SlideShare a Scribd company logo
1 of 127
Download to read offline
Thermodynamic signatures
of topological transitions
in nodal superconductors
arXiv:1302.2161
Bayan Mazidian1,2 , Jorge Quintanilla2,3
James F. Annett1 , Adrian D. Hillier2
1
University of Bristol
ISIS Facility, STFC Rutherford Appleton Laboratory
3
SEPnet and Hubbard Theory Consortium, University of Kent
2

Birmingham, UK, 14 November 2013

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

1 / 95
Anomalous thermodynamic power laws in nodal
superconductors

1

What are they?

2

How to get them

3

An example

4

Take-home message

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

2 / 95
Anomalous thermodynamic power laws in nodal
superconductors

1

What are they?

2

How to get them

3

An example

4

Take-home message
Power laws in nodal superconductors
Low-temperature specific heat of a superconductor gives information on the
spectrum of low-lying excitations:
Fully gapped

Point nodes
Cv ∼

T3

Line nodes
Cv ∼ T 2

∆

Cv ∼

e −∆/T

This simple idea has been around for a while.1
Widely used to fit experimental data on unconventional superconductors.2

1 Anderson
2 Sigrist,

& Morel (1961), Leggett (1975)
Ueda (’89), Annett (’90), MacKenzie & Maeno (’03)

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

4 / 95
Linear nodes
It all comes from the density of states:

+

g (E ) ∼ E n−1 ⇒ Cv ∼ T n

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

5 / 95
Linear nodes
It all comes from the density of states:

+

g (E ) ∼ E n−1 ⇒ Cv ∼ T n
linear
point node

line node

y
x
∆2 = I1 k|| 2 + k||
k

g (E ) =

2

E2 √
2(2π )2 I1 I2

g (E ) =

n=3

Jorge Quintanilla (Kent and ISIS)

x
∆2 = I1 k|| 2
k

LE √
√
(2π )3 I1 I2

n=2

arXiv:1302.2161

B’ham 2013

5 / 95
Linear nodes
It all comes from the density of states:

+

g (E ) ∼ E n−1 ⇒ Cv ∼ T n
linear
point node

line node

y
x
∆2 = I1 k|| 2 + k||
k

g (E ) =

2

E2 √
2(2π )2 I1 I2

x
∆2 = I1 k|| 2
k

g (E ) =

n=3

LE √
√
(2π )3 I1 I2

n=2

Key assumption: linear increase of the gap away from the node

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

5 / 95
Shallow nodes
Relax the linear assumption and we also get different exponents:

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

6 / 95
Shallow nodes
Relax the linear assumption and we also get different exponents:
shallow
point node

line node

2

y
x
∆2 = I1 (k|| 2 + k|| )2
k

g (E ) =

E √
√
I1 I2

2(2π )2

g (E ) =

n=2

Jorge Quintanilla (Kent and ISIS)

x
∆2 = I1 k|| 4
k

√
L E
1√

(2π )3 I14

I2

n = 1.5

arXiv:1302.2161

B’ham 2013

6 / 95
Shallow nodes
Relax the linear assumption and we also get different exponents:
shallow
point node

line node

2

y
x
∆2 = I1 (k|| 2 + k|| )2
k

g (E ) =

E √
√
I1 I2

2(2π )2

x
∆2 = I1 k|| 4
k

g (E ) =

n=2

√
L E
1√

(2π )3 I14

I2

n = 1.5

Shallow point nodes first discussed (speculatively) by Leggett [1979].

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

6 / 95
Shallow nodes
Relax the linear assumption and we also get different exponents:
shallow
point node

line node

2

y
x
∆2 = I1 (k|| 2 + k|| )2
k

g (E ) =

E √
√
I1 I2

2(2π )2

x
∆2 = I1 k|| 4
k

g (E ) =

n=2

√
L E
1√

(2π )3 I14

I2

n = 1.5

Shallow point nodes first discussed (speculatively) by Leggett [1979].
A shallow point node may be required by symmetry e.g. the proposed E2u
pairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

6 / 95
Shallow nodes
Relax the linear assumption and we also get different exponents:
shallow
point node

line node

2

y
x
∆2 = I1 (k|| 2 + k|| )2
k

g (E ) =

E √
√
I1 I2

2(2π )2

x
∆2 = I1 k|| 4
k

g (E ) =

n=2

√
L E
1√

(2π )3 I14

I2

n = 1.5

Shallow point nodes first discussed (speculatively) by Leggett [1979].
A shallow point node may be required by symmetry e.g. the proposed E2u
pairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].
A shallow line node may result at the boundary between gapless and line node
behaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +
Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

6 / 95
Shallow nodes
Relax the linear assumption and we also get different exponents:
shallow
point node

line node

2

y
x
∆2 = I1 (k|| 2 + k|| )2
k

g (E ) =

E √
√
I 1 I2

2(2π )2

x
∆2 = I1 k|| 4
k

g (E ) =

n=2

√
L E
1√

(2π )3 I14

I2

n = 1.5

Shallow point nodes first discussed (speculatively) by Leggett [1979].
A shallow point node may be required by symmetry e.g. the proposed E2u
pairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].
A shallow line node may result at the boundary between gapless and line node
behaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +
Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

7 / 95
Line crossings
A different power law is expected at line crossings
(e.g. d-wave pairing on a spherical Fermi surface):
crossing
of linear line nodes

y
x
∆2 = I1 k|| 2 − k||
k
y
x
or I1 k|| 2 k||

2 2

2

1
√
4
L+ E /I1
1
√
E /I 4
√ 1
(2π )3 I1 I2

E (1+2ln|

g (E )

|)

=
∼ E 0 .8
n = 1.8 (< 2 !!)

+

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

8 / 95
Crossing of shallow line nodes
When shallow lines cross we get an even lower exponent:
crossing
of shallow line nodes

y
x
∆2 = I1 k|| 2 − k||
k
y
x
or I1 k|| 4 k||

√

g (E )

=

2 4

4

1 1
8
L+E 4 /I1
1 1
8
E 4 /I1
1√
3I 4 I
(2π ) 1
2

E (1+2ln|

|)

∼ E 0 .4
n = 1.4 *

* c.f. gapless excitations of a Fermi liquid: g (E ) = constant ⇒ n = 1
+
Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

9 / 95
Numerics
n = d ln Cv /d ln T
4.5

linear point node
shallow point node
linear line node
crossing of linear line nodes
shallow line node
crossing of shallow line nodes

4
3.5

n

3
2.5
2
1.5
1
0
Jorge Quintanilla (Kent and ISIS)

0.05

0.1

0.15
0.2
T / Tc
arXiv:1302.2161

0.25

0.3

0.35
B’ham 2013

10 / 95
Anomalous thermodynamic power laws in nodal
superconductors

1

What are they?

2

How to get them

3

An example

4

Take-home message
A generic mechanism

∆0

∆1

We propose that shallow nodes will exist generically at topological phase
transitions in superocnductors with multi-component order parameters:

Fermi Sea

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

12 / 95
A generic mechanism

∆0

∆1

We propose that shallow nodes will exist generically at quantum phase
transitions in superocnductors with multi-component order parameters:

Fermi Sea

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

13 / 95
A generic mechanism

∆0

∆1

We propose that shallow nodes will exist generically at quantum phase
transitions in superocnductors with multi-component order parameters:

Fermi Sea

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

14 / 95
A generic mechanism

∆0

∆1

Linear
nodes

Linear
nodes

We propose that shallow nodes will exist generically at quantum phase
transitions in superocnductors with multi-component order parameters:

Fermi Sea

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

15 / 95
A generic mechanism

∆0

∆1

We propose that shallow nodes will exist generically at quantum phase
transitions in superocnductors with multi-component order parameters:

Fermi Sea

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

16 / 95
A generic mechanism

∆0

∆1

We propose that shallow nodes will exist generically at quantum phase
transitions in superocnductors with multi-component order parameters:

Fermi Sea

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

17 / 95
A generic mechanism

∆0

∆1

Shallow
node

Shallow
node

We propose that shallow nodes will exist generically at quantum phase
transitions in superocnductors with multi-component order parameters:

Fermi Sea

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

18 / 95
Note: no broken symmetry
Photo: Eddie Hui-Bon-Hoa, www.shiromi.com



Jorge Quintanilla (Kent and ISIS)



arXiv:1302.2161

B’ham 2013

19 / 95
Jorge Quintanilla (Kent and ISIS)

Photo: Kenneth G. Libbrecht, snowflakes.com

Photo: Eddie Hui-Bon-Hoa, www.shiromi.com

Note: no broken symmetry

arXiv:1302.2161









B’ham 2013

19 / 95
Photo: commons.wikimedia.org

Jorge Quintanilla (Kent and ISIS)
Photo: Kenneth G. Libbrecht, snowflakes.com

Photo: Eddie Hui-Bon-Hoa, www.shiromi.com

Note: no broken symmetry

arXiv:1302.2161











B’ham 2013
19 / 95
Photo: commons.wikimedia.org

Jorge Quintanilla (Kent and ISIS)
Photo: Kenneth G. Libbrecht, snowflakes.com

Photo: Eddie Hui-Bon-Hoa, www.shiromi.com

Note: no broken symmetry

arXiv:1302.2161











B’ham 2013
19 / 95
Photo: commons.wikimedia.org

Jorge Quintanilla (Kent and ISIS)
Photo: Kenneth G. Libbrecht, snowflakes.com

Photo: Eddie Hui-Bon-Hoa, www.shiromi.com

Note: no broken symmetry

arXiv:1302.2161











B’ham 2013
19 / 95
These are topological transitions

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

20 / 95
These are topological transitions

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

20 / 95
These are topological transitions

G. E. Volovik in “Quantum Analogues: From Phase Transitions to Black Holes and Cosmology“, William G.
Unruh and Ralf Schützhold (Eds.), Springer (2007).

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

20 / 95
These are topological transitions

G. E. Volovik in “Quantum Analogues: From Phase Transitions to Black Holes and Cosmology“, William G.
Unruh and Ralf Schützhold (Eds.), Springer (2007).

