SlideShare a Scribd company logo
1 of 15
Download to read offline
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
DOI : 10.5121/ijitmc.2016.4101 1
INFLUENCE OF OVERLAYERS ON DEPTH OF IM-
PLANTED-HETEROJUNCTION RECTIFIERS
E.L. Pankratov1
, E.A. Bulaeva1,2
1
Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950,
Russia
2
Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky
street, Nizhny Novgorod, 603950, Russia
ABSTRACT
In this paper we compare distributions of concentrations of dopants in an implanted-junction rectifiers in a
heterostructures with an overlayer and without the overlayer. Conditions for decreasing of depth of the
considered p-n-junction have been formulated.
KEYWORDS
Heterostructures; implanted-junction rectifiers: overlayers.
1. INTRODUCTION
In the present time integration rate of elements of integrated circuits intensively increasing. At the
same time dimensions of the above elements decreases. To increase integration rate of elements
of integrated circuits and to increase dimensions of the same elements are have been elaborated
different approaches [1-10]. In the present paper we consider a heterostructure with two layers: a
substrate and an epitaxial layer. The heterostructure could include into itself a third layer: an
overlayer (see Figs. 1). We assume, that type of conductivity of the substrate (n or p) is known.
The epitaxial layer has been doped by ion implantation to manufacture required type of conduc-
tivity (p or n). Farther we consider annealing of radiation defects. Main aim of the present paper
is comparison two ways of ion doping of the epitaxial layer: ion doping of epitaxial layer and ion
doping of epitaxial layer through the overlayer.
Fig. 1a. Heterostructure, which consist of a substrate and an epitaxial layer with initial distribution of
implanted dopant
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
2
x
D(x)
D1
D2
0 L
a
fC(x)
D0
Substrate
Epitaxial layer
b
Overlayer
Fig. 1b. Heterostructure, which consist of a substrate, an epitaxial layer and an overlayer with initial distri-
bution of implanted dopant
2. METHOD OF SOLUTION
To solve our aim we determine spatio-temporal distributions of concentrations of dopants. We
calculate the required distributions by solving the second Fick's law in the following form [1]
( ) ( ) ( ) ( )






+






+






=
z
t
z
y
x
C
D
z
y
t
z
y
x
C
D
y
x
t
z
y
x
C
D
x
t
t
z
y
x
C
C
C
C
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,
,
,
,
,
,
,
,
,
,
,
,
. (1)
Boundary and initial conditions for the equations are
( ) 0
,
,
,
0
=
∂
∂
=
x
x
t
z
y
x
C
,
( ) 0
,
,
,
=
∂
∂
= x
L
x
x
t
z
y
x
C
,
( ) 0
,
,
,
0
=
∂
∂
=
y
y
t
z
y
x
C
,
( ) 0
,
,
,
=
∂
∂
= y
L
x
y
t
z
y
x
C
,
( ) 0
,
,
,
0
=
∂
∂
=
z
z
t
z
y
x
C
,
( ) 0
,
,
,
=
∂
∂
= z
L
x
z
t
z
y
x
C
, C(x,y,z,0)=f (x,y,z). (2)
Here the function C(x,y,z,t) describes the distribution of concentration of dopant in space and
time. DС describes distribution the dopant diffusion coefficient in space and as a function of tem-
perature of annealing. Dopant diffusion coefficient will be changed with changing of materials of
heterostructure, heating and cooling of heterostructure during annealing of dopant or radiation
defects (with account Arrhenius law). Dependences of dopant diffusion coefficient on coordinate
in heterostructure, temperature of annealing and concentrations of dopant and radiation defects
could be written as [11-13]
( ) ( )
( )
( ) ( )
( ) 







