SlideShare a Scribd company logo
1 of 21
Download to read offline
International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3
23
ON OPTIMIZATION OF MANUFACTURING OF ELE-
MENTS OF AN BINARY-ROM CIRCUIT TO INCREASE
THEIR INTEGRATION RATE
E.L. Pankratov
1
Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, Russia
1
Nizhny Novgorod State Technical University, Nizhny Novgorod, Russia
ABSTRACT
In this paper we introduce an approach to increase integration rate of elements of an binary-ROM circuit.
Framework the approach we consider a heterostructure with special configuration. Several specific areas
of the heterostructure should be doped by diffusion or ion implantation. Annealing of dopant and/or radia-
tion defects should be optimized.
KEYWORDS
Binary-ROM circuit; increasing of integration rate of elements; prognosis of technological process; opti-
mization of manufacturing.
1. INTRODUCTION
An actual and intensively solving problems of solid state electronics is increasing of integration
rate of elements of integrated circuits (p-n-junctions, their systems et al) [1-8]. Increasing of the
integration rate leads to necessity to decrease their dimensions. To decrease the dimensions are
using several approaches. They are widely using laser and microwave types of annealing of in-
fused dopants. These types of annealing are also widely using for annealing of radiation defects,
generated during ion implantation [9-17]. Using the approaches gives a possibility to increase
integration rate of elements of integrated circuits through inhomogeneity of technological pa-
rameters due to generating inhomogenous distribution of temperature. In this situation one can
obtain decreasing dimensions of elements of integrated circuits [18] with account Arrhenius law
[1,3]. Another approach to manufacture elements of integrated circuits with smaller dimensions is
doping of heterostructure by diffusion or ion implantation [1-3]. However in this case optimiza-
tion of dopant and/or radiation defects is required [18].
In this paper we consider a heterostructure. The heterostructure consist of a substrate and several
epitaxial layers. Some sections have been manufactured in the epitaxial layers. Further we con-
sider doping of these sections by diffusion or ion implantation. The doping gives a possibility to
manufacture field-effect transistors framework an binary-ROM circuit so as it is shown on Figs.
1. The manufacturing gives a possibility to increase density of elements of the binary-ROM cir-
cuit [4]. After the considered doping dopant and/or radiation defects should be annealed. Frame-
work the paper we analyzed dynamics of redistribution of dopant and/or radiation defects during
their annealing. We introduce an approach to decrease dimensions of the element. However it is
necessary to complicate technological process.
International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3
24
Fig. 1. The considered binary-ROM circuit [4]
2. METHOD OF SOLUTION
In this section we determine spatio-temporal distributions of concentrations of infused and im-
planted dopants. To determine these distributions we calculate appropriate solutions of the second
Fick's law [1,3,18]
( ) ( ) ( ) ( )






+





+





=
z
tzyxC
D
zy
tzyxC
D
yx
tzyxC
D
xt
tzyxC
CCC
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,,,,,,,,,,
. (1)
( ) 0
,,,
0
=
∂
∂
=x
x
tzyxC
,
( ) 0
,,,
=
∂
∂
= xLx
x
tzyxC
,
( ) 0
,,,
0
=
∂
∂
=y
y
tzyxC
,
( ) 0
,,,
=
∂
∂
= yLx
y
tzyxC
,
( ) 0
,,,
0
=
∂
∂
=z
z
tzyxC
,
( ) 0
,,,
=
∂
∂
= zLx
z
tzyxC
, C (x,y,z,0)=f (x,y,z). (2)
Function C(x,y,z,t) describes the spatio-temporal distribution of concentration of dopant; T is the
temperature of annealing; DС is the dopant diffusion coefficient. Dopant diffusion coefficient will
have different values in different materials. The value will be changed during heating and cooling
of heterostructure (with account Arrhenius law). Approximation of dopant diffusion coefficient
by the following function [20-22]
International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3
25
( ) ( )
( )
( ) ( )
( ) 







++





+= 2*
2
2*1
,,,,,,
1
,,,
,,,
1,,,
V
tzyxV
V
tzyxV
TzyxP
tzyxC
TzyxDD LC ςςξ γ
γ
. (3)
Here the function DL (x,y,z,T) describes the spatial (in heterostructure) and temperature (due to
Arrhenius law) dependences of diffusion coefficient of dopant. The function P (x,y,z,T) describes
the limit of solubility of dopant. Parameter γ ∈[1,3] describes average quantity of charged defects
interacted with atom of dopant [20]. The function V (x,y,z,t) describes the spatio-temporal distri-
bution of concentration of radiation vacancies. Parameter V*
describes the equilibrium distribution
of concentration of vacancies. The considered concentrational dependence of dopant diffusion
coefficient has been described in details in [20]. It should be noted, that using diffusion type of
doping did not generation radiation defects. In this situation ζ1= ζ2= 0. We determine spatio-
temporal distributions of concentrations of radiation defects by solving the following system of
equations [21,22]
( ) ( ) ( ) ( ) ( )
+





∂
∂
∂
∂
+





∂
∂
∂
∂
=
∂
∂
y
tzyxI
TzyxD
yx
tzyxI
TzyxD
xt
tzyxI
II
,,,
,,,
,,,
,,,
,,,
( ) ( ) ( ) ( ) ( )−−





∂
∂
∂
∂
+ tzyxVtzyxITzyxk
z
tzyxI
TzyxD
z
VII ,,,,,,,,,
,,,
,,, ,
( ) ( )tzyxITzyxk II ,,,,,, 2
,− (4)
( ) ( ) ( ) ( ) ( ) +





∂
∂
∂
∂
+





∂
∂
∂
∂
=
∂
∂
y
tzyxV
TzyxD
yx
tzyxV
TzyxD
xt
tzyxV
VV
,,,
,,,
,,,
,,,
,,,
( ) ( ) ( ) ( ) ( )+−





∂
∂
∂
∂
+ tzyxVtzyxITzyxk
z
tzyxV
TzyxD
z
VIV ,,,,,,,,,
,,,
,,, ,
( ) ( )tzyxVTzyxk VV ,,,,,, 2
,+ .
Boundary and initial conditions for these equations are
( ) 0
,,,
0
=
∂
∂
=x
x
tzyxρ
,
( ) 0
,,,
=
∂
∂
= xLx
x
tzyxρ
,
( ) 0
,,,
0
=
∂
∂
=y
y
tzyxρ
,
( ) 0
,,,
=
∂
∂
= yLy
y
tzyxρ
,
( ) 0
,,,
0
=
∂
∂
=z
z
tzyxρ
,
( ) 0
,,,
=
∂
∂
= zLz
z
tzyxρ
, ρ(x,y,z,0)=fρ (x,y,z). (5)
Here ρ =I,V. The function I (x,y,z,t) describes the spatio-temporal distribution of concentration of
radiation interstitials; Dρ(x,y,z,T) are the diffusion coefficients of point radiation defects; terms
V2
(x,y,z,t) and I2
(x,y,z,t) correspond to generation divacancies and diinterstitials; kI,V(x,y,z,T) is the
parameter of recombination of point radiation defects; kI,I(x,y,z,T) and kV,V(x,y,z,T) are the parame-
ters of generation of simplest complexes of point radiation defects.
Further we determine distributions in space and time of concentrations of divacancies ΦV(x,y,z,t)
and diinterstitials ΦI(x,y,z,t) by solving the following system of equations [21,22]
International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3
26
( ) ( ) ( ) ( ) ( ) +




 Φ
+




 Φ
=
Φ
ΦΦ
y
tzyx
TzyxD
yx
tzyx
TzyxD
xt
tzyx I
I
I
I
I
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,
,,,
,,,
,,,
,,,
( ) ( ) ( ) ( ) ( ) ( )tzyxITzyxktzyxITzyxk
z
tzyx
TzyxD
z
III
I
I ,,,,,,,,,,,,
,,,
,,, 2
, −+




 Φ
+ Φ
∂
∂
∂
∂
(6)
( ) ( ) ( ) ( ) ( )
+




 Φ
+




 Φ
=
Φ
ΦΦ
y
tzyx
TzyxD
yx
tzyx
TzyxD
xt
tzyx V
V
V
V
V
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,
,,,
,,,
,,,
,,,
( ) ( ) ( ) ( ) ( ) ( )tzyxVTzyxktzyxVTzyxk
z
tzyx
TzyxD
z
VVV
V
V ,,,,,,,,,,,,
,,,
,,, 2
, −+




 Φ
+ Φ
∂
∂
∂
∂
.
Boundary and initial conditions for these equations are
( )
0
,,,
0
=
∂
Φ∂
=x
x
tzyxρ
,
( )
0
,,,
=
∂
Φ∂
= xLx
x
tzyxρ
,
( )
0
,,,
0
=
∂
Φ∂
=y
y
tzyxρ
,
( )
0
,,,
=
∂
Φ∂
= yLy
y
tzyxρ
,
( )
0
,,,
0
=
∂
Φ∂
=z
z
tzyxρ
,
( )
0
,,,
=
∂
Φ∂
= zLz
z
tzyxρ
, ΦI (x,y,z,0)=fΦI (x,y,z), ΦV (x,y,z,0)=fΦV (x,y,z). (7)
Here DΦρ(x,y,z,T) are the diffusion coefficients of the above complexes of radiation defects;
kI(x,y,z,T) and kV (x,y,z,T) are the parameters of decay of these complexes.
We calculate distributions of concentrations of point radiation defects in space and time by re-
cently elaborated approach [18]. The approach based on transformation of approximations of dif-
fusion coefficients in the following form: Dρ(x,y,z,T)=D0ρ[1+ερ gρ(x,y,z,T)], where D0ρ are the av-
erage values of diffusion coefficients, 0≤ερ<1, |gρ(x, y,z,T)|≤1, ρ =I,V. We also used analogous
transformation of approximations of parameters of recombination of point defects and parameters
of generation of their complexes: kI,V(x,y,z,T)=k0I,V[1+εI,V gI,V(x,y,z,T)], kI,I(x,y,z,T)=k0I,I [1+εI,I
gI,I(x,y,z,T)] and kV,V(x,y,z,T)=k0V,V [1+εV,V gV,V(x,y,z,T)], where k0ρ1,ρ2 are the their average values,
0≤εI,V <1, 0≤εI,I <1, 0≤εV,V<1, | gI,V(x,y,z,T)|≤1, | gI,I(x,y,z,T)|≤1, |gV,V(x,y,z,T)|≤1. Let us introduce
the following dimensionless variables: ( ) ( ) *
,,,,,,
~
ItzyxItzyxI = , ( )=tzyxV ,,,
~
( ) *
,,, VtzyxV= , VIVI DDkL 00,0
2
=ω , VIDDkL 00,0
2
ρρρ =Ω , 2
00 LtDD VI=ϑ , χ=x/Lx, η=y/Ly,
φ = z/Lz. The introduction leads to transformation of Eqs.(4) and conditions (5) to the following
form
( )
( )[ ] ( )
( )[ ]{ ×+
∂
∂
+








∂
∂
+
∂
∂
=
∂
∂
Tg
I
Tg
DD
DI
IIII
VI
I
,,,1
,,,
~
,,,1
,,,
~
00
0
φηχε
ηχ
ϑφηχ
φηχε
χϑ
ϑφηχ
( ) ( )[ ] ( ) ( ) ×−








∂
∂
+
∂
∂
+




∂
∂
× ϑφηχω
φ
ϑφηχ
φηχε
φη
ϑφηχ
,,,
~,,,
~
,,,1
,,,
~
00
0
00
0
I
I
Tg
DD
D
DD
DI
II
VI
I
VI
I
( )[ ] ( ) ( )[ ] ( )ϑφηχφηχεϑφηχφηχε ,,,
~
,,,1,,,
~
,,,1 2
,,,, ITgVTg IIIIIVIVI +Ω−+× (8)
International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3
27
( ) ( )[ ] ( ) ( )[ ]{ ×+
∂
∂
+






∂
∂
+
∂
∂
=
∂
∂
Tg
V
Tg
DD
DV
VVVV
VI
V
,,,1
,,,
~
,,,1
,,,
~
00
0
φηχε
ηχ
ϑφηχ
φηχε
χϑ
ϑφηχ
( ) ( )[ ] ( ) ( ) ×−








∂
∂
+
∂
∂
+




∂
∂
× ϑφηχω
φ
ϑφηχ
φηχε
φη
ϑφηχ
,,,
~,,,
~
,,,1
,,,
~
00
0
00
0
I
V
Tg
DD
D
DD
DV
VV
VI
V
VI
V
( )[ ] ( ) ( )[ ] ( )ϑφηχφηχεϑφηχφηχε ,,,
~
,,,1,,,
~
,,,1 2
,,,, VTgVTg VVVVVVIVI +Ω−+×
( ) 0
,,,~
0
=
∂
∂
=χ
χ
ϑφηχρ
,
( ) 0
,,,~
1
=
∂
∂
=χ
χ
ϑφηχρ
,
( ) 0
,,,~
0
=
∂
∂
=η
η
ϑφηχρ
,
( ) 0
,,,~
1
=
∂
∂
=η
η
ϑφηχρ
,
( ) 0
,,,~
0
=
∂
∂
=φ
φ
ϑφηχρ
,
( ) 0
,,,~
1
=
∂
∂
=φ
φ
ϑφηχρ
, ( )
( )
*
,,,
,,,~
ρ
ϑφηχ
ϑφηχρ ρf
= . (9)
We determine solutions of Eqs.(8) with conditions (9) framework recently introduced approach
[18], i.e. as the power series
( ) ( )∑ ∑ ∑Ω=
∞
=
∞
=
∞
=0 0 0
,,,~,,,~
i j k
ijk
kji
ϑφηχρωεϑφηχρ ρρ . (10)
Substitution of the series (10) into Eqs.(8) and conditions (9) gives us possibility to obtain equa-
tions for initial-order approximations of concentration of point defects ( )ϑφηχ ,,,
~
000I and
( )ϑφηχ ,,,
~
000V and corrections for them ( )ϑφηχ ,,,
~
ijkI and ( )ϑφηχ ,,,
~
ijkV , i ≥1, j ≥1, k ≥1. The equa-
tions are presented in the Appendix. Solutions of the equations could be obtained by standard
Fourier approach [24,25]. The solutions are presented in the Appendix.
Now we calculate distributions of concentrations of simplest complexes of point radiation defects
in space and time. To determine the distributions we transform approximations of diffusion coef-
ficients in the following form: DΦρ(x,y,z,T)=D0Φρ[1+εΦρgΦρ(x,y,z,T)], where D0Φρ are the average
values of diffusion coefficients. In this situation the Eqs.(6) could be written as
( ) ( )[ ] ( ) ( ) ( )++





 Φ
+=
Φ
ΦΦΦ tzyxITzyxk
x
tzyx
Tzyxg
x
D
t
tzyx
II
I
III
I
,,,,,,
,,,
,,,1
,,, 2
,0
∂
∂
ε
∂
∂
∂
∂
( )[ ] ( ) ( )[ ] ( ) −





 Φ
++





 Φ
++ ΦΦΦΦΦΦ
z
tzyx
Tzyxg
z
D
y
tzyx
Tzyxg
y
D I
III
I
III
∂
∂
ε
∂
∂
∂
∂
ε
∂
∂ ,,,
,,,1
,,,
,,,1 00
( ) ( )tzyxITzyxkI ,,,,,,−
( ) ( )[ ] ( ) ( ) ( )++





 Φ
+=
Φ
ΦΦΦ tzyxITzyxk
x
tzyx
Tzyxg
x
D
t
tzyx
II
V
VVV
V
,,,,,,
,,,
,,,1
,,, 2
,0
∂
∂
ε
∂
∂
∂
∂
( )[ ] ( )
( )[ ] ( )
−