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

20 / 95
These are topological transitions

G. E. Volovik in “Quantum Analogues: From Phase Transitions to Black Holes and Cosmology“, William G.
Unruh and Ralf Schützhold (Eds.), Springer (2007).

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

20 / 95
These are topological transitions

G. E. Volovik in “Quantum Analogues: From Phase Transitions to Black Holes and Cosmology“, William G.
Unruh and Ralf Schützhold (Eds.), Springer (2007).

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

20 / 95
Anomalous thermodynamic power laws in nodal
superconductors

1

What are they?

2

How to get them

3

An example

4

Take-home message
Singlet-triplet mixing in noncentrosymmetric
superconductors
Non-centrosymmetric superconductors are the multi-component order
parameter supercondcutors par excellence:

 0  0  dx  id y
ˆ
k  
 
 0 0   dz
[ 0(k) even ]
singlet

฀

dz 

dx  id y 

triplet
[ d(k) odd ]

3 Batkova

et al. JPCM (2010)
et al. PRB (2007)
5 Adrian D. Hillier, JQ and R. Cywinski PRL (2009)
6 Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)
7 Bauer et al. PRL (2004)
4 Zuev

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

22 / 95
Singlet-triplet mixing in noncentrosymmetric
superconductors
Non-centrosymmetric superconductors are the multi-component order
parameter supercondcutors par excellence:

 0  0  dx  id y
ˆ
k  
 
 0 0   dz
[ 0(k) even ]
singlet

dz 

dx  id y 

triplet
[ d(k) odd ]

In practice, there is a varied phenomenology:
฀

3 Batkova

et al. JPCM (2010)
et al. PRB (2007)
5 Adrian D. Hillier, JQ and R. Cywinski PRL (2009)
6 Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)
7 Bauer et al. PRL (2004)
4 Zuev

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

22 / 95
Singlet-triplet mixing in noncentrosymmetric
superconductors
Non-centrosymmetric superconductors are the multi-component order
parameter supercondcutors par excellence:

 0  0  dx  id y
ˆ
k  
 
 0 0   dz
[ 0(k) even ]
singlet

dz 

dx  id y 

triplet
[ d(k) odd ]

In practice, there is a varied phenomenology:
฀

Some are conventional (singlet) superconductors:
BaPtSi33 , Re3W4 ,...
Others seem to be correlated, purely triplet superconductors:
LaNiC25 (c.f. centrosymmetric LaNiGa26 ) + , CePtr3Si (?)

+

7

3 Batkova

et al. JPCM (2010)
et al. PRB (2007)
5 Adrian D. Hillier, JQ and R. Cywinski PRL (2009)
6 Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)
7 Bauer et al. PRL (2004)
4 Zuev

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

22 / 95
Li2 Pdx Pt3−x B: tunable singlet-triplet mixing
The Li2 Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunable
realisation of this singlet-triplet mixing:

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

23 / 95
Li2 Pdx Pt3−x B: tunable singlet-triplet mixing
The Li2 Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunable
realisation of this singlet-triplet mixing:
Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)

Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

23 / 95
Li2 Pdx Pt3−x B: tunable singlet-triplet mixing
The Li2 Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunable
realisation of this singlet-triplet mixing:
Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)

Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)
The series goes from fully-gapped
(x = 3) to nodal (x = 0):

H.Q. Yuan et al.,
Phys. Rev. Lett. 97, 017006 (2006).
Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

23 / 95
Li2 Pdx Pt3−x B: tunable singlet-triplet mixing
The Li2 Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunable
realisation of this singlet-triplet mixing:
Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)

Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)
The series goes from fully-gapped
(x = 3) to nodal (x = 0):

NMR suggests nodal state a triplet:

H.Q. Yuan et al.,
Phys. Rev. Lett. 97, 017006 (2006).
Jorge Quintanilla (Kent and ISIS)

M.Nishiyama et al.,
Phys. Rev. Lett. 98, 047002 (2007)
arXiv:1302.2161

B’ham 2013

23 / 95
Li2 Pdx Pt3−x B: Phase diagram
Bogoliubov Hamiltonian with Rashba spin-orbit coupling:
H (k) =

ˆ
h (k)
ˆ † (k)
∆

ˆ
∆ (k)
ˆ T (−k)
−h

ˆ
h (k) = ε k I + γk · σ
ˆ
ˆ ˆ
∆ (k) = [∆0 (k) + d (k) · σ ] i σy (most general gap matrix)

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

24 / 95
Li2 Pdx Pt3−x B: Phase diagram
Bogoliubov Hamiltonian with Rashba spin-orbit coupling:
H (k) =

ˆ
h (k)
ˆ † (k)
∆

ˆ
∆ (k)
ˆ T (−k)
−h

ˆ
h (k) = ε k I + γk · σ
ˆ
ˆ ˆ
∆ (k) = [∆0 (k) + d (k) · σ ] i σy (most general gap matrix)
Assuming |ε k | ≫ |γk | ≫ |d (k)| the quasi-particle spectrum is

 ± (ε − µ + |γ |)2 + (∆ (k) + |d (k)|)2 ; and
0
k
k
.
E =
 ± (ε − µ − |γ |)2 + (∆ (k) − |d (k)|)2
0
k
k

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

24 / 95
Li2 Pdx Pt3−x B: Phase diagram
Bogoliubov Hamiltonian with Rashba spin-orbit coupling:
H (k) =

ˆ
h (k)
ˆ † (k)
∆

ˆ
∆ (k)
ˆ T (−k)
−h

ˆ
h (k) = ε k I + γk · σ
ˆ
ˆ ˆ
∆ (k) = [∆0 (k) + d (k) · σ ] i σy (most general gap matrix)
Assuming |ε k | ≫ |γk | ≫ |d (k)| the quasi-particle spectrum is

 ± (ε − µ + |γ |)2 + (∆ (k) + |d (k)|)2 ; and
0
k
k
.
E =
 ± (ε − µ − |γ |)2 + (∆ (k) − |d (k)|)2
0
k
k
Take most symmetric (A1 ) irreducible representation:

+

∆0 (k) = ∆0
d(k) = ∆0 × {

2
2
2
2
2
2
A (x ) (kx , ky , kz ) − B (x ) kx ky + kz , ky kz + kx , kz kx + ky }

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

24 / 95
Li2 Pdx Pt3−x B: Phase diagram
Treat A and B as independent tuning parameters and study quasiparticle
spectrum. We find a very rich phase diagram with topollogically-distinct phases:8

8 C. Beri, PRB (2010); A. Schnyder, S. Ryu, PRB(R) (2011); A. Schnyder et al.,
PRB (2012); B. Mazidian, JQ, A.D. Hillier, J.F. Annett, arXiv:1302.2161.
Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

25 / 95
Li2 Pdx Pt3−x B: Phase diagram
We find a very rich phase diagram with topollogically-distinct phases.9

9 C. Beri, PRB (2010); A. Schnyder, S. Ryu, PRB(R) (2011); A. Schnyder et al.,
PRB (2012); B. Mazidian, JQ, A.D. Hillier, J.F. Annett, arXiv:1302.2161.
Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

26 / 95
Li2 Pdx Pt3−x B: Phase diagram

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

27 / 95
Li2 Pdx Pt3−x B: Phase diagram

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

28 / 95
Li2 Pdx Pt3−x B: Phase diagram

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

29 / 95
Li2 Pdx Pt3−x B: Phase diagram

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

30 / 95
Detecting the topological transitions

4

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

3

7

B’ham 2013

31 / 95
Detecting the topological transitions

4

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

3

7

B’ham 2013

32 / 95
Li2 Pdx Pt3−x B: predicted specific heat power-laws

4

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

3

B’ham 2013

33 / 95
Li2 Pdx Pt3−x B: predicted specific heat power-laws
5
n=2

j

4
n=2

3

n = 1.8

11
n = 1.4

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

34 / 95
Li2 Pdx Pt3−x B: predicted specific heat power-laws

3

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

35 / 95
Li2 Pdx Pt3−x B: predicted specific heat power-laws

3

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

36 / 95
Li2 Pdx Pt3−x B: predicted specific heat power-laws
5
n=2

j

4
n=2

3

n = 1.8

11
n = 1.4

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

37 / 95
Anomalous power laws throughout the phase diagram
Does the observation of these effects require fine-tuning?

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

38 / 95
Anomalous power laws throughout the phase diagram
Does the observation of these effects require fine-tuning?
Let’s put these curves on a density plot:

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

38 / 95
Anomalous power laws throughout the phase diagram
Does the observation of these effects require fine-tuning?
Let’s put these curves on a density plot:
A=3

0.25

2.2
2.1

0.2

2
T/Tc

0.15
1.9
0.1
1.8
0.05

1.7

0

1.6
3.6

3.8

4

4.2

4.4

B

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

38 / 95
Anomalous power laws throughout the phase diagram
Does the observation of these effects require fine-tuning?
Let’s put these curves on a density plot:
A=3

0.25

2.2
2.1

0.2

2
T/Tc

0.15
1.9
0.1
1.8
0.05

1.7

0

1.6
3.6

3.8

4

4.2

4.4

B

The conventional exponent (n = 2 in this example) is only seen below a
temperature scale that converges to zero at the transition

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

38 / 95
Anomalous power laws throughout the phase diagram
Does the observation of these effects require fine-tuning?
Let’s put these curves on a density plot:
A=3

0.25

2.2
2.1

0.2

2
T/Tc

0.15
1.9
0.1
1.8
0.05

1.7

0

1.6
3.6

3.8

4

4.2

4.4

B

The conventional exponent (n = 2 in this example) is only seen below a
temperature scale that converges to zero at the transition
The anomalous exponent (here n = 1.8) is seen everywhere else

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

38 / 95
Anomalous power laws throughout the phase diagram
Does the observation of these effects require fine-tuning?
Let’s put these curves on a density plot:
A=3

0.25

2.2
2.1

0.2

2
T/Tc

0.15
1.9
0.1
1.8
0.05

1.7

0

1.6
3.6

3.8

4

4.2

4.4

B

The conventional exponent (n = 2 in this example) is only seen below a
temperature scale that converges to zero at the transition
The anomalous exponent (here n = 1.8) is seen everywhere else ⇒
the influence of the topo transition extends throughout the phase diagram
Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

38 / 95
Anomalous power laws throughout the phase diagram
Does the observation of these effects require fine-tuning?
Let’s put these curves on a density plot:
A=3

0.25

2.2
2.1

0.2

2
T/Tc

0.15
1.9
0.1
1.8
0.05

1.7

0

1.6
3.6

3.8

4

4.2

4.4

B

The conventional exponent (n = 2 in this example) is only seen below a
temperature scale that converges to zero at the transition
The anomalous exponent (here n = 1.8) is seen everywhere else ⇒
the influence of the topo transition extends throughout the phase diagram
c.f. quantum critical endpoints but here we did not have to fine-tune Tc → 0

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

38 / 95
Anomalous thermodynamic power laws in nodal
superconductors

1

What are they?

