SlideShare a Scribd company logo
1 of 45
Atomic and Molecular Ion Merged-Beams
Experiments with Atomic H
C. C. Havener
Oak Ridge National Laboratory
Merged-Beam Collaborators
I.N. Draganić, ORNL/NASA
X. DeFay, K. Morgan, D. Wulf, D. McCammon,
University of Wisconsin, Madison
D. G. Seely, Albion College
V. M. Andrianarijaona, S. L. Romano, C. I. Guillen, A. K. Vassantachart,
Pacific Union College
M. Fogle, Auburn University
A. Galindo-Uribarri, F. Salces Carcoba, D. J. Nader,
ORNL, Universidad Veracruzana, Universidad Autonoma de San Luis
Potosi, Mexico
Theory Support
D. Schultz and P. Krstic, ORNL
P. C. Stancil, University of Georgia, Athens
Research supported by the U.S Department of Energy Office of Fusion Energy Sciences and the Office of
Basic Energy Sciences under contract DE-AC05-00OR22725 with UT-Battelle, LLC and .
the NASA Solar & Heliospheric Physics Program NNH07ZDA001N. 2
Outline
• Introduction/Motivation Charge Transfer Experiments
• Merged-beams technique
• CT with atomic highly charged ions
• CT with molecular ions
• State-selective measurements
• Motivation
• Current progress
• Summary/Future
3
Motivation
 CT is important process in magnetic fusion, ion-source
development, astrophysics, plasma processing, lighting, ..
 Ion-atom merged-beams experiment is unique and provides
independently absolute benchmark measurements from keV/u
down to near thermal energies.
 Interplay between theory/experiment provides
foundation for our quantum mechanical understanding of low-
energy interactions between atomic/molecular species
Xq+(n,l) + H X(q-1)+ + H+
e Low Energy Charge Transfer
Low Energy Charge Transfer
CT in magnetic fusion
Inside TFTR
Plasma diagnostics,
modeling charge state balance,
and divertor design
CT in astrophysics
“Cats Eye”
Planetary Nebulae
Ionization structure, line emission,
thermal structure
present and future NASA flight
missions require more accurate
atomic data
Funding: US DOE Basic Energy Sciences,
Fusion Energy Sciences, NASA
CT with Solar Wind
X
q+
+ A → X
(q-1)+*
(nl) + A
+
;
Charge exchange with the Solar wind
Xq+
→ HCI of C, N, O …
A → H, He, C… or
H2, H2O, CO, …
NASA
6
Mars (Chandra)
X-ray emission from CT of Solar Wind
with planetary atmospheres
0.01 0.1 1 10 100 1000
0
50
100
Energy (eV/u)
CrossSection(10
-16
cm
2
)
C
4+
N
4+
Si
4+
Ne
4+
molecular orbitals
Intermediate/Low energy
Si4+ + H
Theory
Si4+ + D
Experiment
isotope effect
Xq+
 q
r
2
4
2
H D
Enhancements
ORNL Merged-Beams Charge Transfer Data
Xq+ + H(D) -> X(q-1)+ + H+(D+)
High energy
scaling laws
atomic orbitals
Low Energy CT Behavior
For stronger dipole interaction ->
shape resonances are wider,
enhancements should appear at
higher energies
N3+ + H
Theory
Rittby et al.,
J. Phys. B: 84
“Orbiting”
resonances
4
2
2
)(
r
q
rV


Xq+
H
 Li H 36
He2+ + Li
Landau-Zener estimates:
Xq+ + H Stancil & Zygelman PRL 95
Ion E threshold
N4+ 8 eV/u
Cl7+ 17 eV/u
Ti22+ 1400 eV/u
Gioum. & Stev. J. Chem. Phys. 58
Why Merged Beams ?
Gas Cell Technique
9
Gas Cell
Xq+
Low Collision Energy Limit
Atomic H Target Difficult
Target Density High
“Relative” cross sections
Thermal collision energy
Atomic H Target
Target Density Low
Absolute Measurements
Merged-Beams Technique
𝜋 𝑔𝑎𝑠 ~3 𝑥 10^13 𝑐𝑚2
𝜋 𝑏𝑒𝑎𝑚 − 𝑏𝑒𝑎𝑚 ~ 10^8 𝑐𝑚2
Merged-Beams Technique
20 meV/amu 5 keV/amu
Wide range of interaction energies
 cos(
21
21
2
2
1
1
mm
EE
m
E
m
E
Erel
m1 v1

m2 v2
Vcm
Large angular collection in CM
 cm increases with Vcm
lab
 cm
 cm increases toward
lower collision energies
Good resolution even at lowest energies
Center-of-Mass Frame
Ecm = 25 meV (25 meV)
ED = 7.0 keV (6 eV)
ESi
4+ = 98 keV (37 eV)
 cm = 0.1 (0.1)
ion-atom merged-beams apparatus
cross section measurements independently absolute