 Φ
++





 Φ
++ ΦΦΦΦΦΦ
z
tzyx
Tzyxg
z
D
y
tzyx
Tzyxg
y
D V
VVV
V
VVV
∂
∂
ε
∂
∂
∂
∂
ε
∂
∂ ,,,
,,,1
,,,
,,,1 00
International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3
28
( ) ( )tzyxITzyxkI ,,,,,,− .
Farther we determine solutions of above equations as the following power series
( ) ( )∑ Φ=Φ
∞
=
Φ
0
,,,,,,
i
i
i
tzyxtzyx ρρρ ε . (11)
Now we used the series (11) into Eqs.(6) and appropriate boundary and initial conditions. The
using gives the possibility to obtain equations for initial-order approximations of concentrations
of complexes of defects Φρ0(x,y,z,t), corrections for them Φρi(x,y,z,t) (for them i ≥1) and boundary
and initial conditions for them. We remove equations and conditions to the Appendix. Solutions
of the equations have been calculated by standard approaches [24,25] and presented in the Ap-
pendix.
Now we calculate distribution of concentration of dopant in space and time by using the ap-
proach, which was used for analysis of radiation defects. To use the approach we consider follow-
ing transformation of approximation of dopant diffusion coefficient: DL(x,y,z,T)=D0L[1+ εL
gL(x,y,z,T)], where D0L is the average value of dopant diffusion coefficient, 0≤εL< 1,
|gL(x,y,z,T)|≤1. Farther we consider solution of Eq.(1) as the following series:
( ) ( )∑ ∑=
∞
=
∞
=0 1
,,,,,,
i j
ij
ji
L tzyxCtzyxC ξε .
Using the relation into Eq.(1) and conditions (2) leads to obtaining equations for the functions
Cij(x,y,z,t) (i ≥1, j ≥1), boundary and initial conditions for them. The equations are presented in
the Appendix. Solutions of the equations have been calculated by standard approaches (see, for
example, [24,25]). The solutions are presented in the Appendix.
We analyzed distributions of concentrations of dopant and radiation defects in space and time
analytically by using the second-order approximations on all parameters, which have been used in
appropriate series. Usually the second-order approximations are enough good approximations to
make qualitative analysis and to obtain quantitative results. All analytical results have been
checked by numerical simulation.
3. DISCUSSION
In this section we analyzed spatio-temporal distributions of concentrations of dopants. Figs. 2
shows typical spatial distributions of concentrations of dopants in neighborhood of interfaces of
heterostructures. We calculate these distributions of concentrations of dopants under the follow-
ing condition: value of dopant diffusion coefficient in doped area is larger, than value of dopant
diffusion coefficient in nearest areas. In this situation one can find increasing of compactness of
field-effect transistors with increasing of homogeneity of distribution of concentration of dopant
at one time. Changing relation between values of dopant diffusion coefficients leads to opposite
result (see Figs. 3).
It should be noted, that framework the considered approach one shall optimize annealing of do-
pant and/or radiation defects. To do the optimization we used recently introduced criterion [26-
34]. The optimization based on approximation real distribution by step-wise function ψ (x,y,z)
(see Figs. 4). Farther the required values of optimal annealing time have been calculated by min-
imization the following mean-squared error
International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3
29
Fig. 2a. Dependences of concentration of dopant, infused in heterostructure from Figs. 1, on coordinate in
direction, which is perpendicular to interface between epitaxial layer substrate. Difference between values
of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of curves.
Value of dopant diffusion coefficient in the epitaxial layer is larger, than value of dopant diffusion coeffi-
cient in the substrate
x
0.0
0.5
1.0
1.5
2.0
C(x,Θ)
2
3
4
1
0 L/4 L/2 3L/4 L
Epitaxial layer Substrate
Fig. 2b. Dependences of concentration of dopant, implanted in heterostructure from Figs. 1, on coordinate
in direction, which is perpendicular to interface between epitaxial layer substrate. Difference between val-
ues of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of
curves. Value of dopant diffusion coefficient in the epitaxial layer is larger, than value of dopant diffusion
coefficient in the substrate. Curve 1 corresponds to homogenous sample and annealing time Θ = 0.0048
(Lx
2
+Ly
2
+Lz
2
)/D0. Curve 2 corresponds to homogenous sample and annealing time Θ = 0.0057
(Lx
2
+Ly
2
+Lz
2
)/D0. Curves 3 and 4 correspond to heterostructure from Figs. 1; annealing times Θ = 0.0048
(Lx
2
+Ly
2
+Lz
2
)/D0 and Θ = 0.0057 (Lx
2
+Ly
2
+Lz
2
)/D0, respectively
( ) ( )[ ]∫ ∫ ∫ −Θ=
x y zL L L
zyx
xdydzdzyxzyxC
LLL
U
0 0 0
,,,,,
1
ψ . (12)
We show optimal values of annealing time as functions of parameters on Figs. 5. It is known, that
standard step of manufactured ion-doped structures is annealing of radiation defects. In the ideal
case after finishing the annealing dopant achieves interface between layers of heterostructure. If
the dopant has no enough time to achieve the interface, it is practicably to anneal the dopant addi-
tionally. The Fig. 5b shows the described dependences of optimal values of additional annealing
time for the same parameters as for Fig. 5a. Necessity to anneal radiation defects leads to smaller
values of optimal annealing of implanted dopant in comparison with optimal annealing time of
infused dopant.
International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3
30
Fig.3a. Distributions of concentration of dopant, infused in average section of epitaxial layer of
heterostructure from Figs. 1 in direction parallel to interface between epitaxial layer and substrate of
heterostructure. Difference between values of dopant diffusion coefficients increases with increasing of
number of curves. Value of dopant diffusion coefficient in this section is smaller, than value of dopant dif-
fusion coefficient in nearest sections
x
0.00000
0.00001
0.00010
0.00100
0.01000
0.10000
1.00000
C(x,Θ)
fC(x)
L/40 L/2 3L/4 Lx0
1
2
Substrate
Epitaxial
layer 1
Epitaxial
layer 2
Fig.3b. Calculated distributions of implanted dopant in epitaxial layers of heterostructure. Solid lines are
spatial distributions of implanted dopant in system of two epitaxial layers. Dushed lines are spatial distribu-
tions of implanted dopant in one epitaxial layer. Annealing time increases with increasing of number of
curves
C(x,Θ)
0 Lx
2
1
3
4
Fig.4a. Distributions of concentration of infused dopant in depth of heterostructure from Fig. 1 for different
values of annealing time (curves 2-4) and idealized step-wise approximation (curve 1). Increasing of num-
ber of curve corresponds to increasing of annealing time
International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3
31
x
C(x,Θ)
1
2
3
4
0 L
Fig.4b. Distributions of concentration of implanted dopant in depth of heterostructure from Fig. 1 for dif-
ferent values of annealing time (curves 2-4) and idealized step-wise approximation (curve 1). Increasing of
number of curve corresponds to increasing of annealing time
0.0 0.1 0.2 0.3 0.4 0.5
a/L, ξ, ε, γ
0.0
0.1
0.2
0.3
0.4
0.5
ΘD0L
-2
3
2
4
1
Fig. 5a. Dimensionless optimal annealing time of infused dopant as a function of several parameters. Curve
1 describes the dependence of the annealing time on the relation a/L and ξ = γ = 0 for equal to each other
values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 describes the dependence of
the annealing time on value of parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 describes the dependence of
the annealing time on value of parameter ξ for a/L=1/2 and ε = γ = 0. Curve 4 describes the dependence of
the annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0
4. CONCLUSIONS
In this paper we introduce an approach to increase integration rate of element of an binary-ROM
circuit. The approach gives us possibility to decrease area of the elements with smaller increasing
of the element’s thickness.
REFERENCES
[1] V.I. Lachin, N.S. Savelov. Electronics (Phoenix, Rostov-Na-Donu, 2001).
[2] A.G. Alexenko, I.I. Shagurin. Microcircuitry (Radio And Communication, Moscow, 1990).
[3] N.A. Avaev, Yu.E. Naumov, V.T. Frolkin. Basis Of Microelectronics (Radio And Communication,
Moscow, 1991).
International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3
32
0.0 0.1 0.2 0.3 0.4 0.5
a/L, ξ, ε, γ
0.00
0.04
0.08
0.12
ΘD0L
-2
3
2
4
1
Fig.5b. Dimensionless optimal annealing time of implanted dopant as a function of several parameters.
Curve 1 describes the dependence of the annealing time on the relation a/L and ξ = γ = 0 for equal to each
other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 describes the dependence
of the annealing time on value of parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 describes the dependence
of the annealing time on value of parameter ξ for a/L=1/2 and ε = γ = 0. Curve 4 describes the dependence
of the annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0
[4] F. Jiang, D. Wu, L. Zhou, Y. Huang, J. Wu, Zh. Jin, X. Liu. A wideband calibration-free 1.5-GS/s 8-
bit analog-to-digital converter with low latency. Analog. Integr. Circ. Sig. Process. Vol. 81. P. 341-
348 (2014).
[5] D. Fathi, B. Forouzandeh, N. Masoumi. New enhanced noise analysis in active mixers in nanoscale
technologies. Nano. Vol. 4 (4). P. 233-238 (2009).
[6] S.A. Chachuli, P.N.A. Fasyar, N. Soin, N.M. Kar, N. Yusop. Pareto ANOVA analysis for CMOS
0.18µm two-stage Op-amp Mat. Sci. Sem. Proc. Vol. 24. P. 9-14 (2014).
[7] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Lit-
vin, V.V. Milenin, A.V. Sachenko. Au-TiB x -n-6H-SiC Schottky barrier diodes: Specific features of
charge transport in rectifying and nonrectifying contacts. Semiconductors. Vol. 43 (7). P. 865-871
(2009).
[8] Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R.F. Karlicek, Jr.T.P. Chow. Monolithic integration of
light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transis-
tors for light-emitting power integrated circuits in GaN on sapphire substrate. Appl. Phys. Lett. Vol.
102 (19). P. 192107-192109 (2013).
[9] Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. High-performance InGaP/GaAs
pnp δ-doped heterojunction bipolar transistor. Semiconductors. Vol. 43 (7). P. 939-942 (2009).
[10] O.V. Alexandrov, A.O. Zakhar'in, N.A. Sobolev, E.I. Shek, M.M. Makoviychuk, E.O. Parshin. For-
mation of donor centers upon annealing of dysprosium-and holmium-implanted silicon. Semiconduc-
tors. Vol. 32 (9). P. 921-923 (1998).
[11] M.J. Kumar, T.V. Singh. Quantum confinement effects in strained silicon mosfets. Int. J.
Nanoscience. Vol. 7 (2-3). P. 81-84 (2008).
[12] P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi,
R.G. Gordon. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxy-
sulfide buffer layer. Appl. Phys. Lett. Vol. 102 (5). P. 053901-053905 (2013).
[13] J.G. Reynolds, C.L. Reynolds, Jr.A. Mohanta, J.F. Muth, J.E. Rowe, H.O. Everitt, D.E. Aspnes. Shal-
low acceptor complexes in p-type ZnO. Appl. Phys. Lett. Vol. 102 (15). P. 152114-152118 (2013).
International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3
33
[14] K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong. Chong. Dopant distribution in
the recrystallization transient at the maximum melt depth induced by laser annealing. Appl. Phys.
Lett. 89 (17), 172111-172114 (2006).
[15] H.T. Wang, L.S. Tan, E. F. Chor. Pulsed laser annealing of Be-implanted GaN. J. Appl. Phys. 98 (9),
094901-094905 (2006).
[16] S.T. Shishiyanu, T.S. Shishiyanu, S.K. Railyan. Shallow p-n junctions formed in silicon using pulsed
photon annealing. Semiconductors. Vol.36 (5). P. 611-617 (2002).
[17] Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N.
Drozdov, V.D. Skupov. Diffusion processes in semiconductor structures during microwave annealing.
Radiophysics and Quantum Electronics. Vol. 43 (3). P. 836-843 (2003).
[18] E.L. Pankratov, E.A. Bulaeva. Doping of materials during manufacture p-n-junctions and bipolar
transistors. Analytical approaches to model technological approaches and ways of optimization of dis-
tributions of dopants. Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013).
[19] Yu.N. Erofeev. Pulse devices (Higher School, Moscow, 1989).
[20] V.V. Kozlivsky. Modification of semiconductors by proton beams (Nauka, Sant-Peterburg, 2003, in
Russian).
[21] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991).
[22] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev,
1979, in Russian).
[23] .M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicon. Rev. Mod. Phys.
Vol. 61 (2). P. 289-388 (1989).
[24] A.N. Tikhonov, A.A. Samarskii. The mathematical physics equations (Moscow, Nauka 1972) (in
Russian).
[25] H.S. Carslaw, J.C. Jaeger. Conduction of heat in solids (Oxford University Press, 1964).
[26] E.L. Pankratov. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion-
coefficient nonuniformity. Russian Microelectronics. Vol. 36 (1). P. 33-39 (2007).
[27] E.L. Pankratov. Redistribution of dopant during annealing of radiative defects in a multilayer struc-
ture by laser scans for production an implanted-junction rectifiers. Int. J. Nanoscience. Vol. 7 (4-5). P.
187–197 (2008).
[28] E.L. Pankratov. On approach to optimize manufacturing of bipolar heterotransistors framework circuit
of an operational amplifier to increase their integration rate. Influence mismatch-induced Stress. J.
Comp. Theor. Nanoscience. Vol. 14 (10). P. 4885–4899 (2017).
[29] E.L. Pankratov. On optimization of manufacturing of two-phase logic circuit based on heterostruc-
tures to increase density of their elements. Influence of miss-match induced stress. Advanced science,
engineering and medicine. Vol. 9 (9). P. 787–801 (2017).
[30] E.L. Pankratov, E.A. Bulaeva. An approach to decrease dimensions of field-effect transistors. Univer-
sal Journal of Materials Science. Vol. 1 (1). P.6-11 (2013).
[31] E.L. Pankratov, E.A. Bulaeva. An approach to manufac-ture of bipolar transistors in thin film struc-
tures. On the method of optimization. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014).
[32] E.L. Pankratov, E.A. Bulaeva. Application of native inhomogeneities to increase compactness of ver-
tical field-effect transistors. J. Nanoengineering and Nanomanufacturing. Vol. 2 (3). P. 275-280
(2012).
International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3
34
[33] E.L. Pankratov, E.A. Bulaeva. An approach to increase the integration rate of planar drift heterobipo-
lar transistors. Materials science in semiconductor processing. Vol. 34. P. 260-268 (2015).
APPENDIX
Equations for the functions ( )ϑφηχ ,,,
~
ijkI and ( )ϑφηχ ,,,
~
ijkV , i ≥0, j ≥0, k ≥0 and conditions for
them
( ) ( ) ( ) ( )






∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
000
2
2
000
2
2
000
2
0
0000 ,,,
~
,,,
~
,,,
~
,,,
~
φ
ϑφηχ
η
ϑφηχ
χ
ϑφηχ
ϑ
ϑφηχ III
D
DI
V
I
( ) ( ) ( ) ( )






∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
000
2
2
000
2
2
000
2
0
0000 ,,,
~
,,,
~
,,,
~
,,,
~
φ
ϑφηχ
η
ϑφηχ
χ
ϑφηχ
ϑ
ϑφηχ VVV
D
DV
I
V
;
( ) ( ) ( ) ( ) ×+





∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
V
Iiii
V
Ii
D
DIII
D
DI
0
0
2
00
2
2
00
2
2
00
2
0
000 ,,,
~
,,,
~
,,,
~
,
~
φ
ϑφηχ
η
ϑφηχ
χ
ϑφηχ
ϑ
ϑχ
( ) ( ) ( ) ( )




+





∂
∂
∂
∂
+





∂
∂
∂
∂
× −−
η
ϑφηχ
φηχ
ηχ
ϑφηχ
φηχ
χ
,,,
~
,,,
,,,
~
,,, 100100 i
I
i
I
I
Tg
I
Tg
( ) ( )










∂
∂
∂
∂
+ −
φ
ϑφηχ
φηχ
φ
,,,
~
,,, 100i
I
I
Tg , i ≥1,
( ) ( ) ( ) ( )
( )


×
∂
∂
+








∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
Tg
VVV
D
DV
V
iii
I
Vi
,,,
,,,
~
,,,
~
,,,
~
,
~
2
00
2
2
00
2
2
00
2
0
000
φηχ
χφ
ϑφηχ
η
ϑφηχ
χ
ϑφηχ
ϑ
ϑχ
( )
( )
( )
( )


×
∂
∂
+








∂
∂
∂
∂
+




∂
∂
× −−
Tg
V
Tg
D
D
D
DV
V
i
V
I
V
I
Vi
,,,
,,,
~
,,,
,,,
~
100
0
0
0
0100
φηχ
φη
ϑφηχ
φηχ
ηχ
ϑφηχ
( )
I
Vi
D
DV
0
0100 ,,,
~




∂
∂
× −
φ
ϑφηχ
, i ≥1,
( ) ( ) ( ) ( )
−








∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
010
2
2
010
2
2
010
2
0
0010 ,,,
~
,,,
~
,,,
~
,,,
~
φ
ϑφηχ
η
ϑφηχ
χ
ϑφηχ
ϑ
ϑφηχ III
D
DI
V
I
( )[ ] ( ) ( )ϑφηχϑφηχφηχε ,,,
~
,,,
~
,,,1 000000,, VITg VIVI+−
( ) ( ) ( ) ( ) −





∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
010
2
2
010
2
2
010
2
0
0010 ,,,
~
,,,
~
,,,
~
,,,
~
φ
ϑφηχ
η
ϑφηχ
χ
ϑφηχ
ϑ
ϑφηχ VVV
D
DV
I
V
( )[ ] ( ) ( )ϑφηχϑφηχφηχε ,,,
~
,,,
~
,,,1 000000,, VITg VIVI+− ;
( ) ( ) ( ) ( ) −





∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
020
2
2
020
2
2
020
2
0
0020 ,,,
~
,,,
~
,,,
~
,,,
~
φ
ϑφηχ
η
ϑφηχ
χ
ϑφηχ
ϑ
ϑφηχ III
D
DI
V
I
( )[ ] ( ) ( ) ( ) ( )[ ]ϑφηχϑφηχϑφηχϑφηχφηχε ,,,
~
,,,
~
,,,
~
,,,
~
,,,1 010000000010,, VIVITg VIVI ++−
( ) ( ) ( ) ( ) −





∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
020
2
2
020
2
2
020
2
0
0020 ,,,
~
,,,
~
,,,
~
,,,
~
φ
ϑφηχ
η
ϑφηχ
χ
ϑφηχ
ϑ
ϑφηχ VVV
D
DV
V
I
International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3
35
( )[ ] ( ) ( ) ( ) ( )[ ]ϑφηχϑφηχϑφηχϑφηχφηχε ,,,
~
,,,
~
,,,
~
,,,
~
,,,1 010000000010,, VIVITg VIVI ++− ;
( ) ( ) ( ) ( )
−








∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
001
2
2
001
2
2
001
2
0
0001 ,,,
~
,,,
~
,,,
~
,,,
~
φ
ϑφηχ
η
ϑφηχ
χ
ϑφηχ
ϑ
ϑφηχ III
D
DI
V
I
( )[ ] ( )ϑφηχφηχε ,,,
~
,,,1 2
000,, ITg IIII+−
( ) ( ) ( ) ( )
−








∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
001
2
2
001
2
2
001
2
0
0001 ,,,
~
,,,
~
,,,
~
,,,
~
φ
ϑφηχ
η
ϑφηχ
χ
ϑφηχ
ϑ
ϑφηχ VVV
D
DV
I
V
( )[ ] ( )ϑφηχφηχε ,,,
~
,,,1 2
000,, VTg IIII+− ;
( ) ( ) ( ) ( ) ×+





∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
V
I
V
I
D
DIII
D
DI
0
0
2
110
2
2
110
2
2
110
2
0
0110 ,,,
~
,,,
~
,,,
~
,,,
~
φ
ϑφηχ
η
ϑφηχ
χ
ϑφηχ
ϑ
ϑφηχ
( )
( )
( )
( )
( )[




×
∂
∂
+








∂
∂
∂
∂
+








∂
∂
∂
∂
× Tg
I
Tg
I
Tg III ,,,
,,,
~
,,,
,,,
~
,,, 010010
φηχ
φη
ϑφηχ
φηχ
ηχ
ϑφηχ
φηχ
χ
( )
( ) ( ) ( ) ( )[ ]×+−








∂
∂
× ϑφηχϑφηχϑφηχϑφηχ
φ
ϑφηχ
,,,
~
,,,
~
,,,
~
,,,
~,,,
~
100000000100
010
VIVI
I
( )[ ]Tg IIII ,,,1 ,, φηχε+×
( ) ( ) ( ) ( ) +





∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
110
2
2
110
2
2
110
2
0
0110 ,,,
~
,,,
~
,,,
~
,,,
~
φ
ϑφηχ
η
ϑφηχ
χ
ϑφηχ
ϑ
ϑφηχ VVV
D
DV
I
V
( ) ( ) ( ) ( )




+





∂
∂
∂
∂
+





∂
∂
∂
∂
+
η
ϑφηχ
φηχ
ηχ
ϑφηχ
φηχ
χ
,,,
~
,,,
,,,
~
,,, 010010
0
0 V
Tg
V
Tg
D
D
VV
I
V
( ) ( ) ( )[ ]×+−










∂
∂
∂
∂
+ Tg
V
Tg VVVVV ,,,1
,,,
~
,,, ,,
010
φηχε
φ
ϑφηχ
φηχ
φ
( ) ( ) ( ) ( )[ ]ϑφηχϑφηχϑφηχϑφηχ ,,,
~
,,,
~
,,,
~
,,,
~
100000000100 IVIV +× ;
( ) ( ) ( ) ( ) −





∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
002
2
2
002
2
2
002
2
0
0002 ,,,
~
,,,
~
,,,
~
,,,
~
φ
ϑφηχ
η
ϑφηχ
χ
ϑφηχ
ϑ
ϑφηχ III
D
DI
V
I
( )[ ] ( ) ( )ϑφηχϑφηχφηχε ,,,
~
,,,
~
,,,1 000001,, IITg IIII+−
( ) ( ) ( ) ( ) −





∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
002
2
2
002
2
2
002
2
0
0002 ,,,
~
,,,
~
,,,
~
,,,
~
φ
ϑφηχ
η
ϑφηχ
χ
ϑφηχ
ϑ
ϑφηχ VVV
D
DV
I
V
( )[ ] ( ) ( )ϑφηχϑφηχϑφηχε ,,,
~
,,,
~
,,,1 000001,, VVg VVVV+− ;
( ) ( ) ( ) ( ) +





∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
101
2
2
101
2
2
101
2
0
0101 ,,,
~
,,,
~
,,,
~
,,,
~
φ
ϑφηχ
η
ϑφηχ
χ
ϑφηχ
ϑ
ϑφηχ III
D
DI
V
I
( ) ( ) ( ) ( )




+





∂
∂
∂
∂
+





∂
∂
∂
∂
+
η
ϑφηχ
φηχ
ηχ
ϑφηχ
φηχ
χ
,,,
~
,,,
,,,
~
,,, 001001
0
0 I
Tg
I
Tg
D
D
II
V
I
International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3
36
( ) ( ) ( )[ ] ( ) ( )ϑφηχϑφηχφηχε
φ
ϑφηχ
φηχ
φ
,,,
~
,,,
~
,,,1
,,,
~
,,, 000100
001
VITg
I
Tg III +−










∂
∂
∂
∂
+
( ) ( ) ( ) ( ) +





∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
101
2
2
101
2
2
101
2
0
0101 ,,,
~
,,,
~
,,,
~
,,,
~
φ
ϑφηχ
η
ϑφηχ
χ
ϑφηχ
ϑ
ϑφηχ VVV
D
DV
I
V
( ) ( ) ( ) ( )




+





∂
∂
∂
∂
+





∂
∂
∂
∂
+
η
ϑφηχ
φηχ
ηχ
ϑφηχ
φηχ
χ
,,,
~
,,,
,,,
~
,,, 001001
0
0 V
Tg
V
Tg
D
D
VV
I
V
( ) ( ) ( )[ ] ( ) ( )ϑφηχϑφηχφηχε
φ
ϑφηχ
φηχ
φ
,,,
~
,,,
~
,,,1
,,,
~
,,, 100000
001
VITg
V
Tg VVV +−










