... (1) Bauer et al. PRL’04 (2) Yuan et al. PRL’06
  • 24.
  • 25. Singlet or triplet?  0  0   x  id y d dz  k   ˆ      0 0   dz dx  id y  singlet triplet [ 0(k) even ] [ d(k) odd ]
  • 26. Singlet or triplet?  0  0   x  id y d dz  k   ˆ      0 0   dz dx  id y  singlet triplet [ 0(k) even ] [ d(k) odd ] Assume SOC very small:
  • 27. Singlet or triplet?  0  0   x  id y d dz  k   ˆ      0 0   dz dx  id y  singlet triplet [ 0(k) even ] [ d(k) odd ] Assume SOC very small:  , ' k    spin  , '  orbit k 
  • 28. Singlet or triplet?  0  0   x  id y d dz  k   ˆ      0 0   dz dx  id y  singlet triplet [ 0(k) even ] [ d(k) odd ] Assume SOC very small:  , ' k    spin  , '  orbit k  Impose Pauli’s exclusion principle:
  • 29. Singlet or triplet?  0  0   x  id y d dz  k   ˆ      0 0   dz dx  id y  singlet triplet [ 0(k) even ] [ d(k) odd ] Assume SOC very small:  , ' k     k  spin  , ' orbit Impose Pauli’s exclusion principle:  , ' k   ', k 
  • 30. Singlet or triplet?  0  0   x  id y d dz  k   ˆ      0 0   dz dx  id y  singlet triplet [ 0(k) even ] [ d(k) odd ] Assume SOC very small:  , ' k     k  spin  , ' orbit Impose Pauli’s exclusion principle:  , ' k   ', k   k either singlet ˆ 
  • 31. Singlet or triplet?  0  0   x  id y d dz  k   ˆ      0 0   dz dx  id y  singlet triplet [ 0(k) even ] [ d(k) odd ] Assume SOC very small:  , ' k     k  spin  , ' orbit Impose Pauli’s exclusion principle:  , ' k   ', k   k either singlet  , ' k    0 k i y ˆ ˆ 
  • 32. Singlet or triplet?  0  0   x  id y d dz  k   ˆ      0 0   dz dx  id y  singlet triplet [ 0(k) even ] [ d(k) odd ] Assume SOC very small:  , ' k     k  spin  , ' orbit Impose Pauli’s exclusion principle:  , ' k   ', k   k either singlet  , ' k    0 k i y ˆ ˆ or triplet 
  • 33. Singlet or triplet?  0  0   x  id y d dz  k   ˆ      0 0   dz dx  id y  singlet triplet [ 0(k) even ] [ d(k) odd ] Assume SOC very small:  , ' k     k  spin  , ' orbit Impose Pauli’s exclusion principle:  , ' k   ', k   k either singlet  , ' k    0 k i y ˆ ˆ or triplet  , ' k   dk .σi y ˆ ˆ 
  • 34. Character table Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 35. Character table Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 36. Character table Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 37. Character table 180o Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 38. Character table C2v Symmetries and Sample basis their characters functions Irreducible E C2 v ’v Even Odd representation A1 1 1 1 1 1 Z A2 1 1 -1 -1 XY XYZ B1 1 -1 1 -1 XZ X B2 1 -1 -1 1 YZ Y Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 39. Possible order parameters SO(3)xC2v Gap function Gap function (unitary) (non-unitary) 1A 1 (k)=1 - 1A 2 (k)=kxkY - 1B 1 (k)=kXkZ - 1B 2 (k)=kYkZ - 3A d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 1 3A d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 2 3B d(k)=(0,0,1)kX d(k)=(1,i,0)kX 1 3B d(k)=(0,0,1)kY d(k)=(1,i,0)kY 2 Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 40. Possible order parameters SO(3)xC2v Gap function Gap function (unitary) (non-unitary) 1A 1 (k)=1 - 1A 2 (k)=kxkY - 1B 1 (k)=kXkZ - 1B 2 (k)=kYkZ - 3A d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 1 3A d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 2 3B d(k)=(0,0,1)kX d(k)=(1,i,0)kX 1 3B d(k)=(0,0,1)kY d(k)=(1,i,0)kY 2 Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 41. Possible order parameters SO(3)xC2v Gap function Gap function (unitary) (non-unitary) 1A 1 (k)=1 - 1A 2 (k)=kxkY - 1B 1 (k)=kXkZ - 1B 2 (k)=kYkZ - 3A d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 1 3A d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 2 3B d(k)=(0,0,1)kX d(k)=(1,i,0)kX 1 3B d(k)=(0,0,1)kY d(k)=(1,i,0)kY 2 Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 42. Possible order parameters SO(3)xC2v Gap function Gap function (unitary) (non-unitary) 1A 1 (k)=1 - 1A 2 (k)=kxkY - breaks only SO(3) x U(1) x T * 1B 1 (k)=kXkZ - 1B 2 (k)=kYkZ - 3A d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 1 3A d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 2 3B d(k)=(0,0,1)kX d(k)=(1,i,0)kX 1 3B d(k)=(0,0,1)kY d(k)=(1,i,0)kY 2 * C.f. Li2Pd3B & Li2Pt3B, H. Q. Yuan et al. PRL’06 Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 43. Possible order parameters SO(3)xC2v Gap function Gap function (unitary) (non-unitary) 1A 1 (k)=1 - 1A 2 (k)=kxkY - breaks only SO(3) x U(1) x T * 1B 1 (k)=kXkZ - 1B 2 (k)=kYkZ - 3A d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 1 3A d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 2 3B d(k)=(0,0,1)kX d(k)=(1,i,0)kX 1 3B d(k)=(0,0,1)kY d(k)=(1,i,0)kY 2 * C.f. Li2Pd3B & Li2Pt3B, H. Q. Yuan et al. PRL’06 Non-unitary d x d* ≠ 0 Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009)
  • 44. Non-unitary pairing Spin-up superfluid coexisting with spin- ˆ     0  0 0   or  down Fermi liquid.    0  0     0   
  • 45. Non-unitary pairing Spin-up superfluid coexisting with spin- ˆ     0  0 0   or  down Fermi liquid.    0  0     0    C.f.
  • 46. Non-unitary pairing Spin-up superfluid coexisting with spin- ˆ     0  0 0   or  down Fermi liquid.    0  0     0    C.f. The A1 phase of liquid 3He.
  • 47. Non-unitary pairing Spin-up superfluid coexisting with spin- ˆ     0  0 0   or  down Fermi liquid.    0  0     0    C.f. The A1 phase of liquid 3He. Ferromagnetic F. Hardy et al., Physica B 359- 61, 1111-13 (2005) superconductors. [ See A. de Visser in Encyclopedia of Materials: Science and Technology (Eds. K. H. J. Buschow et al.), Elsevier, 2010 ]
  • 48. Ferromagnetic superconductors A. de Visser in Encyclopedia of Materials: Science and Technology (Eds. K. H. J. Buschow et al.), Elsevier, 2010
  • 49. But LaNiC2 is a paramagnet ! V. K. Pecharsky, L. L. Miller, and Zy, Physical Review B 58, 497 (1998) W. H. Lee et al., Physica C 266, 138 (1996) Pauli paramagnet (constant susceptibility)
  • 50. Isn’t there a more simple explanation?
  • 51. The role of spin-orbit coupling (SOC)  , ' k   spin ' orbit k   ,  Gap function may have both singlet and triplet components  0  0   d x  id y dz  k    ˆ  d   0 0  z d x  id y   • Centre of inversion: basis functions either even or odd under inversion  still have either singlet or triplet pairing • No centre of inversion: may have singlet and triplet
  • 52. The role of spin-orbit coupling (SOC) • Simplest noncentrosymmetric system: a surface. Gor'kov & Rashba, PRL, 87, 037004 (2001) • Rashba term in the Hamiltonian: • Split Fermi surface:  k    k for spin   k     k    k for spin  • In general, form & strength of SOC depend on details of electronic structure. • There’s a zoo of phenomenologies for noncentrosymmetric superconductors: Triplet: CePt3Si Singlet (conventional): Li2Pd3B, BaPtSi3, Re3W Singlet-triplet admixture: Li2Pt3B
  • 53. The role of spin-orbit coupling (SOC) • Electronic structure of LaNiC2: Laverock, Haynes, Utfeld & Dugdale, Subedi & Singh, Hase & Yanagisawa, PRB, 80, 125111 (2009) PRB 80, 092506 (2009) JPSJ 78, 084724 (2009)
