SlideShare a Scribd company logo
1 of 82
A universal matter-wave
interferometer with optical
gratings…
Philipp Haslinger
Music by Adrian Artacho
…in the time-domain
Overview
Quantum-video
www.quantumnano.at
Douglas Hofstadter
Motivation
The Talbot Lau interferometer
intensity
Δx
g
G1 G2 G3
v
Δx
diffraction
incoherent
matter waves
detection by shift of
G3
preparation of
transversal
coherence
g
d
s dBλ≈max
dB
g
d
λ
2
=
g
g=
TL=
s
A model interferometer
d
mv
h
dB =λ
The Talbot Lau interferometer
intensity
Δx
g
G1 G2 G3
v
Δx
dB
T
g
L
λ
2
=
dB
T
g
L
λ
2
= mv
h
dB =λ
g
d
s dBλ=max
g
d
mv
h
s =max
Time - domain
g
t
m
h
ts =max)(
mv
h
dB =λg
g = s max
A model interferometer
g
d
mv
h
s =max
Time - domain
d
g
t
m
h
ts =max)(
g
A model interferometer
Interference pattern of faster particles
g
d
mv
h
s =max
Time - domain
d
g
t
m
h
ts =max)(
g
A model interferometer
Interference pattern of slower particles
g
d
mv
h
s =max
Time - domain
g
t
m
h
ts =max)(
After theAfter the samesame timetime allall
particles with theparticles with the same masssame mass
produce theproduce the same interference,same interference,
regardless of their velocities!regardless of their velocities!
A model interferometer
After a certain time
.... all particles with the same mass
.... contribute to the same interference pattern
.... regardless of their velocity
Transition to time-domain
Cahn et.al., PRL 79 (1997) Reiger et.al., Opt Commun 264 (2006) Nimmrichter et.al., NJP 13 (2011)
-pulsed standing laser waves as periodic ionizing gratings
nm
nm
g laser
5,78
2
157
2
===
λ
g
dB
T
g
L
λ
2
=
h
mg
TT
2
=
How to implement?
t=0
to MCP
interferometer mirrorpulsed source TOF MS
t=TT
hmgTT /2
=
tsource tdetection
mass
signal
200 400 600 800 1000 1200 1400 1600 1800 2000 2200
0
2
4
6
8
10
12
x 10
5
Pulsed
cluster source
t=2TT
OTIMA interferometer
157 nm
post
ionization
t=0
to MCP
interferometer mirrorpulsed source TOF MS
t=TT
hmgTT /2
=
tsource tdetection
mass
signal
200 400 600 800 1000 1200 1400 1600 1800 2000 2200
0
2
4
6
8
10
12
x 10
5
Pulsed
cluster source
t=2TT
OTIMA interferometer
157 nm
post
ionization
Haslinger et al. Nature Physics (2013)
Interference pattern encoded
in the mass spectrum
Anthracene
C14H10
m = 178 amu
Talbot - carpet
Music
by Adrian Artacho
Clusters of the following molecules have interfered in the OTIMA interferometer recently:
3 4 5 6 7 8 9 10 11 12 13
0
0.2
0.4
0.6
0.8
cluster number
norm.contrast
ferrocene
Fe(C5H5)2
m = 186 amu
1973
3 4 5 6 7 8 9 10 11
0
0.2
0.4
0.6
0.8
1
cluster number
norm.contrast
caffeine
C8H10N4O2
m = 194 amu
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-0.2
0
0.2
0.4
0.6
cluster number
norm.contrast
vanillin
C8H8O3
m = 152 amu
Limits & Outlook:
• Particle velocity: limited by setup geometry  particles >106
amu need to be
cooled and even trapped
• Gravity: long Talbot time (107
amu ≈ 0.30 sec)  particles fall
• Decoherence: thermal, collisional
• Modifications of established quantum theory ?
spontaneous collapse models Ghirardi et al. Phys. Rev. A (1986)
Erwin Schrödinger‘s
grave in Alpbach
It is not „written in stone“It is not „written in stone“
Limits & Outlook:
• Particle velocity: limited by setup geometry  particles >105
amu need to be
cooled and even trapped
• Gravity: long Talbot time (107
amu ≈ 0.3sec)  particles fall
• Decoherence: thermal, collisional
• Modifications of established quantum theory ?
spontaneous collapse models models Ghirardi et al. Phys. Rev. A (1986)
It is „written in stone“It is „written in stone“
At University of Vienna
Team 2013
Philipp Geyer
Stefan Nimmrichter
Markus Arndt
Jonas RodewaldNadine Dörre
Philipp Haslinger
Bordeaux
2013
Time-domain interferometry
t=0
to MCP
interferometer mirrorpulsed source TOF MS
t=TT
hmgTt /2
=
tsource tdetection
mass
signal
200 400 600 800 1000 1200 1400 1600 1800 2000 2200
0
2
4
6
8
10
12
x 10
5
Pulsed
cluster source
157 nm
post
ionization
t=2TT
OTIMA interferometer
Mirror heating shifts the fringe pattern
and reveals the „fleeting“ nanostructure
A tool of high sensitivity
• Molecular patterns as fine as 40 nm (Read/Write)
• High temporal resolution <2 ns
• Sensitive to optical polarizability
(excited state lifetime)
• Possible application:
Spectroscopy
1 IR-photon (2µm)
shifts a 100 amu molecule
in 20µs by 40 nm t=0 t=TT t=2TT