2

How to get them

3

An example

4

Take-home message
Topological transitions in nodal superconductors
have clear signatures in bulk thermodynamic properties.

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

40 / 95
Topological transitions in nodal superconductors
have clear signatures in bulk thermodynamic properties.

THANKS!
www.cond-mat.org

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

40 / 95
Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

41 / 95
Power laws in nodal superconductors

Let’s remember where this came from:

dS
dT

Cv = T

∼ T −2

=

1
2kB T 2




∑  Ek − T

k



dEk 
 Ek sech2 Ek
dT 
2kB T
≈0

dEg (E ) E 2 e −E /kB T at low T

g (E ) ∼ E n−1 ⇒ Cv ∼ T n

≈4e −Ek /KB T

d ǫǫ2+n−1 e −ǫ
a number

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

41 / 95
Power laws in nodal superconductors

k_
|

Ek =

≈

∆(k||x,k||y)

2
ǫk + ∆ 2
k
y
2
x
I2 k⊥ + ∆ k|| , k||

k||y

2

on the Fermi surface

k||x

Compute density of states:
g (E ) =

δ(Ek − E )dkx dky dkz
back

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

42 / 95
Shallow line nodes in pnictides

back

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

43 / 95
Logarithm ⇒ power law (n − 1 = 0.8)

The power-law expression is asymptotically very good at E → 0:

back

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

44 / 95
Logarithm ⇒ power law (n − 1 = 0.4)

The power-law expression is asymptotically very good at E → 0:

back

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

45 / 95
Symmetry of pairing in NCS
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?
Neglect (for now!) spin-orbit coupling:

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

46 / 95
Symmetry of pairing in NCS
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?
Neglect (for now!) spin-orbit coupling:

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

47 / 95
Symmetry of pairing in NCS
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?
Neglect (for now!) spin-orbit coupling:

Singlet and triplet representations of SO(3):

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

48 / 95
Symmetry of pairing in NCS
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?
Neglect (for now!) spin-orbit coupling:

Singlet and triplet representations of SO(3):
Γns = - (Γns)T , Γnt = + (Γnt)T

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

49 / 95
Symmetry of pairing in NCS
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?
Neglect (for now!) spin-orbit coupling:

Singlet and triplet representations of SO(3):
Γns = - (Γns)T , Γnt = + (Γnt)T
I pose Pauli s exclusio pri ciple:

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

50 / 95
Symmetry of pairing in NCS
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?
Neglect (for now!) spin-orbit coupling:

Singlet and triplet representations of SO(3):

 , ' k   ', k

Γns = - (Γns)T , Γnt = + (Γnt)T
I pose Pauli s exclusio pri ciple:

฀
Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

51 / 95
Symmetry of pairing in NCS
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?
Neglect (for now!) spin-orbit coupling:

Singlet and triplet representations of SO(3):

 , ' k   ', k

Γns = - (Γns)T , Γnt = + (Γnt)T
I pose Pauli s exclusio pri ciple:


฀

ˆ
 k

Jorge Quintanilla (Kent and ISIS)

either singlet

฀
arXiv:1302.2161

B’ham 2013

52 / 95
Symmetry of pairing in NCS
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?
Neglect (for now!) spin-orbit coupling:

Singlet and triplet representations of SO(3):

 , ' k   ', k

Γns = - (Γns)T , Γnt = + (Γnt)T

ˆ
 , ' k    0 k i y

I pose Pauli s exclusio pri ciple:


฀

ˆ
 k

Jorge Quintanilla (Kent and ISIS)

either singlet

฀

arXiv:1302.2161

B’ham 2013

53 / 95
Symmetry of pairing in NCS
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?
Neglect (for now!) spin-orbit coupling:

Singlet and triplet representations of SO(3):

 , ' k   ', k

Γns = - (Γns)T , Γnt = + (Γnt)T

ˆ
 , ' k    0 k i y

I pose Pauli s exclusio pri ciple:


ˆ
 k

either singlet

฀

or triplet

฀

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

54 / 95
Symmetry of pairing in NCS
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?
Neglect (for now!) spin-orbit coupling:

Singlet and triplet representations of SO(3):

 , ' k   ', k

Γns = - (Γns)T , Γnt = + (Γnt)T

ˆ
 , ' k    0 k i y

I pose Pauli s exclusio pri ciple:


ˆ
 k

either singlet

฀

or triplet

฀

Jorge Quintanilla (Kent and ISIS)

ˆ ˆ
 , ' k   dk .σi y

arXiv:1302.2161

B’ham 2013

55 / 95
Symmetry of pairing in NCS

The role of spin-orbit coupling (SOC)
 , ' k   spin ' orbit k 
 ,


Gap function may have both singlet and triplet components

 0
ˆ
k   
  0

 0   d x  id y

0   dz



d x  id y 

dz

• However, if we have a centre of inversion
basis functions either even or odd under inversion

 still have either singlet or triplet pairing (at Tc)

• No centre of inversion: may have singlet and triplet (even at Tc)
Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

back

56 / 95
LaNiC2 – a weakly-correlated, paramagnetic
superconductor?
W. H. Lee et al., Physica C 266, 138 (1996)
V. K. Pecharsky, L. L. Miller, and Zy, Physical Review B 58, 497 (1998)

specific heat

susceptibility
c 0 = 22.2 10-6 emu/mol

 0 = 6.5 mJ/mol K2

Tc=2.7 K
Jorge Quintanilla (Kent and ISIS)

ΔC/TC=1.26
(BCS: 1.43)
arXiv:1302.2161

B’ham 2013

57 / 95
ISIS

muSR

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

58 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

Zero field muon spin relaxation
_

e
sample

e



forward
detector
backward
detector

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

59 / 95
Relaxation due to electronic moments
_


e

(longitudinal)


sample

e

forward
detector
backward
detector

Moment
size
~ 0.1G
(~ 0.01μB)

Timescale:
-4
>
~ 10 s

Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

60 / 95
Relaxation due to electronic moments
_


e

(longitudinal)


sample

e

forward
detector
backward
detector

Moment
size
~ 0.1G
(~ 0.01μB)

Timescale:
-4
>
~ 10 s

Spontaneous, quasi-static fields appearing at Tc
⇒ superconducting state breaks time-reversal symmetry

Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS)

[ c.f. Sr2RuO4 - Luke et al., Nature (1998) ]

arXiv:1302.2161

B’ham 2013

61 / 95
LaNiC2 is a non-ceontrsymmetric superconductor
Neutron diffraction
35000

30000

Intensity (arb units)

25000

Data from
D1B @ ILL

20000

15000

10000

5000

0
30

Orthorhombic Amm2 C2v
40

50

60

2  

70

80

o

Note no inversion centre.
C.f. CePt3Si (1), Li2Pt3B & Li2Pd3B

(2),

a=3.96 Å
b=4.58 Å
c=6.20 Å

...

(1) Bauer et al. PRL’04 (2) Yuan et al. PRL’06

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

62 / 95
Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

63 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

Character table

Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

64 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

Character table

Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

65 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

Character table

Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

66 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

Character table
180o

Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

67 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

Character table
C2v

Symmetries and
their characters

Irreducible
E C2 v
representation

’v

Sample basis
functions

Even

Odd

A1

1 1

1

1

1

Z

A2

1 1

-1

-1

XY

XYZ

B1

1 -1

1

-1

XZ

X

B2

1 -1 -1

1

YZ

Y

Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

68 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

Character table
C2v

Symmetries and
their characters

Irreducible
E C2 v
representation

’v

Sample basis
functions

Even

Odd

A1

1 1

1

1

1

Z

A2

1 1

-1

-1

XY

XYZ

B1

1 -1

1

-1

XZ

X

B2

1 -1 -1

1

YZ

Y

These must be combined with the singlet and triplet
representations of SO(3).

Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

69 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

Possible order parameters
SO(3)xC2v
1A

1

1A

2

1B

1

1B

2

Gap function
(unitary)

Gap function
(non-unitary)

(k)=kxkY

-

(k)=1

(k)=kXkZ

-

(k)=kYkZ

-

3A

1

d(k)=(0,0,1)kZ

d(k)=(1,i,0)kZ

3A
3B
3B

2

d(k)=(0,0,1)kXkYkZ

d(k)=(1,i,0)kXkYkZ

1

d(k)=(0,0,1)kX

d(k)=(1,i,0)kX

2

d(k)=(0,0,1)kY

d(k)=(1,i,0)kY

Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

70 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

Possible order parameters
SO(3)xC2v
1A

1

1A

2

1B

1

1B

2

Gap function
(unitary)

Gap function
(non-unitary)

(k)=kxkY

-

(k)=1

(k)=kXkZ

-

(k)=kYkZ

-

3A

1

d(k)=(0,0,1)kZ

d(k)=(1,i,0)kZ

3A
3B
3B

2

d(k)=(0,0,1)kXkYkZ

d(k)=(1,i,0)kXkYkZ

1

d(k)=(0,0,1)kX

d(k)=(1,i,0)kX

2

d(k)=(0,0,1)kY

d(k)=(1,i,0)kY

Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

71 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

Possible order parameters
SO(3)xC2v
1A

1

1A

2

1B

1

1B

2

Gap function
(unitary)

Gap function
(non-unitary)

(k)=kxkY

-

(k)=1

(k)=kXkZ

-

(k)=kYkZ

-

3A

1

d(k)=(0,0,1)kZ

d(k)=(1,i,0)kZ

3A
3B
3B

2

d(k)=(0,0,1)kXkYkZ

d(k)=(1,i,0)kXkYkZ

1

d(k)=(0,0,1)kX

d(k)=(1,i,0)kX

2

d(k)=(0,0,1)kY

d(k)=(1,i,0)kY

Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

72 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

Possible order parameters
SO(3)xC2v
1A

1

1A

2

1B

1

1B

2

Gap function
(unitary)

Gap function
(non-unitary)

(k)=kxkY

-

(k)=1

(k)=kXkZ

-

(k)=kYkZ

-

3A

1

d(k)=(0,0,1)kZ

d(k)=(1,i,0)kZ

3A
3B
3B

2

d(k)=(0,0,1)kXkYkZ

d(k)=(1,i,0)kXkYkZ

1

d(k)=(0,0,1)kX

d(k)=(1,i,0)kX

2

d(k)=(0,0,1)kY

d(k)=(1,i,0)kY

Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS)

Non-unitary
d x d* ≠ 0

arXiv:1302.2161

B’ham 2013

73 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

Possible order parameters
SO(3)xC2v
1A

1

1A

2

1B

1

1B

2

Gap function
(unitary)
(k)=1

(k)=kxkY

(k)=kXkZ

(k)=kYkZ

Gap function
(non-unitary)
breaks only SO(3) x U(1) x T
-

3A

1

d(k)=(0,0,1)kZ

d(k)=(1,i,0)kZ

3A
3B
3B

2

d(k)=(0,0,1)kXkYkZ

d(k)=(1,i,0)kXkYkZ

1

d(k)=(0,0,1)kX

d(k)=(1,i,0)kX

2

d(k)=(0,0,1)kY

d(k)=(1,i,0)kY

* C.f. Li2Pd3B & Li2Pt3B,
H. Q. Yua et al. P‘L 0
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS)

*

Non-unitary
d x d* ≠ 0

arXiv:1302.2161

B’ham 2013

74 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

Non-unitary pairing
Spin-up superfluid
coexisting with spindown Fermi liquid.

ˆ 
   
 0


0  0 0 

 or 
0   0   
 


C.f.
The A1 phase of
liquid 3He.

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

75 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)
G = [SO(3)×Gc]×U(1)×T

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

76 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)
G = [SO(3)×Gc]×U(1)×T

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

77 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)
G = [SO(3)×Gc]×U(1)×T

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

78 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)
G = [SO(3)×Gc]×U(1)×T

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

79 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)
G = [SO(3)×Gc]×U(1)×T

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

80 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)
G = Gc,J×U(1)×T

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

81 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)
G = Gc,J×U(1)×T

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

82 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)
G = Gc,J×U(1)×T

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

83 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)
z
E.g. reflection through a vertical
plane perpendicular to the y axis:

 v, J  I C2y, J

y

x

Quintanilla, Hillier, Annett and Cywinski,
PRB 82, 174511 (2010)

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

84 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)
z
E.g. reflection through a vertical
plane perpendicular to the y axis:

 v, J  I C2y, J

y

x

Quintanilla, Hillier, Annett and Cywinski,
PRB 82, 174511 (2010)

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

85 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)
z
E.g. reflection through a vertical
plane perpendicular to the y axis:

 v, J  I C2y, J

y

x

Quintanilla, Hillier, Annett and Cywinski,
PRB 82, 174511 (2010)

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

86 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)
z
E.g. reflection through a vertical
plane perpendicular to the y axis:

 v, J  I C2y, J

y

x

Quintanilla, Hillier, Annett and Cywinski,
PRB 82, 174511 (2010)

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

87 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)
z
E.g. reflection through a vertical
plane perpendicular to the y axis:

 v, J  I C2y, J

This affects d(k) (a vector under
spin rotations).

y

x

Quintanilla, Hillier, Annett and Cywinski,
PRB 82, 174511 (2010)

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

88 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)
z
E.g. reflection through a vertical
plane perpendicular to the y axis:

 v, J  I C2y, J

This affects d(k) (a vector under
spin rotations).
It does not affect 0(k) (a scalar).

y

x

Quintanilla, Hillier, Annett and Cywinski,
PRB 82, 174511 (2010)

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

89 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)
C2v,Jno t

A1
A2
B1
B2

Gap function,
singlet component

(k) = A

Gap function,
triplet component

d(k) = (Bky,Ckx,Dkxkykz)

 (k) = AkxkY

d(k) = (Bkx,Cky,Dkz)

 (k) = AkYkZ

d(k) = (Bkz, Ckxkykz,Dkx)

 (k) = AkXkZ

d(k) = (Bkxkykz,Ckz,Dky)

Quintanilla, Hillier, Annett and Cywinski,
PRB 82, 174511 (2010)

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

90 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)
C2v,Jno t

A1
A2
B1
B2

Gap function,
singlet component

(k) = A

Gap function,
triplet component

d(k) = (Bky,Ckx,Dkxkykz)

 (k) = AkxkY

d(k) = (Bkx,Cky,Dkz)

 (k) = AkYkZ

d(k) = (Bkz, Ckxkykz,Dkx)

 (k) = AkXkZ

d(k) = (Bkxkykz,Ckz,Dky)

None of these break time-reversal symmetry!

Quintanilla, Hillier, Annett and Cywinski,
PRB 82, 174511 (2010)

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

91 / 95
Virginia Tech, 18 March 2011

blogs.kent.ac.uk/strongcorrelations

Relativistic and non-relativistic
instabilities: a complex relationship
A1
singlet
Pairing
instabilities

A2

1A
1

non-unitary
triplet
pairing
instabilities

unitary
triplet
pairing
instabilities

1A
2

B1

B2

1B
1

3B (b)
1
3B (b)
2

3A (a)
1

1B
2

3A (b)
1
3A (b)
2

3A (a)
2

3B (a)
1

3B (a)
2

Quintanilla, Hillier, Annett and Cywinski,
PRB 82, 174511 (2010)

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

92 / 95
LaNiGa2 - a centrosymmetric cousin of LaNiC2
A similar muSR effect is seen in centrosymmetric LaNiGa2:

[A. D. Hillier, JQ, Mazidian, Annett & Cywinski, PRL 109, 097001 (2012)]

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

93 / 95
LaNiGa2 - a centrosymmetric cousin of LaNiC2
A similar muSR effect is seen in centrosymmetric LaNiGa2:

[A. D. Hillier, JQ, Mazidian, Annett & Cywinski, PRL 109, 097001 (2012)]

Simlarly to LaNiC2, we find only 1D irreps ⇒ non-unitary triplet pairing.

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

93 / 95
LaNiGa2 - a centrosymmetric cousin of LaNiC2
A similar muSR effect is seen in centrosymmetric LaNiGa2:

[A. D. Hillier, JQ, Mazidian, Annett & Cywinski, PRL 109, 097001 (2012)]

Simlarly to LaNiC2, we find only 1D irreps ⇒ non-unitary triplet pairing.
Lack of inversion symmetry seems to be a red herring in the case of LaNiC2.
back

Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

93 / 95
Li2 Pdx Pt3−x B: Phase diagram
Bogoliubov Hamiltonian with Rashba spin-orbit coupling:
H (k) =

h (k)
∆ † (k)

∆ (k)
−hT (−k)

h (k) = ε k I + γk · σ

Assuming |ε k | ≫ |γk | ≫ |d (k)| the quasi-particle spectrum is

 ± (ε − µ + |γ |)2 + (∆ + |d (k )|)2 ; and
0
k
k
.
E =
 ± (ε − µ − |γ |)2 + (∆ − |d (k )|)2
0
k
k
Take the most symmetric (A1 ) irreducible representation

d(k)/∆0 = A (X , Y , Z ) − B X Y 2 + Z 2 , Y Z 2 + X 2 , Z X 2 + Y 2

back
Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

94 / 95
Li2 Pdx Pt3−x B:
order parameter

back
Jorge Quintanilla (Kent and ISIS)

arXiv:1302.2161

B’ham 2013

95 / 95

More Related Content

Viewers also liked (7)

Outlook 2003 openerp_manual
Outlook 2003 openerp_manualOutlook 2003 openerp_manual
Outlook 2003 openerp_manual
 
Integruvannya deyakikh tipiv_funktsiy
Integruvannya deyakikh tipiv_funktsiyIntegruvannya deyakikh tipiv_funktsiy
Integruvannya deyakikh tipiv_funktsiy
 
Formación blogs
Formación blogsFormación blogs
Formación blogs
 
Patrocinio 1
Patrocinio 1Patrocinio 1
Patrocinio 1
 
Inward and Outward Perspectives in South Amercian Context: Brand Value and Gl...
Inward and Outward Perspectives in South Amercian Context: Brand Value and Gl...Inward and Outward Perspectives in South Amercian Context: Brand Value and Gl...
Inward and Outward Perspectives in South Amercian Context: Brand Value and Gl...
 