  • 54. The role of spin-orbit coupling (SOC) • Electronic structure of LaNiC2: Laverock, Haynes, Utfeld & Dugdale, Subedi & Singh, Hase & PRB, 80, 125111 (2009) PRB 80, 092506 (2009) Yanagisawa, • Hase & Yanagisawa in particular have estimated JPSJ 78,  ~ 3.1 mRy ~ ħwD ~ 400 K >> Tc = 2.7 K 084724 (2009) • This is ~ ½ the value for CePt3Si for which Tc = 0.4 - 0.7 K. Hasegawa & Taniguchi, JPSJ 78, 074717 (2009) • But in CePt3Si there seems to be a pure spin triplet state, with SOC acting as pair-breaker. • In fact de Haas-van Alphen oscillations fail to detect SOC splitting. Hashimoto et al., JPCM 16, L287 (2004)
  • 55. The role of spin-orbit coupling (SOC) G = [SO(3)×Gc]×U(1)×T
  • 56. The role of spin-orbit coupling (SOC) G = [SO(3)×Gc]×U(1)×T
  • 57. The role of spin-orbit coupling (SOC) G = [SO(3)×Gc]×U(1)×T
  • 58. The role of spin-orbit coupling (SOC) G = [SO(3)×Gc]×U(1)×T
  • 59. The role of spin-orbit coupling (SOC) G = [SO(3)×Gc]×U(1)×T
  • 60. The role of spin-orbit coupling (SOC) G = Gc,J×U(1)×T
  • 61. The role of spin-orbit coupling (SOC) G = Gc,J×U(1)×T
  • 62. The role of spin-orbit coupling (SOC) G = Gc,J×U(1)×T
  • 63. The role of spin-orbit coupling (SOC) z E.g. reflection through a vertical plane perpendicular to the y axis:  v, J  I C2y, J y x Quintanilla, Hillier, Annett and Cywinski, arXiv :1005.1084
  • 64. The role of spin-orbit coupling (SOC) z E.g. reflection through a vertical plane perpendicular to the y axis:  v, J  I C2y, J y x Quintanilla, Hillier, Annett and Cywinski, arXiv :1005.1084
  • 65. The role of spin-orbit coupling (SOC) z E.g. reflection through a vertical plane perpendicular to the y axis:  v, J  I C2y, J y x Quintanilla, Hillier, Annett and Cywinski, arXiv :1005.1084
  • 66. The role of spin-orbit coupling (SOC) z E.g. reflection through a vertical plane perpendicular to the y axis:  v, J  I C2y, J y x Quintanilla, Hillier, Annett and Cywinski, arXiv :1005.1084
  • 67. The role of spin-orbit coupling (SOC) z E.g. reflection through a vertical plane perpendicular to the y axis:  v, J  I C2y, J This affects d(k) (a vector under spin rotations). y x Quintanilla, Hillier, Annett and Cywinski, arXiv :1005.1084
  • 68. The role of spin-orbit coupling (SOC) z E.g. reflection through a vertical plane perpendicular to the y axis:  v, J  I C2y, J This affects d(k) (a vector under spin rotations). It does not affect 0(k) (a scalar). y x Quintanilla, Hillier, Annett and Cywinski, arXiv :1005.1084
  • 69. The role of spin-orbit coupling (SOC) C2v,Jno t Gap function, Gap function, singlet component triplet component A1 (k) = A d(k) = (Bky,Ckx,Dkxkykz) A2  (k) = AkxkY d(k) = (Bkx,Cky,Dkz) B1  (k) = AkXkZ d(k) = (Bkxkykz,Ckz,Dky) B2  (k) = AkYkZ d(k) = (Bkz, Ckxkykz,Dkx) Quintanilla, Hillier, Annett and Cywinski, arXiv :1005.1084
  • 70. The role of spin-orbit coupling (SOC) C2v,Jno t Gap function, Gap function, singlet component triplet component A1 (k) = A d(k) = (Bky,Ckx,Dkxkykz) A2  (k) = AkxkY d(k) = (Bkx,Cky,Dkz) B1  (k) = AkXkZ d(k) = (Bkxkykz,Ckz,Dky) B2  (k) = AkYkZ d(k) = (Bkz, Ckxkykz,Dkx) None of these break time-reversal symmetry! Quintanilla, Hillier, Annett and Cywinski, arXiv :1005.1084
  • 71. How could this happen? k    0 k i y  dk .σi y ˆ ˆ ˆ ˆ Gap matrices in the absence of SOC can be described in terms of limiting cases of those in the presence of SOC. E.g. Ai y ˆ ( 1A1 ) ˆ    A i y  Bk y , Ck x , Dk x k y k z .σ i y ˆ ˆ ( A1 ) for B = C = D = 0 Quintanilla, Hillier, Annett and Cywinski, arXiv :1005.1084