+
+






+
= 2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
,
,
,
1
,
,
,
V
t
z
y
x
V
V
t
z
y
x
V
T
z
y
x
P
t
z
y
x
C
T
z
y
x
D
D L
C ς
ς
ξ γ
γ
. (3)
Here function DL (x,y,z,T) describes dependences of dopant diffusion coefficient on coordinate
and temperature of annealing T. Function P (x,y,z,T) describes the same dependences of the limit
of solubility of dopant. The parameter γ is integer and usually could be varying in the following
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
3
interval γ ∈[1,3]. The parameter describes quantity of charged defects, which interacting (in aver-
age) with each atom of dopant. Ref.[11] describes more detailed information about dependence of
dopant diffusion coefficient on concentration of dopant. Spatio-temporal distribution of concen-
tration of radiation vacancies described by the function V (x,y,z,t). The equilibrium distribution of
concentration of vacancies has been denoted as V*
. It is known, that doping of materials by diffu-
sion did not leads to radiation damage of materials. In this situation ζ1=ζ2=0. We determine spa-
tio-temporal distributions of concentrations of radiation defects by solving the following system
of equations [12,13]
( ) ( ) ( ) ( ) ( ) ( ) ×
−






∂
∂
∂
∂
+






∂
∂
∂
∂
=
∂
∂
T
z
y
x
k
y
t
z
y
x
I
T
z
y
x
D
y
x
t
z
y
x
I
T
z
y
x
D
x
t
t
z
y
x
I
I
I
I
I ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
( ) ( ) ( ) ( ) ( ) ( )
t
z
y
x
V
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
I
T
z
y
x
D
z
t
z
y
x
I V
I
I ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, ,
2
−






∂
∂
∂
∂
+
× (4)
( ) ( ) ( ) ( ) ( ) ( )×
−






∂
∂
∂
∂
+






∂
∂
∂
∂
=
∂
∂
T
z
y
x
k
y
t
z
y
x
V
T
z
y
x
D
y
x
t
z
y
x
V
T
z
y
x
D
x
t
t
z
y
x
V
V
V
V
V ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
( ) ( ) ( ) ( ) ( ) ( )
t
z
y
x
V
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
V
T
z
y
x
D
z
t
z
y
x
V V
I
V ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, ,
2
−






∂
∂
∂
∂
+
× .
Boundary and initial conditions for these equations are
( ) 0
,
,
,
0
=
∂
∂
=
x
x
t
z
y
x
ρ
,
( ) 0
,
,
,
=
∂
∂
= x
L
x
x
t
z
y
x
ρ
,
( ) 0
,
,
,
0
=
∂
∂
=
y
y
t
z
y
x
ρ
,
( ) 0
,
,
,
=
∂
∂
= y
L
y
y
t
z
y
x
ρ
,
( ) 0
,
,
,
0
=
∂
∂
=
z
z
t
z
y
x
ρ
,
( ) 0
,
,
,
=
∂
∂
= z
L
z
z
t
z
y
x
ρ
, ρ (x,y,z,0)=fρ (x,y,z). (5)
Here ρ =I,V. We denote spatio-temporal distribution of concentration of radiation interstitials as I
(x,y,z,t). Dependences of the diffusion coefficients of point radiation defects on coordinate and
temperature have been denoted as Dρ(x,y,z,T). The quadric on concentrations terms of Eqs. (4)
describes generation divacancies and diinterstitials. Parameter of recombination of point radiation
defects and parameters of generation of simplest complexes of point radiation defects have been
denoted as the following functions kI,V(x,y,z,T), kI,I(x,y,z,T) and kV,V(x,y,z,T), respectively.
Now let us calculate distributions of concentrations of divacancies ΦV(x,y,z,t) and diinterstitials
ΦI(x,y,z,t) in space and time by solving the following system of equations [12,13]
( ) ( ) ( ) ( ) ( ) +





 Φ
+





 Φ
=
Φ
Φ
Φ
y
t
z
y
x
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x I
I
I
I
I
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
( ) ( ) ( ) ( ) ( ) ( )
t
z
y
x
I
T
z
y
x
k
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
T
z
y
x
D
z
I
I
I
I
I ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 2
, −
+





 Φ
+ Φ
∂
∂
∂
∂
(6)
( ) ( ) ( ) ( ) ( ) +





 Φ
+





 Φ
=
Φ
Φ
Φ
y
t
z
y
x
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x V
V
V
V
V
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
( ) ( ) ( ) ( ) ( ) ( )
t
z
y
x
V
T
z
y
x
k
t
z
y
x
V
T
z
y
x
k
z
t
z
y
x
T
z
y
x
D
z
V
V
V
V
V ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 2
, −
+