∂
∂
∂
∂
+ ;
( ) ( ) ( ) ( )
( )×−








∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
ϑφηχ
φ
ϑφηχ
η
ϑφηχ
χ
ϑφηχ
ϑ
ϑφηχ
,,,
~,,,
~
,,,
~
,,,
~
,,,
~
0102
011
2
2
011
2
2
011
2
0
0011
I
III
D
DI
V
I
( )[ ] ( ) ( )[ ] ( ) ( )ϑφηχϑφηχφηχεϑφηχφηχε ,,,
~
,,,
~
,,,1,,,
~
,,,1 000001,,000,, VITgITg VIVIIIII +−+×
( ) ( ) ( ) ( ) ( )×−








∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
ϑφηχ
φ
ϑφηχ
η
ϑφηχ
χ
ϑφηχ
ϑ
ϑφηχ
,,,
~,,,
~
,,,
~
,,,
~
,,,
~
0102
011
2
2
011
2
2
011
2
0
0011
V
VVV
D
DV
I
V
( )[ ] ( ) ( )[ ] ( ) ( )ϑφηχϑφηχφηχεϑφηχφηχε ,,,
~
,,,
~
,,,1,,,
~
,,,1 001000,,000,, VItgVTg VIVIVVVV +−+× ;
( )
0
,,,~
0
=
∂
∂
=x
ijk
χ
ϑφηχρ
,
( )
0
,,,~
1
=
∂
∂
=x
ijk
χ
ϑφηχρ
,
( )
0
,,,~
0
=
∂
∂
=η
η
ϑφηχρijk
,
( )
0
,,,~
1
=
∂
∂
=η
η
ϑφηχρijk
,
( )
0
,,,~
0
=
∂
∂
=φ
φ
ϑφηχρijk
,
( )
0
,,,~
1
=
∂
∂
=φ
φ
ϑφηχρijk
(i ≥0, j ≥0, k ≥0);
( ) ( ) *
000 ,,0,,,~ ρφηχφηχρ ρf= , ( ) 00,,,~ =φηχρijk (i ≥1, j ≥1, k ≥1).
Solutions of the above equations could be written as
( ) ( ) ( ) ( ) ( )∑+=
∞
=1
000
21
,,,~
n
nn ecccF
LL
ϑφηχϑφηχρ ρρ ,
where ( ) ( ) ( ) ( )∫ ∫ ∫=
1
0
1
0
1
0
*
,,coscoscos
1
udvdwdwvufwnvnunF nn ρρ πππ
ρ
, cn(χ) = cos (π n χ),
( ) ( )IVnI DDne 00
22
exp ϑπϑ −= , ( ) ( )VInV DDne 00
22
exp ϑπϑ −= ;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫
∂
∂
−−=
∞
=
−
1 0
1
0
1
0
1
0
100
0
0
00
,,,
~
2,,,
~
n
i
nnnInIn
V
I
i
u
wvuI
vcuseecccn
D
D
I
ϑ τ
τϑφηχπϑφηχ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−−×
∞
=1 0
1
0
1
00
0
2,,,
n
nnnInIn
V
I
In vsuceecccn
D
D
dudvdwdTwvugwc
ϑ
τϑφηχπτ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ −−∫
∂
∂
×
∞
=
−
1 00
0
1
0
100
2
,,,
~
,,,
n
nInIn
V
Ii
In eecccn
D
D
dudvdwd
v
wvuI
Twvugwc
ϑ
τϑφηχπτ
τ
( ) ( ) ( ) ( ) ( )
∫ ∫ ∫
∂
∂
× −
1
0
1
0
1
0
100 ,,,
~
,,, τ
τ
dudvdwd
w
wvuI
Twvugwsvcuc i
Innn , i ≥1,
International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3
37
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ×∫ ∫ ∫ ∫−−=
∞
=1 0
1
0
1
0
1
00
0
00 ,,,2,,,
~
n
VnnnInVn
I
V
i Twvugvcuseecccn
D
D
V
ϑ
τϑφηχπϑφηχ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ×∫ ∫ ∫−−
∂
∂
×
∞
=
−
1 0
1
0
1
00
0100 ,
~
n
nnnInVn
I
Vi
n vsuceecccn
D
D
dudvdwd
u
uV
wc
ϑ
τϑφηχτ
τ
( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ×−∫
∂
∂
×
∞
=
−
1
0
0
1
0
100
2
,
~
,,,2
n
nVn
I
Vi
Vn ecccn
D
D
dudvdwd
v
uV
Twvugwc ϑφηχπτ
τ
π
( ) ( ) ( ) ( ) ( ) ( )
∫ ∫ ∫ ∫
∂
∂
−× −
ϑ
τ
τ
τ
0
1
0
1
0
1
0
100 ,
~
,,, dudvdwd
w
uV
Twvugwsvcuce i
VnnnnI , i ≥1,
where sn(χ) = sin (π n χ);
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∫ ∫ ∫ ∫ ×−−=
∞
=1 0
1
0
1
0
1
0
010 2,,,~
n
nnnnnnnn wcvcuceeccc
ϑ
ρρ τϑφηχϑφηχρ
( )[ ] ( ) ( ) τττε dudvdwdwvuVwvuITwvug VIVI ,,,
~
,,,
~
,,,1 000000,,+× ;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ×∑ ∫ ∫ ∫ ∫ +−−=
∞
=1 0
1
0
1
0
1
0
,
0
0
020 12,,,~
n
VInnnnnnnn
V
I
wcvcuceeccc
D
D ϑ
ρρ ετϑφηχϑφηχρ
( )] ( ) ( ) ( ) ( )[ ] τττττ dudvdwdwvuVwvuIwvuVwvuITwvug VI ,,,
~
,,,
~
,,,
~
,,,
~
,,, 010000000010, +× ;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−=
∞
=1 0
1
0
1
0
1
0
001 2,,,~
n
nnnnnnnn wcvcuceeccc
ϑ
ρρ τϑφηχϑφηχρ
( )[ ] ( ) ττρε ρρρρ dudvdwdwvuTwvug ,,,~,,,1 2
000,,+× ;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∫ ∫ ×∫ ∫−−=
∞
=1 0
1
0
1
0
1
0
002 2,,,~
n
nnnnnnnn wcvcuceeccc
ϑ
ρρ τϑφηχϑφηχρ
( )[ ] ( ) ( ) ττρτρε ρρρρ dudvdwdwvuwvuTwvug ,,,~,,,~,,,1 000001,,+× ;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−−=
∞
=1 0
1
0
1
0
1
00
0
110 2,,,
~
n
nnnnInInnn
V
I
ucvcuseecccn
D
D
I
ϑ
τϑφηχπϑφηχ
( ) ( ) ( ) ( ) ( ) ( ) ×∑−
∂
∂
×
∞
=
−
1
0
0100
2
,,,
~
,,,
n
nInnn
V
Ii
I ecccn
D
D
dudvdwd
u
wvuI
Twvug ϑφηχπτ
τ
( ) ( ) ( ) ( ) ( ) ( ) ×−∫ ∫ ∫ ∫
∂
∂
−× −
V
Ii
InnnnI
D
D
dudvdwd
v
wvuI
Twvugucvsuce
0
0
0
1
0
1
0
1
0
100
2
,,,
~
,,, πτ
τ
τ
ϑ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫
∂
∂
−×
∞
=
−
1 0
1
0
1
0
1
0
100 ,,,
~
,,,
n
i
InnnnInI dudvdwd
w
wvuI
Twvugusvcuceen
ϑ
τ
τ
τϑ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[∑ ∫ ∫ ∫ ∫ ×+−−×
∞
=1 0
1
0
1
0
1
0
,12
n
VInnnnInnnInnnn vcvcuceccecccc
ϑ
ετφηϑχφηχ
( )] ( ) ( ) ( ) ( )[ ] τττττ dudvdwdwvuVwvuIwvuVwvuITwvug VI ,,,
~
,,,
~
,,,
~
,,,
~
,,, 100000000100, +×
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−=
∞
=1 0
1
0
1
0
1
00
0
110 2,,,
~
n
nnnnVnVnnn
I
V
ucvcuseecccn
D
D
V
ϑ
τϑφηχπϑφηχ
International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3
38
( ) ( ) ( ) ( ) ( ) ( )×∑−
∂
∂
×
∞
=
−
1
0
0100
2
,,,
~
,,,
n
nVnnn
I
Vi
V ecccn
D
D
dudvdwd
u
wvuV
Twvug ϑφηχπτ
τ
( ) ( ) ( ) ( ) ( ) ( ) ×−∫ ∫ ∫ ∫
∂
∂
−× −
I
Vi
VnnnnV
D
D
dudvdwd
v
wvuV
Twvugucvsuce
0
0
0
1
0
1
0
1
0
100
2
,,,
~
,,, πτ
τ
τ
ϑ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫
∂
∂
−×
∞
=
−
1 0
1
0
1
0
1
0
100 ,,,
~
,,,
n
i
VnnnnVnV dudvdwd
w
wvuV
Twvugusvcuceen
ϑ
τ
τ
τϑ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]∑ ∫ ∫ ∫ ∫ ×+−−×
∞
=1 0
1
0
1
0
1
0
,, ,,,12
n
VIVInnnVnnnInnnn Twvugvcuceccecccc
ϑ
ετφηϑχφηχ
( ) ( ) ( ) ( ) ( )[ ] τττττ dudvdwdwvuVwvuIwvuVwvuIwcn ,,,
~
,,,
~
,,,
~
,,,
~
100000000100 +× ;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−−=
∞
=1 0
1
0
1
0
1
00
0
101 ,,,2,,,
~
n
InnnInInnn
V
I
Twvugvcuseecccn
D
D
I
ϑ
τϑφηχπϑφηχ
( ) ( ) ( ) ( ) ( ) ( )×∑−
∂
∂
×
∞
=1
0
0001
2
,,,
~
n
nInnn
V
I
n ecccn
D
D
dudvdwd
u
wvuI
wc ϑφηχπτ
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑−∫ ∫
∂
∂
×
∞
=1
0
0
1
0
1
0
001
2
,,,
~
,,,
n
nnnnI
V
I
Inn cccen
D
D
dudvdwd
v
wvuI
Twvugwcvs φηχϑπτ
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑−∫ ∫ ∫ ∫
∂
∂
−×
∞
=10
1
0
1
0
1
0
001
2
,,,
~
,,,
n
nnnInnnnI cccdudvdwd
w
wvuI
Twvugwsvcuce φηχτ
τ
τ
ϑ
( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )∫ ∫ ∫ ∫ +−×
ϑ
τττετϑ
0
1
0
1
0
1
0
000100,, ,,,
~
,,,
~
,,,1 dudvdwdwvuVwvuITwvugwcvcucee VIVInnnnInI
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−−=
∞
=1 0
1
0
1
0
1
00
0
101 ,,,2,,,
~
n
VnnnVnVnnn
I
V
Twvugvcuseecccn
D
D
V
ϑ
τϑφηχπϑφηχ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−−
∂
∂
×
∞
=1 0
1
00
0001
2
,,,
~
n
nnVnInnn
I
V
n uceecccn
D
D
dudvdwd
u
wvuV
wc
ϑ
τϑφηχπτ
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑−∫ ∫
∂
∂
×
∞
=1
0
0
1
0
1
0
001
2
,,,
~
,,,
n
nnnnI
V
I
Inn cccen
D
D
dudvdwd
v
wvuI
Twvugwcvs φηχϑπτ
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑−∫ ∫ ∫ ∫
∂
∂
−×
∞
=10
1
0
1
0
1
0
001
2
,,,
~
,,,
n
nnnVnnnnV cccdudvdwd
w
wvuV
Twvugwsvcuce φηχτ
τ
τ
ϑ
( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )∫ ∫ ∫ ∫ +−×
ϑ
τττετϑ
0
1
0
1
0
1
0
000100,, ,,,
~
,,,
~
,,,1 dudvdwdwvuVwvuITwvugwcvcucee VIVInnnnVnV
;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){∑ ∫ ∫ ∫ ∫ ×−−=
∞
=1 0
1
0
1
0
1
0
000011 ,,,
~
2,,,
~
n
nnnnInInnn wvuIwcvcuceecccI
ϑ
ττϑφηχϑφηχ
( )[ ] ( ) ( )[ ] ( ) ( )} τττετε dudvdwdwvuVwvuITwvugwvuITwvug VIVIIIII ,,,
~
,,,
~
,,,1,,,
~
,,,1 000001,,010,, +++×
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){∑ ∫ ∫ ∫ ∫ ×−−=
∞
=1 0
1
0
1
0
1
0
000011 ,,,
~
2,,,
~
n
nnnnVnVnnn wvuIwcvcuceecccV
ϑ
ττϑφηχϑφηχ
( )[ ] ( ) ( )[ ] ( ) ( )} τττετε dudvdwdwvuVwvuITwvugwvuITwvug VIVIIIII ,,,
~
,,,
~
,,,1,,,
~
,,,1 000001,,010,, +++× .
International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3
39
Equations for functions Φρi(x,y,z,t), i ≥0 to describe concentrations of simplest complexes of radi-
ation defects.
( ) ( ) ( ) ( ) +




 Φ
+
Φ
+
Φ
=
Φ
Φ 2
0
2
2
0
2
2
0
2
0
0 ,,,,,,,,,,,,
z
tzyx
y
tzyx
x
tzyx
D
t
tzyx III
I
I
∂
∂
∂
∂
∂
∂
∂
∂
( ) ( ) ( ) ( )tzyxITzyxktzyxITzyxk III ,,,,,,,,,,,, 2
, −+
( ) ( ) ( ) ( ) +




 Φ
+
Φ
+
Φ
=
Φ
Φ 2
0
2
2
0
2
2
0
2
0
0 ,,,,,,,,,,,,
z
tzyx
y
tzyx
x
tzyx
D
t
tzyx VVV
V
V
∂
∂
∂
∂
∂
∂
∂
∂
( ) ( ) ( ) ( )tzyxVTzyxktzyxVTzyxk VVV ,,,,,,,,,,,, 2
, −+ ;
( ) ( ) ( ) ( )
+







 Φ
+
Φ
+
Φ
=
Φ
Φ 2
2
2
2
2
2
0
,,,,,,,,,,,,
z
tzyx
y
tzyx
x
tzyx
D
t
tzyx iIiIiI
I
iI
∂
∂
∂
∂
∂
∂
∂
∂
( )
( )
( )
( )




+




 Φ
+




 Φ
+
−
Φ
−
ΦΦ
y
tzyx
Tzyxg
yx
tzyx
Tzyxg
x
D
iI
I
iI
II
∂
∂
∂
∂
∂
∂
∂
∂ ,,,
,,,
,,,
,,,
11
0
( )
( )









 Φ
+
−
Φ
z
tzyx
Tzyxg
z
iI
I
∂
∂
∂
∂ ,,,
,,,
1
, i≥1,
( ) ( ) ( ) ( )
+







 Φ
+
Φ
+
Φ
=
Φ
Φ 2
2
2
2
2
2
0
,,,,,,,,,,,,
z
tzyx
y
tzyx
x
tzyx
D
t
tzyx iViViV
V
iV
∂
∂
∂
∂
∂
∂
∂
∂
( )
( )
( )
( )




+




 Φ
+




 Φ
+
−
Φ
−
ΦΦ
y
tzyx
Tzyxg
yx
tzyx
Tzyxg
x
D
iV
V
iV
VV
∂
∂
∂
∂
∂
∂
∂
∂ ,,,
,,,
,,,
,,,
11
0
( )
( )









 Φ
+
−
Φ
z
tzyx
Tzyxg
z
iV
V
∂
∂
∂
∂ ,,,
,,,
1
, i≥1;
Boundary and initial conditions for the functions takes the form
( )
0
,,,
0
=
∂
Φ∂
=x
i
x
tzyxρ
,
( )
0
,,,
=
∂
Φ∂
= xLx
i
x
tzyxρ
,
( )
0
,,,
0
=
∂
Φ∂
=y
i
y
tzyxρ
,
( )
0
,,,
=
∂
Φ∂
= yLy
i
y
tzyxρ
,
( )
0
,,,
0
=
∂
Φ∂
=z
i
z
tzyxρ
,
( )
0
,,,
=
∂
Φ∂
= zLz
i
z
tzyxρ
, i≥0; Φρ0(x,y,z,0)=fΦρ (x,y,z), Φρi(x,y,z,0)=0, i≥1.
Solutions of the above equations could be written as
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑+∑+=Φ
∞
=
∞
=
ΦΦ
11
0
221
,,,
n
nnn
n
nnnnn
zyxzyx
zcycxcn
L
tezcycxcF
LLLLLL
tzyx ρρρ
( ) ( ) ( ) ( ) ( ) ( ) ( )[∫ ∫ ∫ ∫ −−× ΦΦ
t L L L
IInnnnn
x y z
wvuITwvukwcvcucete
0 0 0 0
2
, ,,,,,, ττρρ
( ) ( )] ττ dudvdwdwvuITwvukI ,,,,,,− ,
where ( ) ( ) ( ) ( )∫ ∫ ∫= ΦΦ
x y zL L L
nnnn udvdwdwvufwcvcucF
0 0 0
,,ρρ
, ( ) ( )[ ]222
0
22
exp −−−
ΦΦ ++−= zyxn LLLtDnte ρρ
π , cn(x) =
cos (π n x/Lx);
International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3
40
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−−=Φ
∞
=
ΦΦΦ
1 0 0 0 0
2
,,,
2
,,,
n
t L L L
nnnnnnn
zyx
i
x y z
Twvugvcusetezcycxcn
LLL
tzyx ρρρ
τ
π
ρ
( )
( )
( ) ( ) ( ) ( ) ( ) ×∑ ∫ −−
Φ
×
∞
=
ΦΦ
−
1 0
2
1 2,,,
n
t
nnnnn
zyx
iI
n etezcycxcn
LLL
dudvdwd
u
wvu
wc τ
π
τ
∂
τ∂
ρρ
ρ
( ) ( ) ( ) ( ) ( )
( )
×∑−∫ ∫ ∫ ∫
Φ
−×
∞
=
−
ΦΦ
1
2
0 0 0 0
1 2,,,
,,,
n
zyx
t L L L
iI
nnnn n
LLL
dudvdwd
v
wvu
Twvugwcvsuce
x y z π
τ
∂
τ∂
τ ρ
ρρ
( ) ( ) ( ) ( ) ( )
( )
( ) ×∫ ∫ ∫ ∫
Φ
−× Φ
−
ΦΦ
t L L L
iI
nnnnn
x y z
dudvdwdTwvug
w
wvu
wsvcucete
0 0 0 0
1
,,,
,,,
τ
∂
τ∂
τ ρ
ρ
ρρ
( ) ( ) ( )zcycxc nnn× , i ≥1,
where sn(x) = sin (π n x/Lx).
Equations for the functions Cij(x,y,z,t) (i ≥0, j ≥0), boundary and initial conditions could be writ-
ten as
( ) ( ) ( ) ( )
2
00
2
02
00
2
02
00
2
0
00 ,,,,,,,,,,,,
z
tzyxC
D
y
tzyxC
D
x
tzyxC
D
t
tzyxC
LLL
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
;
( ) ( ) ( ) ( ) +





∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
0
2
2
0
2
2
0
2
0
0 ,,,,,,,,,,,,
z
tzyxC
y
tzyxC
x
tzyxC
D
t
tzyxC iii
L
i
( ) ( ) ( ) ( ) +





∂
∂
∂
∂
+





∂
∂
∂
∂
+ −−
y
tzyxC
Tzyxg
y
D
x
tzyxC
Tzyxg
x
D i
LL
i
LL
,,,
,,,
,,,
,,, 10
0
10
0
( ) ( )






∂
∂
∂
∂
+ −
z
tzyxC
Tzyxg
z
D i
LL
,,,
,,, 10
0 , i ≥1;
( ) ( ) ( ) ( )+
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
01
2
02
01
2
02
01
2
0
01 ,,,,,,,,,,,,
z
tzyxC
D
y
tzyxC
D
x
tzyxC
D
t
tzyxC
LLL
( )
( )
( ) ( )
( )
( ) +





∂
∂
∂
∂
+





∂
∂
∂
∂
+
y
tzyxC
TzyxP
tzyxC
y
D
x
tzyxC
TzyxP
tzyxC
x
D LL
,,,
,,,
,,,,,,
,,,
,,, 0000
0
0000
0 γ
γ
γ
γ
( )
( )
( )