No velocity
dependence
Nimmrichter et al. Phys. Rev. A (2008)
Quantum interference is revealed as a
Mass-dependent signal amplification/reduction
T1 T2
Asymmetric pulses
T1 T2
Symmetric pulses⟶ Interference
m
m/2
Interference pattern encoded
in the mass spectrum
Haslinger et al. Nature Physics (2013)
Anthracene
C14H10
m = 178 amu
neon seedgas, vmax ≈920m/s ⟶ TT =19 µs
difference due to
constructive interference
argon seedgas, vmax ≈700m/s ⟶ TT =26 µs
A mirror-scan shifts the fringe pattern
and reveals the „fleeting“ nanostructure
Vibration sensor
Interference pattern independent
of the particle´s velocity
but strongly depends on the timing
Sym
Asym
Rayleigh scattering in the grating
Coriolis force -> Mismatch of wave packets
Tip-Tilt Mirror Compensation
Measurement of Earth rotation rate
in Berkeley ,CA
• Reduce systematic effect
• Improved sensitivity
• World’s most sensitive atom interferometer (10 ħk, 250 ms) (2012)
A tool of high accuracy
• Molecular patterns as fine as 39 nm (Read/Write)
• High temporal resolution <2ns
• Sensitive on optical polarizability
(excited state lifetime)
• Possible application:
Spectroscopy
1 IR-photon (2µm)
shifts a 100 amu molecule
in 20µs by 40 nm
Philipp Haslinger
Bordeaux
2013
g
d
mv
h
s =max
Time - domain
d
g
t
m
h
ts =max)(
g
After theAfter the samesame timetime allall
particles with theparticles with the same masssame mass
produce theproduce the same interference,same interference,
regardless of their velocities!regardless of their velocities!
A model interferometer
g
d
mv
h
s =max
Time - domain
d
g
t
m
h
ts =max)(
g
A model interferometer
Interference pattern of faster particles
System requirements
• Interference pattern lasts < 48ns
Active jitter readout and active laser synchronization
• Effective slit width & grating phase depend on
laser pulse energy  monitoring
• Interference pattern for different masses at the same time Mass
detection and selection
Philipp Haslinger
Bordeaux
2013
Experimental repetition rate 100 Hz
200MB/s data
Requirements on Interferometry
Philipp Haslinger
Bordeaux
2013
Talbot Lau in the Time domain
Advantages of the OTIMA-Interferometer
(Optical Time-domain Ionizing Matter-wave Interferometer)
▫ Standing light wave: absorptive & ionizing
▫ Grating period 78.5nm
▫ no v.d.Waals interaction
▫ Interference independent of velocity
▫ Highest visibility for allmasses
Philipp Haslinger
Bordeaux
2013
Mirror flatness
Philipp Haslinger
Bordeaux
2013
Philipp Haslinger
Bordeaux
2013
Talbot Lau in the time domain
Philipp Haslinger
Bordeaux
2013
1. Grating
Coherence prep.
2. Grating
Diffraction
3. Grating
Scanning mask
Detector
Pulsewidth 6nsPulsewidth 6ns
Mass
Signal
Far fieldFar field
Philipp Haslinger
Bordeaux
2013
g
d
s dBλ=max
s
mv
h
dB =λ
g
d
mv
h
s =max
Time- domain
d
g
Philipp Haslinger
Bordeaux
2013
d
g
Testing Spontaneous Localization Theories
• Is there a quantitative criterion?
Ghirardi, Rimini, Weber Phys. Rev. D 34,
470 (1986)
Philipp Haslinger
Bordeaux
2013
Testing spontaneous localization theories with matter-wave interferometry
Nimmrichter, et al arXiv:1103.1236
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
-16
-15
-14
-13
-12
-11
Mass [amu]
Signal[a.u.]
Ac8
Comparison resonant/off-resonant
Philipp Haslinger
Bordeaux
2013
OTIMA-Interferometer
Interfering in the time domain 10³
amu106
amu
Quantum interference is revealed as a
Mass-dependent signalamplification/reduction
Philipp Haslinger
Bordeaux
2013
T1 T2
T1 T2
Asymmetric pulses
Symmetric pulses⟶ Interference
OTIMA-Interferometer
Optical Time-domain Ionizing Matter-wave
Interfometer
Philipp Haslinger
Bordeaux
2013
Deflectometry in The time domain
Philipp Haslinger
Bordeaux
2013
Magnetron source: Prof. Bernd von Issendorff, Freiburg
Why Metal Cluster?
Philipp Haslinger
Bordeaux
2013
Talbot Lau in the time domain
Philipp Haslinger
Bordeaux
2013
1. Grating
Coherence prep.
2. Grating
Diffraction
Detector
3. Grating
Scanning mask
Velocity
Signal
Talbot Lau in the time domain
Philipp Haslinger
Bordeaux
2013
1. Grating
Coherence prep.
2. Grating
Diffraction
Detector
3. Grating
Scanning mask
Velocity
Signal
1422 1424 1426 1428 1430 1432
-25.5
-25
-24.5
-24
-23.5
-23
-22.5
-22
-21.5
Mass [amu]
Signal[a.u.]
Anthracene cluster mass spectrum
Philipp Haslinger
Bordeaux
2013