 Φ
+ Φ
∂
∂
∂
∂
.
Boundary and initial conditions for these equations are
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
4
( )
0
,
,
,
0
=
∂
Φ
∂
=
x
x
t
z
y
x
ρ
,
( )
0
,
,
,
=
∂
Φ
∂
= x
L
x
x
t
z
y
x
ρ
,
( )
0
,
,
,
0
=
∂
Φ
∂
=
y
y
t
z
y
x
ρ
,
( )
0
,
,
,
=
∂
Φ
∂
= y
L
y
y
t
z
y
x
ρ
,
( )
0
,
,
,
0
=
∂
Φ
∂
=
z
z
t
z
y
x
ρ
,
( )
0
,
,
,
=
∂
Φ
∂
= z
L
z
z
t
z
y
x
ρ
, ΦI (x,y,z,0)=fΦI (x,y,z), ΦV (x,y,z,0)=fΦV (x,y,z). (7)
The functions DΦρ(x,y,z,T) describe dependences of the diffusion coefficients of the above com-
plexes of radiation defects on coordinate and temperature. The functions kI(x,y,z,T) and kV(x,y,z,
T) describe the parameters of decay of these complexes on coordinate and temperature.
To determine spatio-temporal distribution of concentration of dopant we transform the Eq.(1) to
the following integro-differential form
( ) ( )
( ) ( )
( )
×
∫ ∫ ∫ 





+
+
=
∫ ∫ ∫
t y
L
z
L
L
x
L
y
L
z
L
z
y
x y z
x y z V
w
v
x
V
V
w
v
x
V
T
w
v
x
D
u
d
v
d
w
d
t
w
v
u
C
L
L
L
z
y
x
0
2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
,
,
,
τ
ς
τ
ς
( )
( )
( ) ( ) ( )
( )
×
∫ ∫ ∫ 





+
+






+
×
t x
L
z
L
L
z
y x z T
z
y
x
P
w
y
u
C
T
w
y
u
D
L
L
z
y
d
x
w
v
x
C
T
w
v
x
P
w
v
x
C
0 ,
,
,
,
,
,
1
,
,
,
,
,
,
,
,
,
,
,
,
1 γ
γ
γ
γ
τ
ξ
τ
∂
τ
∂
τ
ξ
( ) ( )
( )
( ) ( ) ×
∫ ∫ ∫
+






+
+
×
t x
L
y
L
L
z
x x y
T
z
v
u
D
L
L
z
x
d
y
w
y
u
C
V
w
y
u
V
V
w
y
u
V
0
2
*
2
2
*
1 ,
,
,
,
,
,
,
,
,
,
,
,
1 τ
∂
τ
∂
τ
ς
τ
ς
( ) ( )
( )
( )
( )
( ) +






+






+
+
×
y
x
L
L
y
x
d
z
z
v
u
C
T
z
y
x
P
z
v
u
C
V
z
v
u
V
V
z
v
u
V
τ
∂
τ
∂
τ
ξ
τ
ς
τ
ς γ
γ
,
,
,
,
,
,
,
,
,
1
,
,
,
,
,
,
1 2
*
2
2
*
1
( )
∫ ∫ ∫
+
x
L
y
L
z
L
z
y
x x y z
u
d
v
d
w
d
w
v
u
f
L
L
L
z
y
x
,
, . (1a)
Now let us determine solution of Eq.(1a) by Bubnov-Galerkin approach [14]. To use the ap-
proach we consider solution of the Eq.(1a) as the following series
( ) ( ) ( ) ( ) ( )
∑
=
=
N
n
nC
n
n
n
nC t
e
z
c
y
c
x
c
a
t
z
y
x
C
0
0 ,
,
, .
Here ( ) ( )
[ ]
2
2
2
0
2
2
exp −
−
−
+
+
−
= z
y
x
C
nC
L
L
L
t
D
n
t
e π , cn(χ)=cos(π nχ/Lχ). Number of terms N in the
series is finite. The above series is almost the same with solution of linear Eq.(1) (i.e. for ξ=0)
and averaged dopant diffusion coefficient D0. Substitution of the series into Eq.(1a) leads to the
following result
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
∫ ∫ ∫