∂
∂
∂
∂
+
z
tzyxC
TzyxP
tzyxC
z
D L
,,,
,,,
,,, 0000
0 γ
γ
;
( ) ( ) ( ) ( )+
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
02
2
02
02
2
02
02
2
0
02 ,,,,,,,,,,,,
z
tzyxC
D
y
tzyxC
D
x
tzyxC
D
t
tzyxC
LLL
( ) ( )
( )
( ) ( ) ( )
( )





×
∂
∂
+





∂
∂
∂
∂
+
−−
TzyxP
tzyxC
tzyxC
yx
tzyxC
TzyxP
tzyxC
tzyxC
x
D L
,,,
,,,
,,,
,,,
,,,
,,,
,,,
1
00
01
00
1
00
010 γ
γ
γ
γ
( ) ( ) ( )
( )
( ) +









∂
∂
∂
∂
+


∂
∂
×
−
z
tzyxC
TzyxP
tzyxC
tzyxC
zy
tzyxC ,,,
,,,
,,,
,,,
,,, 00
1
00
01
00
γ
γ
( ) ( ) ( )
( )
( ) ( )
( )






×
∂
∂
+










∂
∂
∂
∂
+


∂
∂
×
−
TzyxP
tzyxC
x
D
z
tzyxC
TzyxP
tzyxC
tzyxC
zy
tzyxC
L
,,,
,,,,,,
,,,
,,,
,,,
,,, 00
0
00
1
00
01
00
γ
γ
γ
γ
International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3
41
( ) ( )
( )
( ) ( )
( )
( )









∂
∂
∂
∂
+





∂
∂
∂
∂
+


∂
∂
×
z
tzyxC
TzyxP
tzyxC
zy
tzyxC
TzyxP
tzyxC
yx
tzyxC ,,,
,,,
,,,,,,
,,,
,,,,,, 0100010001
γ
γ
γ
γ
;
( ) ( ) ( ) ( )+
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
11
2
02
11
2
02
11
2
0
11 ,,,,,,,,,,,,
z
tzyxC
D
y
tzyxC
D
x
tzyxC
D
t
tzyxC
LLL
( ) ( )
( )
( ) ( ) ( )
( )





×
∂
∂
+





∂
∂
∂
∂
+
−−
TzyxP
tzyxC
tzyxC
yx
tzyxC
TzyxP
tzyxC
tzyxC
x ,,,
,,,
,,,
,,,
,,,
,,,
,,,
1
00
10
00
1
00
10 γ
γ
γ
γ
( ) ( ) ( )
( )
( ) +









∂
∂
∂
∂
+


∂
∂
×
−
LD
z
tzyxC
TzyxP
tzyxC
tzyxC
zy
tzyxC
0
00
1
00
10
00 ,,,
,,,
,,,
,,,
,,,
γ
γ
( )
( )
( ) ( )
( )
( )



+





∂
∂
∂
∂
+





∂
∂
∂
∂
+
y
tzyxC
TzyxP
tzyxC
yx
tzyxC
TzyxP
tzyxC
x
D L
,,,
,,,
,,,,,,
,,,
,,, 10001000
0 γ
γ
γ
γ
( )
( )
( ) ( ) ( )



+





∂
∂
∂
∂
+









∂
∂
∂
∂
+
x
tzyxC
Tzyxg
x
D
z
tzyxC
TzyxP
tzyxC
z
LL
,,,
,,,
,,,
,,,
,,, 01
0
1000
γ
γ
( ) ( ) ( ) ( )









∂
∂
∂
∂
+





∂
∂
∂
∂
+
z
tzyxC
Tzyxg
zy
tzyxC
Tzyxg
y
LL
,,,
,,,
,,,
,,, 0101
;
( )
0
,,,
0
=
=x
ij
x
tzyxC
∂
∂
,
( )
0
,,,
=
= xLx
ij
x
tzyxC
∂
∂
,
( )
0
,,,
0
=
=y
ij
y
tzyxC
∂
∂
,
( )
0
,,,
=
= yLy
ij
y
tzyxC
∂
∂
,
( )
0
,,,
0
=
=z
ij
z
tzyxC
∂
∂
,
( )
0
,,,
=
= zLz
ij
z
tzyxC
∂
∂
, i ≥0, j ≥0; C00(x,y,z,0)=fC (x,y,z), Cij(x,y,z,0)=0,
i ≥1, j ≥1.
Functions Cij(x,y,z,t) (i ≥0, j ≥0) could be approximated by the following series during solutions
of the above equations
( ) ( ) ( ) ( ) ( )∑+=
∞
=1
0
00
2
,,,
n
nCnnnnC
zyxzyx
C
tezcycxcF
LLLLLL
F
tzyxC .
Here ( )
















++−= 2220
22 111
exp
zyx
CnC
LLL
tDnte π , ( ) ( ) ( ) ( )∫ ∫ ∫=
x y zL L L
nCnnnC udvdwdwcwvufvcucF
0 0 0
,, ;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−−=
∞
=1 0 0 0 0
20 ,,,
2
,,,
n
t L L L
LnnnCnCnnnnC
zyx
i
x y z
TwvugvcusetezcycxcFn
LLL
tzyxC τ
π
( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ −−
∂
∂
×
∞
=
−
1 0
2
10 2,,,
n
t
nCnCnnnnC
zyx
i
n etezcycxcFn
LLL
dudvdwd
u
wvuC
wc τ
π
τ
τ
( ) ( ) ( ) ( ) ( ) ( )∑ ×−∫ ∫ ∫
∂
∂
×
∞
=
−
1
2
0 0 0
10 2,,,
,,,
n
nCnC
zyx
L L L
i
Lnnn teFn
LLL
dudvdwd
v
wvuC
Twvugvcvsuc
x y z π
τ
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
∫ ∫ ∫ ∫
∂
∂
−× −
t L L L
i
LnnnnCnnn
x y z
dudvdwd
w
wvuC
Twvugvsvcucezcycxc
0 0 0 0
10 ,,,
,,, τ
τ
τ , i ≥1;
International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3
42
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−−=
∞
=1 0 0 0 0
201
2
,,,
n
t L L L
nnnnCnCnnnnC
zyx
x y z
wcvcusetezcycxcFn
LLL
tzyxC τ
π
( )
( )
( ) ( ) ( ) ( ) ( ) ×∑−
∂
∂
×
∞
=1
2
0000 2,,,
,,,
,,,
n
nCnnnnC
zyx
tezcycxcFn
LLL
dudvdwd
u
wvuC
TwvuP
wvuC π
τ
ττ
γ
γ
( ) ( ) ( ) ( ) ( )
( )
( ) ( )×∑−∫ ∫ ∫ ∫
∂
∂
−×
∞
=1
2
0 0 0 0
0000 2,,,
,,,
,,,
n
nC
zyx
t L L L
nnnnC ten
LLL
dudvdwd
v
wvuC
TwvuP
wvuC
wcvsuce
x y z π
τ
ττ
τ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
( )
∫ ∫ ∫ ∫
∂
∂
−×
t L L L
nnnnCnnnnC
x y z
dudvdwd
w
wvuC
TwvuP
wvuC
wsvcucezcycxcF
0 0 0 0
0000 ,,,
,,,
,,,
τ
ττ
τ γ
γ
;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−=
∞
=1 0 0 0 0
202
2
,,,
n
t L L L
nnnnCnCnnnnC
zyx
x y z
wcvcusetezcycxcFn
LLL
tzyxC τ
π
( ) ( )
( )
( ) ( ) ( )×∑−
∂
∂
×
∞
=
−
1
2
00
1
00
01
2,,,
,,,
,,,
,,,
n
nnnC
zyx
ycxcF
LLL
dudvdwd
u
wvuC
TwvuP
wvuC
wvuC
π
τ
ττ
τ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
( ) ×∫ ∫ ∫ ∫
∂
∂
−×
−t L L L
nnnCnCn
x y z
v
wvuC
TwvuP
wvuC
wvuCvsucetezcn
0 0 0 0
00
1
00
01
,,,
,,,
,,,
,,,
ττ
ττ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−−×
∞
=1 0 0 0
2
2
n
t L L
nnnCnCnnnnC
zyx
n
x y
vcucetezcycxcFn
LLL
dudvdwdwc τ
π
τ
( ) ( ) ( )
( )
( ) ( )×∑−∫
∂
∂
×
∞
=
−
1
2
0
00
1
00
01
2,,,
,,,
,,,
,,,
n
n
zyx
L
n xcn
LLL
dudvdwd
w
wvuC
TwvuP
wvuC
wvuCws
z π
τ
ττ
τ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫
∂
∂
−×
t L L L
nnnnCnCnnnC
x y z
u
wvuC
wvuCwcvcusetezcycF
0 0 0 0
00
01
,,,
,,,
τ
ττ
( )
( )
( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−−×
∞
=
−
1 0 0
2
1
00 2
,,,
,,,
n
t L
nnCnCnnnnC
zyx
x
ucetezcycxcFn
LLL
dudvdwd
TwvuP
wvuC
τ
π
τ
τ
γ
γ
( ) ( ) ( ) ( )
( )
( ) ×∑−∫ ∫
∂
∂
×
∞
=
−
1
2
0 0
00
1
00
01
2,,,
,,,
,,,
,,,
n
zyx
L L
nn n
LLL
dudvdwd
v
wvuC
TwvuP
wvuC
wvuCwcvs
y z π
τ
ττ
τ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
×∫ ∫ ∫ ∫−×
−t L L L
nnnnCnCnnnnC
x y z
TwvuP
wvuC
wvuCwsvcucetezcycxcF
0 0 0 0
1
00
01
,,,
,,,
,,, γ
γ
τ
ττ
( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−−
∂
∂
×
∞
=1 0 0
2
00 2,,,
n
t L
nnCnCnnnnC
zyx
x
usetezcycxcF
LLL
dudvdwd
w
wvuC
τ
π
τ
τ
( ) ( ) ( )
( )
( ) ( ) ( )∑ ×−∫ ∫
∂
∂
×
∞
=1
2
0 0
0100 2,,,
,,,
,,,
n
nCn
zyx
L L
nn texc
LLL
dudvdwd
u
wvuC
TwvuP
wvuC
wcvcn
y z π
τ
ττ
γ
γ
( ) ( ) ( ) ( ) ( ) ( )
( )
( ) ×∫ ∫ ∫ ∫
∂
∂
−×
t L L L
nnnnCnnC
x y z
dudvdwd
v
wvuC
TwvuP
wvuC
wcvsuceycF
0 0 0 0
0100 ,,,
,,,
,,,
τ
ττ
τ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−×
∞
=1 0 0 0 0
2
2
n
t L L L
nnnnCnCnnnnC
zyx
n
x y z
wsvcucetezcycxcFn
LLL
zcn τ
π
International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3
43
( )
( )
( ) τ
ττ
γ
γ
dudvdwd
w
wvuC
TwvuP
wvuC
∂
∂
×
,,,
,,,
,,, 0100
;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−−=
∞
=1 0 0 0 0
211
2
,,,
n
t L L L
nnnnCnCnnnnC
zyx
x y z
wcvcusetezcycxcFn
LLL
tzyxC τ
π
( ) ( ) ( ) ( ) ( ) ( ) ×∑−
∂
∂
×
∞
=1
2
01 2,,,
,,,
n
nCnnnnC
zyx
L tezcycxcFn
LLL
dudvdwd
u
wvuC
Twvug
π
τ
τ
( ) ( ) ( ) ( ) ( ) ( ) ×−∫ ∫ ∫ ∫
∂
∂
−× 2
0 0 0 0
01 2,,,
,,,
zyx
t L L L
LnnnnC
LLL
dudvdwd
v
wvuC
Twvugwcvsuce
x y z π
τ
τ
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫
∂
∂
−×
∞
=1 0 0 0 0
01 ,,,
,,,
n
t L L L
LnnnnCnC
x y z
dudvdwd
w
wvuC
Twvugwsvcuceten τ
τ
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−−×
∞
=1 0 0 0
2
2
n
t L L
nnnCnCnnnnC
zyx
nnnnC
x y
vcusetezcycxcF
LLL
zcycxcF τ
π
( ) ( )
( )
( ) ( ) ( )×∑−∫
∂
∂
×
∞
=1
2
0
1000 2,,,
,,,
,,,
n
nnnC
zyx
L
n ycxcFn
LLL
dudvdwd
u
wvuC
TwvuP
wvuC
wcn
z π
τ
ττ
γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
( ) −∫ ∫ ∫ ∫
∂
∂
−×
t L L L
nnnnCnCn
x y z
dudvdwd
v
wvuC
TwvuP
wvuC
wcvsucetezc
0 0 0 0
1000 ,,,
,,,
,,,
τ
ττ
τ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
×∑ ∫ ∫ ∫ ∫−−
∞
=1 0 0 0 0
00
2
,,,
,,,2
n
t L L L
nnnnCnCnnnnC
zyx
x y z
TwvuP
wvuC
wsvcucetezcycxcFn
LLL γ
γ
τ
τ
π
( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−−
∂
∂
×
∞
=1 0 0
2
10 2,,,
n
t L
nnCnCnnnnC
zyx
x
usetezcycxcFn
LLL
dudvdwd
w
wvuC
τ
π
τ
τ
( ) ( ) ( ) ( )
( )
( ) ×∑−∫ ∫
∂
∂
×
∞
=
−
1
2
0 0
00
1
00
10
2,,,
,,,
,,,
,,,
n
zyx
L L
nn n
LLL
dudvdwd
u
wvuC
TwvuP
wvuC
wvuCwcvc
y z π
τ
ττ
τ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
( ) ×∫ ∫ ∫ ∫
∂
∂
−×
−t L L L
nnnnCnCnnnnC
x y z
v
wvuC
TwvuP
wvuC
wcvsucetezcycxcF
0 0 0 0
00
1
00 ,,,
,,,
,,, ττ
τ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−−×
∞
=1 0 0
210
2
,,,
n
t L
nnCnCnnnnC
zyx
x
ucetezcycxcFn
LLL
dudvdwdwvuC τ
π
ττ
( ) ( ) ( ) ( )
( )
( )
∫ ∫
∂
∂
×
−y z
L L
nn dudvdwd
w
wvuC
TwvuP
wvuC
wvuCwsvc
0 0
00
1
00
10
,,,
,,,
,,,
,,, τ
ττ
τ γ
γ
.

More Related Content

What's hot

ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ijaceeejournal
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ijoejournal
 
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...JaresJournal
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ijfcstjournal
 
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...ijcsa
 
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...BRNSS Publication Hub
 
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSijcsitcejournal
 
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...ijrap
 
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...ijcsitcejournal
 
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...ijcsitcejournal
 
DESPECKLING OF SAR IMAGES BY OPTIMIZING AVERAGED POWER SPECTRAL VALUE IN CURV...
DESPECKLING OF SAR IMAGES BY OPTIMIZING AVERAGED POWER SPECTRAL VALUE IN CURV...DESPECKLING OF SAR IMAGES BY OPTIMIZING AVERAGED POWER SPECTRAL VALUE IN CURV...
DESPECKLING OF SAR IMAGES BY OPTIMIZING AVERAGED POWER SPECTRAL VALUE IN CURV...ijistjournal
 
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...antjjournal
 
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCESON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCESmsejjournal
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...ijrap
 
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ijoejournal
 

What's hot (15)

ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
 
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
 
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
 
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
 
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
 
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
 
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
 
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
 
DESPECKLING OF SAR IMAGES BY OPTIMIZING AVERAGED POWER SPECTRAL VALUE IN CURV...
DESPECKLING OF SAR IMAGES BY OPTIMIZING AVERAGED POWER SPECTRAL VALUE IN CURV...DESPECKLING OF SAR IMAGES BY OPTIMIZING AVERAGED POWER SPECTRAL VALUE IN CURV...
DESPECKLING OF SAR IMAGES BY OPTIMIZING AVERAGED POWER SPECTRAL VALUE IN CURV...
 
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
 
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCESON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
 
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
 

Similar to ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCREASE THEIR INTEGRATION RATE

An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...ijrap
 
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitOn Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitBRNSS Publication Hub
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...IJMEJournal1
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ijmejournal
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...IJMEJournal1
 
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...BRNSS Publication Hub
 
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...BRNSSPublicationHubI
 
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...antjjournal
 
Optimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
Optimization of Manufacturing of Circuits XOR to Decrease Their DimensionsOptimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
Optimization of Manufacturing of Circuits XOR to Decrease Their Dimensionsijrap
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSZac Darcy
 
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction RectifiersInfluence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction RectifiersZac Darcy
 
ON VERTICAL INTEGRATION FRAMEWORK ELEMENT OF TRANSISTOR-TRANSISTOR LOGIC
ON VERTICAL INTEGRATION FRAMEWORK ELEMENT OF TRANSISTOR-TRANSISTOR LOGICON VERTICAL INTEGRATION FRAMEWORK ELEMENT OF TRANSISTOR-TRANSISTOR LOGIC
ON VERTICAL INTEGRATION FRAMEWORK ELEMENT OF TRANSISTOR-TRANSISTOR LOGICijaceeejournal
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...msejjournal
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...msejjournal
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...antjjournal
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...ijfcstjournal
 

Similar to ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCREASE THEIR INTEGRATION RATE (20)

An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source CircuitOn Approach to Increase Integration Rate of Elements of a Current Source Circuit
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
 
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
 
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
 
Optimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
Optimization of Manufacturing of Circuits XOR to Decrease Their DimensionsOptimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
Optimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
 
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction RectifiersInfluence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
 
ON VERTICAL INTEGRATION FRAMEWORK ELEMENT OF TRANSISTOR-TRANSISTOR LOGIC
ON VERTICAL INTEGRATION FRAMEWORK ELEMENT OF TRANSISTOR-TRANSISTOR LOGICON VERTICAL INTEGRATION FRAMEWORK ELEMENT OF TRANSISTOR-TRANSISTOR LOGIC
ON VERTICAL INTEGRATION FRAMEWORK ELEMENT OF TRANSISTOR-TRANSISTOR LOGIC
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
 

More from JaresJournal

FREE PUBLICATION - International Journal of Advances Robotics, Expert Systems...
FREE PUBLICATION - International Journal of Advances Robotics, Expert Systems...FREE PUBLICATION - International Journal of Advances Robotics, Expert Systems...
FREE PUBLICATION - International Journal of Advances Robotics, Expert Systems...JaresJournal
 
International Journal of AdvancesRobotics, Expert Systems (JARES)
International Journal of AdvancesRobotics, Expert Systems (JARES)International Journal of AdvancesRobotics, Expert Systems (JARES)
International Journal of AdvancesRobotics, Expert Systems (JARES)JaresJournal
 
International Journal of Advances Robotics, Expert Systems (JARES)
International Journal of Advances Robotics, Expert Systems (JARES)International Journal of Advances Robotics, Expert Systems (JARES)
International Journal of Advances Robotics, Expert Systems (JARES)JaresJournal
 
BIO-INSPIRATIONS AND PHYSICAL CONFIGURATIONS OF SWARM-BOT
BIO-INSPIRATIONS AND PHYSICAL CONFIGURATIONS OF SWARM-BOTBIO-INSPIRATIONS AND PHYSICAL CONFIGURATIONS OF SWARM-BOT
BIO-INSPIRATIONS AND PHYSICAL CONFIGURATIONS OF SWARM-BOTJaresJournal
 
A COMPREHENSIVE SURVEY OF GREY WOLF OPTIMIZER ALGORITHM AND ITS APPLICATION
A COMPREHENSIVE SURVEY OF GREY WOLF OPTIMIZER ALGORITHM AND ITS APPLICATIONA COMPREHENSIVE SURVEY OF GREY WOLF OPTIMIZER ALGORITHM AND ITS APPLICATION
A COMPREHENSIVE SURVEY OF GREY WOLF OPTIMIZER ALGORITHM AND ITS APPLICATIONJaresJournal
 
BIO-INSPIRATIONS AND PHYSICAL CONFIGURATIONS OF SWARM-BOT
BIO-INSPIRATIONS AND PHYSICAL CONFIGURATIONS OF SWARM-BOTBIO-INSPIRATIONS AND PHYSICAL CONFIGURATIONS OF SWARM-BOT
BIO-INSPIRATIONS AND PHYSICAL CONFIGURATIONS OF SWARM-BOTJaresJournal
 