Which Particles?
Philipp Haslinger
Bordeaux
2013
Fluorofullerene - 1632amu
Di-azo-benzene - 1034amu
Metal/Semiconductor clusters!
Ionization energy: Visible – UV
Absorptive laser gratings possible
Size: good mass scaling behavior
spherical shape – 106
amu r ~3nm
Slowing/trapping feasible
Source available (B. v. Issendorff, Univ. Freiburg)
mass range 102
– 107
amu for allmetals
Limits & Outlook:
• Gravity: long Talbot time (107
amu ≈ 0.2sec) 
particles fall out of the laser focus
• Particle velocity limited by setup geometry
 large clusters>105
amu cooled and even trapped
• Decoherence: collisional, thermal
• Tests of established Quantum Theory:
spontaneous collapse models
Philipp Haslinger
Bordeaux
2013
Testing Spontaneous Localization Theories
• Is there a quantitative criterion?
Ghirardi, Rimini, Weber Phys. Rev. D 34,
470 (1986)
Philipp Haslinger
Bordeaux
2013
Testing spontaneous localization theories with matter-wave interferometry
Nimmrichter, et al arXiv:1103.1236
Philipp Haslinger
Bordeaux
2013
Talbot Lau in the time domain
LaserLaser
wavelengthwavelength
157nm157nm  7.9eV7.9eV
MirrorMirror
T=mg²/h
Philipp Haslinger
Bordeaux
2013
Interference data
Philipp Haslinger
Bordeaux
2013
200 400 600 800 1000 1200 1400 1600 1800 2000 2200
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
Mass [amu]
Signal[a.u]
Anthracene cluster mass spectrum
after 3 laser pulses resonant
Philipp Haslinger
Bordeaux
2013
Anthracene cluster mass spectrum
after 3 laser pulses off-resonant (100ns)
200 400 600 800 1000 1200 1400 1600 1800 2000 2200
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
Mass [amu]
Signal[a.u.]
Philipp Haslinger
Bordeaux
2013
889 890 891 892 893 894 895 896 897 898
-55
-50
-45
-40
-35
-30
-25
-20
Mass [amu]
Signal[a.u.]
Comparison resonant/off-resonant
Ac5
Philipp Haslinger
Bordeaux
2013
1778 1780 1782 1784 1786 1788 1790 1792
-23.6
-23.4
-23.2
-23
-22.8
-22.6
-22.4
-22.2
-22
Mass [amu]
Signal[a.u.]
Comparison resonant/off-resonant
Ac10
Philipp Haslinger
Bordeaux
2013
Interference scan
Philipp Haslinger
Bordeaux
2013
-12 -10 -8 -6 -4 -2 0 2 4 6
-20
-10
0
10
20
30
40
50
Contrast
mrad
~40nm
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
Mass [amu]
Contrast
Interference contrast @ pulse timing = 25.2µs
Ac10
Ac5
T=mg²/h
Philipp Haslinger
Bordeaux
2013
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
Mass [amu]
Contrast
Interference contrast @ pulse timing = 25.2µs
Ac10
Ac5
Philipp Haslinger
Bordeaux
2013
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
Mass [amu]
Contrast
Interference contrast @ pulse timing = 19.6µs
Ac10
Ac5
Philipp Haslinger
Bordeaux
2013
Farfield interferometry
Philipp Haslinger
Bordeaux
2013
Juffmann et al. Nature Nanotechnology 7, 297–300 (2012)
Nanofabricated gratings
Philipp Haslinger
Bordeaux
2013
Farfield interferometry
Philipp Haslinger
Bordeaux
2013
Juffmann et al. Nature Nanotechnology 7, 297–300 (2012)
Philipp Haslinger
Bordeaux
2013
Philipp Haslinger
Bordeaux
2013
Gravity
fast
slow
mv
h
dB =λ
1st
Grating
Coherence
2nd
Grating
Diffraction
3rd
Grating
Detection Mask
Gerlich et al. Nature Physics 3, 711 (2007)
Source
Detector
Kapitza-Dirac-Talbot-Lau interferometry
Quantum Superposition of „Molecular Octopuses“
Nature Communications 2, 263 (2011).
m=5672 amu, N=356 atoms m=5310 amu, N=430 atoms
Interference requires quantum indistinguishability
 given if a single molecule interferes with itself.
Which Particles?
Philipp Haslinger
Bordeaux
2013
Ionization energy: below 7.9eV + high ionization efficiency
 Absorptive laser gratings
Metal/Semiconductor clusters:
Magnetron sputter source
(B. v. Issendorff, Freiburg)
Cold 102
– 107
amu clusters
Spherical shape: 106
amu
r ~3nm
Ar
He
LN2
sputtering head aggregation
tube
iris
Which Particles?
Philipp Haslinger
Bordeaux
2013
Ionization energy: below 7.9eV + high ionization efficiency
 Absorptive laser gratings
Molecular clusters:
Even- Lavie-Valve:
Cold: supersonic expansion T< 1 K
Intense: pulsed thermal
evaporation
Anthracene : IE~ 7,2eV
Vapor pressure ~ 70mbar @200°C
Thermal laser desorption
• Slow velocitiy
• Provides even thermal sensitive particles
• Fast switching
• Point like source
• Tailermade molecules ~25 000 amu
• Thermal velocity ….
• Talbot order…..
• Space-time area….
Philipp Haslinger
Bordeaux
2013