×





∑
+
−
=
∑
=
=
t y
L
z
L
N
n
nC
n
n
n
nC
z
y
N
n
nC
n
n
n
C
y z
e
w
c
v
c
x
c
a
L
L
z
y
t
e
z
s
y
s
x
s
n
a
z
y
x
0 1
1
3
2
1
γ
τ
π
( )
( ) ( )
( )
( ) ( ) ( )×
∑






+
+



×
=
N
n
n
n
nC
L v
c
x
s
a
T
w
v
x
D
V
w
v
x
V
V
w
v
x
V
T
w
v
x
P 1
2
*
2
2
*
1 ,
,
,
,
,
,
,
,
,
1
,
,
,
τ
ς
τ
ς
ξ
γ
( ) ( ) ( ) ( ) ( ) ( )
( )
∫ ∫ ∫ ×











∑
+
−
×
=
t x
L
z
L
N
m
mC
m
m
m
mC
z
x
nC
n
x z T
w
y
u
P
e
w
c
y
c
u
c
a
L
L
z
x
d
e
w
c
n
0 1 ,
,
,
1 γ
γ
ξ
τ
τ
τ
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
5
( ) ( ) ( )
( )
( ) ( ) ( ) ( ) ×
∑






+
+
×
=
τ
τ
τ
ς
τ
ς d
e
w
c
y
s
u
c
n
V
w
y
u
V
V
w
y
u
V
T
w
y
u
D
N
n
nC
n
n
n
L
1
2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
( )
( )
( ) ( ) ( ) ( ) ×
∫ ∫ ∫











∑
+
−
×
=
t x
L
y
L
N
n
nC
n
n
n
nC
L
y
x
nC
x y
e
z
c
v
c
u
c
a
T
z
v
u
P
T
z
v
u
D
L
L
y
x
a
0 1
,
,
,
1
,
,
,
γ
γ
τ
ξ
( ) ( )
( )
( ) ( ) ( ) ( ) ×
+
∑






+
+
×
=
z
y
x
N
n
nC
n
n
n
nC
L
L
L
z
y
x
d
e
z
s
v
c
u
c
a
n
V
z
v
u
V
V
z
v
u
V
τ
τ
τ
ς
τ
ς
1
2
*
2
2
*
1
,
,
,
,
,
,
1
( )
∫ ∫ ∫
×
x
L
y
L
z
L
x y z
u
d
v
d
w
d
w
v
u
f ,
, ,
where sn(χ)=sin(πnχ/Lχ). We used condition of orthogonality to determine coefficients an in the
considered series. The coefficients an could be calculated for any quantity of terms N. In the
common case the relations could be written as
( ) ( ) ( ) ( ) ( ) ( )
∫ ∫ ∫ ∫



×





∑
+
−
=
∑
−
=
=
t L L L N
n
nC
n
n
n
nC
L
z
y
N
n
nC
nC
z
y
x
x y z
e
z
c
y
c
x
c
a
T
z
y
x
D
L
L
t
e
n
a
L
L
L
0 0 0 0 1
2
1
6
5
2
2
2
1
,
,
,
2
γ
τ
π
π
( )
( ) ( )
( )
( ) ( ) ( ) ( )×
∑






+
+



×
=
N
n
nC
n
n
n
nC
e
z
c
y
c
x
s
n
a
V
z
y
x
V
V
z
y
x
V
T
z
y
x
P 1
2
*
2
2
*
1 2
,
,
,
,
,
,
1
,
,
,
τ
τ
ς
τ
ς
ξ
γ
( ) ( )
[ ] ( ) ( )
[ ] ( )×
∫ ∫ ∫ ∫
−






−
+






−
+
×
t L L L
L
n
z
n
n
y
n
x y z
T
z
y
x
D
d
x
d
y
d
z
d
z
c
n
L
z
s
z
y
c
n
L
y
s
y
0 0 0 0
,
,
,
1
1 τ
π
π
( ) ( ) ( ) ( ) ( )
( )
( )