A NOVEL NAVIGATION STRATEGY FOR AN UNICYCLE MOBILE ROBOT INSPIRED FROM THE DU...
A NOVEL NAVIGATION STRATEGY FOR AN UNICYCLE MOBILE ROBOT INSPIRED FROM THE DU...A NOVEL NAVIGATION STRATEGY FOR AN UNICYCLE MOBILE ROBOT INSPIRED FROM THE DU...
A NOVEL NAVIGATION STRATEGY FOR AN UNICYCLE MOBILE ROBOT INSPIRED FROM THE DU...JaresJournal
 
MULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONING
MULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONINGMULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONING
MULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONINGJaresJournal
 
A PROPOSED EXPERT SYSTEM FOR EVALUATING THE PARTNERSHIP IN BANKS
A PROPOSED EXPERT SYSTEM FOR EVALUATING THE PARTNERSHIP IN BANKSA PROPOSED EXPERT SYSTEM FOR EVALUATING THE PARTNERSHIP IN BANKS
A PROPOSED EXPERT SYSTEM FOR EVALUATING THE PARTNERSHIP IN BANKSJaresJournal
 
DEVELOPEMENT OF GAIT GENERATION SYSTEM FOR A LOWER LIMB PROSTHESIS USING MEAS...
DEVELOPEMENT OF GAIT GENERATION SYSTEM FOR A LOWER LIMB PROSTHESIS USING MEAS...DEVELOPEMENT OF GAIT GENERATION SYSTEM FOR A LOWER LIMB PROSTHESIS USING MEAS...
DEVELOPEMENT OF GAIT GENERATION SYSTEM FOR A LOWER LIMB PROSTHESIS USING MEAS...JaresJournal
 
PSO APPLIED TO DESIGN OPTIMAL PD CONTROL FOR A UNICYCLE MOBILE ROBOT
PSO APPLIED TO DESIGN OPTIMAL PD CONTROL FOR A UNICYCLE MOBILE ROBOTPSO APPLIED TO DESIGN OPTIMAL PD CONTROL FOR A UNICYCLE MOBILE ROBOT
PSO APPLIED TO DESIGN OPTIMAL PD CONTROL FOR A UNICYCLE MOBILE ROBOTJaresJournal
 
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...JaresJournal
 
MULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONING
MULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONINGMULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONING
MULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONINGJaresJournal
 
ANALYSIS OF WTTE-RNN VARIANTS THAT IMPROVE PERFORMANCE
ANALYSIS OF WTTE-RNN VARIANTS THAT IMPROVE PERFORMANCEANALYSIS OF WTTE-RNN VARIANTS THAT IMPROVE PERFORMANCE
ANALYSIS OF WTTE-RNN VARIANTS THAT IMPROVE PERFORMANCEJaresJournal
 
FAULT DIAGNOSIS USING CLUSTERING. WHAT STATISTICAL TEST TO USE FOR HYPOTHESIS...
FAULT DIAGNOSIS USING CLUSTERING. WHAT STATISTICAL TEST TO USE FOR HYPOTHESIS...FAULT DIAGNOSIS USING CLUSTERING. WHAT STATISTICAL TEST TO USE FOR HYPOTHESIS...
FAULT DIAGNOSIS USING CLUSTERING. WHAT STATISTICAL TEST TO USE FOR HYPOTHESIS...JaresJournal
 
Predicting Forced Population Displacement Using News Articles
Predicting Forced Population Displacement Using News ArticlesPredicting Forced Population Displacement Using News Articles
Predicting Forced Population Displacement Using News ArticlesJaresJournal
 
DEVELOPEMENT OF GAIT GENERATION SYSTEM FOR A LOWER LIMB PROSTHESIS USING MEAS...
DEVELOPEMENT OF GAIT GENERATION SYSTEM FOR A LOWER LIMB PROSTHESIS USING MEAS...DEVELOPEMENT OF GAIT GENERATION SYSTEM FOR A LOWER LIMB PROSTHESIS USING MEAS...
DEVELOPEMENT OF GAIT GENERATION SYSTEM FOR A LOWER LIMB PROSTHESIS USING MEAS...JaresJournal
 
DEVELOPEMENT OF GAIT GENERATION SYSTEM FOR A LOWER LIMB PROSTHESIS USING MEAS...
DEVELOPEMENT OF GAIT GENERATION SYSTEM FOR A LOWER LIMB PROSTHESIS USING MEAS...DEVELOPEMENT OF GAIT GENERATION SYSTEM FOR A LOWER LIMB PROSTHESIS USING MEAS...
DEVELOPEMENT OF GAIT GENERATION SYSTEM FOR A LOWER LIMB PROSTHESIS USING MEAS...JaresJournal
 
MULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONING
MULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONINGMULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONING
MULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONINGJaresJournal
 
MULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONING
MULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONINGMULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONING
MULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONINGJaresJournal
 

More from JaresJournal (20)

FREE PUBLICATION - International Journal of Advances Robotics, Expert Systems...
FREE PUBLICATION - International Journal of Advances Robotics, Expert Systems...FREE PUBLICATION - International Journal of Advances Robotics, Expert Systems...
FREE PUBLICATION - International Journal of Advances Robotics, Expert Systems...
 
International Journal of AdvancesRobotics, Expert Systems (JARES)
International Journal of AdvancesRobotics, Expert Systems (JARES)International Journal of AdvancesRobotics, Expert Systems (JARES)
International Journal of AdvancesRobotics, Expert Systems (JARES)
 
International Journal of Advances Robotics, Expert Systems (JARES)
International Journal of Advances Robotics, Expert Systems (JARES)International Journal of Advances Robotics, Expert Systems (JARES)
International Journal of Advances Robotics, Expert Systems (JARES)
 
BIO-INSPIRATIONS AND PHYSICAL CONFIGURATIONS OF SWARM-BOT
BIO-INSPIRATIONS AND PHYSICAL CONFIGURATIONS OF SWARM-BOTBIO-INSPIRATIONS AND PHYSICAL CONFIGURATIONS OF SWARM-BOT
BIO-INSPIRATIONS AND PHYSICAL CONFIGURATIONS OF SWARM-BOT
 
A COMPREHENSIVE SURVEY OF GREY WOLF OPTIMIZER ALGORITHM AND ITS APPLICATION
A COMPREHENSIVE SURVEY OF GREY WOLF OPTIMIZER ALGORITHM AND ITS APPLICATIONA COMPREHENSIVE SURVEY OF GREY WOLF OPTIMIZER ALGORITHM AND ITS APPLICATION
A COMPREHENSIVE SURVEY OF GREY WOLF OPTIMIZER ALGORITHM AND ITS APPLICATION
 
BIO-INSPIRATIONS AND PHYSICAL CONFIGURATIONS OF SWARM-BOT
BIO-INSPIRATIONS AND PHYSICAL CONFIGURATIONS OF SWARM-BOTBIO-INSPIRATIONS AND PHYSICAL CONFIGURATIONS OF SWARM-BOT
BIO-INSPIRATIONS AND PHYSICAL CONFIGURATIONS OF SWARM-BOT
 
A NOVEL NAVIGATION STRATEGY FOR AN UNICYCLE MOBILE ROBOT INSPIRED FROM THE DU...
A NOVEL NAVIGATION STRATEGY FOR AN UNICYCLE MOBILE ROBOT INSPIRED FROM THE DU...A NOVEL NAVIGATION STRATEGY FOR AN UNICYCLE MOBILE ROBOT INSPIRED FROM THE DU...
A NOVEL NAVIGATION STRATEGY FOR AN UNICYCLE MOBILE ROBOT INSPIRED FROM THE DU...
 
MULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONING
MULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONINGMULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONING
MULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONING
 
A PROPOSED EXPERT SYSTEM FOR EVALUATING THE PARTNERSHIP IN BANKS
A PROPOSED EXPERT SYSTEM FOR EVALUATING THE PARTNERSHIP IN BANKSA PROPOSED EXPERT SYSTEM FOR EVALUATING THE PARTNERSHIP IN BANKS
A PROPOSED EXPERT SYSTEM FOR EVALUATING THE PARTNERSHIP IN BANKS
 
DEVELOPEMENT OF GAIT GENERATION SYSTEM FOR A LOWER LIMB PROSTHESIS USING MEAS...
DEVELOPEMENT OF GAIT GENERATION SYSTEM FOR A LOWER LIMB PROSTHESIS USING MEAS...DEVELOPEMENT OF GAIT GENERATION SYSTEM FOR A LOWER LIMB PROSTHESIS USING MEAS...
DEVELOPEMENT OF GAIT GENERATION SYSTEM FOR A LOWER LIMB PROSTHESIS USING MEAS...
 
PSO APPLIED TO DESIGN OPTIMAL PD CONTROL FOR A UNICYCLE MOBILE ROBOT
PSO APPLIED TO DESIGN OPTIMAL PD CONTROL FOR A UNICYCLE MOBILE ROBOTPSO APPLIED TO DESIGN OPTIMAL PD CONTROL FOR A UNICYCLE MOBILE ROBOT
PSO APPLIED TO DESIGN OPTIMAL PD CONTROL FOR A UNICYCLE MOBILE ROBOT
 
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
 
MULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONING
MULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONINGMULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONING
MULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONING
 
ANALYSIS OF WTTE-RNN VARIANTS THAT IMPROVE PERFORMANCE
ANALYSIS OF WTTE-RNN VARIANTS THAT IMPROVE PERFORMANCEANALYSIS OF WTTE-RNN VARIANTS THAT IMPROVE PERFORMANCE
ANALYSIS OF WTTE-RNN VARIANTS THAT IMPROVE PERFORMANCE
 
FAULT DIAGNOSIS USING CLUSTERING. WHAT STATISTICAL TEST TO USE FOR HYPOTHESIS...
FAULT DIAGNOSIS USING CLUSTERING. WHAT STATISTICAL TEST TO USE FOR HYPOTHESIS...FAULT DIAGNOSIS USING CLUSTERING. WHAT STATISTICAL TEST TO USE FOR HYPOTHESIS...
FAULT DIAGNOSIS USING CLUSTERING. WHAT STATISTICAL TEST TO USE FOR HYPOTHESIS...
 
Predicting Forced Population Displacement Using News Articles
Predicting Forced Population Displacement Using News ArticlesPredicting Forced Population Displacement Using News Articles
Predicting Forced Population Displacement Using News Articles
 
DEVELOPEMENT OF GAIT GENERATION SYSTEM FOR A LOWER LIMB PROSTHESIS USING MEAS...
DEVELOPEMENT OF GAIT GENERATION SYSTEM FOR A LOWER LIMB PROSTHESIS USING MEAS...DEVELOPEMENT OF GAIT GENERATION SYSTEM FOR A LOWER LIMB PROSTHESIS USING MEAS...
DEVELOPEMENT OF GAIT GENERATION SYSTEM FOR A LOWER LIMB PROSTHESIS USING MEAS...
 
DEVELOPEMENT OF GAIT GENERATION SYSTEM FOR A LOWER LIMB PROSTHESIS USING MEAS...
DEVELOPEMENT OF GAIT GENERATION SYSTEM FOR A LOWER LIMB PROSTHESIS USING MEAS...DEVELOPEMENT OF GAIT GENERATION SYSTEM FOR A LOWER LIMB PROSTHESIS USING MEAS...
DEVELOPEMENT OF GAIT GENERATION SYSTEM FOR A LOWER LIMB PROSTHESIS USING MEAS...
 
MULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONING
MULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONINGMULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONING
MULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONING
 
MULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONING
MULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONINGMULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONING
MULTIPLE CONFIGURATIONS FOR PUNCTURING ROBOT POSITIONING
 

Recently uploaded

ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
 

Recently uploaded (20)

ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
 

ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCREASE THEIR INTEGRATION RATE