Chef advance
Chef advanceChef advance
Chef advance
 
Αιμιλία Πρωτόγερου - Συνέδριο "Επιχειρώντας αλλιώς"
Αιμιλία Πρωτόγερου - Συνέδριο "Επιχειρώντας αλλιώς"Αιμιλία Πρωτόγερου - Συνέδριο "Επιχειρώντας αλλιώς"
Αιμιλία Πρωτόγερου - Συνέδριο "Επιχειρώντας αλλιώς"
 

Similar to Thermodynamic signatures of topological transitions in nodal superconductors

Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
Jorge Quintanilla
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
Jorge Quintanilla
 
Daresbury_2010_-_SC_-_Physics.pptx
Daresbury_2010_-_SC_-_Physics.pptxDaresbury_2010_-_SC_-_Physics.pptx
Daresbury_2010_-_SC_-_Physics.pptx
RohitNukte
 
Ветровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир ЗахаровВетровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир Захаров
Alexander Dubynin
 

Similar to Thermodynamic signatures of topological transitions in nodal superconductors (20)

Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
 
Direct method for soliton solution
Direct method for soliton solutionDirect method for soliton solution
Direct method for soliton solution
 
Electron-phonon coupling a Yambo overview
Electron-phonon coupling  a Yambo overviewElectron-phonon coupling  a Yambo overview
Electron-phonon coupling a Yambo overview
 
Non linear electron dynamics in solids
Non linear electron dynamics in solidsNon linear electron dynamics in solids
Non linear electron dynamics in solids
 
Daresbury_2010_-_SC_-_Physics.pptx
Daresbury_2010_-_SC_-_Physics.pptxDaresbury_2010_-_SC_-_Physics.pptx
Daresbury_2010_-_SC_-_Physics.pptx
 
Aes
AesAes
Aes
 
Light induced real-time dynamics for electrons
Light induced real-time dynamics for electronsLight induced real-time dynamics for electrons
Light induced real-time dynamics for electrons
 
FEMSlide 1.pdf
FEMSlide 1.pdfFEMSlide 1.pdf
FEMSlide 1.pdf
 
Talk at Tsinghua University, Beijing, 27 June 2016
Talk at Tsinghua University, Beijing, 27 June 2016Talk at Tsinghua University, Beijing, 27 June 2016
Talk at Tsinghua University, Beijing, 27 June 2016
 
Distortionless Transmission Line
Distortionless Transmission LineDistortionless Transmission Line
Distortionless Transmission Line
 
lecture33.pptx
lecture33.pptxlecture33.pptx
lecture33.pptx
 
Ece5318 ch4
Ece5318 ch4Ece5318 ch4
Ece5318 ch4
 
Ветровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир ЗахаровВетровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир Захаров
 
Physically Unclonable Random Permutations
Physically Unclonable Random PermutationsPhysically Unclonable Random Permutations
Physically Unclonable Random Permutations
 
Eh4 energy harvesting due to random excitations and optimal design
Eh4   energy harvesting due to random excitations and optimal designEh4   energy harvesting due to random excitations and optimal design
Eh4 energy harvesting due to random excitations and optimal design
 
UNIT I_1.pdf
UNIT I_1.pdfUNIT I_1.pdf
UNIT I_1.pdf
 
Transport coefficients of QGP in strong magnetic fields
Transport coefficients of QGP in strong magnetic fieldsTransport coefficients of QGP in strong magnetic fields
Transport coefficients of QGP in strong magnetic fields
 
Theoretical Spectroscopy Lectures: real-time approach 2
Theoretical Spectroscopy Lectures: real-time approach 2Theoretical Spectroscopy Lectures: real-time approach 2
Theoretical Spectroscopy Lectures: real-time approach 2
 
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
 

More from Jorge Quintanilla

Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Jorge Quintanilla
 
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet SuperconductorsBroken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Jorge Quintanilla
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
Jorge Quintanilla
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
Jorge Quintanilla
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Jorge Quintanilla
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Jorge Quintanilla
 

More from Jorge Quintanilla (15)

Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
 
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
 
Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...
 
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet SuperconductorsBroken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
 
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
 
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
 
Turning data into a puzzle: non-unitary triplet pairing in the non-centrosym...
Turning data into a puzzle:  non-unitary triplet pairing in the non-centrosym...Turning data into a puzzle:  non-unitary triplet pairing in the non-centrosym...
Turning data into a puzzle: non-unitary triplet pairing in the non-centrosym...
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
New Vistas on Quantum Matter Opened by Dipolar Fermions
New Vistas on Quantum Matter Opened by Dipolar FermionsNew Vistas on Quantum Matter Opened by Dipolar Fermions
New Vistas on Quantum Matter Opened by Dipolar Fermions
 
2010 Quintanilla Loughborough
2010 Quintanilla Loughborough2010 Quintanilla Loughborough
2010 Quintanilla Loughborough
 

Recently uploaded

Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
WSO2
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 

Recently uploaded (20)

Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
A Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source MilvusA Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source Milvus
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot ModelNavi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu SubbuApidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 