More Related Content

What's hot

An automated and user-friendly optical tweezers for biomolecular investigat...
An automated and user-friendly optical  tweezers for biomolecular  investigat...An automated and user-friendly optical  tweezers for biomolecular  investigat...
An automated and user-friendly optical tweezers for biomolecular investigat...Dr. Pranav Rathi
 
Experimental summary (neutrinos) - Rencontres du Vietnam - - 2017.07
Experimental summary (neutrinos) - Rencontres du Vietnam - - 2017.07  Experimental summary (neutrinos) - Rencontres du Vietnam - - 2017.07
Experimental summary (neutrinos) - Rencontres du Vietnam - - 2017.07 Alan Poon
 
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)Rene Kotze
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...Lake Como School of Advanced Studies
 
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...Lake Como School of Advanced Studies
 
Biermann AstroPhysic
Biermann AstroPhysicBiermann AstroPhysic
Biermann AstroPhysicAtner Yegorov
 
A review of time­‐frequency methods
A review of time­‐frequency methodsA review of time­‐frequency methods
A review of time­‐frequency methodsUT Technology
 
“Measurements of atmospheric NO2 using a mobile DOAS system in Dhanbad, India”
“Measurements of atmospheric NO2 using a mobile DOAS system in Dhanbad, India”“Measurements of atmospheric NO2 using a mobile DOAS system in Dhanbad, India”
“Measurements of atmospheric NO2 using a mobile DOAS system in Dhanbad, India”RAHUL GUPTA
 
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...aimsnist
 
20160505 - CPFD modeling and experimental validation of gas–solid flow in ado...
20160505 - CPFD modeling and experimental validation of gas–solid flow in ado...20160505 - CPFD modeling and experimental validation of gas–solid flow in ado...
20160505 - CPFD modeling and experimental validation of gas–solid flow in ado...Angel Lanza
 
Tantawi - Measurements of RF properties of Novel Superconducting Materials
Tantawi - Measurements of RF properties of Novel Superconducting MaterialsTantawi - Measurements of RF properties of Novel Superconducting Materials
Tantawi - Measurements of RF properties of Novel Superconducting Materialsthinfilmsworkshop
 

What's hot (20)

An automated and user-friendly optical tweezers for biomolecular investigat...
An automated and user-friendly optical  tweezers for biomolecular  investigat...An automated and user-friendly optical  tweezers for biomolecular  investigat...
An automated and user-friendly optical tweezers for biomolecular investigat...
 
Experimental summary (neutrinos) - Rencontres du Vietnam - - 2017.07
Experimental summary (neutrinos) - Rencontres du Vietnam - - 2017.07  Experimental summary (neutrinos) - Rencontres du Vietnam - - 2017.07
Experimental summary (neutrinos) - Rencontres du Vietnam - - 2017.07
 
Progress Report
Progress ReportProgress Report
Progress Report
 
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
 
Starobinsky astana 2017
Starobinsky astana 2017Starobinsky astana 2017
Starobinsky astana 2017
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
 
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
 
Biermann AstroPhysic
Biermann AstroPhysicBiermann AstroPhysic
Biermann AstroPhysic
 
A review of time­‐frequency methods
A review of time­‐frequency methodsA review of time­‐frequency methods
A review of time­‐frequency methods
 
Caldwellcolloquium
CaldwellcolloquiumCaldwellcolloquium
Caldwellcolloquium
 
DC_NDM2009
DC_NDM2009DC_NDM2009
DC_NDM2009
 
Gravitational Waves and Binary Systems (3) - Thibault Damour
Gravitational Waves and Binary Systems (3) - Thibault DamourGravitational Waves and Binary Systems (3) - Thibault Damour
Gravitational Waves and Binary Systems (3) - Thibault Damour
 
“Measurements of atmospheric NO2 using a mobile DOAS system in Dhanbad, India”
“Measurements of atmospheric NO2 using a mobile DOAS system in Dhanbad, India”“Measurements of atmospheric NO2 using a mobile DOAS system in Dhanbad, India”
“Measurements of atmospheric NO2 using a mobile DOAS system in Dhanbad, India”
 
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
 
Gravitational Waves and Binary Systems (2) - Thibault Damour
Gravitational Waves and Binary Systems (2) - Thibault DamourGravitational Waves and Binary Systems (2) - Thibault Damour
Gravitational Waves and Binary Systems (2) - Thibault Damour
 
20160505 - CPFD modeling and experimental validation of gas–solid flow in ado...
20160505 - CPFD modeling and experimental validation of gas–solid flow in ado...20160505 - CPFD modeling and experimental validation of gas–solid flow in ado...
20160505 - CPFD modeling and experimental validation of gas–solid flow in ado...
 
Tantawi - Measurements of RF properties of Novel Superconducting Materials
Tantawi - Measurements of RF properties of Novel Superconducting MaterialsTantawi - Measurements of RF properties of Novel Superconducting Materials
Tantawi - Measurements of RF properties of Novel Superconducting Materials
 
Poster
PosterPoster
Poster
 
Binary Black Holes & Tests of GR - Luis Lehner
Binary Black Holes & Tests of GR - Luis LehnerBinary Black Holes & Tests of GR - Luis Lehner
Binary Black Holes & Tests of GR - Luis Lehner
 
XRD Proposal
XRD ProposalXRD Proposal
XRD Proposal
 

Similar to A universal matter-wave interferometer with optical gratings in the time domain

Airborne and underground matter-wave interferometers: geodesy, navigation and...
Airborne and underground matter-wave interferometers: geodesy, navigation and...Airborne and underground matter-wave interferometers: geodesy, navigation and...
Airborne and underground matter-wave interferometers: geodesy, navigation and...Philippe Bouyer
 
Francisco Guinea-Recent advances in graphene research
Francisco Guinea-Recent advances in graphene researchFrancisco Guinea-Recent advances in graphene research
Francisco Guinea-Recent advances in graphene researchFundación Ramón Areces
 
Act pre 06_apr_2018_michael_ hippke_interstellar communication
Act pre 06_apr_2018_michael_ hippke_interstellar communicationAct pre 06_apr_2018_michael_ hippke_interstellar communication
Act pre 06_apr_2018_michael_ hippke_interstellar communicationAdvanced-Concepts-Team
 
XRD- X-Ray diffraction
XRD- X-Ray diffractionXRD- X-Ray diffraction
XRD- X-Ray diffractionBASANTKUMAR123
 
Noise from stray light in interferometric GWs detectors
Noise from stray light in interferometric GWs detectorsNoise from stray light in interferometric GWs detectors
Noise from stray light in interferometric GWs detectorsJose Gonzalez
 
Crystal structure analysis
Crystal structure analysisCrystal structure analysis
Crystal structure analysiszoelfalia
 
X ray diffraction or braggs diffraction or
X ray diffraction or braggs diffraction orX ray diffraction or braggs diffraction or
X ray diffraction or braggs diffraction orbpati5271
 
XRD-calculations and characterization.pdf
XRD-calculations and characterization.pdfXRD-calculations and characterization.pdf
XRD-calculations and characterization.pdfEmadElsehly
 