FLvII
vvR
r
eq
21
21
2

measurements technically difficult
• # of beam-beam collisions in merge path is small (max I)
20-30 uA ions, up to 1 uA H, D
• a two-beam modulation technique separates signal (Hz) from backgrounds (kHz)
backgrounds from H stripping, ion photons and knock-ons
• ultra-high vacuum minimizes backgrounds
X
q+
H
-
-
H
CHANNEL ELECTRON
MULTIPLIER
H
+
H
0
X
X
q+
(q-1)+
CW Nd: YAG
LASER
DEFLECTORS
NEUTRAL BEAM
DETECTOR
FARADAY
CUP
35 cm
Upgraded Multicharged Ion
Research Facility (MIRF)
e-ion merged beams
ion-surface
ion-atom merged beams
Caprice0-25kV
“floatingbeamline”
COLTRIMS
grazing-surface
PermMagnetECR
20-270kV
e-ion
crossed beams
molecular-ion trap
Ion-atom merged-beams
Permanent Magnet ECR Source
Ar 8+ 510 uA; 11+ 90 ua
Xe 20+ 52 uA; 30+ 1 uA
O 1-3+ 700 uA;7+ 90uA
HV Platform (2-20-270 kV)
Merged-Beams with Atomic Ions
15
Intense Highly Charged Ions Extraction from ECR
40 60 80 100 120 140 160 180 200
0
5
10
15
20
25
30
35
40
14
N
6+
16
O
7+
18
O
8+
He
2+
He
+
18
O
8+
O
7+
O
6+
O
5+
O
4+
O
3+
O
2+
O
1+
H
+
Analyzing magnet current (A)
BeamIntensity(e)
18
O
8+
on 11-09-09
PSHF
=300W
Uext
=18.5 kV
Ibeam
=0.72 A
Slits 6 x 6 mm
2
Oxygen-Helium Ion Beam Spectrum
68 69 70
0.0
0.2
0.4
0.6
0.8
1.0
16
ORNL Merged-Beam
Measurements
Rejoub et al. PRA 2004
Havener et al. PRA 2005
insufficient angular collection
R. Mawhorter DAMOP 2004
Ne is injected in magnetic fusion devices
as a diagnostic and to mitigate disruptions
• Direct measurement [Havener et al., 2009] of isotope effect due to ion induced
dipole attraction for Si4+ + H,D; N2+ + H,D
Langevin estimates
PRL 2007
Xq+
H D @ E=100 eV/amu
Rmin(H)=.65 a.u.
Rmin(D)=.4 a.u.
Low Energy Access to Rmin
K-vacancy production
Peterson et al. PRL 76
0.1 1 10
0.01
0.1
1
10
100
Present Measurement
Fite 62
Nutt 78
Gilbody 78
Krstic 04
Liu 03
Janev, IAEA (1995)
Barnett, ORNL (1990)
Harel 96
CrossSection(10
-16
cm
2
)
Energy (keV/u)
He2+ + H
Merged-Beams Measurements
Extend measurements to
lower energies with HV platformHavener et al., PRA 2005
HC-MOCC
HSCC
Vcm
Large angular collection in CM
lab
 cm
 cm increases toward
lower collision energies
He2+ + H -> He+ + H+
Havener et al., PRA 2005
(HeH)2+
Merged-Beams Technique cont’d
2005
apparatus
2.5 deg. lab
Present
apparatus
3.5 deg. lab
2005
apparatus
2.5 deg. lab
Present
apparatus
3.5 deg. lab
21
22
C5+ + H
Draganic et al., PRA 83, 022711, (2011)
23
State-selective calculations for C5+ + H using ORNL total cross sections…
Nolte, Stancil, et al., PRA 2012
24
Unpublished
100 1000
0
10
20
30
40
50
60
70
80
present measurements
HSCC
AOCC 03
AOCC 84
MOCC-KL
MOCC-SGB
Meyer et al. 85
O8+
+ H -> O
7+
+ H+
Crosssection(10
-16
cm
2
)
Energy (eV/u)
Factor of two discrepancy between previous
measurement [Meyer et al., 1985] and
predictions of state-of-the-art
hyperspherical close coupling theory [Lee et
al., 2004]
25
Need state-selective to resolve differences between theory/experiment !
Merged-Beams with Molecular Ions
26
14.5 GHz ECR Ion Source
Intense Molecular Ion Beams
enriched D2 injection
4.2 x 10-6 Torr
16.4 kV extraction
3 W microwave power
Draganic et al.,
NIM A 640 (2011) 1
Low Energy Charge Transfer
H + D2
+ (v,j)i H+ + D2 (v,j)f
H+ + D + D
present measurements with D2
+
e
H + H2
+
H+ + H2
Hb
+ + (Ha-Hc)
Hc+ + (Hb-Ha)
H+ + H + H
(1)
(2)
(3a)
(3b)
Ha + (Hb-Hc)+
low energy CT involves dynamically coupled electronic,
vibrational, and rotational degrees of freedom
previous status experiment/theory
Important for Interstellar cloud chemistry; H2
+ + H2 -> H3
+;
H2
+ + H destruction mechanism?
Franck-Condon distribution [Amitay et al. PRA 1999]
vi
0 1 2 3 4 5 6 7 8
% 9 16 18.5 15.5 12 9.5 6 4.5 3
Andrianarijaona et al., ICPEAC Proc. 2009
CO+ + H
MOCC with IOSA approximation
vibrational state-to-state
calculations for CO+ + H
by C.Y. Lin, P.C. Stancil, et al. PRA
(2007)
Havener et al., AIP Conf. Proc. 1336, (2011) pp 101
calculations for CO+ + H
by C.Y. Lin, P.C. Stancil, et al.
PRA (2007)
orientation-angle dependence
CO+ + H
Havener et al., AIP Conf. Proc. 1336, (2011) pp 101
PRA 84, 062716 (2011)
State-selective charge transfer
34
Si4+ + D -> Si3+(3d) + D+ ; Q=11.7 eV
-> Si3+(4s) + D+ ; Q=7.5 eV
Wu & Havener, J. Phys. B 1997
Q of reaction in CM amplified in lab frame
Center-of-Mass (CM)
Lab FrameD+ Signal
35
Vcm
lab
 cm
Q
Amplification of Q in lab frame
1 uA C6+; 1 uA H
20 cm-2 beam-beam overlap
 1 cm interaction length
 10-15 cm2 cross section
 10% geometrical efficiency
 20% filter transmission
 4 Hz Signal
Proposed Work
Single capture,
total and X-ray emission
Bare and H-like ions + H
e.g., C, N, O ions
C6+ + H; X-ray emission
Holy Grail,
X-ray emission with H
n
2
5
3
1
4
s p d f
C6+ + He -> C5+ (n=5, l?)
X-ray Calorimeter, McCammon,
J Low Temp Phys 151, 715 (2008)
First Experiment with Gas Cell
Ionization potential
H 13.6 eV
He 24.6 eV
H2 15.4 eV
Kr 14 eV
Gas Cell Results
Measurements taken from 1.5 kV to 60 kV
Must model cascade process
for comparison with l distribution
C6+ + He
C6+ + Kr
R3 n=3->1/n=2->1
R4 n=4->1/n=2->1
R3
R4
R3
R4
Karchenko,
priv comm
C6+ + H
Karchenko,
priv comm
Morgan et al.,
proceedings CAARI 2012
R3
R4
R4
R3
Karchenko,priv comm,
data used for Solar Wind Simulatioin
O8+ + Kr
ORNL Measurements
Stancil et al., priv.
X-ray Emission from Merged-Beams
Sig/Background = .01
Sig + Bkgrd with H and C6+ beam (1 hr)
Bkrd C6+ beam only (1 hour)
Design new chopping scheme
10 sec
Background from CT
with 5 x 10-9 Torr H2 and H20
C6+ + H2
Calorimeter not UHV
C-
H3
+
Laser Upgrade
820 nm, 1.51 eV
(C- 1.262 affinity)
Cs sputter
ion source
 H beams can be replaced by C beams to enable synthesis of
simple hydrocarbons in merged beams where initial/final
states can be manipulated and observed
Future Molecular Ion Studies
C
H3
+
H2
CH2
+
H
Reactions to study:
H+ + C -> CH+
H3
+ + C -> H2 + CH+
-> H + CH2
+
CH+
C
42
Summary
•Intense beams from the ECR ion source enable molecular ion CT measurements with
H from keV/u to meV/u corresponding to collision times from “frozen” vibrational and
rotational states to collisions where rotational and vibrational states important
•D2
+ + H , CO+ + H, O2
+ + H measurements are compared to vibrational state-to-
state calculations.
CT with atomic ions
CT with molecular ions
•CT measurements with atomic ions and H from keV/u to meV/u continue to
benchmark AOCC, MOCC theory and explore trajectory/isotope effects effects at low
energies. CT with bare and H-like ions surprisingly still lack low energy data & theory
•State- selective measurements with X-ray calorimeter are needed to further
benchmark theory. Gas cell measurements simulate H but better signal/background
needed for merged-beam measurements with H.
43
•Modify XQ calorimeter to increase sig/noise to allow merged-beams measurements
with H
•Future measurements of proton transfer will have reduced backgrounds and explore
hydrocarbon synthesis
Future Directions
44
X-ray Spectra Research group
Oak Ridge, TN, 2012.
0.01 0.1 1 10 100 1000
0
20
40
60
80
100
120
140
160
180
200
Energy (eV/u)
CrossSection(10-16
cm2
)
ORNL Merged-Beams Charge Transfer Data
Si4+ + D -> Si3+ + D+
~ q x 10-15 cm2
(Phaneuf 83)
scaling
D
Trajectory effects
Si4+ + H Theory
Gargaud (87)
Si4+ + D Exp
Pieksma (96)
isotope effect
Xq+
 q
r
2
4
2
H
vPc /11  
Pieksma et al. PRA 96
Stancil & Zygleman PRL 95Havener et al., ICPEAC 91