Thermodynamic signatures of topological transitions in nodal superconductors

  • 1. Thermodynamic signatures of topological transitions in nodal superconductors arXiv:1302.2161 Bayan Mazidian1,2 , Jorge Quintanilla2,3 James F. Annett1 , Adrian D. Hillier2 1 University of Bristol ISIS Facility, STFC Rutherford Appleton Laboratory 3 SEPnet and Hubbard Theory Consortium, University of Kent 2 Birmingham, UK, 14 November 2013 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 1 / 95
  • 2. Anomalous thermodynamic power laws in nodal superconductors 1 What are they? 2 How to get them 3 An example 4 Take-home message Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 2 / 95
  • 3. Anomalous thermodynamic power laws in nodal superconductors 1 What are they? 2 How to get them 3 An example 4 Take-home message
  • 4. Power laws in nodal superconductors Low-temperature specific heat of a superconductor gives information on the spectrum of low-lying excitations: Fully gapped Point nodes Cv ∼ T3 Line nodes Cv ∼ T 2 ∆ Cv ∼ e −∆/T This simple idea has been around for a while.1 Widely used to fit experimental data on unconventional superconductors.2 1 Anderson 2 Sigrist, & Morel (1961), Leggett (1975) Ueda (’89), Annett (’90), MacKenzie & Maeno (’03) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 4 / 95
  • 5. Linear nodes It all comes from the density of states: + g (E ) ∼ E n−1 ⇒ Cv ∼ T n Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 5 / 95
  • 6. Linear nodes It all comes from the density of states: + g (E ) ∼ E n−1 ⇒ Cv ∼ T n linear point node line node y x ∆2 = I1 k|| 2 + k|| k g (E ) = 2 E2 √ 2(2π )2 I1 I2 g (E ) = n=3 Jorge Quintanilla (Kent and ISIS) x ∆2 = I1 k|| 2 k LE √ √ (2π )3 I1 I2 n=2 arXiv:1302.2161 B’ham 2013 5 / 95
  • 7. Linear nodes It all comes from the density of states: + g (E ) ∼ E n−1 ⇒ Cv ∼ T n linear point node line node y x ∆2 = I1 k|| 2 + k|| k g (E ) = 2 E2 √ 2(2π )2 I1 I2 x ∆2 = I1 k|| 2 k g (E ) = n=3 LE √ √ (2π )3 I1 I2 n=2 Key assumption: linear increase of the gap away from the node Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 5 / 95
  • 8. Shallow nodes Relax the linear assumption and we also get different exponents: Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 6 / 95
  • 9. Shallow nodes Relax the linear assumption and we also get different exponents: shallow point node line node 2 y x ∆2 = I1 (k|| 2 + k|| )2 k g (E ) = E √ √ I1 I2 2(2π )2 g (E ) = n=2 Jorge Quintanilla (Kent and ISIS) x ∆2 = I1 k|| 4 k √ L E 1√ (2π )3 I14 I2 n = 1.5 arXiv:1302.2161 B’ham 2013 6 / 95
  • 10. Shallow nodes Relax the linear assumption and we also get different exponents: shallow point node line node 2 y x ∆2 = I1 (k|| 2 + k|| )2 k g (E ) = E √ √ I1 I2 2(2π )2 x ∆2 = I1 k|| 4 k g (E ) = n=2 √ L E 1√ (2π )3 I14 I2 n = 1.5 Shallow point nodes first discussed (speculatively) by Leggett [1979]. Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 6 / 95
  • 11. Shallow nodes Relax the linear assumption and we also get different exponents: shallow point node line node 2 y x ∆2 = I1 (k|| 2 + k|| )2 k g (E ) = E √ √ I1 I2 2(2π )2 x ∆2 = I1 k|| 4 k g (E ) = n=2 √ L E 1√ (2π )3 I14 I2 n = 1.5 Shallow point nodes first discussed (speculatively) by Leggett [1979]. A shallow point node may be required by symmetry e.g. the proposed E2u pairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)]. Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 6 / 95
  • 12. Shallow nodes Relax the linear assumption and we also get different exponents: shallow point node line node 2 y x ∆2 = I1 (k|| 2 + k|| )2 k g (E ) = E √ √ I1 I2 2(2π )2 x ∆2 = I1 k|| 4 k g (E ) = n=2 √ L E 1√ (2π )3 I14 I2 n = 1.5 Shallow point nodes first discussed (speculatively) by Leggett [1979]. A shallow point node may be required by symmetry e.g. the proposed E2u pairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)]. A shallow line node may result at the boundary between gapless and line node behaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. + Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 6 / 95
  • 13. Shallow nodes Relax the linear assumption and we also get different exponents: shallow point node line node 2 y x ∆2 = I1 (k|| 2 + k|| )2 k g (E ) = E √ √ I 1 I2 2(2π )2 x ∆2 = I1 k|| 4 k g (E ) = n=2 √ L E 1√ (2π )3 I14 I2 n = 1.5 Shallow point nodes first discussed (speculatively) by Leggett [1979]. A shallow point node may be required by symmetry e.g. the proposed E2u pairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)]. A shallow line node may result at the boundary between gapless and line node behaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. + Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 7 / 95
  • 14. Line crossings A different power law is expected at line crossings (e.g. d-wave pairing on a spherical Fermi surface): crossing of linear line nodes y x ∆2 = I1 k|| 2 − k|| k y x or I1 k|| 2 k|| 2 2 2 1 √ 4 L+ E /I1 1 √ E /I 4 √ 1 (2π )3 I1 I2 E (1+2ln| g (E ) |) = ∼ E 0 .8 n = 1.8 (< 2 !!) + Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 8 / 95
  • 15. Crossing of shallow line nodes When shallow lines cross we get an even lower exponent: crossing of shallow line nodes y x ∆2 = I1 k|| 2 − k|| k y x or I1 k|| 4 k|| √ g (E ) = 2 4 4 1 1 8 L+E 4 /I1 1 1 8 E 4 /I1 1√ 3I 4 I (2π ) 1 2 E (1+2ln| |) ∼ E 0 .4 n = 1.4 * * c.f. gapless excitations of a Fermi liquid: g (E ) = constant ⇒ n = 1 + Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 9 / 95
  • 16. Numerics n = d ln Cv /d ln T 4.5 linear point node shallow point node linear line node crossing of linear line nodes shallow line node crossing of shallow line nodes 4 3.5 n 3 2.5 2 1.5 1 0 Jorge Quintanilla (Kent and ISIS) 0.05 0.1 0.15 0.2 T / Tc arXiv:1302.2161 0.25 0.3 0.35 B’ham 2013 10 / 95
  • 17. Anomalous thermodynamic power laws in nodal superconductors 1 What are they? 2 How to get them 3 An example 4 Take-home message
  • 18. A generic mechanism ∆0 ∆1 We propose that shallow nodes will exist generically at topological phase transitions in superocnductors with multi-component order parameters: Fermi Sea Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 12 / 95
  • 19. A generic mechanism ∆0 ∆1 We propose that shallow nodes will exist generically at quantum phase transitions in superocnductors with multi-component order parameters: Fermi Sea Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 13 / 95
  • 20. A generic mechanism ∆0 ∆1 We propose that shallow nodes will exist generically at quantum phase transitions in superocnductors with multi-component order parameters: Fermi Sea Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 14 / 95
  • 21. A generic mechanism ∆0 ∆1 Linear nodes Linear nodes We propose that shallow nodes will exist generically at quantum phase transitions in superocnductors with multi-component order parameters: Fermi Sea Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 15 / 95
  • 22. A generic mechanism ∆0 ∆1 We propose that shallow nodes will exist generically at quantum phase transitions in superocnductors with multi-component order parameters: Fermi Sea Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 16 / 95
  • 23. A generic mechanism ∆0 ∆1 We propose that shallow nodes will exist generically at quantum phase transitions in superocnductors with multi-component order parameters: Fermi Sea Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 17 / 95
  • 24. A generic mechanism ∆0 ∆1 Shallow node Shallow node We propose that shallow nodes will exist generically at quantum phase transitions in superocnductors with multi-component order parameters: Fermi Sea Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 18 / 95
  • 25. Note: no broken symmetry Photo: Eddie Hui-Bon-Hoa, www.shiromi.com  Jorge Quintanilla (Kent and ISIS)  arXiv:1302.2161 B’ham 2013 19 / 95
  • 26. Jorge Quintanilla (Kent and ISIS) Photo: Kenneth G. Libbrecht, snowflakes.com Photo: Eddie Hui-Bon-Hoa, www.shiromi.com Note: no broken symmetry arXiv:1302.2161     B’ham 2013 19 / 95
  • 27. Photo: commons.wikimedia.org Jorge Quintanilla (Kent and ISIS) Photo: Kenneth G. Libbrecht, snowflakes.com Photo: Eddie Hui-Bon-Hoa, www.shiromi.com Note: no broken symmetry arXiv:1302.2161       B’ham 2013 19 / 95
  • 28. Photo: commons.wikimedia.org Jorge Quintanilla (Kent and ISIS) Photo: Kenneth G. Libbrecht, snowflakes.com Photo: Eddie Hui-Bon-Hoa, www.shiromi.com Note: no broken symmetry arXiv:1302.2161       B’ham 2013 19 / 95
  • 29. Photo: commons.wikimedia.org Jorge Quintanilla (Kent and ISIS) Photo: Kenneth G. Libbrecht, snowflakes.com Photo: Eddie Hui-Bon-Hoa, www.shiromi.com Note: no broken symmetry arXiv:1302.2161       B’ham 2013 19 / 95
  • 30. These are topological transitions Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 20 / 95
  • 31. These are topological transitions Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 20 / 95
  • 32. These are topological transitions G. E. Volovik in “Quantum Analogues: From Phase Transitions to Black Holes and Cosmology“, William G. Unruh and Ralf Schützhold (Eds.), Springer (2007). Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 20 / 95
  • 33. These are topological transitions G. E. Volovik in “Quantum Analogues: From Phase Transitions to Black Holes and Cosmology“, William G. Unruh and Ralf Schützhold (Eds.), Springer (2007). Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 20 / 95
  • 34. These are topological transitions G. E. Volovik in “Quantum Analogues: From Phase Transitions to Black Holes and Cosmology“, William G. Unruh and Ralf Schützhold (Eds.), Springer (2007). Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 20 / 95
  • 35. These are topological transitions G. E. Volovik in “Quantum Analogues: From Phase Transitions to Black Holes and Cosmology“, William G. Unruh and Ralf Schützhold (Eds.), Springer (2007). Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 20 / 95
  • 36. Anomalous thermodynamic power laws in nodal superconductors 1 What are they? 2 How to get them 3 An example 4 Take-home message
  • 37. Singlet-triplet mixing in noncentrosymmetric superconductors Non-centrosymmetric superconductors are the multi-component order parameter supercondcutors par excellence:  0  0  dx  id y ˆ k      0 0   dz [ 0(k) even ] singlet ฀ dz   dx  id y  triplet [ d(k) odd ] 3 Batkova et al. JPCM (2010) et al. PRB (2007) 5 Adrian D. Hillier, JQ and R. Cywinski PRL (2009) 6 Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012) 7 Bauer et al. PRL (2004) 4 Zuev Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 22 / 95
  • 38. Singlet-triplet mixing in noncentrosymmetric superconductors Non-centrosymmetric superconductors are the multi-component order parameter supercondcutors par excellence:  0  0  dx  id y ˆ k      0 0   dz [ 0(k) even ] singlet dz   dx  id y  triplet [ d(k) odd ] In practice, there is a varied phenomenology: ฀ 3 Batkova et al. JPCM (2010) et al. PRB (2007) 5 Adrian D. Hillier, JQ and R. Cywinski PRL (2009) 6 Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012) 7 Bauer et al. PRL (2004) 4 Zuev Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 22 / 95
  • 39. Singlet-triplet mixing in noncentrosymmetric superconductors Non-centrosymmetric superconductors are the multi-component order parameter supercondcutors par excellence:  0  0  dx  id y ˆ k      0 0   dz [ 0(k) even ] singlet dz   dx  id y  triplet [ d(k) odd ] In practice, there is a varied phenomenology: ฀ Some are conventional (singlet) superconductors: BaPtSi33 , Re3W4 ,... Others seem to be correlated, purely triplet superconductors: LaNiC25 (c.f. centrosymmetric LaNiGa26 ) + , CePtr3Si (?) + 7 3 Batkova et al. JPCM (2010) et al. PRB (2007) 5 Adrian D. Hillier, JQ and R. Cywinski PRL (2009) 6 Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012) 7 Bauer et al. PRL (2004) 4 Zuev Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 22 / 95