  • 1. International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3 23 ON OPTIMIZATION OF MANUFACTURING OF ELE- MENTS OF AN BINARY-ROM CIRCUIT TO INCREASE THEIR INTEGRATION RATE E.L. Pankratov 1 Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, Russia 1 Nizhny Novgorod State Technical University, Nizhny Novgorod, Russia ABSTRACT In this paper we introduce an approach to increase integration rate of elements of an binary-ROM circuit. Framework the approach we consider a heterostructure with special configuration. Several specific areas of the heterostructure should be doped by diffusion or ion implantation. Annealing of dopant and/or radia- tion defects should be optimized. KEYWORDS Binary-ROM circuit; increasing of integration rate of elements; prognosis of technological process; opti- mization of manufacturing. 1. INTRODUCTION An actual and intensively solving problems of solid state electronics is increasing of integration rate of elements of integrated circuits (p-n-junctions, their systems et al) [1-8]. Increasing of the integration rate leads to necessity to decrease their dimensions. To decrease the dimensions are using several approaches. They are widely using laser and microwave types of annealing of in- fused dopants. These types of annealing are also widely using for annealing of radiation defects, generated during ion implantation [9-17]. Using the approaches gives a possibility to increase integration rate of elements of integrated circuits through inhomogeneity of technological pa- rameters due to generating inhomogenous distribution of temperature. In this situation one can obtain decreasing dimensions of elements of integrated circuits [18] with account Arrhenius law [1,3]. Another approach to manufacture elements of integrated circuits with smaller dimensions is doping of heterostructure by diffusion or ion implantation [1-3]. However in this case optimiza- tion of dopant and/or radiation defects is required [18]. In this paper we consider a heterostructure. The heterostructure consist of a substrate and several epitaxial layers. Some sections have been manufactured in the epitaxial layers. Further we con- sider doping of these sections by diffusion or ion implantation. The doping gives a possibility to manufacture field-effect transistors framework an binary-ROM circuit so as it is shown on Figs. 1. The manufacturing gives a possibility to increase density of elements of the binary-ROM cir- cuit [4]. After the considered doping dopant and/or radiation defects should be annealed. Frame- work the paper we analyzed dynamics of redistribution of dopant and/or radiation defects during their annealing. We introduce an approach to decrease dimensions of the element. However it is necessary to complicate technological process.
  • 2. International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3 24 Fig. 1. The considered binary-ROM circuit [4] 2. METHOD OF SOLUTION In this section we determine spatio-temporal distributions of concentrations of infused and im- planted dopants. To determine these distributions we calculate appropriate solutions of the second Fick's law [1,3,18] ( ) ( ) ( ) ( )       +      +      = z tzyxC D zy tzyxC D yx tzyxC D xt tzyxC CCC ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,,,,,,,,,,, . (1) ( ) 0 ,,, 0 = ∂ ∂ =x x tzyxC , ( ) 0 ,,, = ∂ ∂ = xLx x tzyxC , ( ) 0 ,,, 0 = ∂ ∂ =y y tzyxC , ( ) 0 ,,, = ∂ ∂ = yLx y tzyxC , ( ) 0 ,,, 0 = ∂ ∂ =z z tzyxC , ( ) 0 ,,, = ∂ ∂ = zLx z tzyxC , C (x,y,z,0)=f (x,y,z). (2) Function C(x,y,z,t) describes the spatio-temporal distribution of concentration of dopant; T is the temperature of annealing; DС is the dopant diffusion coefficient. Dopant diffusion coefficient will have different values in different materials. The value will be changed during heating and cooling of heterostructure (with account Arrhenius law). Approximation of dopant diffusion coefficient by the following function [20-22]
  • 3. International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3 25 ( ) ( ) ( ) ( ) ( ) ( )         ++      += 2* 2 2*1 ,,,,,, 1 ,,, ,,, 1,,, V tzyxV V tzyxV TzyxP tzyxC TzyxDD LC ςςξ γ γ . (3) Here the function DL (x,y,z,T) describes the spatial (in heterostructure) and temperature (due to Arrhenius law) dependences of diffusion coefficient of dopant. The function P (x,y,z,T) describes the limit of solubility of dopant. Parameter γ ∈[1,3] describes average quantity of charged defects interacted with atom of dopant [20]. The function V (x,y,z,t) describes the spatio-temporal distri- bution of concentration of radiation vacancies. Parameter V* describes the equilibrium distribution of concentration of vacancies. The considered concentrational dependence of dopant diffusion coefficient has been described in details in [20]. It should be noted, that using diffusion type of doping did not generation radiation defects. In this situation ζ1= ζ2= 0. We determine spatio- temporal distributions of concentrations of radiation defects by solving the following system of equations [21,22] ( ) ( ) ( ) ( ) ( ) +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ = ∂ ∂ y tzyxI TzyxD yx tzyxI TzyxD xt tzyxI II ,,, ,,, ,,, ,,, ,,, ( ) ( ) ( ) ( ) ( )−−      ∂ ∂ ∂ ∂ + tzyxVtzyxITzyxk z tzyxI TzyxD z VII ,,,,,,,,, ,,, ,,, , ( ) ( )tzyxITzyxk II ,,,,,, 2 ,− (4) ( ) ( ) ( ) ( ) ( ) +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ = ∂ ∂ y tzyxV TzyxD yx tzyxV TzyxD xt tzyxV VV ,,, ,,, ,,, ,,, ,,, ( ) ( ) ( ) ( ) ( )+−      ∂ ∂ ∂ ∂ + tzyxVtzyxITzyxk z tzyxV TzyxD z VIV ,,,,,,,,, ,,, ,,, , ( ) ( )tzyxVTzyxk VV ,,,,,, 2 ,+ . Boundary and initial conditions for these equations are ( ) 0 ,,, 0 = ∂ ∂ =x x tzyxρ , ( ) 0 ,,, = ∂ ∂ = xLx x tzyxρ , ( ) 0 ,,, 0 = ∂ ∂ =y y tzyxρ , ( ) 0 ,,, = ∂ ∂ = yLy y tzyxρ , ( ) 0 ,,, 0 = ∂ ∂ =z z tzyxρ , ( ) 0 ,,, = ∂ ∂ = zLz z tzyxρ , ρ(x,y,z,0)=fρ (x,y,z). (5) Here ρ =I,V. The function I (x,y,z,t) describes the spatio-temporal distribution of concentration of radiation interstitials; Dρ(x,y,z,T) are the diffusion coefficients of point radiation defects; terms V2 (x,y,z,t) and I2 (x,y,z,t) correspond to generation divacancies and diinterstitials; kI,V(x,y,z,T) is the parameter of recombination of point radiation defects; kI,I(x,y,z,T) and kV,V(x,y,z,T) are the parame- ters of generation of simplest complexes of point radiation defects. Further we determine distributions in space and time of concentrations of divacancies ΦV(x,y,z,t) and diinterstitials ΦI(x,y,z,t) by solving the following system of equations [21,22]
  • 4. International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3 26 ( ) ( ) ( ) ( ) ( ) +      Φ +      Φ = Φ ΦΦ y tzyx TzyxD yx tzyx TzyxD xt tzyx I I I I I ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,, ,,, ,,, ,,, ,,, ( ) ( ) ( ) ( ) ( ) ( )tzyxITzyxktzyxITzyxk z tzyx TzyxD z III I I ,,,,,,,,,,,, ,,, ,,, 2 , −+      Φ + Φ ∂ ∂ ∂ ∂ (6) ( ) ( ) ( ) ( ) ( ) +      Φ +      Φ = Φ ΦΦ y tzyx TzyxD yx tzyx TzyxD xt tzyx V V V V V ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,, ,,, ,,, ,,, ,,, ( ) ( ) ( ) ( ) ( ) ( )tzyxVTzyxktzyxVTzyxk z tzyx TzyxD z VVV V V ,,,,,,,,,,,, ,,, ,,, 2 , −+      Φ + Φ ∂ ∂ ∂ ∂ . Boundary and initial conditions for these equations are ( ) 0 ,,, 0 = ∂ Φ∂ =x x tzyxρ , ( ) 0 ,,, = ∂ Φ∂ = xLx x tzyxρ , ( ) 0 ,,, 0 = ∂ Φ∂ =y y tzyxρ , ( ) 0 ,,, = ∂ Φ∂ = yLy y tzyxρ , ( ) 0 ,,, 0 = ∂ Φ∂ =z z tzyxρ , ( ) 0 ,,, = ∂ Φ∂ = zLz z tzyxρ , ΦI (x,y,z,0)=fΦI (x,y,z), ΦV (x,y,z,0)=fΦV (x,y,z). (7) Here DΦρ(x,y,z,T) are the diffusion coefficients of the above complexes of radiation defects; kI(x,y,z,T) and kV (x,y,z,T) are the parameters of decay of these complexes. We calculate distributions of concentrations of point radiation defects in space and time by re- cently elaborated approach [18]. The approach based on transformation of approximations of dif- fusion coefficients in the following form: Dρ(x,y,z,T)=D0ρ[1+ερ gρ(x,y,z,T)], where D0ρ are the av- erage values of diffusion coefficients, 0≤ερ<1, |gρ(x, y,z,T)|≤1, ρ =I,V. We also used analogous transformation of approximations of parameters of recombination of point defects and parameters of generation of their complexes: kI,V(x,y,z,T)=k0I,V[1+εI,V gI,V(x,y,z,T)], kI,I(x,y,z,T)=k0I,I [1+εI,I gI,I(x,y,z,T)] and kV,V(x,y,z,T)=k0V,V [1+εV,V gV,V(x,y,z,T)], where k0ρ1,ρ2 are the their average values, 0≤εI,V <1, 0≤εI,I <1, 0≤εV,V<1, | gI,V(x,y,z,T)|≤1, | gI,I(x,y,z,T)|≤1, |gV,V(x,y,z,T)|≤1. Let us introduce the following dimensionless variables: ( ) ( ) * ,,,,,, ~ ItzyxItzyxI = , ( )=tzyxV ,,, ~ ( ) * ,,, VtzyxV= , VIVI DDkL 00,0 2 =ω , VIDDkL 00,0 2 ρρρ =Ω , 2 00 LtDD VI=ϑ , χ=x/Lx, η=y/Ly, φ = z/Lz. The introduction leads to transformation of Eqs.(4) and conditions (5) to the following form ( ) ( )[ ] ( ) ( )[ ]{ ×+ ∂ ∂ +         ∂ ∂ + ∂ ∂ = ∂ ∂ Tg I Tg DD DI IIII VI I ,,,1 ,,, ~ ,,,1 ,,, ~ 00 0 φηχε ηχ ϑφηχ φηχε χϑ ϑφηχ ( ) ( )[ ] ( ) ( ) ×−         ∂ ∂ + ∂ ∂ +     ∂ ∂ × ϑφηχω φ ϑφηχ φηχε φη ϑφηχ ,,, ~,,, ~ ,,,1 ,,, ~ 00 0 00 0 I I Tg DD D DD DI II VI I VI I ( )[ ] ( ) ( )[ ] ( )ϑφηχφηχεϑφηχφηχε ,,, ~ ,,,1,,, ~ ,,,1 2 ,,,, ITgVTg IIIIIVIVI +Ω−+× (8)
  • 5. International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3 27 ( ) ( )[ ] ( ) ( )[ ]{ ×+ ∂ ∂ +       ∂ ∂ + ∂ ∂ = ∂ ∂ Tg V Tg DD DV VVVV VI V ,,,1 ,,, ~ ,,,1 ,,, ~ 00 0 φηχε ηχ ϑφηχ φηχε χϑ ϑφηχ ( ) ( )[ ] ( ) ( ) ×−         ∂ ∂ + ∂ ∂ +     ∂ ∂ × ϑφηχω φ ϑφηχ φηχε φη ϑφηχ ,,, ~,,, ~ ,,,1 ,,, ~ 00 0 00 0 I V Tg DD D DD DV VV VI V VI V ( )[ ] ( ) ( )[ ] ( )ϑφηχφηχεϑφηχφηχε ,,, ~ ,,,1,,, ~ ,,,1 2 ,,,, VTgVTg VVVVVVIVI +Ω−+× ( ) 0 ,,,~ 0 = ∂ ∂ =χ χ ϑφηχρ , ( ) 0 ,,,~ 1 = ∂ ∂ =χ χ ϑφηχρ , ( ) 0 ,,,~ 0 = ∂ ∂ =η η ϑφηχρ , ( ) 0 ,,,~ 1 = ∂ ∂ =η η ϑφηχρ , ( ) 0 ,,,~ 0 = ∂ ∂ =φ φ ϑφηχρ , ( ) 0 ,,,~ 1 = ∂ ∂ =φ φ ϑφηχρ , ( ) ( ) * ,,, ,,,~ ρ ϑφηχ ϑφηχρ ρf = . (9) We determine solutions of Eqs.(8) with conditions (9) framework recently introduced approach [18], i.e. as the power series ( ) ( )∑ ∑ ∑Ω= ∞ = ∞ = ∞ =0 0 0 ,,,~,,,~ i j k ijk kji ϑφηχρωεϑφηχρ ρρ . (10) Substitution of the series (10) into Eqs.(8) and conditions (9) gives us possibility to obtain equa- tions for initial-order approximations of concentration of point defects ( )ϑφηχ ,,, ~ 000I and ( )ϑφηχ ,,, ~ 000V and corrections for them ( )ϑφηχ ,,, ~ ijkI and ( )ϑφηχ ,,, ~ ijkV , i ≥1, j ≥1, k ≥1. The equa- tions are presented in the Appendix. Solutions of the equations could be obtained by standard Fourier approach [24,25]. The solutions are presented in the Appendix. Now we calculate distributions of concentrations of simplest complexes of point radiation defects in space and time. To determine the distributions we transform approximations of diffusion coef- ficients in the following form: DΦρ(x,y,z,T)=D0Φρ[1+εΦρgΦρ(x,y,z,T)], where D0Φρ are the average values of diffusion coefficients. In this situation the Eqs.(6) could be written as ( ) ( )[ ] ( ) ( ) ( )++       Φ += Φ ΦΦΦ tzyxITzyxk x tzyx Tzyxg x D t tzyx II I III I ,,,,,, ,,, ,,,1 ,,, 2 ,0 ∂ ∂ ε ∂ ∂ ∂ ∂ ( )[ ] ( ) ( )[ ] ( ) −       Φ ++       Φ ++ ΦΦΦΦΦΦ z tzyx Tzyxg z D y tzyx Tzyxg y D I III I III ∂ ∂ ε ∂ ∂ ∂ ∂ ε ∂ ∂ ,,, ,,,1 ,,, ,,,1 00 ( ) ( )tzyxITzyxkI ,,,,,,− ( ) ( )[ ] ( ) ( ) ( )++       Φ += Φ ΦΦΦ tzyxITzyxk x tzyx Tzyxg x D t tzyx II V VVV V ,,,,,, ,,, ,,,1 ,,, 2 ,0 ∂ ∂ ε ∂ ∂ ∂ ∂ ( )[ ] ( ) ( )[ ] ( ) −       Φ ++       Φ ++ ΦΦΦΦΦΦ z tzyx Tzyxg z D y tzyx Tzyxg y D V VVV V VVV ∂ ∂ ε ∂ ∂ ∂ ∂ ε ∂ ∂ ,,, ,,,1 ,,, ,,,1 00
  • 6. International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3 28 ( ) ( )tzyxITzyxkI ,,,,,,− . Farther we determine solutions of above equations as the following power series ( ) ( )∑ Φ=Φ ∞ = Φ 0 ,,,,,, i i i tzyxtzyx ρρρ ε . (11) Now we used the series (11) into Eqs.(6) and appropriate boundary and initial conditions. The using gives the possibility to obtain equations for initial-order approximations of concentrations of complexes of defects Φρ0(x,y,z,t), corrections for them Φρi(x,y,z,t) (for them i ≥1) and boundary and initial conditions for them. We remove equations and conditions to the Appendix. Solutions of the equations have been calculated by standard approaches [24,25] and presented in the Ap- pendix. Now we calculate distribution of concentration of dopant in space and time by using the ap- proach, which was used for analysis of radiation defects. To use the approach we consider follow- ing transformation of approximation of dopant diffusion coefficient: DL(x,y,z,T)=D0L[1+ εL gL(x,y,z,T)], where D0L is the average value of dopant diffusion coefficient, 0≤εL< 1, |gL(x,y,z,T)|≤1. Farther we consider solution of Eq.(1) as the following series: ( ) ( )∑ ∑= ∞ = ∞ =0 1 ,,,,,, i j ij ji L tzyxCtzyxC ξε . Using the relation into Eq.(1) and conditions (2) leads to obtaining equations for the functions Cij(x,y,z,t) (i ≥1, j ≥1), boundary and initial conditions for them. The equations are presented in the Appendix. Solutions of the equations have been calculated by standard approaches (see, for example, [24,25]). The solutions are presented in the Appendix. We analyzed distributions of concentrations of dopant and radiation defects in space and time analytically by using the second-order approximations on all parameters, which have been used in appropriate series. Usually the second-order approximations are enough good approximations to make qualitative analysis and to obtain quantitative results. All analytical results have been checked by numerical simulation. 3. DISCUSSION In this section we analyzed spatio-temporal distributions of concentrations of dopants. Figs. 2 shows typical spatial distributions of concentrations of dopants in neighborhood of interfaces of heterostructures. We calculate these distributions of concentrations of dopants under the follow- ing condition: value of dopant diffusion coefficient in doped area is larger, than value of dopant diffusion coefficient in nearest areas. In this situation one can find increasing of compactness of field-effect transistors with increasing of homogeneity of distribution of concentration of dopant at one time. Changing relation between values of dopant diffusion coefficients leads to opposite result (see Figs. 3). It should be noted, that framework the considered approach one shall optimize annealing of do- pant and/or radiation defects. To do the optimization we used recently introduced criterion [26- 34]. The optimization based on approximation real distribution by step-wise function ψ (x,y,z) (see Figs. 4). Farther the required values of optimal annealing time have been calculated by min- imization the following mean-squared error
  • 7. International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3 29 Fig. 2a. Dependences of concentration of dopant, infused in heterostructure from Figs. 1, on coordinate in direction, which is perpendicular to interface between epitaxial layer substrate. Difference between values of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of curves. Value of dopant diffusion coefficient in the epitaxial layer is larger, than value of dopant diffusion coeffi- cient in the substrate x 0.0 0.5 1.0 1.5 2.0 C(x,Θ) 2 3 4 1 0 L/4 L/2 3L/4 L Epitaxial layer Substrate Fig. 2b. Dependences of concentration of dopant, implanted in heterostructure from Figs. 1, on coordinate in direction, which is perpendicular to interface between epitaxial layer substrate. Difference between val- ues of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of curves. Value of dopant diffusion coefficient in the epitaxial layer is larger, than value of dopant diffusion coefficient in the substrate. Curve 1 corresponds to homogenous sample and annealing time Θ = 0.0048 (Lx 2 +Ly 2 +Lz 2 )/D0. Curve 2 corresponds to homogenous sample and annealing time Θ = 0.0057 (Lx 2 +Ly 2 +Lz 2 )/D0. Curves 3 and 4 correspond to heterostructure from Figs. 1; annealing times Θ = 0.0048 (Lx 2 +Ly 2 +Lz 2 )/D0 and Θ = 0.0057 (Lx 2 +Ly 2 +Lz 2 )/D0, respectively ( ) ( )[ ]∫ ∫ ∫ −Θ= x y zL L L zyx xdydzdzyxzyxC LLL U 0 0 0 ,,,,, 1 ψ . (12) We show optimal values of annealing time as functions of parameters on Figs. 5. It is known, that standard step of manufactured ion-doped structures is annealing of radiation defects. In the ideal case after finishing the annealing dopant achieves interface between layers of heterostructure. If the dopant has no enough time to achieve the interface, it is practicably to anneal the dopant addi- tionally. The Fig. 5b shows the described dependences of optimal values of additional annealing time for the same parameters as for Fig. 5a. Necessity to anneal radiation defects leads to smaller values of optimal annealing of implanted dopant in comparison with optimal annealing time of infused dopant.