More Related Content

What's hot

Improved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologiesImproved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologiesOndrej Cernotik
 
The TREK Experiment at J-PARC (Kaon 2016 Talk)
The TREK Experiment at J-PARC (Kaon 2016 Talk)The TREK Experiment at J-PARC (Kaon 2016 Talk)
The TREK Experiment at J-PARC (Kaon 2016 Talk)Sebastien Bianchin
 
Microwave entanglement created using swap tests with biased noise
Microwave entanglement created using swap tests with biased noiseMicrowave entanglement created using swap tests with biased noise
Microwave entanglement created using swap tests with biased noiseOndrej Cernotik
 
Quantum networks with superconducting circuits and optomechanical transducers
Quantum networks with superconducting circuits and optomechanical transducersQuantum networks with superconducting circuits and optomechanical transducers
Quantum networks with superconducting circuits and optomechanical transducersOndrej Cernotik
 
How to "see" a neutrino?
How to "see" a neutrino?How to "see" a neutrino?
How to "see" a neutrino?Alan Poon
 
Sparc Ebit September 2008
Sparc Ebit September 2008Sparc Ebit September 2008
Sparc Ebit September 2008dreebit
 
Computational Photochemistry
Computational PhotochemistryComputational Photochemistry
Computational Photochemistrywinterschool
 