Nanomagnetism columbia 2013
Nanomagnetism columbia 2013Nanomagnetism columbia 2013
Nanomagnetism columbia 2013oriolespinal
 
Single Phase Heat Transfer with Nanofluids
Single Phase Heat Transfer with Nanofluids Single Phase Heat Transfer with Nanofluids
Single Phase Heat Transfer with Nanofluids Ehsan B. Haghighi
 
Kilohertz-Rate MeV Ultrafast Electron Diffraction for Time-resolved Materials...
Kilohertz-Rate MeV Ultrafast Electron Diffraction for Time-resolved Materials...Kilohertz-Rate MeV Ultrafast Electron Diffraction for Time-resolved Materials...
Kilohertz-Rate MeV Ultrafast Electron Diffraction for Time-resolved Materials...Yi Lin
 
2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMagNanoFrontMag-cm
 
X-ray_Diffraction.ppt
X-ray_Diffraction.pptX-ray_Diffraction.ppt
X-ray_Diffraction.pptSaroseThapa1
 
Adamek_SestoGR18.pdf
Adamek_SestoGR18.pdfAdamek_SestoGR18.pdf
Adamek_SestoGR18.pdfgarfacio30
 
Cosmology with the 21cm line
Cosmology with the 21cm lineCosmology with the 21cm line
Cosmology with the 21cm lineCosmoAIMS Bassett
 

Similar to A universal matter-wave interferometer with optical gratings in the time domain (20)

Airborne and underground matter-wave interferometers: geodesy, navigation and...
Airborne and underground matter-wave interferometers: geodesy, navigation and...Airborne and underground matter-wave interferometers: geodesy, navigation and...
Airborne and underground matter-wave interferometers: geodesy, navigation and...
 
Francisco Guinea-Recent advances in graphene research
Francisco Guinea-Recent advances in graphene researchFrancisco Guinea-Recent advances in graphene research
Francisco Guinea-Recent advances in graphene research
 
Act pre 06_apr_2018_michael_ hippke_interstellar communication
Act pre 06_apr_2018_michael_ hippke_interstellar communicationAct pre 06_apr_2018_michael_ hippke_interstellar communication
Act pre 06_apr_2018_michael_ hippke_interstellar communication
 
XRD- X-Ray diffraction
XRD- X-Ray diffractionXRD- X-Ray diffraction
XRD- X-Ray diffraction
 
Noise from stray light in interferometric GWs detectors
Noise from stray light in interferometric GWs detectorsNoise from stray light in interferometric GWs detectors
Noise from stray light in interferometric GWs detectors
 
Crystal structure analysis
Crystal structure analysisCrystal structure analysis
Crystal structure analysis
 
X ray diffraction or braggs diffraction or
X ray diffraction or braggs diffraction orX ray diffraction or braggs diffraction or
X ray diffraction or braggs diffraction or
 
XRD-calculations and characterization.pdf
XRD-calculations and characterization.pdfXRD-calculations and characterization.pdf
XRD-calculations and characterization.pdf
 
Searches for spin-dependent short-range forces
Searches for spin-dependent short-range forcesSearches for spin-dependent short-range forces
Searches for spin-dependent short-range forces
 
Nanomagnetism columbia 2013
Nanomagnetism columbia 2013Nanomagnetism columbia 2013
Nanomagnetism columbia 2013
 
Single Phase Heat Transfer with Nanofluids
Single Phase Heat Transfer with Nanofluids Single Phase Heat Transfer with Nanofluids
Single Phase Heat Transfer with Nanofluids
 
Search for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole MomentSearch for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole Moment
 
Interpreting geophysical well logs
Interpreting geophysical well logsInterpreting geophysical well logs
Interpreting geophysical well logs
 
Kilohertz-Rate MeV Ultrafast Electron Diffraction for Time-resolved Materials...
Kilohertz-Rate MeV Ultrafast Electron Diffraction for Time-resolved Materials...Kilohertz-Rate MeV Ultrafast Electron Diffraction for Time-resolved Materials...
Kilohertz-Rate MeV Ultrafast Electron Diffraction for Time-resolved Materials...
 
DarkSide_GDR_Perasso
DarkSide_GDR_PerassoDarkSide_GDR_Perasso
DarkSide_GDR_Perasso
 
X-ray_Diffraction.ppt
X-ray_Diffraction.pptX-ray_Diffraction.ppt
X-ray_Diffraction.ppt
 
2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag
 
X-ray_Diffraction.ppt
X-ray_Diffraction.pptX-ray_Diffraction.ppt
X-ray_Diffraction.ppt
 
Adamek_SestoGR18.pdf
Adamek_SestoGR18.pdfAdamek_SestoGR18.pdf
Adamek_SestoGR18.pdf
 
Cosmology with the 21cm line
Cosmology with the 21cm lineCosmology with the 21cm line
Cosmology with the 21cm line
 

Recently uploaded

A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 

Recently uploaded (20)