  • 40. Li2 Pdx Pt3−x B: tunable singlet-triplet mixing The Li2 Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunable realisation of this singlet-triplet mixing: Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 23 / 95
  • 41. Li2 Pdx Pt3−x B: tunable singlet-triplet mixing The Li2 Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunable realisation of this singlet-triplet mixing: Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K) Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 23 / 95
  • 42. Li2 Pdx Pt3−x B: tunable singlet-triplet mixing The Li2 Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunable realisation of this singlet-triplet mixing: Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K) Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K) The series goes from fully-gapped (x = 3) to nodal (x = 0): H.Q. Yuan et al., Phys. Rev. Lett. 97, 017006 (2006). Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 23 / 95
  • 43. Li2 Pdx Pt3−x B: tunable singlet-triplet mixing The Li2 Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunable realisation of this singlet-triplet mixing: Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K) Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K) The series goes from fully-gapped (x = 3) to nodal (x = 0): NMR suggests nodal state a triplet: H.Q. Yuan et al., Phys. Rev. Lett. 97, 017006 (2006). Jorge Quintanilla (Kent and ISIS) M.Nishiyama et al., Phys. Rev. Lett. 98, 047002 (2007) arXiv:1302.2161 B’ham 2013 23 / 95
  • 44. Li2 Pdx Pt3−x B: Phase diagram Bogoliubov Hamiltonian with Rashba spin-orbit coupling: H (k) = ˆ h (k) ˆ † (k) ∆ ˆ ∆ (k) ˆ T (−k) −h ˆ h (k) = ε k I + γk · σ ˆ ˆ ˆ ∆ (k) = [∆0 (k) + d (k) · σ ] i σy (most general gap matrix) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 24 / 95
  • 45. Li2 Pdx Pt3−x B: Phase diagram Bogoliubov Hamiltonian with Rashba spin-orbit coupling: H (k) = ˆ h (k) ˆ † (k) ∆ ˆ ∆ (k) ˆ T (−k) −h ˆ h (k) = ε k I + γk · σ ˆ ˆ ˆ ∆ (k) = [∆0 (k) + d (k) · σ ] i σy (most general gap matrix) Assuming |ε k | ≫ |γk | ≫ |d (k)| the quasi-particle spectrum is   ± (ε − µ + |γ |)2 + (∆ (k) + |d (k)|)2 ; and 0 k k . E =  ± (ε − µ − |γ |)2 + (∆ (k) − |d (k)|)2 0 k k Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 24 / 95
  • 46. Li2 Pdx Pt3−x B: Phase diagram Bogoliubov Hamiltonian with Rashba spin-orbit coupling: H (k) = ˆ h (k) ˆ † (k) ∆ ˆ ∆ (k) ˆ T (−k) −h ˆ h (k) = ε k I + γk · σ ˆ ˆ ˆ ∆ (k) = [∆0 (k) + d (k) · σ ] i σy (most general gap matrix) Assuming |ε k | ≫ |γk | ≫ |d (k)| the quasi-particle spectrum is   ± (ε − µ + |γ |)2 + (∆ (k) + |d (k)|)2 ; and 0 k k . E =  ± (ε − µ − |γ |)2 + (∆ (k) − |d (k)|)2 0 k k Take most symmetric (A1 ) irreducible representation: + ∆0 (k) = ∆0 d(k) = ∆0 × { 2 2 2 2 2 2 A (x ) (kx , ky , kz ) − B (x ) kx ky + kz , ky kz + kx , kz kx + ky } Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 24 / 95
  • 47. Li2 Pdx Pt3−x B: Phase diagram Treat A and B as independent tuning parameters and study quasiparticle spectrum. We find a very rich phase diagram with topollogically-distinct phases:8 8 C. Beri, PRB (2010); A. Schnyder, S. Ryu, PRB(R) (2011); A. Schnyder et al., PRB (2012); B. Mazidian, JQ, A.D. Hillier, J.F. Annett, arXiv:1302.2161. Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 25 / 95
  • 48. Li2 Pdx Pt3−x B: Phase diagram We find a very rich phase diagram with topollogically-distinct phases.9 9 C. Beri, PRB (2010); A. Schnyder, S. Ryu, PRB(R) (2011); A. Schnyder et al., PRB (2012); B. Mazidian, JQ, A.D. Hillier, J.F. Annett, arXiv:1302.2161. Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 26 / 95
  • 49. Li2 Pdx Pt3−x B: Phase diagram Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 27 / 95
  • 50. Li2 Pdx Pt3−x B: Phase diagram Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 28 / 95
  • 51. Li2 Pdx Pt3−x B: Phase diagram Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 29 / 95
  • 52. Li2 Pdx Pt3−x B: Phase diagram Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 30 / 95
  • 53. Detecting the topological transitions 4 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 3 7 B’ham 2013 31 / 95
  • 54. Detecting the topological transitions 4 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 3 7 B’ham 2013 32 / 95
  • 55. Li2 Pdx Pt3−x B: predicted specific heat power-laws 4 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 3 B’ham 2013 33 / 95
  • 56. Li2 Pdx Pt3−x B: predicted specific heat power-laws 5 n=2 j 4 n=2 3 n = 1.8 11 n = 1.4 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 34 / 95
  • 57. Li2 Pdx Pt3−x B: predicted specific heat power-laws 3 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 35 / 95
  • 58. Li2 Pdx Pt3−x B: predicted specific heat power-laws 3 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 36 / 95
  • 59. Li2 Pdx Pt3−x B: predicted specific heat power-laws 5 n=2 j 4 n=2 3 n = 1.8 11 n = 1.4 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 37 / 95
  • 60. Anomalous power laws throughout the phase diagram Does the observation of these effects require fine-tuning? Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 38 / 95
  • 61. Anomalous power laws throughout the phase diagram Does the observation of these effects require fine-tuning? Let’s put these curves on a density plot: Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 38 / 95
  • 62. Anomalous power laws throughout the phase diagram Does the observation of these effects require fine-tuning? Let’s put these curves on a density plot: A=3 0.25 2.2 2.1 0.2 2 T/Tc 0.15 1.9 0.1 1.8 0.05 1.7 0 1.6 3.6 3.8 4 4.2 4.4 B Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 38 / 95
  • 63. Anomalous power laws throughout the phase diagram Does the observation of these effects require fine-tuning? Let’s put these curves on a density plot: A=3 0.25 2.2 2.1 0.2 2 T/Tc 0.15 1.9 0.1 1.8 0.05 1.7 0 1.6 3.6 3.8 4 4.2 4.4 B The conventional exponent (n = 2 in this example) is only seen below a temperature scale that converges to zero at the transition Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 38 / 95
  • 64. Anomalous power laws throughout the phase diagram Does the observation of these effects require fine-tuning? Let’s put these curves on a density plot: A=3 0.25 2.2 2.1 0.2 2 T/Tc 0.15 1.9 0.1 1.8 0.05 1.7 0 1.6 3.6 3.8 4 4.2 4.4 B The conventional exponent (n = 2 in this example) is only seen below a temperature scale that converges to zero at the transition The anomalous exponent (here n = 1.8) is seen everywhere else Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 38 / 95
  • 65. Anomalous power laws throughout the phase diagram Does the observation of these effects require fine-tuning? Let’s put these curves on a density plot: A=3 0.25 2.2 2.1 0.2 2 T/Tc 0.15 1.9 0.1 1.8 0.05 1.7 0 1.6 3.6 3.8 4 4.2 4.4 B The conventional exponent (n = 2 in this example) is only seen below a temperature scale that converges to zero at the transition The anomalous exponent (here n = 1.8) is seen everywhere else ⇒ the influence of the topo transition extends throughout the phase diagram Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 38 / 95
  • 66. Anomalous power laws throughout the phase diagram Does the observation of these effects require fine-tuning? Let’s put these curves on a density plot: A=3 0.25 2.2 2.1 0.2 2 T/Tc 0.15 1.9 0.1 1.8 0.05 1.7 0 1.6 3.6 3.8 4 4.2 4.4 B The conventional exponent (n = 2 in this example) is only seen below a temperature scale that converges to zero at the transition The anomalous exponent (here n = 1.8) is seen everywhere else ⇒ the influence of the topo transition extends throughout the phase diagram c.f. quantum critical endpoints but here we did not have to fine-tune Tc → 0 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 38 / 95
  • 67. Anomalous thermodynamic power laws in nodal superconductors 1 What are they? 2 How to get them 3 An example 4 Take-home message
  • 68. Topological transitions in nodal superconductors have clear signatures in bulk thermodynamic properties. Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 40 / 95
  • 69. Topological transitions in nodal superconductors have clear signatures in bulk thermodynamic properties. THANKS! www.cond-mat.org Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 40 / 95
  • 70. Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 41 / 95
  • 71. Power laws in nodal superconductors Let’s remember where this came from: dS dT Cv = T ∼ T −2 = 1 2kB T 2   ∑  Ek − T  k  dEk   Ek sech2 Ek dT  2kB T ≈0 dEg (E ) E 2 e −E /kB T at low T g (E ) ∼ E n−1 ⇒ Cv ∼ T n ≈4e −Ek /KB T d ǫǫ2+n−1 e −ǫ a number Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 41 / 95
  • 72. Power laws in nodal superconductors k_ | Ek = ≈ ∆(k||x,k||y) 2 ǫk + ∆ 2 k y 2 x I2 k⊥ + ∆ k|| , k|| k||y 2 on the Fermi surface k||x Compute density of states: g (E ) = δ(Ek − E )dkx dky dkz back Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 42 / 95
  • 73. Shallow line nodes in pnictides back Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 43 / 95
  • 74. Logarithm ⇒ power law (n − 1 = 0.8) The power-law expression is asymptotically very good at E → 0: back Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 44 / 95
  • 75. Logarithm ⇒ power law (n − 1 = 0.4) The power-law expression is asymptotically very good at E → 0: back Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 45 / 95
  • 76. Symmetry of pairing in NCS Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both? Neglect (for now!) spin-orbit coupling: Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 46 / 95
  • 77. Symmetry of pairing in NCS Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both? Neglect (for now!) spin-orbit coupling: Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 47 / 95
  • 78. Symmetry of pairing in NCS Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both? Neglect (for now!) spin-orbit coupling: Singlet and triplet representations of SO(3): Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 48 / 95
  • 79. Symmetry of pairing in NCS Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both? Neglect (for now!) spin-orbit coupling: Singlet and triplet representations of SO(3): Γns = - (Γns)T , Γnt = + (Γnt)T Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 49 / 95
  • 80. Symmetry of pairing in NCS Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both? Neglect (for now!) spin-orbit coupling: Singlet and triplet representations of SO(3): Γns = - (Γns)T , Γnt = + (Γnt)T I pose Pauli s exclusio pri ciple: Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 50 / 95
  • 81. Symmetry of pairing in NCS Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both? Neglect (for now!) spin-orbit coupling: Singlet and triplet representations of SO(3):  , ' k   ', k Γns = - (Γns)T , Γnt = + (Γnt)T I pose Pauli s exclusio pri ciple: ฀ Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 51 / 95
  • 82. Symmetry of pairing in NCS Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both? Neglect (for now!) spin-orbit coupling: Singlet and triplet representations of SO(3):  , ' k   ', k Γns = - (Γns)T , Γnt = + (Γnt)T I pose Pauli s exclusio pri ciple:  ฀ ˆ  k Jorge Quintanilla (Kent and ISIS) either singlet ฀ arXiv:1302.2161 B’ham 2013 52 / 95
  • 83. Symmetry of pairing in NCS Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both? Neglect (for now!) spin-orbit coupling: Singlet and triplet representations of SO(3):  , ' k   ', k Γns = - (Γns)T , Γnt = + (Γnt)T ˆ  , ' k    0 k i y I pose Pauli s exclusio pri ciple:  ฀ ˆ  k Jorge Quintanilla (Kent and ISIS) either singlet ฀ arXiv:1302.2161 B’ham 2013 53 / 95
  • 84. Symmetry of pairing in NCS Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both? Neglect (for now!) spin-orbit coupling: Singlet and triplet representations of SO(3):  , ' k   ', k Γns = - (Γns)T , Γnt = + (Γnt)T ˆ  , ' k    0 k i y I pose Pauli s exclusio pri ciple:  ˆ  k either singlet ฀ or triplet ฀ Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 54 / 95