New Insights into Massive Star Explosions
New Insights into Massive Star ExplosionsNew Insights into Massive Star Explosions
New Insights into Massive Star ExplosionsChristian Ott
 
33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...
33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...
33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...Cristian Randieri PhD
 
mcat (original paper 2013)
mcat (original paper 2013)mcat (original paper 2013)
mcat (original paper 2013)NUST Stuff
 
Relativistic Compact Outflows in Radio-quiet AGN
Relativistic Compact Outflows in Radio-quiet AGNRelativistic Compact Outflows in Radio-quiet AGN
Relativistic Compact Outflows in Radio-quiet AGNAshkbiz Danehkar
 
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...Cristian Randieri PhD
 
Multiwavelength properties of hyperluminous infrared galaxies
Multiwavelength properties of hyperluminous infrared galaxiesMultiwavelength properties of hyperluminous infrared galaxies
Multiwavelength properties of hyperluminous infrared galaxiesAngel Ruiz Camuñas
 
NANO281 Lecture 01 - Introduction to Data Science in Materials Science
NANO281 Lecture 01 - Introduction to Data Science in Materials ScienceNANO281 Lecture 01 - Introduction to Data Science in Materials Science
NANO281 Lecture 01 - Introduction to Data Science in Materials ScienceUniversity of California, San Diego
 
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究Toshihiro FUJII
 
changes Open Science in High-Energy Physics - Salvatore Mele at OpenCon
changes Open Science in High-Energy Physics - Salvatore Mele at OpenConchanges Open Science in High-Energy Physics - Salvatore Mele at OpenCon
changes Open Science in High-Energy Physics - Salvatore Mele at OpenConRight to Research
 
Joint interpretation of infrasound, acoustic, and seismic waves from meteorit...
Joint interpretation of infrasound, acoustic, and seismic waves from meteorit...Joint interpretation of infrasound, acoustic, and seismic waves from meteorit...
Joint interpretation of infrasound, acoustic, and seismic waves from meteorit...Ivan Kitov
 

What's hot (20)

Improved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologiesImproved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologies
 
The TREK Experiment at J-PARC (Kaon 2016 Talk)
The TREK Experiment at J-PARC (Kaon 2016 Talk)The TREK Experiment at J-PARC (Kaon 2016 Talk)
The TREK Experiment at J-PARC (Kaon 2016 Talk)
 
Microwave entanglement created using swap tests with biased noise
Microwave entanglement created using swap tests with biased noiseMicrowave entanglement created using swap tests with biased noise
Microwave entanglement created using swap tests with biased noise
 
Quantum networks with superconducting circuits and optomechanical transducers
Quantum networks with superconducting circuits and optomechanical transducersQuantum networks with superconducting circuits and optomechanical transducers
Quantum networks with superconducting circuits and optomechanical transducers
 
How to "see" a neutrino?
How to "see" a neutrino?How to "see" a neutrino?
How to "see" a neutrino?
 
Sparc Ebit September 2008
Sparc Ebit September 2008Sparc Ebit September 2008
Sparc Ebit September 2008
 
Computational Photochemistry
Computational PhotochemistryComputational Photochemistry
Computational Photochemistry
 
New Insights into Massive Star Explosions
New Insights into Massive Star ExplosionsNew Insights into Massive Star Explosions
New Insights into Massive Star Explosions
 
33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...
33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...
33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...
 
mcat (original paper 2013)
mcat (original paper 2013)mcat (original paper 2013)
mcat (original paper 2013)
 
Relativistic Compact Outflows in Radio-quiet AGN
Relativistic Compact Outflows in Radio-quiet AGNRelativistic Compact Outflows in Radio-quiet AGN
Relativistic Compact Outflows in Radio-quiet AGN
 
1st semester Physics stream (2013-June) Question Papers
1st semester Physics stream (2013-June) Question Papers 1st semester Physics stream (2013-June) Question Papers
1st semester Physics stream (2013-June) Question Papers
 
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
 
Multiwavelength properties of hyperluminous infrared galaxies
Multiwavelength properties of hyperluminous infrared galaxiesMultiwavelength properties of hyperluminous infrared galaxies
Multiwavelength properties of hyperluminous infrared galaxies
 
NANO281 Lecture 01 - Introduction to Data Science in Materials Science
NANO281 Lecture 01 - Introduction to Data Science in Materials ScienceNANO281 Lecture 01 - Introduction to Data Science in Materials Science
NANO281 Lecture 01 - Introduction to Data Science in Materials Science
 
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
 
changes Open Science in High-Energy Physics - Salvatore Mele at OpenCon
changes Open Science in High-Energy Physics - Salvatore Mele at OpenConchanges Open Science in High-Energy Physics - Salvatore Mele at OpenCon
changes Open Science in High-Energy Physics - Salvatore Mele at OpenCon
 
Joint interpretation of infrasound, acoustic, and seismic waves from meteorit...
Joint interpretation of infrasound, acoustic, and seismic waves from meteorit...Joint interpretation of infrasound, acoustic, and seismic waves from meteorit...
Joint interpretation of infrasound, acoustic, and seismic waves from meteorit...
 