  • 72. How could this happen? Some instabilities split in two under the influence of SOC: E.g. 1, i,0k z .σi y ˆ ˆ ( 3A1(b) )  ˆ   Ak y k z i y  Bk z , Ck x k y k z , Dk x .σ i y  ˆ ˆ  ( B2 )  with A, B, C, D  0,1,0,0   i ˆ   Ak x k z i y  Bk x k y k z , Ck z , Dk y .σ i y  ˆ ˆ  ( B1 )  with A, B, C, D  0,0,1,0  Quintanilla, Hillier, Annett and Cywinski, arXiv :1005.1084
  • 73. Relativistic and non-relativistic instabilities: a complex relationship A1 A2 B1 B2 singlet Pairing 1A 1A 1B 1B instabilities 1 2 1 2 non-unitary 3B 3A triplet 1(b) 1(b) pairing 3B 3A instabilities 2(b) 2(b) unitary triplet 3A 3A 3B 3B pairing 1(a) 2(a) 1(a) 2(a) instabilities
  • 74. Relativistic and non-relativistic instabilities: a complex relationship 1A A1 1 1A A2 2 3A (b) B2 1B 1 1 B1 B1 1B B2 B1 2 3A (b) 2 B2 3A (a) A2 3B (b) A2 1 1 3A (a) A1 A1 2 A1 3B (a) 1 B2 3B (b) 2 A2 3B (a) 2 B1 spin-orbit coupling spin-orbit coupling Quintanilla, Hillier, Annett and Cywinski, arXiv :1005.1084
  • 75. The role of spin-orbit coupling (SOC) The second (lower-Tc) instability can be symmetry-breaking because it is no longer an instability of the normal state: B2 The experiments show a (kz,0,0) transition straight into the 3A (b) 1 broken TRS phase (k ,ik ,0) B1 ⇒ SOC must be small in z z i(0,kz,0) LaNiC2 N.B. singlet component must be very small too. SOC Quintanilla, Hillier, Annett and Cywinski, arXiv :1005.1084
  • 77. Summary What have we learned about LaNiC2?
  • 78. Summary What have we learned about LaNiC2?  Experimental observation: the superconducting state breaks time-reversal symmetry.
  • 79. Summary What have we learned about LaNiC2?  Experimental observation: the superconducting state breaks time-reversal symmetry. Theoretical implications: non-unitary triplet pairing ; weak SOC ; split transition.
  • 80. Summary What have we learned about LaNiC2?  Experimental observation: the superconducting state breaks time-reversal symmetry. Theoretical implications: non-unitary triplet pairing ; weak SOC ; split transition. What do we not know yet?
  • 81. Summary What have we learned about LaNiC2?  Experimental observation: the superconducting state breaks time-reversal symmetry. Theoretical implications: non-unitary triplet pairing ; weak SOC ; split transition. What do we not know yet?  Which pairing symmetry?
  • 82. Summary What have we learned about LaNiC2?  Experimental observation: the superconducting state breaks time-reversal symmetry. Theoretical implications: non-unitary triplet pairing ; weak SOC ; split transition. What do we not know yet?  Which pairing symmetry? Why non-unitary?
  • 83. Summary What have we learned about LaNiC2?  Experimental observation: the superconducting state breaks time-reversal symmetry. Theoretical implications: non-unitary triplet pairing ; weak SOC ; split transition. What do we not know yet?  Which pairing symmetry? Why non-unitary? Take this home:
  • 84. Summary What have we learned about LaNiC2?  Experimental observation: the superconducting state breaks time-reversal symmetry. Theoretical implications: non-unitary triplet pairing ; weak SOC ; split transition. What do we not know yet?  Which pairing symmetry? Why non-unitary? Take this home: There’s more than Rashba to noncentrosymmetric superconductors

Editor's Notes

  1. The Hasegawa-Taniguchi argument is that Tc is suppressed in annealed samples, compared to as-cast samples, because in the former SOC is greater and is pair-breaking (i.e. SOC fights against the SC).