A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 

A universal matter-wave interferometer with optical gratings in the time domain

  • 1. A universal matter-wave interferometer with optical gratings… Philipp Haslinger Music by Adrian Artacho …in the time-domain
  • 6. The Talbot Lau interferometer intensity Δx g G1 G2 G3 v Δx diffraction incoherent matter waves detection by shift of G3 preparation of transversal coherence
  • 8. The Talbot Lau interferometer intensity Δx g G1 G2 G3 v Δx dB T g L λ 2 = dB T g L λ 2 = mv h dB =λ
  • 9. g d s dBλ=max g d mv h s =max Time - domain g t m h ts =max)( mv h dB =λg g = s max A model interferometer
  • 10. g d mv h s =max Time - domain d g t m h ts =max)( g A model interferometer Interference pattern of faster particles
  • 11. g d mv h s =max Time - domain d g t m h ts =max)( g A model interferometer Interference pattern of slower particles
  • 12. g d mv h s =max Time - domain g t m h ts =max)( After theAfter the samesame timetime allall particles with theparticles with the same masssame mass produce theproduce the same interference,same interference, regardless of their velocities!regardless of their velocities! A model interferometer
  • 13. After a certain time .... all particles with the same mass .... contribute to the same interference pattern .... regardless of their velocity Transition to time-domain Cahn et.al., PRL 79 (1997) Reiger et.al., Opt Commun 264 (2006) Nimmrichter et.al., NJP 13 (2011) -pulsed standing laser waves as periodic ionizing gratings nm nm g laser 5,78 2 157 2 === λ g dB T g L λ 2 = h mg TT 2 = How to implement?
  • 14. t=0 to MCP interferometer mirrorpulsed source TOF MS t=TT hmgTT /2 = tsource tdetection mass signal 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 0 2 4 6 8 10 12 x 10 5 Pulsed cluster source t=2TT OTIMA interferometer 157 nm post ionization
  • 15. t=0 to MCP interferometer mirrorpulsed source TOF MS t=TT hmgTT /2 = tsource tdetection mass signal 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 0 2 4 6 8 10 12 x 10 5 Pulsed cluster source t=2TT OTIMA interferometer 157 nm post ionization
  • 16. Haslinger et al. Nature Physics (2013) Interference pattern encoded in the mass spectrum Anthracene C14H10 m = 178 amu
  • 19.
  • 20. Clusters of the following molecules have interfered in the OTIMA interferometer recently: 3 4 5 6 7 8 9 10 11 12 13 0 0.2 0.4 0.6 0.8 cluster number norm.contrast ferrocene Fe(C5H5)2 m = 186 amu 1973 3 4 5 6 7 8 9 10 11 0 0.2 0.4 0.6 0.8 1 cluster number norm.contrast caffeine C8H10N4O2 m = 194 amu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 -0.2 0 0.2 0.4 0.6 cluster number norm.contrast vanillin C8H8O3 m = 152 amu
  • 21. Limits & Outlook: • Particle velocity: limited by setup geometry  particles >106 amu need to be cooled and even trapped • Gravity: long Talbot time (107 amu ≈ 0.30 sec)  particles fall • Decoherence: thermal, collisional • Modifications of established quantum theory ? spontaneous collapse models Ghirardi et al. Phys. Rev. A (1986) Erwin Schrödinger‘s grave in Alpbach It is not „written in stone“It is not „written in stone“
  • 22. Limits & Outlook: • Particle velocity: limited by setup geometry  particles >105 amu need to be cooled and even trapped • Gravity: long Talbot time (107 amu ≈ 0.3sec)  particles fall • Decoherence: thermal, collisional • Modifications of established quantum theory ? spontaneous collapse models models Ghirardi et al. Phys. Rev. A (1986) It is „written in stone“It is „written in stone“ At University of Vienna
  • 23. Team 2013 Philipp Geyer Stefan Nimmrichter Markus Arndt Jonas RodewaldNadine Dörre
  • 25. t=0 to MCP interferometer mirrorpulsed source TOF MS t=TT hmgTt /2 = tsource tdetection mass signal 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 0 2 4 6 8 10 12 x 10 5 Pulsed cluster source 157 nm post ionization t=2TT OTIMA interferometer
  • 26. Mirror heating shifts the fringe pattern and reveals the „fleeting“ nanostructure
  • 27. A tool of high sensitivity • Molecular patterns as fine as 40 nm (Read/Write) • High temporal resolution <2 ns • Sensitive to optical polarizability (excited state lifetime) • Possible application: Spectroscopy 1 IR-photon (2µm) shifts a 100 amu molecule in 20µs by 40 nm t=0 t=TT t=2TT No velocity dependence Nimmrichter et al. Phys. Rev. A (2008)
  • 28. Quantum interference is revealed as a Mass-dependent signal amplification/reduction T1 T2 Asymmetric pulses T1 T2 Symmetric pulses⟶ Interference m m/2
  • 29. Interference pattern encoded in the mass spectrum Haslinger et al. Nature Physics (2013) Anthracene C14H10 m = 178 amu neon seedgas, vmax ≈920m/s ⟶ TT =19 µs difference due to constructive interference argon seedgas, vmax ≈700m/s ⟶ TT =26 µs
  • 30. A mirror-scan shifts the fringe pattern and reveals the „fleeting“ nanostructure
  • 31.
  • 33. Interference pattern independent of the particle´s velocity but strongly depends on the timing Sym Asym
  • 34. Rayleigh scattering in the grating
  • 35. Coriolis force -> Mismatch of wave packets
  • 36. Tip-Tilt Mirror Compensation Measurement of Earth rotation rate in Berkeley ,CA • Reduce systematic effect • Improved sensitivity • World’s most sensitive atom interferometer (10 ħk, 250 ms) (2012)
  • 37.
  • 38. A tool of high accuracy • Molecular patterns as fine as 39 nm (Read/Write) • High temporal resolution <2ns • Sensitive on optical polarizability (excited state lifetime) • Possible application: Spectroscopy 1 IR-photon (2µm) shifts a 100 amu molecule in 20µs by 40 nm Philipp Haslinger Bordeaux 2013
  • 39. g d mv h s =max Time - domain d g t m h ts =max)( g After theAfter the samesame timetime allall particles with theparticles with the same masssame mass produce theproduce the same interference,same interference, regardless of their velocities!regardless of their velocities! A model interferometer
  • 40. g d mv h s =max Time - domain d g t m h ts =max)( g A model interferometer Interference pattern of faster particles
  • 41. System requirements • Interference pattern lasts < 48ns Active jitter readout and active laser synchronization • Effective slit width & grating phase depend on laser pulse energy  monitoring • Interference pattern for different masses at the same time Mass detection and selection Philipp Haslinger Bordeaux 2013 Experimental repetition rate 100 Hz 200MB/s data