  • 8. International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3 30 Fig.3a. Distributions of concentration of dopant, infused in average section of epitaxial layer of heterostructure from Figs. 1 in direction parallel to interface between epitaxial layer and substrate of heterostructure. Difference between values of dopant diffusion coefficients increases with increasing of number of curves. Value of dopant diffusion coefficient in this section is smaller, than value of dopant dif- fusion coefficient in nearest sections x 0.00000 0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 C(x,Θ) fC(x) L/40 L/2 3L/4 Lx0 1 2 Substrate Epitaxial layer 1 Epitaxial layer 2 Fig.3b. Calculated distributions of implanted dopant in epitaxial layers of heterostructure. Solid lines are spatial distributions of implanted dopant in system of two epitaxial layers. Dushed lines are spatial distribu- tions of implanted dopant in one epitaxial layer. Annealing time increases with increasing of number of curves C(x,Θ) 0 Lx 2 1 3 4 Fig.4a. Distributions of concentration of infused dopant in depth of heterostructure from Fig. 1 for different values of annealing time (curves 2-4) and idealized step-wise approximation (curve 1). Increasing of num- ber of curve corresponds to increasing of annealing time
  • 9. International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3 31 x C(x,Θ) 1 2 3 4 0 L Fig.4b. Distributions of concentration of implanted dopant in depth of heterostructure from Fig. 1 for dif- ferent values of annealing time (curves 2-4) and idealized step-wise approximation (curve 1). Increasing of number of curve corresponds to increasing of annealing time 0.0 0.1 0.2 0.3 0.4 0.5 a/L, ξ, ε, γ 0.0 0.1 0.2 0.3 0.4 0.5 ΘD0L -2 3 2 4 1 Fig. 5a. Dimensionless optimal annealing time of infused dopant as a function of several parameters. Curve 1 describes the dependence of the annealing time on the relation a/L and ξ = γ = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 describes the dependence of the annealing time on value of parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 describes the dependence of the annealing time on value of parameter ξ for a/L=1/2 and ε = γ = 0. Curve 4 describes the dependence of the annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0 4. CONCLUSIONS In this paper we introduce an approach to increase integration rate of element of an binary-ROM circuit. The approach gives us possibility to decrease area of the elements with smaller increasing of the element’s thickness. REFERENCES [1] V.I. Lachin, N.S. Savelov. Electronics (Phoenix, Rostov-Na-Donu, 2001). [2] A.G. Alexenko, I.I. Shagurin. Microcircuitry (Radio And Communication, Moscow, 1990). [3] N.A. Avaev, Yu.E. Naumov, V.T. Frolkin. Basis Of Microelectronics (Radio And Communication, Moscow, 1991).
  • 10. International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3 32 0.0 0.1 0.2 0.3 0.4 0.5 a/L, ξ, ε, γ 0.00 0.04 0.08 0.12 ΘD0L -2 3 2 4 1 Fig.5b. Dimensionless optimal annealing time of implanted dopant as a function of several parameters. Curve 1 describes the dependence of the annealing time on the relation a/L and ξ = γ = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 describes the dependence of the annealing time on value of parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 describes the dependence of the annealing time on value of parameter ξ for a/L=1/2 and ε = γ = 0. Curve 4 describes the dependence of the annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0 [4] F. Jiang, D. Wu, L. Zhou, Y. Huang, J. Wu, Zh. Jin, X. Liu. A wideband calibration-free 1.5-GS/s 8- bit analog-to-digital converter with low latency. Analog. Integr. Circ. Sig. Process. Vol. 81. P. 341- 348 (2014). [5] D. Fathi, B. Forouzandeh, N. Masoumi. New enhanced noise analysis in active mixers in nanoscale technologies. Nano. Vol. 4 (4). P. 233-238 (2009). [6] S.A. Chachuli, P.N.A. Fasyar, N. Soin, N.M. Kar, N. Yusop. Pareto ANOVA analysis for CMOS 0.18µm two-stage Op-amp Mat. Sci. Sem. Proc. Vol. 24. P. 9-14 (2014). [7] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Lit- vin, V.V. Milenin, A.V. Sachenko. Au-TiB x -n-6H-SiC Schottky barrier diodes: Specific features of charge transport in rectifying and nonrectifying contacts. Semiconductors. Vol. 43 (7). P. 865-871 (2009). [8] Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R.F. Karlicek, Jr.T.P. Chow. Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transis- tors for light-emitting power integrated circuits in GaN on sapphire substrate. Appl. Phys. Lett. Vol. 102 (19). P. 192107-192109 (2013). [9] Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. High-performance InGaP/GaAs pnp δ-doped heterojunction bipolar transistor. Semiconductors. Vol. 43 (7). P. 939-942 (2009). [10] O.V. Alexandrov, A.O. Zakhar'in, N.A. Sobolev, E.I. Shek, M.M. Makoviychuk, E.O. Parshin. For- mation of donor centers upon annealing of dysprosium-and holmium-implanted silicon. Semiconduc- tors. Vol. 32 (9). P. 921-923 (1998). [11] M.J. Kumar, T.V. Singh. Quantum confinement effects in strained silicon mosfets. Int. J. Nanoscience. Vol. 7 (2-3). P. 81-84 (2008). [12] P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi, R.G. Gordon. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxy- sulfide buffer layer. Appl. Phys. Lett. Vol. 102 (5). P. 053901-053905 (2013). [13] J.G. Reynolds, C.L. Reynolds, Jr.A. Mohanta, J.F. Muth, J.E. Rowe, H.O. Everitt, D.E. Aspnes. Shal- low acceptor complexes in p-type ZnO. Appl. Phys. Lett. Vol. 102 (15). P. 152114-152118 (2013).
  • 11. International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3 33 [14] K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong. Chong. Dopant distribution in the recrystallization transient at the maximum melt depth induced by laser annealing. Appl. Phys. Lett. 89 (17), 172111-172114 (2006). [15] H.T. Wang, L.S. Tan, E. F. Chor. Pulsed laser annealing of Be-implanted GaN. J. Appl. Phys. 98 (9), 094901-094905 (2006). [16] S.T. Shishiyanu, T.S. Shishiyanu, S.K. Railyan. Shallow p-n junctions formed in silicon using pulsed photon annealing. Semiconductors. Vol.36 (5). P. 611-617 (2002). [17] Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N. Drozdov, V.D. Skupov. Diffusion processes in semiconductor structures during microwave annealing. Radiophysics and Quantum Electronics. Vol. 43 (3). P. 836-843 (2003). [18] E.L. Pankratov, E.A. Bulaeva. Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of dis- tributions of dopants. Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013). [19] Yu.N. Erofeev. Pulse devices (Higher School, Moscow, 1989). [20] V.V. Kozlivsky. Modification of semiconductors by proton beams (Nauka, Sant-Peterburg, 2003, in Russian). [21] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991). [22] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev, 1979, in Russian). [23] .M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicon. Rev. Mod. Phys. Vol. 61 (2). P. 289-388 (1989). [24] A.N. Tikhonov, A.A. Samarskii. The mathematical physics equations (Moscow, Nauka 1972) (in Russian). [25] H.S. Carslaw, J.C. Jaeger. Conduction of heat in solids (Oxford University Press, 1964). [26] E.L. Pankratov. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion- coefficient nonuniformity. Russian Microelectronics. Vol. 36 (1). P. 33-39 (2007). [27] E.L. Pankratov. Redistribution of dopant during annealing of radiative defects in a multilayer struc- ture by laser scans for production an implanted-junction rectifiers. Int. J. Nanoscience. Vol. 7 (4-5). P. 187–197 (2008). [28] E.L. Pankratov. On approach to optimize manufacturing of bipolar heterotransistors framework circuit of an operational amplifier to increase their integration rate. Influence mismatch-induced Stress. J. Comp. Theor. Nanoscience. Vol. 14 (10). P. 4885–4899 (2017). [29] E.L. Pankratov. On optimization of manufacturing of two-phase logic circuit based on heterostruc- tures to increase density of their elements. Influence of miss-match induced stress. Advanced science, engineering and medicine. Vol. 9 (9). P. 787–801 (2017). [30] E.L. Pankratov, E.A. Bulaeva. An approach to decrease dimensions of field-effect transistors. Univer- sal Journal of Materials Science. Vol. 1 (1). P.6-11 (2013). [31] E.L. Pankratov, E.A. Bulaeva. An approach to manufac-ture of bipolar transistors in thin film struc- tures. On the method of optimization. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014). [32] E.L. Pankratov, E.A. Bulaeva. Application of native inhomogeneities to increase compactness of ver- tical field-effect transistors. J. Nanoengineering and Nanomanufacturing. Vol. 2 (3). P. 275-280 (2012).
  • 12. International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3 34 [33] E.L. Pankratov, E.A. Bulaeva. An approach to increase the integration rate of planar drift heterobipo- lar transistors. Materials science in semiconductor processing. Vol. 34. P. 260-268 (2015). APPENDIX Equations for the functions ( )ϑφηχ ,,, ~ ijkI and ( )ϑφηχ ,,, ~ ijkV , i ≥0, j ≥0, k ≥0 and conditions for them ( ) ( ) ( ) ( )       ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 000 2 2 000 2 2 000 2 0 0000 ,,, ~ ,,, ~ ,,, ~ ,,, ~ φ ϑφηχ η ϑφηχ χ ϑφηχ ϑ ϑφηχ III D DI V I ( ) ( ) ( ) ( )       ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 000 2 2 000 2 2 000 2 0 0000 ,,, ~ ,,, ~ ,,, ~ ,,, ~ φ ϑφηχ η ϑφηχ χ ϑφηχ ϑ ϑφηχ VVV D DV I V ; ( ) ( ) ( ) ( ) ×+      ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ V Iiii V Ii D DIII D DI 0 0 2 00 2 2 00 2 2 00 2 0 000 ,,, ~ ,,, ~ ,,, ~ , ~ φ ϑφηχ η ϑφηχ χ ϑφηχ ϑ ϑχ ( ) ( ) ( ) ( )     +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ × −− η ϑφηχ φηχ ηχ ϑφηχ φηχ χ ,,, ~ ,,, ,,, ~ ,,, 100100 i I i I I Tg I Tg ( ) ( )           ∂ ∂ ∂ ∂ + − φ ϑφηχ φηχ φ ,,, ~ ,,, 100i I I Tg , i ≥1, ( ) ( ) ( ) ( ) ( )   × ∂ ∂ +         ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ Tg VVV D DV V iii I Vi ,,, ,,, ~ ,,, ~ ,,, ~ , ~ 2 00 2 2 00 2 2 00 2 0 000 φηχ χφ ϑφηχ η ϑφηχ χ ϑφηχ ϑ ϑχ ( ) ( ) ( ) ( )   × ∂ ∂ +         ∂ ∂ ∂ ∂ +     ∂ ∂ × −− Tg V Tg D D D DV V i V I V I Vi ,,, ,,, ~ ,,, ,,, ~ 100 0 0 0 0100 φηχ φη ϑφηχ φηχ ηχ ϑφηχ ( ) I Vi D DV 0 0100 ,,, ~     ∂ ∂ × − φ ϑφηχ , i ≥1, ( ) ( ) ( ) ( ) −         ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 010 2 2 010 2 2 010 2 0 0010 ,,, ~ ,,, ~ ,,, ~ ,,, ~ φ ϑφηχ η ϑφηχ χ ϑφηχ ϑ ϑφηχ III D DI V I ( )[ ] ( ) ( )ϑφηχϑφηχφηχε ,,, ~ ,,, ~ ,,,1 000000,, VITg VIVI+− ( ) ( ) ( ) ( ) −      ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 010 2 2 010 2 2 010 2 0 0010 ,,, ~ ,,, ~ ,,, ~ ,,, ~ φ ϑφηχ η ϑφηχ χ ϑφηχ ϑ ϑφηχ VVV D DV I V ( )[ ] ( ) ( )ϑφηχϑφηχφηχε ,,, ~ ,,, ~ ,,,1 000000,, VITg VIVI+− ; ( ) ( ) ( ) ( ) −      ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 020 2 2 020 2 2 020 2 0 0020 ,,, ~ ,,, ~ ,,, ~ ,,, ~ φ ϑφηχ η ϑφηχ χ ϑφηχ ϑ ϑφηχ III D DI V I ( )[ ] ( ) ( ) ( ) ( )[ ]ϑφηχϑφηχϑφηχϑφηχφηχε ,,, ~ ,,, ~ ,,, ~ ,,, ~ ,,,1 010000000010,, VIVITg VIVI ++− ( ) ( ) ( ) ( ) −      ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 020 2 2 020 2 2 020 2 0 0020 ,,, ~ ,,, ~ ,,, ~ ,,, ~ φ ϑφηχ η ϑφηχ χ ϑφηχ ϑ ϑφηχ VVV D DV V I
  • 13. International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3 35 ( )[ ] ( ) ( ) ( ) ( )[ ]ϑφηχϑφηχϑφηχϑφηχφηχε ,,, ~ ,,, ~ ,,, ~ ,,, ~ ,,,1 010000000010,, VIVITg VIVI ++− ; ( ) ( ) ( ) ( ) −         ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 001 2 2 001 2 2 001 2 0 0001 ,,, ~ ,,, ~ ,,, ~ ,,, ~ φ ϑφηχ η ϑφηχ χ ϑφηχ ϑ ϑφηχ III D DI V I ( )[ ] ( )ϑφηχφηχε ,,, ~ ,,,1 2 000,, ITg IIII+− ( ) ( ) ( ) ( ) −         ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 001 2 2 001 2 2 001 2 0 0001 ,,, ~ ,,, ~ ,,, ~ ,,, ~ φ ϑφηχ η ϑφηχ χ ϑφηχ ϑ ϑφηχ VVV D DV I V ( )[ ] ( )ϑφηχφηχε ,,, ~ ,,,1 2 000,, VTg IIII+− ; ( ) ( ) ( ) ( ) ×+      ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ V I V I D DIII D DI 0 0 2 110 2 2 110 2 2 110 2 0 0110 ,,, ~ ,,, ~ ,,, ~ ,,, ~ φ ϑφηχ η ϑφηχ χ ϑφηχ ϑ ϑφηχ ( ) ( ) ( ) ( ) ( )[     × ∂ ∂ +         ∂ ∂ ∂ ∂ +         ∂ ∂ ∂ ∂ × Tg I Tg I Tg III ,,, ,,, ~ ,,, ,,, ~ ,,, 010010 φηχ φη ϑφηχ φηχ ηχ ϑφηχ φηχ χ ( ) ( ) ( ) ( ) ( )[ ]×+−         ∂ ∂ × ϑφηχϑφηχϑφηχϑφηχ φ ϑφηχ ,,, ~ ,,, ~ ,,, ~ ,,, ~,,, ~ 100000000100 010 VIVI I ( )[ ]Tg IIII ,,,1 ,, φηχε+× ( ) ( ) ( ) ( ) +      ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 110 2 2 110 2 2 110 2 0 0110 ,,, ~ ,,, ~ ,,, ~ ,,, ~ φ ϑφηχ η ϑφηχ χ ϑφηχ ϑ ϑφηχ VVV D DV I V ( ) ( ) ( ) ( )     +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ + η ϑφηχ φηχ ηχ ϑφηχ φηχ χ ,,, ~ ,,, ,,, ~ ,,, 010010 0 0 V Tg V Tg D D VV I V ( ) ( ) ( )[ ]×+−           ∂ ∂ ∂ ∂ + Tg V Tg VVVVV ,,,1 ,,, ~ ,,, ,, 010 φηχε φ ϑφηχ φηχ φ ( ) ( ) ( ) ( )[ ]ϑφηχϑφηχϑφηχϑφηχ ,,, ~ ,,, ~ ,,, ~ ,,, ~ 100000000100 IVIV +× ; ( ) ( ) ( ) ( ) −      ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 002 2 2 002 2 2 002 2 0 0002 ,,, ~ ,,, ~ ,,, ~ ,,, ~ φ ϑφηχ η ϑφηχ χ ϑφηχ ϑ ϑφηχ III D DI V I ( )[ ] ( ) ( )ϑφηχϑφηχφηχε ,,, ~ ,,, ~ ,,,1 000001,, IITg IIII+− ( ) ( ) ( ) ( ) −      ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 002 2 2 002 2 2 002 2 0 0002 ,,, ~ ,,, ~ ,,, ~ ,,, ~ φ ϑφηχ η ϑφηχ χ ϑφηχ ϑ ϑφηχ VVV D DV I V ( )[ ] ( ) ( )ϑφηχϑφηχϑφηχε ,,, ~ ,,, ~ ,,,1 000001,, VVg VVVV+− ; ( ) ( ) ( ) ( ) +      ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 101 2 2 101 2 2 101 2 0 0101 ,,, ~ ,,, ~ ,,, ~ ,,, ~ φ ϑφηχ η ϑφηχ χ ϑφηχ ϑ ϑφηχ III D DI V I ( ) ( ) ( ) ( )     +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ + η ϑφηχ φηχ ηχ ϑφηχ φηχ χ ,,, ~ ,,, ,,, ~ ,,, 001001 0 0 I Tg I Tg D D II V I
  • 14. International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3 36 ( ) ( ) ( )[ ] ( ) ( )ϑφηχϑφηχφηχε φ ϑφηχ φηχ φ ,,, ~ ,,, ~ ,,,1 ,,, ~ ,,, 000100 001 VITg I Tg III +−           ∂ ∂ ∂ ∂ + ( ) ( ) ( ) ( ) +      ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 101 2 2 101 2 2 101 2 0 0101 ,,, ~ ,,, ~ ,,, ~ ,,, ~ φ ϑφηχ η ϑφηχ χ ϑφηχ ϑ ϑφηχ VVV D DV I V ( ) ( ) ( ) ( )     +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ + η ϑφηχ φηχ ηχ ϑφηχ φηχ χ ,,, ~ ,,, ,,, ~ ,,, 001001 0 0 V Tg V Tg D D VV I V ( ) ( ) ( )[ ] ( ) ( )ϑφηχϑφηχφηχε φ ϑφηχ φηχ φ ,,, ~ ,,, ~ ,,,1 ,,, ~ ,,, 100000 001 VITg V Tg VVV +−           ∂ ∂ ∂ ∂ + ; ( ) ( ) ( ) ( ) ( )×−         ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ ϑφηχ φ ϑφηχ η ϑφηχ χ ϑφηχ ϑ ϑφηχ ,,, ~,,, ~ ,,, ~ ,,, ~ ,,, ~ 0102 011 2 2 011 2 2 011 2 0 0011 I III D DI V I ( )[ ] ( ) ( )[ ] ( ) ( )ϑφηχϑφηχφηχεϑφηχφηχε ,,, ~ ,,, ~ ,,,1,,, ~ ,,,1 000001,,000,, VITgITg VIVIIIII +−+× ( ) ( ) ( ) ( ) ( )×−         ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ ϑφηχ φ ϑφηχ η ϑφηχ χ ϑφηχ ϑ ϑφηχ ,,, ~,,, ~ ,,, ~ ,,, ~ ,,, ~ 0102 011 2 2 011 2 2 011 2 0 0011 V VVV D DV I V ( )[ ] ( ) ( )[ ] ( ) ( )ϑφηχϑφηχφηχεϑφηχφηχε ,,, ~ ,,, ~ ,,,1,,, ~ ,,,1 001000,,000,, VItgVTg VIVIVVVV +−+× ; ( ) 0 ,,,~ 0 = ∂ ∂ =x ijk χ ϑφηχρ , ( ) 0 ,,,~ 1 = ∂ ∂ =x ijk χ ϑφηχρ , ( ) 0 ,,,~ 0 = ∂ ∂ =η η ϑφηχρijk , ( ) 0 ,,,~ 1 = ∂ ∂ =η η ϑφηχρijk , ( ) 0 ,,,~ 0 = ∂ ∂ =φ φ ϑφηχρijk , ( ) 0 ,,,~ 1 = ∂ ∂ =φ φ ϑφηχρijk (i ≥0, j ≥0, k ≥0); ( ) ( ) * 000 ,,0,,,~ ρφηχφηχρ ρf= , ( ) 00,,,~ =φηχρijk (i ≥1, j ≥1, k ≥1). Solutions of the above equations could be written as ( ) ( ) ( ) ( ) ( )∑+= ∞ =1 000 21 ,,,~ n nn ecccF LL ϑφηχϑφηχρ ρρ , where ( ) ( ) ( ) ( )∫ ∫ ∫= 1 0 1 0 1 0 * ,,coscoscos 1 udvdwdwvufwnvnunF nn ρρ πππ ρ , cn(χ) = cos (π n χ), ( ) ( )IVnI DDne 00 22 exp ϑπϑ −= , ( ) ( )VInV DDne 00 22 exp ϑπϑ −= ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫ ∂ ∂ −−= ∞ = − 1 0 1 0 1 0 1 0 100 0 0 00 ,,, ~ 2,,, ~ n i nnnInIn V I i u wvuI vcuseecccn D D I ϑ τ τϑφηχπϑφηχ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−−× ∞ =1 0 1 0 1 00 0 2,,, n nnnInIn V I In vsuceecccn D D dudvdwdTwvugwc ϑ τϑφηχπτ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ −−∫ ∂ ∂ × ∞ = − 1 00 0 1 0 100 2 ,,, ~ ,,, n nInIn V Ii In eecccn D D dudvdwd v wvuI Twvugwc ϑ τϑφηχπτ τ ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∂ ∂ × − 1 0 1 0 1 0 100 ,,, ~ ,,, τ τ dudvdwd w wvuI Twvugwsvcuc i Innn , i ≥1,