  • 85. Symmetry of pairing in NCS Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both? Neglect (for now!) spin-orbit coupling: Singlet and triplet representations of SO(3):  , ' k   ', k Γns = - (Γns)T , Γnt = + (Γnt)T ˆ  , ' k    0 k i y I pose Pauli s exclusio pri ciple:  ˆ  k either singlet ฀ or triplet ฀ Jorge Quintanilla (Kent and ISIS) ˆ ˆ  , ' k   dk .σi y arXiv:1302.2161 B’ham 2013 55 / 95
  • 86. Symmetry of pairing in NCS The role of spin-orbit coupling (SOC)  , ' k   spin ' orbit k   ,  Gap function may have both singlet and triplet components  0 ˆ k      0  0   d x  id y  0   dz   d x  id y   dz • However, if we have a centre of inversion basis functions either even or odd under inversion  still have either singlet or triplet pairing (at Tc) • No centre of inversion: may have singlet and triplet (even at Tc) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 back 56 / 95
  • 87. LaNiC2 – a weakly-correlated, paramagnetic superconductor? W. H. Lee et al., Physica C 266, 138 (1996) V. K. Pecharsky, L. L. Miller, and Zy, Physical Review B 58, 497 (1998) specific heat susceptibility c 0 = 22.2 10-6 emu/mol  0 = 6.5 mJ/mol K2 Tc=2.7 K Jorge Quintanilla (Kent and ISIS) ΔC/TC=1.26 (BCS: 1.43) arXiv:1302.2161 B’ham 2013 57 / 95
  • 88. ISIS muSR Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 58 / 95
  • 89. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Zero field muon spin relaxation _  e sample e  forward detector backward detector Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 59 / 95
  • 90. Relaxation due to electronic moments _  e (longitudinal)  sample e forward detector backward detector Moment size ~ 0.1G (~ 0.01μB) Timescale: -4 > ~ 10 s Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 60 / 95
  • 91. Relaxation due to electronic moments _  e (longitudinal)  sample e forward detector backward detector Moment size ~ 0.1G (~ 0.01μB) Timescale: -4 > ~ 10 s Spontaneous, quasi-static fields appearing at Tc ⇒ superconducting state breaks time-reversal symmetry Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and ISIS) [ c.f. Sr2RuO4 - Luke et al., Nature (1998) ] arXiv:1302.2161 B’ham 2013 61 / 95
  • 92. LaNiC2 is a non-ceontrsymmetric superconductor Neutron diffraction 35000 30000 Intensity (arb units) 25000 Data from D1B @ ILL 20000 15000 10000 5000 0 30 Orthorhombic Amm2 C2v 40 50 60 2   70 80 o Note no inversion centre. C.f. CePt3Si (1), Li2Pt3B & Li2Pd3B (2), a=3.96 Å b=4.58 Å c=6.20 Å ... (1) Bauer et al. PRL’04 (2) Yuan et al. PRL’06 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 62 / 95
  • 93. Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 63 / 95
  • 94. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Character table Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 64 / 95
  • 95. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Character table Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 65 / 95
  • 96. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Character table Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 66 / 95
  • 97. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Character table 180o Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 67 / 95
  • 98. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Character table C2v Symmetries and their characters Irreducible E C2 v representation ’v Sample basis functions Even Odd A1 1 1 1 1 1 Z A2 1 1 -1 -1 XY XYZ B1 1 -1 1 -1 XZ X B2 1 -1 -1 1 YZ Y Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 68 / 95
  • 99. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Character table C2v Symmetries and their characters Irreducible E C2 v representation ’v Sample basis functions Even Odd A1 1 1 1 1 1 Z A2 1 1 -1 -1 XY XYZ B1 1 -1 1 -1 XZ X B2 1 -1 -1 1 YZ Y These must be combined with the singlet and triplet representations of SO(3). Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 69 / 95
  • 100. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Possible order parameters SO(3)xC2v 1A 1 1A 2 1B 1 1B 2 Gap function (unitary) Gap function (non-unitary) (k)=kxkY - (k)=1 (k)=kXkZ - (k)=kYkZ - 3A 1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 3A 3B 3B 2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX 2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 70 / 95
  • 101. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Possible order parameters SO(3)xC2v 1A 1 1A 2 1B 1 1B 2 Gap function (unitary) Gap function (non-unitary) (k)=kxkY - (k)=1 (k)=kXkZ - (k)=kYkZ - 3A 1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 3A 3B 3B 2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX 2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 71 / 95
  • 102. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Possible order parameters SO(3)xC2v 1A 1 1A 2 1B 1 1B 2 Gap function (unitary) Gap function (non-unitary) (k)=kxkY - (k)=1 (k)=kXkZ - (k)=kYkZ - 3A 1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 3A 3B 3B 2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX 2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 72 / 95
  • 103. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Possible order parameters SO(3)xC2v 1A 1 1A 2 1B 1 1B 2 Gap function (unitary) Gap function (non-unitary) (k)=kxkY - (k)=1 (k)=kXkZ - (k)=kYkZ - 3A 1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 3A 3B 3B 2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX 2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and ISIS) Non-unitary d x d* ≠ 0 arXiv:1302.2161 B’ham 2013 73 / 95
  • 104. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Possible order parameters SO(3)xC2v 1A 1 1A 2 1B 1 1B 2 Gap function (unitary) (k)=1 (k)=kxkY (k)=kXkZ (k)=kYkZ Gap function (non-unitary) breaks only SO(3) x U(1) x T - 3A 1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 3A 3B 3B 2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX 2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY * C.f. Li2Pd3B & Li2Pt3B, H. Q. Yua et al. P‘L 0 Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and ISIS) * Non-unitary d x d* ≠ 0 arXiv:1302.2161 B’ham 2013 74 / 95
  • 105. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Non-unitary pairing Spin-up superfluid coexisting with spindown Fermi liquid. ˆ       0  0  0 0    or  0   0       C.f. The A1 phase of liquid 3He. Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 75 / 95
  • 106. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) G = [SO(3)×Gc]×U(1)×T Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 76 / 95
  • 107. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) G = [SO(3)×Gc]×U(1)×T Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 77 / 95
  • 108. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) G = [SO(3)×Gc]×U(1)×T Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 78 / 95
  • 109. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) G = [SO(3)×Gc]×U(1)×T Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 79 / 95
  • 110. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) G = [SO(3)×Gc]×U(1)×T Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 80 / 95
  • 111. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) G = Gc,J×U(1)×T Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 81 / 95
  • 112. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) G = Gc,J×U(1)×T Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 82 / 95
  • 113. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) G = Gc,J×U(1)×T Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 83 / 95
  • 114. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) z E.g. reflection through a vertical plane perpendicular to the y axis:  v, J  I C2y, J y x Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 84 / 95
  • 115. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) z E.g. reflection through a vertical plane perpendicular to the y axis:  v, J  I C2y, J y x Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 85 / 95
  • 116. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) z E.g. reflection through a vertical plane perpendicular to the y axis:  v, J  I C2y, J y x Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 86 / 95
  • 117. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) z E.g. reflection through a vertical plane perpendicular to the y axis:  v, J  I C2y, J y x Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 87 / 95
  • 118. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) z E.g. reflection through a vertical plane perpendicular to the y axis:  v, J  I C2y, J This affects d(k) (a vector under spin rotations). y x Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 88 / 95
  • 119. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) z E.g. reflection through a vertical plane perpendicular to the y axis:  v, J  I C2y, J This affects d(k) (a vector under spin rotations). It does not affect 0(k) (a scalar). y x Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 89 / 95
  • 120. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) C2v,Jno t A1 A2 B1 B2 Gap function, singlet component (k) = A Gap function, triplet component d(k) = (Bky,Ckx,Dkxkykz)  (k) = AkxkY d(k) = (Bkx,Cky,Dkz)  (k) = AkYkZ d(k) = (Bkz, Ckxkykz,Dkx)  (k) = AkXkZ d(k) = (Bkxkykz,Ckz,Dky) Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 90 / 95
  • 121. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) C2v,Jno t A1 A2 B1 B2 Gap function, singlet component (k) = A Gap function, triplet component d(k) = (Bky,Ckx,Dkxkykz)  (k) = AkxkY d(k) = (Bkx,Cky,Dkz)  (k) = AkYkZ d(k) = (Bkz, Ckxkykz,Dkx)  (k) = AkXkZ d(k) = (Bkxkykz,Ckz,Dky) None of these break time-reversal symmetry! Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 91 / 95
  • 122. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Relativistic and non-relativistic instabilities: a complex relationship A1 singlet Pairing instabilities A2 1A 1 non-unitary triplet pairing instabilities unitary triplet pairing instabilities 1A 2 B1 B2 1B 1 3B (b) 1 3B (b) 2 3A (a) 1 1B 2 3A (b) 1 3A (b) 2 3A (a) 2 3B (a) 1 3B (a) 2 Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 92 / 95
  • 123. LaNiGa2 - a centrosymmetric cousin of LaNiC2 A similar muSR effect is seen in centrosymmetric LaNiGa2: [A. D. Hillier, JQ, Mazidian, Annett & Cywinski, PRL 109, 097001 (2012)] Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 93 / 95
  • 124. LaNiGa2 - a centrosymmetric cousin of LaNiC2 A similar muSR effect is seen in centrosymmetric LaNiGa2: [A. D. Hillier, JQ, Mazidian, Annett & Cywinski, PRL 109, 097001 (2012)] Simlarly to LaNiC2, we find only 1D irreps ⇒ non-unitary triplet pairing. Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 93 / 95
  • 125. LaNiGa2 - a centrosymmetric cousin of LaNiC2 A similar muSR effect is seen in centrosymmetric LaNiGa2: [A. D. Hillier, JQ, Mazidian, Annett & Cywinski, PRL 109, 097001 (2012)] Simlarly to LaNiC2, we find only 1D irreps ⇒ non-unitary triplet pairing. Lack of inversion symmetry seems to be a red herring in the case of LaNiC2. back Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 93 / 95
  • 126. Li2 Pdx Pt3−x B: Phase diagram Bogoliubov Hamiltonian with Rashba spin-orbit coupling: H (k) = h (k) ∆ † (k) ∆ (k) −hT (−k) h (k) = ε k I + γk · σ Assuming |ε k | ≫ |γk | ≫ |d (k)| the quasi-particle spectrum is   ± (ε − µ + |γ |)2 + (∆ + |d (k )|)2 ; and 0 k k . E =  ± (ε − µ − |γ |)2 + (∆ − |d (k )|)2 0 k k Take the most symmetric (A1 ) irreducible representation d(k)/∆0 = A (X , Y , Z ) − B X Y 2 + Z 2 , Y Z 2 + X 2 , Z X 2 + Y 2 back Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 94 / 95
  • 127. Li2 Pdx Pt3−x B: order parameter back Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 95 / 95