+
+











∑
+
×
=
*
1
1
,
,
,
1
,
,
,
1
,
,
,
V
z
y
x
V
T
z
y
x
P
e
z
c
y
c
x
c
a
T
z
y
x
D
N
n
nC
n
n
n
nC
L
τ
ς
ξ
τ γ
γ
( )
( )
( ) ( )
( )
( ) ( )
[ ]
∑ ×






−
+






+
+



+
=
N
n
nC
n
x
n
n
a
x
c
n
L
x
s
x
V
z
y
x
V
V
z
y
x
V
V
z
y
x
V
1
2
*
2
2
*
1
2
*
2
2
1
,
,
,
,
,
,
1
,
,
,
π
τ
ς
τ
ς
τ
ς
( ) ( ) ( ) ( ) ( ) ( )
[ ] ×
−






−
+
× 2
2
2
1
2
2 π
τ
π
τ
π
y
x
n
z
n
nC
n
n
n
z
x
L
L
d
x
d
y
d
z
d
z
c
n
L
z
s
z
e
z
c
y
s
x
c
L
L
( ) ( ) ( ) ( )
( )
( )
( )
∫ ∫ ∫ ∫ 


+
+











∑
+
×
=
t L L L N
n
nC
n
n
n
nC
x y z
V
z
y
x
V
T
z
y
x
P
e
z
c
y
c
x
c
a
0 0 0 0
2
*
2
2
1
,
,
,
1
,
,
,
1
τ
ς
ξ
τ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ] ×
∑






−
+



+
=
N
n
n
x
n
n
n
n
nC
L x
c
n
L
x
s
x
z
s
y
c
x
c
n
a
T
z
y
x
D
V
z
y
x
V
1
*
1 1
,
,
,
,
,
,
π
τ
ς
( ) ( )
[ ] ( ) ( ) ( )
[ ]
∑ ∫ ×






−
+
+






−
+
×
=
N
n
L
n
x
n
nC
n
y
n
x
x
c
n
L
x
s
x
d
x
d
y
d
z
d
e
y
c
n
L
y
s
y
1 0
1
1
π
τ
τ
π
( ) ( )
[ ] ( ) ( )
[ ] ( )
∫ ∫






−
+






−
+
×
y z
L L
n
z
n
n
y
n x
d
y
d
z
d
z
y
x
f
z
c
n
L
z
s
z
y
c
n
L
y
s
y
0 0
,
,
1
1
π
π
.
As an example for γ=0 we obtain
( ) ( )
[ ] ( ) ( )
[ ] ( ) ( )
{
∫ ∫ ∫ +






−
+






−
+
=
x y z
L L L
n
n
y
n
n
y
n
nC x
s
x
y
d
z
d
z
y
x
f
z
c
n
L
z
s
z
y
c
n
L
y
s
y
a
0 0 0
,
,
1
1
π
π
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
6
( )
[ ] ( ) ( ) ( ) ( )
[ ] ( )







∫ ∫ ∫ ∫ ×






−
+



−
×
t L L L
L
n
y
n
n
n
x
n
x y z
T
z
y
x
D
y
c
n
L
y
s
y
y
c
x
s
n
x
d
n
L
x
c
0 0 0 0
,
,
,
1
2
2
1
π
π
( ) ( )
[ ] ( ) ( )
( ) ( )
×






+






+
+






−
+
×
T
z
y
x
P
V
z
y
x
V
V
z
y
x
V
z
c
n
L
z
s
z n
y
n
,
,
,
1
,
,
,
,
,
,
1
1 2
*
2
2
*
1 γ
ξ
τ
ς
τ
ς
π
( ) ( ) ( ) ( ) ( ) ( )
[ ] ( ) ( )×
∫ ∫ ∫ ∫






−
+
+
×
t L L L
n
n
n
y
n
n
nC
nC
n
x y z
z
c
y
s
x
c
n
L
x
s
x
x
c
e
d
e
x
d
y
d
z
d
z
c
0 0 0 0
2
1
π
τ
τ
τ
( ) ( )
[ ]
( )
( ) ( )
( )
×