Search for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole MomentSearch for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole Moment
 
1-s2.0-S138614251400907X-main
1-s2.0-S138614251400907X-main1-s2.0-S138614251400907X-main
1-s2.0-S138614251400907X-main
 

Viewers also liked

Viewers also liked (16)

MelsPortfolioA
MelsPortfolioAMelsPortfolioA
MelsPortfolioA
 
Introducing to RC
Introducing to RCIntroducing to RC
Introducing to RC
 
Case Report SANS 2011
Case Report SANS 2011Case Report SANS 2011
Case Report SANS 2011
 
Carlos andres aviles diaz actividad1 2 mapac
Carlos andres aviles diaz actividad1 2 mapacCarlos andres aviles diaz actividad1 2 mapac
Carlos andres aviles diaz actividad1 2 mapac
 
16-05nf
16-05nf16-05nf
16-05nf
 
Introducing Elder Care Asia 2016 (Taiwan)
Introducing Elder Care Asia 2016 (Taiwan)Introducing Elder Care Asia 2016 (Taiwan)
Introducing Elder Care Asia 2016 (Taiwan)
 
TL Spine Injury 2
TL Spine Injury 2TL Spine Injury 2
TL Spine Injury 2
 
Eslogan
EsloganEslogan
Eslogan
 
Cuento sergio de castro
Cuento sergio de castroCuento sergio de castro
Cuento sergio de castro
 
Diario ok
Diario okDiario ok
Diario ok
 
J, n, a, d. (2)
J, n, a, d. (2)J, n, a, d. (2)
J, n, a, d. (2)
 
pREHISTORIA
pREHISTORIApREHISTORIA
pREHISTORIA
 
La prehistoria
La prehistoria La prehistoria
La prehistoria
 
Ecosistemas
EcosistemasEcosistemas
Ecosistemas
 
Animalesok
AnimalesokAnimalesok
Animalesok
 
Casificacion seres vivos
Casificacion seres vivosCasificacion seres vivos
Casificacion seres vivos
 

Similar to giessen short

3D Imaging Technique for Internal Vibrational Energies
3D Imaging Technique for Internal Vibrational Energies3D Imaging Technique for Internal Vibrational Energies
3D Imaging Technique for Internal Vibrational EnergiesJeremy Sauza
 
Measurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducersMeasurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducersOndrej Cernotik
 
Francisco Guinea-Recent advances in graphene research
Francisco Guinea-Recent advances in graphene researchFrancisco Guinea-Recent advances in graphene research
Francisco Guinea-Recent advances in graphene researchFundación Ramón Areces
 
APS March meeting 2020_Chirality-induced Spin Selectivity in a Two-terminal S...
APS March meeting 2020_Chirality-induced Spin Selectivity in a Two-terminal S...APS March meeting 2020_Chirality-induced Spin Selectivity in a Two-terminal S...
APS March meeting 2020_Chirality-induced Spin Selectivity in a Two-terminal S...Tianhan Liu
 
Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Ondrej Cernotik
 
15.30 o10 p cottrell
15.30 o10 p cottrell15.30 o10 p cottrell
15.30 o10 p cottrellNZIP
 
First results from a prototype for the Fluorescence detector Array of Single-...
First results from a prototype for the Fluorescence detector Array of Single-...First results from a prototype for the Fluorescence detector Array of Single-...
First results from a prototype for the Fluorescence detector Array of Single-...Toshihiro FUJII
 
Gnp ch103-lecture notes
Gnp ch103-lecture notesGnp ch103-lecture notes
Gnp ch103-lecture notesRohan Jain
 
Toma Susi – Atom manipulation @ MRS2018
Toma Susi – Atom manipulation @ MRS2018Toma Susi – Atom manipulation @ MRS2018
Toma Susi – Atom manipulation @ MRS2018Toma Susi
 
Resonant Rayleigh Scattering from Collective Molecular Excitations
Resonant Rayleigh Scattering from Collective Molecular ExcitationsResonant Rayleigh Scattering from Collective Molecular Excitations
Resonant Rayleigh Scattering from Collective Molecular ExcitationsbalasubrahmaniyamM
 
Deep chandra observations_of_pictor_a
Deep chandra observations_of_pictor_aDeep chandra observations_of_pictor_a
Deep chandra observations_of_pictor_aSérgio Sacani
 
Ion-acoustic rogue waves in multi-ion plasmas
Ion-acoustic rogue waves in multi-ion plasmasIon-acoustic rogue waves in multi-ion plasmas
Ion-acoustic rogue waves in multi-ion plasmasMehedi Hassan
 
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Alexander Decker
 
Highly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronicsHighly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronicsMohammadreza Nematollahi
 

Similar to giessen short (20)

Modeling organic electronics with ADF
Modeling organic electronics with ADFModeling organic electronics with ADF
Modeling organic electronics with ADF
 
Majestix_POSTER
Majestix_POSTERMajestix_POSTER
Majestix_POSTER
 
3D Imaging Technique for Internal Vibrational Energies
3D Imaging Technique for Internal Vibrational Energies3D Imaging Technique for Internal Vibrational Energies
3D Imaging Technique for Internal Vibrational Energies
 
Measurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducersMeasurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducers
 
Francisco Guinea-Recent advances in graphene research
Francisco Guinea-Recent advances in graphene researchFrancisco Guinea-Recent advances in graphene research
Francisco Guinea-Recent advances in graphene research
 
APS March meeting 2020_Chirality-induced Spin Selectivity in a Two-terminal S...
APS March meeting 2020_Chirality-induced Spin Selectivity in a Two-terminal S...APS March meeting 2020_Chirality-induced Spin Selectivity in a Two-terminal S...
APS March meeting 2020_Chirality-induced Spin Selectivity in a Two-terminal S...
 
Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...
 