  • 15. International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3 37 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ×∫ ∫ ∫ ∫−−= ∞ =1 0 1 0 1 0 1 00 0 00 ,,,2,,, ~ n VnnnInVn I V i Twvugvcuseecccn D D V ϑ τϑφηχπϑφηχ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ×∫ ∫ ∫−− ∂ ∂ × ∞ = − 1 0 1 0 1 00 0100 , ~ n nnnInVn I Vi n vsuceecccn D D dudvdwd u uV wc ϑ τϑφηχτ τ ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ×−∫ ∂ ∂ × ∞ = − 1 0 0 1 0 100 2 , ~ ,,,2 n nVn I Vi Vn ecccn D D dudvdwd v uV Twvugwc ϑφηχπτ τ π ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫ ∂ ∂ −× − ϑ τ τ τ 0 1 0 1 0 1 0 100 , ~ ,,, dudvdwd w uV Twvugwsvcuce i VnnnnI , i ≥1, where sn(χ) = sin (π n χ); ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∫ ∫ ∫ ∫ ×−−= ∞ =1 0 1 0 1 0 1 0 010 2,,,~ n nnnnnnnn wcvcuceeccc ϑ ρρ τϑφηχϑφηχρ ( )[ ] ( ) ( ) τττε dudvdwdwvuVwvuITwvug VIVI ,,, ~ ,,, ~ ,,,1 000000,,+× ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ×∑ ∫ ∫ ∫ ∫ +−−= ∞ =1 0 1 0 1 0 1 0 , 0 0 020 12,,,~ n VInnnnnnnn V I wcvcuceeccc D D ϑ ρρ ετϑφηχϑφηχρ ( )] ( ) ( ) ( ) ( )[ ] τττττ dudvdwdwvuVwvuIwvuVwvuITwvug VI ,,, ~ ,,, ~ ,,, ~ ,,, ~ ,,, 010000000010, +× ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−= ∞ =1 0 1 0 1 0 1 0 001 2,,,~ n nnnnnnnn wcvcuceeccc ϑ ρρ τϑφηχϑφηχρ ( )[ ] ( ) ττρε ρρρρ dudvdwdwvuTwvug ,,,~,,,1 2 000,,+× ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∫ ∫ ×∫ ∫−−= ∞ =1 0 1 0 1 0 1 0 002 2,,,~ n nnnnnnnn wcvcuceeccc ϑ ρρ τϑφηχϑφηχρ ( )[ ] ( ) ( ) ττρτρε ρρρρ dudvdwdwvuwvuTwvug ,,,~,,,~,,,1 000001,,+× ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−−= ∞ =1 0 1 0 1 0 1 00 0 110 2,,, ~ n nnnnInInnn V I ucvcuseecccn D D I ϑ τϑφηχπϑφηχ ( ) ( ) ( ) ( ) ( ) ( ) ×∑− ∂ ∂ × ∞ = − 1 0 0100 2 ,,, ~ ,,, n nInnn V Ii I ecccn D D dudvdwd u wvuI Twvug ϑφηχπτ τ ( ) ( ) ( ) ( ) ( ) ( ) ×−∫ ∫ ∫ ∫ ∂ ∂ −× − V Ii InnnnI D D dudvdwd v wvuI Twvugucvsuce 0 0 0 1 0 1 0 1 0 100 2 ,,, ~ ,,, πτ τ τ ϑ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫ ∂ ∂ −× ∞ = − 1 0 1 0 1 0 1 0 100 ,,, ~ ,,, n i InnnnInI dudvdwd w wvuI Twvugusvcuceen ϑ τ τ τϑ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[∑ ∫ ∫ ∫ ∫ ×+−−× ∞ =1 0 1 0 1 0 1 0 ,12 n VInnnnInnnInnnn vcvcuceccecccc ϑ ετφηϑχφηχ ( )] ( ) ( ) ( ) ( )[ ] τττττ dudvdwdwvuVwvuIwvuVwvuITwvug VI ,,, ~ ,,, ~ ,,, ~ ,,, ~ ,,, 100000000100, +× ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−= ∞ =1 0 1 0 1 0 1 00 0 110 2,,, ~ n nnnnVnVnnn I V ucvcuseecccn D D V ϑ τϑφηχπϑφηχ
  • 16. International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3 38 ( ) ( ) ( ) ( ) ( ) ( )×∑− ∂ ∂ × ∞ = − 1 0 0100 2 ,,, ~ ,,, n nVnnn I Vi V ecccn D D dudvdwd u wvuV Twvug ϑφηχπτ τ ( ) ( ) ( ) ( ) ( ) ( ) ×−∫ ∫ ∫ ∫ ∂ ∂ −× − I Vi VnnnnV D D dudvdwd v wvuV Twvugucvsuce 0 0 0 1 0 1 0 1 0 100 2 ,,, ~ ,,, πτ τ τ ϑ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫ ∂ ∂ −× ∞ = − 1 0 1 0 1 0 1 0 100 ,,, ~ ,,, n i VnnnnVnV dudvdwd w wvuV Twvugusvcuceen ϑ τ τ τϑ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]∑ ∫ ∫ ∫ ∫ ×+−−× ∞ =1 0 1 0 1 0 1 0 ,, ,,,12 n VIVInnnVnnnInnnn Twvugvcuceccecccc ϑ ετφηϑχφηχ ( ) ( ) ( ) ( ) ( )[ ] τττττ dudvdwdwvuVwvuIwvuVwvuIwcn ,,, ~ ,,, ~ ,,, ~ ,,, ~ 100000000100 +× ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−−= ∞ =1 0 1 0 1 0 1 00 0 101 ,,,2,,, ~ n InnnInInnn V I Twvugvcuseecccn D D I ϑ τϑφηχπϑφηχ ( ) ( ) ( ) ( ) ( ) ( )×∑− ∂ ∂ × ∞ =1 0 0001 2 ,,, ~ n nInnn V I n ecccn D D dudvdwd u wvuI wc ϑφηχπτ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑−∫ ∫ ∂ ∂ × ∞ =1 0 0 1 0 1 0 001 2 ,,, ~ ,,, n nnnnI V I Inn cccen D D dudvdwd v wvuI Twvugwcvs φηχϑπτ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑−∫ ∫ ∫ ∫ ∂ ∂ −× ∞ =10 1 0 1 0 1 0 001 2 ,,, ~ ,,, n nnnInnnnI cccdudvdwd w wvuI Twvugwsvcuce φηχτ τ τ ϑ ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )∫ ∫ ∫ ∫ +−× ϑ τττετϑ 0 1 0 1 0 1 0 000100,, ,,, ~ ,,, ~ ,,,1 dudvdwdwvuVwvuITwvugwcvcucee VIVInnnnInI ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−−= ∞ =1 0 1 0 1 0 1 00 0 101 ,,,2,,, ~ n VnnnVnVnnn I V Twvugvcuseecccn D D V ϑ τϑφηχπϑφηχ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−− ∂ ∂ × ∞ =1 0 1 00 0001 2 ,,, ~ n nnVnInnn I V n uceecccn D D dudvdwd u wvuV wc ϑ τϑφηχπτ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑−∫ ∫ ∂ ∂ × ∞ =1 0 0 1 0 1 0 001 2 ,,, ~ ,,, n nnnnI V I Inn cccen D D dudvdwd v wvuI Twvugwcvs φηχϑπτ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑−∫ ∫ ∫ ∫ ∂ ∂ −× ∞ =10 1 0 1 0 1 0 001 2 ,,, ~ ,,, n nnnVnnnnV cccdudvdwd w wvuV Twvugwsvcuce φηχτ τ τ ϑ ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )∫ ∫ ∫ ∫ +−× ϑ τττετϑ 0 1 0 1 0 1 0 000100,, ,,, ~ ,,, ~ ,,,1 dudvdwdwvuVwvuITwvugwcvcucee VIVInnnnVnV ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){∑ ∫ ∫ ∫ ∫ ×−−= ∞ =1 0 1 0 1 0 1 0 000011 ,,, ~ 2,,, ~ n nnnnInInnn wvuIwcvcuceecccI ϑ ττϑφηχϑφηχ ( )[ ] ( ) ( )[ ] ( ) ( )} τττετε dudvdwdwvuVwvuITwvugwvuITwvug VIVIIIII ,,, ~ ,,, ~ ,,,1,,, ~ ,,,1 000001,,010,, +++× ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){∑ ∫ ∫ ∫ ∫ ×−−= ∞ =1 0 1 0 1 0 1 0 000011 ,,, ~ 2,,, ~ n nnnnVnVnnn wvuIwcvcuceecccV ϑ ττϑφηχϑφηχ ( )[ ] ( ) ( )[ ] ( ) ( )} τττετε dudvdwdwvuVwvuITwvugwvuITwvug VIVIIIII ,,, ~ ,,, ~ ,,,1,,, ~ ,,,1 000001,,010,, +++× .
  • 17. International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3 39 Equations for functions Φρi(x,y,z,t), i ≥0 to describe concentrations of simplest complexes of radi- ation defects. ( ) ( ) ( ) ( ) +      Φ + Φ + Φ = Φ Φ 2 0 2 2 0 2 2 0 2 0 0 ,,,,,,,,,,,, z tzyx y tzyx x tzyx D t tzyx III I I ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( )tzyxITzyxktzyxITzyxk III ,,,,,,,,,,,, 2 , −+ ( ) ( ) ( ) ( ) +      Φ + Φ + Φ = Φ Φ 2 0 2 2 0 2 2 0 2 0 0 ,,,,,,,,,,,, z tzyx y tzyx x tzyx D t tzyx VVV V V ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( )tzyxVTzyxktzyxVTzyxk VVV ,,,,,,,,,,,, 2 , −+ ; ( ) ( ) ( ) ( ) +         Φ + Φ + Φ = Φ Φ 2 2 2 2 2 2 0 ,,,,,,,,,,,, z tzyx y tzyx x tzyx D t tzyx iIiIiI I iI ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( )     +      Φ +      Φ + − Φ − ΦΦ y tzyx Tzyxg yx tzyx Tzyxg x D iI I iI II ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,, ,,, ,,, ,,, 11 0 ( ) ( )           Φ + − Φ z tzyx Tzyxg z iI I ∂ ∂ ∂ ∂ ,,, ,,, 1 , i≥1, ( ) ( ) ( ) ( ) +         Φ + Φ + Φ = Φ Φ 2 2 2 2 2 2 0 ,,,,,,,,,,,, z tzyx y tzyx x tzyx D t tzyx iViViV V iV ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( )     +      Φ +      Φ + − Φ − ΦΦ y tzyx Tzyxg yx tzyx Tzyxg x D iV V iV VV ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,, ,,, ,,, ,,, 11 0 ( ) ( )           Φ + − Φ z tzyx Tzyxg z iV V ∂ ∂ ∂ ∂ ,,, ,,, 1 , i≥1; Boundary and initial conditions for the functions takes the form ( ) 0 ,,, 0 = ∂ Φ∂ =x i x tzyxρ , ( ) 0 ,,, = ∂ Φ∂ = xLx i x tzyxρ , ( ) 0 ,,, 0 = ∂ Φ∂ =y i y tzyxρ , ( ) 0 ,,, = ∂ Φ∂ = yLy i y tzyxρ , ( ) 0 ,,, 0 = ∂ Φ∂ =z i z tzyxρ , ( ) 0 ,,, = ∂ Φ∂ = zLz i z tzyxρ , i≥0; Φρ0(x,y,z,0)=fΦρ (x,y,z), Φρi(x,y,z,0)=0, i≥1. Solutions of the above equations could be written as ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑+∑+=Φ ∞ = ∞ = ΦΦ 11 0 221 ,,, n nnn n nnnnn zyxzyx zcycxcn L tezcycxcF LLLLLL tzyx ρρρ ( ) ( ) ( ) ( ) ( ) ( ) ( )[∫ ∫ ∫ ∫ −−× ΦΦ t L L L IInnnnn x y z wvuITwvukwcvcucete 0 0 0 0 2 , ,,,,,, ττρρ ( ) ( )] ττ dudvdwdwvuITwvukI ,,,,,,− , where ( ) ( ) ( ) ( )∫ ∫ ∫= ΦΦ x y zL L L nnnn udvdwdwvufwcvcucF 0 0 0 ,,ρρ , ( ) ( )[ ]222 0 22 exp −−− ΦΦ ++−= zyxn LLLtDnte ρρ π , cn(x) = cos (π n x/Lx);
  • 18. International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3 40 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−−=Φ ∞ = ΦΦΦ 1 0 0 0 0 2 ,,, 2 ,,, n t L L L nnnnnnn zyx i x y z Twvugvcusetezcycxcn LLL tzyx ρρρ τ π ρ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ −− Φ × ∞ = ΦΦ − 1 0 2 1 2,,, n t nnnnn zyx iI n etezcycxcn LLL dudvdwd u wvu wc τ π τ ∂ τ∂ ρρ ρ ( ) ( ) ( ) ( ) ( ) ( ) ×∑−∫ ∫ ∫ ∫ Φ −× ∞ = − ΦΦ 1 2 0 0 0 0 1 2,,, ,,, n zyx t L L L iI nnnn n LLL dudvdwd v wvu Twvugwcvsuce x y z π τ ∂ τ∂ τ ρ ρρ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫ Φ −× Φ − ΦΦ t L L L iI nnnnn x y z dudvdwdTwvug w wvu wsvcucete 0 0 0 0 1 ,,, ,,, τ ∂ τ∂ τ ρ ρ ρρ ( ) ( ) ( )zcycxc nnn× , i ≥1, where sn(x) = sin (π n x/Lx). Equations for the functions Cij(x,y,z,t) (i ≥0, j ≥0), boundary and initial conditions could be writ- ten as ( ) ( ) ( ) ( ) 2 00 2 02 00 2 02 00 2 0 00 ,,,,,,,,,,,, z tzyxC D y tzyxC D x tzyxC D t tzyxC LLL ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ ; ( ) ( ) ( ) ( ) +      ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 0 2 2 0 2 2 0 2 0 0 ,,,,,,,,,,,, z tzyxC y tzyxC x tzyxC D t tzyxC iii L i ( ) ( ) ( ) ( ) +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ + −− y tzyxC Tzyxg y D x tzyxC Tzyxg x D i LL i LL ,,, ,,, ,,, ,,, 10 0 10 0 ( ) ( )       ∂ ∂ ∂ ∂ + − z tzyxC Tzyxg z D i LL ,,, ,,, 10 0 , i ≥1; ( ) ( ) ( ) ( )+ ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 01 2 02 01 2 02 01 2 0 01 ,,,,,,,,,,,, z tzyxC D y tzyxC D x tzyxC D t tzyxC LLL ( ) ( ) ( ) ( ) ( ) ( ) +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ + y tzyxC TzyxP tzyxC y D x tzyxC TzyxP tzyxC x D LL ,,, ,,, ,,,,,, ,,, ,,, 0000 0 0000 0 γ γ γ γ ( ) ( ) ( )       ∂ ∂ ∂ ∂ + z tzyxC TzyxP tzyxC z D L ,,, ,,, ,,, 0000 0 γ γ ; ( ) ( ) ( ) ( )+ ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 02 2 02 02 2 02 02 2 0 02 ,,,,,,,,,,,, z tzyxC D y tzyxC D x tzyxC D t tzyxC LLL ( ) ( ) ( ) ( ) ( ) ( ) ( )      × ∂ ∂ +      ∂ ∂ ∂ ∂ + −− TzyxP tzyxC tzyxC yx tzyxC TzyxP tzyxC tzyxC x D L ,,, ,,, ,,, ,,, ,,, ,,, ,,, 1 00 01 00 1 00 010 γ γ γ γ ( ) ( ) ( ) ( ) ( ) +          ∂ ∂ ∂ ∂ +   ∂ ∂ × − z tzyxC TzyxP tzyxC tzyxC zy tzyxC ,,, ,,, ,,, ,,, ,,, 00 1 00 01 00 γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( )       × ∂ ∂ +           ∂ ∂ ∂ ∂ +   ∂ ∂ × − TzyxP tzyxC x D z tzyxC TzyxP tzyxC tzyxC zy tzyxC L ,,, ,,,,,, ,,, ,,, ,,, ,,, 00 0 00 1 00 01 00 γ γ γ γ
  • 19. International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3 41 ( ) ( ) ( ) ( ) ( ) ( ) ( )          ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ +   ∂ ∂ × z tzyxC TzyxP tzyxC zy tzyxC TzyxP tzyxC yx tzyxC ,,, ,,, ,,,,,, ,,, ,,,,,, 0100010001 γ γ γ γ ; ( ) ( ) ( ) ( )+ ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 11 2 02 11 2 02 11 2 0 11 ,,,,,,,,,,,, z tzyxC D y tzyxC D x tzyxC D t tzyxC LLL ( ) ( ) ( ) ( ) ( ) ( ) ( )      × ∂ ∂ +      ∂ ∂ ∂ ∂ + −− TzyxP tzyxC tzyxC yx tzyxC TzyxP tzyxC tzyxC x ,,, ,,, ,,, ,,, ,,, ,,, ,,, 1 00 10 00 1 00 10 γ γ γ γ ( ) ( ) ( ) ( ) ( ) +          ∂ ∂ ∂ ∂ +   ∂ ∂ × − LD z tzyxC TzyxP tzyxC tzyxC zy tzyxC 0 00 1 00 10 00 ,,, ,,, ,,, ,,, ,,, γ γ ( ) ( ) ( ) ( ) ( ) ( )    +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ + y tzyxC TzyxP tzyxC yx tzyxC TzyxP tzyxC x D L ,,, ,,, ,,,,,, ,,, ,,, 10001000 0 γ γ γ γ ( ) ( ) ( ) ( ) ( )    +      ∂ ∂ ∂ ∂ +          ∂ ∂ ∂ ∂ + x tzyxC Tzyxg x D z tzyxC TzyxP tzyxC z LL ,,, ,,, ,,, ,,, ,,, 01 0 1000 γ γ ( ) ( ) ( ) ( )          ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ + z tzyxC Tzyxg zy tzyxC Tzyxg y LL ,,, ,,, ,,, ,,, 0101 ; ( ) 0 ,,, 0 = =x ij x tzyxC ∂ ∂ , ( ) 0 ,,, = = xLx ij x tzyxC ∂ ∂ , ( ) 0 ,,, 0 = =y ij y tzyxC ∂ ∂ , ( ) 0 ,,, = = yLy ij y tzyxC ∂ ∂ , ( ) 0 ,,, 0 = =z ij z tzyxC ∂ ∂ , ( ) 0 ,,, = = zLz ij z tzyxC ∂ ∂ , i ≥0, j ≥0; C00(x,y,z,0)=fC (x,y,z), Cij(x,y,z,0)=0, i ≥1, j ≥1. Functions Cij(x,y,z,t) (i ≥0, j ≥0) could be approximated by the following series during solutions of the above equations ( ) ( ) ( ) ( ) ( )∑+= ∞ =1 0 00 2 ,,, n nCnnnnC zyxzyx C tezcycxcF LLLLLL F tzyxC . Here ( )                 ++−= 2220 22 111 exp zyx CnC LLL tDnte π , ( ) ( ) ( ) ( )∫ ∫ ∫= x y zL L L nCnnnC udvdwdwcwvufvcucF 0 0 0 ,, ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−−= ∞ =1 0 0 0 0 20 ,,, 2 ,,, n t L L L LnnnCnCnnnnC zyx i x y z TwvugvcusetezcycxcFn LLL tzyxC τ π ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ −− ∂ ∂ × ∞ = − 1 0 2 10 2,,, n t nCnCnnnnC zyx i n etezcycxcFn LLL dudvdwd u wvuC wc τ π τ τ ( ) ( ) ( ) ( ) ( ) ( )∑ ×−∫ ∫ ∫ ∂ ∂ × ∞ = − 1 2 0 0 0 10 2,,, ,,, n nCnC zyx L L L i Lnnn teFn LLL dudvdwd v wvuC Twvugvcvsuc x y z π τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫ ∂ ∂ −× − t L L L i LnnnnCnnn x y z dudvdwd w wvuC Twvugvsvcucezcycxc 0 0 0 0 10 ,,, ,,, τ τ τ , i ≥1;
  • 20. International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3 42 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−−= ∞ =1 0 0 0 0 201 2 ,,, n t L L L nnnnCnCnnnnC zyx x y z wcvcusetezcycxcFn LLL tzyxC τ π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑− ∂ ∂ × ∞ =1 2 0000 2,,, ,,, ,,, n nCnnnnC zyx tezcycxcFn LLL dudvdwd u wvuC TwvuP wvuC π τ ττ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑−∫ ∫ ∫ ∫ ∂ ∂ −× ∞ =1 2 0 0 0 0 0000 2,,, ,,, ,,, n nC zyx t L L L nnnnC ten LLL dudvdwd v wvuC TwvuP wvuC wcvsuce x y z π τ ττ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫ ∂ ∂ −× t L L L nnnnCnnnnC x y z dudvdwd w wvuC TwvuP wvuC wsvcucezcycxcF 0 0 0 0 0000 ,,, ,,, ,,, τ ττ τ γ γ ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−= ∞ =1 0 0 0 0 202 2 ,,, n t L L L nnnnCnCnnnnC zyx x y z wcvcusetezcycxcFn LLL tzyxC τ π ( ) ( ) ( ) ( ) ( ) ( )×∑− ∂ ∂ × ∞ = − 1 2 00 1 00 01 2,,, ,,, ,,, ,,, n nnnC zyx ycxcF LLL dudvdwd u wvuC TwvuP wvuC wvuC π τ ττ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫ ∂ ∂ −× −t L L L nnnCnCn x y z v wvuC TwvuP wvuC wvuCvsucetezcn 0 0 0 0 00 1 00 01 ,,, ,,, ,,, ,,, ττ ττ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−−× ∞ =1 0 0 0 2 2 n t L L nnnCnCnnnnC zyx n x y vcucetezcycxcFn LLL dudvdwdwc τ π τ ( ) ( ) ( ) ( ) ( ) ( )×∑−∫ ∂ ∂ × ∞ = − 1 2 0 00 1 00 01 2,,, ,,, ,,, ,,, n n zyx L n xcn LLL dudvdwd w wvuC TwvuP wvuC wvuCws z π τ ττ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫ ∂ ∂ −× t L L L nnnnCnCnnnC x y z u wvuC wvuCwcvcusetezcycF 0 0 0 0 00 01 ,,, ,,, τ ττ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−−× ∞ = − 1 0 0 2 1 00 2 ,,, ,,, n t L nnCnCnnnnC zyx x ucetezcycxcFn LLL dudvdwd TwvuP wvuC τ π τ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ×∑−∫ ∫ ∂ ∂ × ∞ = − 1 2 0 0 00 1 00 01 2,,, ,,, ,,, ,,, n zyx L L nn n LLL dudvdwd v wvuC TwvuP wvuC wvuCwcvs y z π τ ττ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫−× −t L L L nnnnCnCnnnnC x y z TwvuP wvuC wvuCwsvcucetezcycxcF 0 0 0 0 1 00 01 ,,, ,,, ,,, γ γ τ ττ ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−− ∂ ∂ × ∞ =1 0 0 2 00 2,,, n t L nnCnCnnnnC zyx x usetezcycxcF LLL dudvdwd w wvuC τ π τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ×−∫ ∫ ∂ ∂ × ∞ =1 2 0 0 0100 2,,, ,,, ,,, n nCn zyx L L nn texc LLL dudvdwd u wvuC TwvuP wvuC wcvcn y z π τ ττ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫ ∂ ∂ −× t L L L nnnnCnnC x y z dudvdwd v wvuC TwvuP wvuC wcvsuceycF 0 0 0 0 0100 ,,, ,,, ,,, τ ττ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−× ∞ =1 0 0 0 0 2 2 n t L L L nnnnCnCnnnnC zyx n x y z wsvcucetezcycxcFn LLL zcn τ π
  • 21. International Journal of Advance Robotics & Expert Systems (JARES) Vol.1, No.3 43 ( ) ( ) ( ) τ ττ γ γ dudvdwd w wvuC TwvuP wvuC ∂ ∂ × ,,, ,,, ,,, 0100 ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−−= ∞ =1 0 0 0 0 211 2 ,,, n t L L L nnnnCnCnnnnC zyx x y z wcvcusetezcycxcFn LLL tzyxC τ π ( ) ( ) ( ) ( ) ( ) ( ) ×∑− ∂ ∂ × ∞ =1 2 01 2,,, ,,, n nCnnnnC zyx L tezcycxcFn LLL dudvdwd u wvuC Twvug π τ τ ( ) ( ) ( ) ( ) ( ) ( ) ×−∫ ∫ ∫ ∫ ∂ ∂ −× 2 0 0 0 0 01 2,,, ,,, zyx t L L L LnnnnC LLL dudvdwd v wvuC Twvugwcvsuce x y z π τ τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫ ∂ ∂ −× ∞ =1 0 0 0 0 01 ,,, ,,, n t L L L LnnnnCnC x y z dudvdwd w wvuC Twvugwsvcuceten τ τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−−× ∞ =1 0 0 0 2 2 n t L L nnnCnCnnnnC zyx nnnnC x y vcusetezcycxcF LLL zcycxcF τ π ( ) ( ) ( ) ( ) ( ) ( )×∑−∫ ∂ ∂ × ∞ =1 2 0 1000 2,,, ,,, ,,, n nnnC zyx L n ycxcFn LLL dudvdwd u wvuC TwvuP wvuC wcn z π τ ττ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) −∫ ∫ ∫ ∫ ∂ ∂ −× t L L L nnnnCnCn x y z dudvdwd v wvuC TwvuP wvuC wcvsucetezc 0 0 0 0 1000 ,,, ,,, ,,, τ ττ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−− ∞ =1 0 0 0 0 00 2 ,,, ,,,2 n t L L L nnnnCnCnnnnC zyx x y z TwvuP wvuC wsvcucetezcycxcFn LLL γ γ τ τ π ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−− ∂ ∂ × ∞ =1 0 0 2 10 2,,, n t L nnCnCnnnnC zyx x usetezcycxcFn LLL dudvdwd w wvuC τ π τ τ ( ) ( ) ( ) ( ) ( ) ( ) ×∑−∫ ∫ ∂ ∂ × ∞ = − 1 2 0 0 00 1 00 10 2,,, ,,, ,,, ,,, n zyx L L nn n LLL dudvdwd u wvuC TwvuP wvuC wvuCwcvc y z π τ ττ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫ ∂ ∂ −× −t L L L nnnnCnCnnnnC x y z v wvuC TwvuP wvuC wcvsucetezcycxcF 0 0 0 0 00 1 00 ,,, ,,, ,,, ττ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−−× ∞ =1 0 0 210 2 ,,, n t L nnCnCnnnnC zyx x ucetezcycxcFn LLL dudvdwdwvuC τ π ττ ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∂ ∂ × −y z L L nn dudvdwd w wvuC TwvuP wvuC wvuCwsvc 0 0 00 1 00 10 ,,, ,,, ,,, ,,, τ ττ τ γ γ .