+
+






+






−
+
× 2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
1
1
V
z
y
x
V
V
z
y
x
V
T
z
y
x
P
z
c
n
L
z
s
z n
y
n
τ
ς
τ
ς
ξ
π γ
( ) ( ) ( ) ( ) ( )
[ ] ( ) ( )
{
∫ ∫ ∫ ×






−
+
+
×
t L L
n
n
n
x
n
n
nC
L
x y
y
s
y
c
x
c
n
L
x
s
x
x
c
e
d
x
d
y
d
z
d
T
z
y
x
D
0 0 0
1
,
,
,
π
τ
τ
( )
[ ] ( ) ( )
( )
( )
( )
∫ 


+
+






+



−
+
×
z
L
L
n
n
y
V
z
y
x
V
T
z
y
x
P
T
z
y
x
D
z
s
y
c
n
L
y
0
2
*
2
2
,
,
,
1
,
,
,
1
,
,
,
2
1
τ
ς
ξ
π γ
( ) ( )
1
6
5
2
2
2
*
1
,
,
,
−




−






+ t
e
n
L
L
L
d
x
d
y
d
z
d
V
z
y
x
V
nC
z
z
z
π
τ
τ
ς .
For γ=1 one can obtain the following relation to determine required parameters
( ) ( ) ( ) ( )
∫ ∫ ∫
+
±
−
=
x y z
L L L
n
n
n
n
n
n
n
nC
x
d
y
d
z
d
z
y
x
f
z
c
y
c
x
c
a
0 0 0
2
,
,
4
2
α
β
α
β
,
where ( ) ( ) ( ) ( ) ( ) ( )
( )
∫ ∫ ∫ ∫ ×






+
+
=
t L L L
n
n
n
nC
z
y
n
x y z
V
z
y
x
V
V
z
y
x
V
z
c
y
c
x
s
e
n
L
L
0 0 0 0
2
*
2
2
*
1
2
,
,
,
,
,
,
1
2
2
τ
ς
τ
ς
τ
π
ξ
α
( )
( )
( ) ( )
[ ] ( ) ( )
[ ] ×
+






−
+






−
+
×
n
L
L
d
x
d
y
d
z
d
z
c
n
L
z
s
z
y
c
n
L
y
s
y
T
z
y
x
P
T
z
y
x
D z
x
n
z
n
n
y
n
L
2
2
1
1
,
,
,
,
,
,
π
ξ
τ
π
π
( ) ( ) ( ) ( )
[ ] ( ) ( )
( )
( ) ( )
[ ] ×
∫ ∫ ∫ ∫






−
−






−
+
×
t L L L
n
z
n
L
n
n
x
n
n
nC
x y z
z
c
n
L
z
s
z
T
z
y
x
P
T
z
y
x
D
z
c
x
c
n
L
x
s
x
x
c
e
0 0 0 0
1
,
,
,
,
,
,
1
π
π
τ
( )
( )
( ) ( )
( )
( ) ×
+






+
+
×
n
L
L
d
x
d
y
d
y
s
z
d
V
z
y
x
V
V
z
y
x
V
T
z
y
x
P
T
z
y
x
D y
x
n
L
2
2
*
2
2
*
1
2
2
,
,
,
,
,
,
1
,
,
,
,
,
,
π
ξ
τ
τ
ς
τ
ς
( ) ( ) ( ) ( ) ( )
( )
( ) ( )
( )
×
∫ ∫ ∫ ∫ 





+
+
×
t L L L
L
n
n
n
nC
x y z
V
z
y
x
V
V
z
y
x
V
T
z
y
x
P
T
z
y
x
D
z
s
y
c
x
c
e
0 0 0 0
2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
,
,
,
2
τ
ς
τ
ς
τ
( ) ( )
[ ] ( ) ( )
[ ] τ
π
π
d
x
d
y
d
z
d
y
c
n
L
y
s
y
x
c
n
L
x
s
x n
y
n
n
x
n






−
+






−
+
× 1
1 ,
( )×
∫
=
t
nC
z
y
n e
n
L
L
0
2
2
τ
π
β
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
7
( ) ( ) ( ) ( )
[ ] ( ) ( ) ( )
( )
∫ ∫ ∫ ×