15.30 o10 p cottrell
15.30 o10 p cottrell15.30 o10 p cottrell
15.30 o10 p cottrell
 
First results from a prototype for the Fluorescence detector Array of Single-...
First results from a prototype for the Fluorescence detector Array of Single-...First results from a prototype for the Fluorescence detector Array of Single-...
First results from a prototype for the Fluorescence detector Array of Single-...
 
Gnp ch103-lecture notes
Gnp ch103-lecture notesGnp ch103-lecture notes
Gnp ch103-lecture notes
 
final_exam
final_examfinal_exam
final_exam
 
Toma Susi – Atom manipulation @ MRS2018
Toma Susi – Atom manipulation @ MRS2018Toma Susi – Atom manipulation @ MRS2018
Toma Susi – Atom manipulation @ MRS2018
 
Balkova
BalkovaBalkova
Balkova
 
Resonant Rayleigh Scattering from Collective Molecular Excitations
Resonant Rayleigh Scattering from Collective Molecular ExcitationsResonant Rayleigh Scattering from Collective Molecular Excitations
Resonant Rayleigh Scattering from Collective Molecular Excitations
 
Role of Atomic-Scale Modeling in Materials Design Discovery.
Role of Atomic-Scale Modeling in Materials Design Discovery.Role of Atomic-Scale Modeling in Materials Design Discovery.
Role of Atomic-Scale Modeling in Materials Design Discovery.
 
1.4938247
1.49382471.4938247
1.4938247
 
Deep chandra observations_of_pictor_a
Deep chandra observations_of_pictor_aDeep chandra observations_of_pictor_a
Deep chandra observations_of_pictor_a
 
Ion-acoustic rogue waves in multi-ion plasmas
Ion-acoustic rogue waves in multi-ion plasmasIon-acoustic rogue waves in multi-ion plasmas
Ion-acoustic rogue waves in multi-ion plasmas
 
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
 
Highly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronicsHighly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronics
 