  • 42. Requirements on Interferometry Philipp Haslinger Bordeaux 2013
  • 43. Talbot Lau in the Time domain Advantages of the OTIMA-Interferometer (Optical Time-domain Ionizing Matter-wave Interferometer) ▫ Standing light wave: absorptive & ionizing ▫ Grating period 78.5nm ▫ no v.d.Waals interaction ▫ Interference independent of velocity ▫ Highest visibility for allmasses Philipp Haslinger Bordeaux 2013
  • 46. Talbot Lau in the time domain Philipp Haslinger Bordeaux 2013 1. Grating Coherence prep. 2. Grating Diffraction 3. Grating Scanning mask Detector Pulsewidth 6nsPulsewidth 6ns Mass Signal
  • 47. Far fieldFar field Philipp Haslinger Bordeaux 2013 g d s dBλ=max s mv h dB =λ g d mv h s =max Time- domain d g
  • 49. Testing Spontaneous Localization Theories • Is there a quantitative criterion? Ghirardi, Rimini, Weber Phys. Rev. D 34, 470 (1986) Philipp Haslinger Bordeaux 2013 Testing spontaneous localization theories with matter-wave interferometry Nimmrichter, et al arXiv:1103.1236
  • 50. 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 -16 -15 -14 -13 -12 -11 Mass [amu] Signal[a.u.] Ac8 Comparison resonant/off-resonant Philipp Haslinger Bordeaux 2013
  • 51. OTIMA-Interferometer Interfering in the time domain 10³ amu106 amu
  • 52. Quantum interference is revealed as a Mass-dependent signalamplification/reduction Philipp Haslinger Bordeaux 2013 T1 T2 T1 T2 Asymmetric pulses Symmetric pulses⟶ Interference
  • 53. OTIMA-Interferometer Optical Time-domain Ionizing Matter-wave Interfometer Philipp Haslinger Bordeaux 2013
  • 54. Deflectometry in The time domain Philipp Haslinger Bordeaux 2013 Magnetron source: Prof. Bernd von Issendorff, Freiburg
  • 55. Why Metal Cluster? Philipp Haslinger Bordeaux 2013
  • 56. Talbot Lau in the time domain Philipp Haslinger Bordeaux 2013 1. Grating Coherence prep. 2. Grating Diffraction Detector 3. Grating Scanning mask Velocity Signal
  • 57. Talbot Lau in the time domain Philipp Haslinger Bordeaux 2013 1. Grating Coherence prep. 2. Grating Diffraction Detector 3. Grating Scanning mask Velocity Signal
  • 58. 1422 1424 1426 1428 1430 1432 -25.5 -25 -24.5 -24 -23.5 -23 -22.5 -22 -21.5 Mass [amu] Signal[a.u.] Anthracene cluster mass spectrum Philipp Haslinger Bordeaux 2013
  • 59. Which Particles? Philipp Haslinger Bordeaux 2013 Fluorofullerene - 1632amu Di-azo-benzene - 1034amu Metal/Semiconductor clusters! Ionization energy: Visible – UV Absorptive laser gratings possible Size: good mass scaling behavior spherical shape – 106 amu r ~3nm Slowing/trapping feasible Source available (B. v. Issendorff, Univ. Freiburg) mass range 102 – 107 amu for allmetals
  • 60. Limits & Outlook: • Gravity: long Talbot time (107 amu ≈ 0.2sec)  particles fall out of the laser focus • Particle velocity limited by setup geometry  large clusters>105 amu cooled and even trapped • Decoherence: collisional, thermal • Tests of established Quantum Theory: spontaneous collapse models Philipp Haslinger Bordeaux 2013
  • 61. Testing Spontaneous Localization Theories • Is there a quantitative criterion? Ghirardi, Rimini, Weber Phys. Rev. D 34, 470 (1986) Philipp Haslinger Bordeaux 2013 Testing spontaneous localization theories with matter-wave interferometry Nimmrichter, et al arXiv:1103.1236
  • 63. Talbot Lau in the time domain LaserLaser wavelengthwavelength 157nm157nm  7.9eV7.9eV MirrorMirror T=mg²/h Philipp Haslinger Bordeaux 2013
  • 65. 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 Mass [amu] Signal[a.u] Anthracene cluster mass spectrum after 3 laser pulses resonant Philipp Haslinger Bordeaux 2013
  • 66. Anthracene cluster mass spectrum after 3 laser pulses off-resonant (100ns) 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 Mass [amu] Signal[a.u.] Philipp Haslinger Bordeaux 2013
  • 67. 889 890 891 892 893 894 895 896 897 898 -55 -50 -45 -40 -35 -30 -25 -20 Mass [amu] Signal[a.u.] Comparison resonant/off-resonant Ac5 Philipp Haslinger Bordeaux 2013
  • 68. 1778 1780 1782 1784 1786 1788 1790 1792 -23.6 -23.4 -23.2 -23 -22.8 -22.6 -22.4 -22.2 -22 Mass [amu] Signal[a.u.] Comparison resonant/off-resonant Ac10 Philipp Haslinger Bordeaux 2013
  • 69. Interference scan Philipp Haslinger Bordeaux 2013 -12 -10 -8 -6 -4 -2 0 2 4 6 -20 -10 0 10 20 30 40 50 Contrast mrad ~40nm
  • 70. 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Mass [amu] Contrast Interference contrast @ pulse timing = 25.2µs Ac10 Ac5 T=mg²/h Philipp Haslinger Bordeaux 2013
  • 71. 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Mass [amu] Contrast Interference contrast @ pulse timing = 25.2µs Ac10 Ac5 Philipp Haslinger Bordeaux 2013
  • 72. 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Mass [amu] Contrast Interference contrast @ pulse timing = 19.6µs Ac10 Ac5 Philipp Haslinger Bordeaux 2013
  • 73. Farfield interferometry Philipp Haslinger Bordeaux 2013 Juffmann et al. Nature Nanotechnology 7, 297–300 (2012)
  • 75. Farfield interferometry Philipp Haslinger Bordeaux 2013 Juffmann et al. Nature Nanotechnology 7, 297–300 (2012)
  • 78. 1st Grating Coherence 2nd Grating Diffraction 3rd Grating Detection Mask Gerlich et al. Nature Physics 3, 711 (2007) Source Detector Kapitza-Dirac-Talbot-Lau interferometry
  • 79. Quantum Superposition of „Molecular Octopuses“ Nature Communications 2, 263 (2011). m=5672 amu, N=356 atoms m=5310 amu, N=430 atoms Interference requires quantum indistinguishability  given if a single molecule interferes with itself.
  • 80. Which Particles? Philipp Haslinger Bordeaux 2013 Ionization energy: below 7.9eV + high ionization efficiency  Absorptive laser gratings Metal/Semiconductor clusters: Magnetron sputter source (B. v. Issendorff, Freiburg) Cold 102 – 107 amu clusters Spherical shape: 106 amu r ~3nm Ar He LN2 sputtering head aggregation tube iris
  • 81. Which Particles? Philipp Haslinger Bordeaux 2013 Ionization energy: below 7.9eV + high ionization efficiency  Absorptive laser gratings Molecular clusters: Even- Lavie-Valve: Cold: supersonic expansion T< 1 K Intense: pulsed thermal evaporation Anthracene : IE~ 7,2eV Vapor pressure ~ 70mbar @200°C
  • 82. Thermal laser desorption • Slow velocitiy • Provides even thermal sensitive particles • Fast switching • Point like source • Tailermade molecules ~25 000 amu • Thermal velocity …. • Talbot order….. • Space-time area…. Philipp Haslinger Bordeaux 2013