giessen short

  • 1. Atomic and Molecular Ion Merged-Beams Experiments with Atomic H C. C. Havener Oak Ridge National Laboratory
  • 2. Merged-Beam Collaborators I.N. Draganić, ORNL/NASA X. DeFay, K. Morgan, D. Wulf, D. McCammon, University of Wisconsin, Madison D. G. Seely, Albion College V. M. Andrianarijaona, S. L. Romano, C. I. Guillen, A. K. Vassantachart, Pacific Union College M. Fogle, Auburn University A. Galindo-Uribarri, F. Salces Carcoba, D. J. Nader, ORNL, Universidad Veracruzana, Universidad Autonoma de San Luis Potosi, Mexico Theory Support D. Schultz and P. Krstic, ORNL P. C. Stancil, University of Georgia, Athens Research supported by the U.S Department of Energy Office of Fusion Energy Sciences and the Office of Basic Energy Sciences under contract DE-AC05-00OR22725 with UT-Battelle, LLC and . the NASA Solar & Heliospheric Physics Program NNH07ZDA001N. 2
  • 3. Outline • Introduction/Motivation Charge Transfer Experiments • Merged-beams technique • CT with atomic highly charged ions • CT with molecular ions • State-selective measurements • Motivation • Current progress • Summary/Future 3
  • 4. Motivation  CT is important process in magnetic fusion, ion-source development, astrophysics, plasma processing, lighting, ..  Ion-atom merged-beams experiment is unique and provides independently absolute benchmark measurements from keV/u down to near thermal energies.  Interplay between theory/experiment provides foundation for our quantum mechanical understanding of low- energy interactions between atomic/molecular species Xq+(n,l) + H X(q-1)+ + H+ e Low Energy Charge Transfer
  • 5. Low Energy Charge Transfer CT in magnetic fusion Inside TFTR Plasma diagnostics, modeling charge state balance, and divertor design CT in astrophysics “Cats Eye” Planetary Nebulae Ionization structure, line emission, thermal structure present and future NASA flight missions require more accurate atomic data Funding: US DOE Basic Energy Sciences, Fusion Energy Sciences, NASA
  • 6. CT with Solar Wind X q+ + A → X (q-1)+* (nl) + A + ; Charge exchange with the Solar wind Xq+ → HCI of C, N, O … A → H, He, C… or H2, H2O, CO, … NASA 6 Mars (Chandra) X-ray emission from CT of Solar Wind with planetary atmospheres
  • 7. 0.01 0.1 1 10 100 1000 0 50 100 Energy (eV/u) CrossSection(10 -16 cm 2 ) C 4+ N 4+ Si 4+ Ne 4+ molecular orbitals Intermediate/Low energy Si4+ + H Theory Si4+ + D Experiment isotope effect Xq+  q r 2 4 2 H D Enhancements ORNL Merged-Beams Charge Transfer Data Xq+ + H(D) -> X(q-1)+ + H+(D+) High energy scaling laws atomic orbitals
  • 8. Low Energy CT Behavior For stronger dipole interaction -> shape resonances are wider, enhancements should appear at higher energies N3+ + H Theory Rittby et al., J. Phys. B: 84 “Orbiting” resonances 4 2 2 )( r q rV   Xq+ H  Li H 36 He2+ + Li Landau-Zener estimates: Xq+ + H Stancil & Zygelman PRL 95 Ion E threshold N4+ 8 eV/u Cl7+ 17 eV/u Ti22+ 1400 eV/u Gioum. & Stev. J. Chem. Phys. 58
  • 9. Why Merged Beams ? Gas Cell Technique 9 Gas Cell Xq+ Low Collision Energy Limit Atomic H Target Difficult Target Density High “Relative” cross sections Thermal collision energy Atomic H Target Target Density Low Absolute Measurements Merged-Beams Technique 𝜋 𝑔𝑎𝑠 ~3 𝑥 10^13 𝑐𝑚2 𝜋 𝑏𝑒𝑎𝑚 − 𝑏𝑒𝑎𝑚 ~ 10^8 𝑐𝑚2
  • 10. Merged-Beams Technique 20 meV/amu 5 keV/amu Wide range of interaction energies  cos( 21 21 2 2 1 1 mm EE m E m E Erel m1 v1  m2 v2 Vcm Large angular collection in CM  cm increases with Vcm lab  cm  cm increases toward lower collision energies Good resolution even at lowest energies Center-of-Mass Frame Ecm = 25 meV (25 meV) ED = 7.0 keV (6 eV) ESi 4+ = 98 keV (37 eV)  cm = 0.1 (0.1)
  • 11. ion-atom merged-beams apparatus cross section measurements independently absolute   FLvII vvR r eq 21 21 2  measurements technically difficult • # of beam-beam collisions in merge path is small (max I) 20-30 uA ions, up to 1 uA H, D • a two-beam modulation technique separates signal (Hz) from backgrounds (kHz) backgrounds from H stripping, ion photons and knock-ons • ultra-high vacuum minimizes backgrounds X q+ H - - H CHANNEL ELECTRON MULTIPLIER H + H 0 X X q+ (q-1)+ CW Nd: YAG LASER DEFLECTORS NEUTRAL BEAM DETECTOR FARADAY CUP 35 cm
  • 12. Upgraded Multicharged Ion Research Facility (MIRF) e-ion merged beams ion-surface ion-atom merged beams Caprice0-25kV “floatingbeamline” COLTRIMS grazing-surface PermMagnetECR 20-270kV e-ion crossed beams molecular-ion trap
  • 13. Ion-atom merged-beams Permanent Magnet ECR Source Ar 8+ 510 uA; 11+ 90 ua Xe 20+ 52 uA; 30+ 1 uA O 1-3+ 700 uA;7+ 90uA HV Platform (2-20-270 kV)
  • 14.
  • 16. Intense Highly Charged Ions Extraction from ECR 40 60 80 100 120 140 160 180 200 0 5 10 15 20 25 30 35 40 14 N 6+ 16 O 7+ 18 O 8+ He 2+ He + 18 O 8+ O 7+ O 6+ O 5+ O 4+ O 3+ O 2+ O 1+ H + Analyzing magnet current (A) BeamIntensity(e) 18 O 8+ on 11-09-09 PSHF =300W Uext =18.5 kV Ibeam =0.72 A Slits 6 x 6 mm 2 Oxygen-Helium Ion Beam Spectrum 68 69 70 0.0 0.2 0.4 0.6 0.8 1.0 16
  • 17. ORNL Merged-Beam Measurements Rejoub et al. PRA 2004 Havener et al. PRA 2005 insufficient angular collection R. Mawhorter DAMOP 2004 Ne is injected in magnetic fusion devices as a diagnostic and to mitigate disruptions
  • 18. • Direct measurement [Havener et al., 2009] of isotope effect due to ion induced dipole attraction for Si4+ + H,D; N2+ + H,D Langevin estimates
  • 19. PRL 2007 Xq+ H D @ E=100 eV/amu Rmin(H)=.65 a.u. Rmin(D)=.4 a.u. Low Energy Access to Rmin K-vacancy production Peterson et al. PRL 76
  • 20. 0.1 1 10 0.01 0.1 1 10 100 Present Measurement Fite 62 Nutt 78 Gilbody 78 Krstic 04 Liu 03 Janev, IAEA (1995) Barnett, ORNL (1990) Harel 96 CrossSection(10 -16 cm 2 ) Energy (keV/u) He2+ + H Merged-Beams Measurements Extend measurements to lower energies with HV platformHavener et al., PRA 2005 HC-MOCC HSCC
  • 21. Vcm Large angular collection in CM lab  cm  cm increases toward lower collision energies He2+ + H -> He+ + H+ Havener et al., PRA 2005 (HeH)2+ Merged-Beams Technique cont’d 2005 apparatus 2.5 deg. lab Present apparatus 3.5 deg. lab 2005 apparatus 2.5 deg. lab Present apparatus 3.5 deg. lab 21
  • 22. 22 C5+ + H Draganic et al., PRA 83, 022711, (2011)
  • 23. 23 State-selective calculations for C5+ + H using ORNL total cross sections… Nolte, Stancil, et al., PRA 2012
  • 25. 100 1000 0 10 20 30 40 50 60 70 80 present measurements HSCC AOCC 03 AOCC 84 MOCC-KL MOCC-SGB Meyer et al. 85 O8+ + H -> O 7+ + H+ Crosssection(10 -16 cm 2 ) Energy (eV/u) Factor of two discrepancy between previous measurement [Meyer et al., 1985] and predictions of state-of-the-art hyperspherical close coupling theory [Lee et al., 2004] 25 Need state-selective to resolve differences between theory/experiment !
  • 27. 14.5 GHz ECR Ion Source Intense Molecular Ion Beams enriched D2 injection 4.2 x 10-6 Torr 16.4 kV extraction 3 W microwave power Draganic et al., NIM A 640 (2011) 1
  • 28. Low Energy Charge Transfer H + D2 + (v,j)i H+ + D2 (v,j)f H+ + D + D present measurements with D2 + e H + H2 + H+ + H2 Hb + + (Ha-Hc) Hc+ + (Hb-Ha) H+ + H + H (1) (2) (3a) (3b) Ha + (Hb-Hc)+ low energy CT involves dynamically coupled electronic, vibrational, and rotational degrees of freedom
  • 29. previous status experiment/theory Important for Interstellar cloud chemistry; H2 + + H2 -> H3 +; H2 + + H destruction mechanism?
  • 30. Franck-Condon distribution [Amitay et al. PRA 1999] vi 0 1 2 3 4 5 6 7 8 % 9 16 18.5 15.5 12 9.5 6 4.5 3 Andrianarijaona et al., ICPEAC Proc. 2009
  • 31. CO+ + H MOCC with IOSA approximation vibrational state-to-state calculations for CO+ + H by C.Y. Lin, P.C. Stancil, et al. PRA (2007) Havener et al., AIP Conf. Proc. 1336, (2011) pp 101
  • 32. calculations for CO+ + H by C.Y. Lin, P.C. Stancil, et al. PRA (2007) orientation-angle dependence CO+ + H Havener et al., AIP Conf. Proc. 1336, (2011) pp 101
  • 33. PRA 84, 062716 (2011)
  • 35. Si4+ + D -> Si3+(3d) + D+ ; Q=11.7 eV -> Si3+(4s) + D+ ; Q=7.5 eV Wu & Havener, J. Phys. B 1997 Q of reaction in CM amplified in lab frame Center-of-Mass (CM) Lab FrameD+ Signal 35 Vcm lab  cm Q Amplification of Q in lab frame
  • 36. 1 uA C6+; 1 uA H 20 cm-2 beam-beam overlap  1 cm interaction length  10-15 cm2 cross section  10% geometrical efficiency  20% filter transmission  4 Hz Signal Proposed Work Single capture, total and X-ray emission Bare and H-like ions + H e.g., C, N, O ions C6+ + H; X-ray emission Holy Grail, X-ray emission with H
  • 37. n 2 5 3 1 4 s p d f C6+ + He -> C5+ (n=5, l?) X-ray Calorimeter, McCammon, J Low Temp Phys 151, 715 (2008) First Experiment with Gas Cell
  • 38. Ionization potential H 13.6 eV He 24.6 eV H2 15.4 eV Kr 14 eV Gas Cell Results Measurements taken from 1.5 kV to 60 kV Must model cascade process for comparison with l distribution
  • 39. C6+ + He C6+ + Kr R3 n=3->1/n=2->1 R4 n=4->1/n=2->1 R3 R4 R3 R4 Karchenko, priv comm C6+ + H Karchenko, priv comm Morgan et al., proceedings CAARI 2012 R3 R4 R4 R3 Karchenko,priv comm, data used for Solar Wind Simulatioin
  • 40. O8+ + Kr ORNL Measurements Stancil et al., priv.
  • 41. X-ray Emission from Merged-Beams Sig/Background = .01 Sig + Bkgrd with H and C6+ beam (1 hr) Bkrd C6+ beam only (1 hour) Design new chopping scheme 10 sec Background from CT with 5 x 10-9 Torr H2 and H20 C6+ + H2 Calorimeter not UHV
  • 42. C- H3 + Laser Upgrade 820 nm, 1.51 eV (C- 1.262 affinity) Cs sputter ion source  H beams can be replaced by C beams to enable synthesis of simple hydrocarbons in merged beams where initial/final states can be manipulated and observed Future Molecular Ion Studies C H3 + H2 CH2 + H Reactions to study: H+ + C -> CH+ H3 + + C -> H2 + CH+ -> H + CH2 + CH+ C 42
  • 43. Summary •Intense beams from the ECR ion source enable molecular ion CT measurements with H from keV/u to meV/u corresponding to collision times from “frozen” vibrational and rotational states to collisions where rotational and vibrational states important •D2 + + H , CO+ + H, O2 + + H measurements are compared to vibrational state-to- state calculations. CT with atomic ions CT with molecular ions •CT measurements with atomic ions and H from keV/u to meV/u continue to benchmark AOCC, MOCC theory and explore trajectory/isotope effects effects at low energies. CT with bare and H-like ions surprisingly still lack low energy data & theory •State- selective measurements with X-ray calorimeter are needed to further benchmark theory. Gas cell measurements simulate H but better signal/background needed for merged-beam measurements with H. 43 •Modify XQ calorimeter to increase sig/noise to allow merged-beams measurements with H •Future measurements of proton transfer will have reduced backgrounds and explore hydrocarbon synthesis Future Directions
  • 44. 44 X-ray Spectra Research group Oak Ridge, TN, 2012.
  • 45. 0.01 0.1 1 10 100 1000 0 20 40 60 80 100 120 140 160 180 200 Energy (eV/u) CrossSection(10-16 cm2 ) ORNL Merged-Beams Charge Transfer Data Si4+ + D -> Si3+ + D+ ~ q x 10-15 cm2 (Phaneuf 83) scaling D Trajectory effects Si4+ + H Theory Gargaud (87) Si4+ + D Exp Pieksma (96) isotope effect Xq+  q r 2 4 2 H vPc /11   Pieksma et al. PRA 96 Stancil & Zygleman PRL 95Havener et al., ICPEAC 91