Editor's Notes

  1. Bis 2:09
  2. We start with a pulsed source. Thermal evaporated neutral particles are releast in punches from hight preasure (seeded with an inert gas like argon) to vacuum. During this expansion they cool down and start to form clusters of diferent masses.
  3. Bei den 7 fach vergrößert sollte man eine zoom animieren sonst kennt sich keiner aus Vielleicht auch noch was mit ferrocene oder vanilin
  4. Ernst Otto Fischer und Geoffrey Wilkinson erhielten 1973 den Nobelpreis!
  5. Fall in 0.3 sec 0.45meter That s the grave of Erwin Schrödinger in Alpbach Austria and not even here it is written in stone and there is a lot space to extent his famous formular
  6. Fall in 0.2 sec 20cm That s the grave of Erwin Schrödinger in Alpbach Austria and not even here it is written in stone and there is a lot space to extent his famous formular
  7. Nano quest fit
  8. Ac6 =0 Ac8 = 42% Auf das 1 spiegel design hinweisen Animation wie man die stehwelle verändert
  9. Spell check „Sensitive on“
  10. Sind keine daten, sagen damit wir effect sehen. Mit naked eye not observable
  11. Bei den 7 fach vergrößert sollte man eine zoom animieren sonst kennt sich keiner aus Vielleicht auch noch was mit ferrocene oder vanilin Masse mehr also 2100amu
  12. Ac6 =0 Ac8 = 42% Auf das 1 spiegel design hinweisen Animation wie man die stehwelle verändert K-vektor kick geht ein. Mit sin(winkel)
  13. n0=10 photonen bei allen 3 stehwellen.
  14. 20µs 3nm max
  15. The solid and the dashed lines correspond to m =10^8 amu and m = 10^9 amu, dotted no rayleigh scattering Gitter absorption ist bei n0=8 photonen Der Streuquerschnitt σ der Rayleigh-Streuung ist proportional zu ω^4
  16. Spell check „Sensitive on“ Stapelfeldt aglinment
  17. Vis/2 in den genkennzeichneten bereichen!!
  18. Brownian motion noise term couples to the local mass density and is added to the schrödinger equation 2 parameter: lambda the rate parameter govering the noise strength and rC spatial correlation length of the noise field (10^-7m)
  19. 8fach cluster neon
  20. High visibility of a 10 times anthracene cluster
  21. Für niob 93amu optimiert für 54fach cluster Simulated transmission through the interferometer as a function of atoms/cluster
  22. 8fach cluster
  23. Fall in 0.2 sec 20cm
  24. Brownian motion noise term couples to the local mass density and is added to the schrödinger equation 2 parameter: lambda the rate parameter govering the noise strength and rC spatial correlation length of the noise field (10^-7m)
  25. mit
  26. asi
  27. 5 fach cluster; rot und blau beschriften
  28. Asi argon Ac 10
  29. 25.2µs talbot time Argon buffergas Achtung rot ist theorie visibility Blau ist contrast (phase nicht bekannt)
  30. 25.2µs talbot time Argon buffergas Achtung rot ist theorie visibility Blau ist contrast (phase nicht bekannt)
  31. 19,6 µs talbot time neon
  32. Van der waals force? F=1/r^3 particel , wall ; casimir retarted 1/^4; Silizium nitrit Gallium ionen
  33. Laser mit Gitter Youngscher Doppelspalt
  34. Laser mit gitter Youngscher Doppelspalt 20 sek bild
  35. Warum nur 16% visibility? Wenig signal und alle schlitze offen Größtes molekül ist he2 2000 bei schöllkopf und toennies 1mK bindungsenergy