+
+






−
+
×
x y z
L L L
n
n
y
n
n
n
V
z
y
x
V
V
z
y
x
V
z
c
y
c
n
L
y
s
y
y
c
x
s
0 0 0
2
*
2
2
*
1
,
,
,
,
,
,
1
1
2
τ
ς
τ
ς
π
( ) ( ) ( )
[ ] ( ) ( ) ( )×
∫ ∫ ∫
+






−
+
×
t L L
n
n
nC
z
x
n
z
n
L
x y
y
s
x
c
e
n
L
L
d
x
d
y
d
z
d
z
c
n
L
z
s
z
T
z
y
x
D
0 0 0
2
2
2
1
,
,
, τ
π
τ
π
( ) ( )
[ ] ( ) ( ) ( ) ( )
( )
×
∫ 





+
+






−
+
×
z
L
n
L
n
x
n
V
z
y
x
V
V
z
y
x
V
z
c
T
z
y
x
D
x
c
n
L
x
s
x
0
2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
1
τ
ς
τ
ς
π
( ) ( )
[ ] ( ) ( ) ( )
[ ] ×
∫ ∫






−
+
+






−
+
×
t L
n
x
n
nC
y
x
n
z
n
x
x
c
n
L
x
s
x
e
n
L
L
d
x
d
y
d
z
d
z
c
n
L
z
s
z
0 0
2
1
2
1
π
τ
π
τ
π
( ) ( ) ( )
[ ] ( ) ( ) ( )
( )
∫ ∫ ×






+
+






−
+
×
y z
L L
L
n
y
n
n
V
z
y
x
V
V
z
y
x
V
T
z
y
x
D
y
c
n
L
y
s
y
x
c
0 0
2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
1
τ
ς
τ
ς
π
( ) ( ) ( ) 6
5
2
2
2
2 n
t
e
L
L
L
d
x
d
y
d
y
c
z
d
z
s nC
z
y
x
n
n π
τ −
× .
The same approach could be used for calculation parameters an for different values of parameter
γ. However the relations are bulky and will not be presented in the paper. Advantage of the ap-
proach is absent of necessity to join dopant concentration on interfaces of heterostructure.
The same Bubnov-Galerkin approach has been used for solution the Eqs.(4). Previously we trans-
form the differential equations to the following integro- differential form
( ) ( ) ( ) +
∫ ∫ ∫
∂
∂
=
∫ ∫ ∫
t y
L
z
L
I
z
y
x
L
y
L
z
L
z
y
x y z
x y z
d
v
d
w
d
x
w
v
x
I
T
w
v
x
D
L
L
z
y
u
d
v
d
w
d
t
w
v
u
I
L
L
L
z
y
x
0
,
,
,
,
,
,
,
,
, τ
τ
( ) ( ) ( ) ( )×
∫ ∫ ∫
−
∫ ∫ ∫
∂
∂
+
x
L
y
L
z
L
V
I
z
y
x
t x
L
z
L
I
z
x x y z
x z
t
w
v
u
I
T
w
v
u
k
L
L
L
z
y
x
d
u
d
w
d
x
w
y
u
I
T
w
y
u
D
L
L
z
x
,
,
,
,
,
,
,
,
,
,
,
, ,
0
τ
τ
( ) ( ) ( ) ×
−
∫ ∫ ∫
∂
∂
+
×
z
y
x
t x
L
y
L
I
y
x
L
L
L
z
y
x
d
u
d
v
d
T
z
v
u
D
z
z
v
u
I
L
L
y
x
u
d
v
d
w
d
t
w
v
u
V
x y
0
,
,
,
,
,
,
,
,
, τ
τ
( ) ( ) ( )
∫ ∫ ∫
+
∫ ∫ ∫
×
x
L
y
L
z
L
I
z
y
x
x
L
y
L
z
L
I
I
x y z
x y z
u
d
v
d
w
d
w
v
u
f
L
L
L
z
y
x
u
d
v
d
w
d
t
w
v
u
I
T
w
v
u
k ,
,
,
,
,
,
,
, 2
, (4a)
( ) ( ) ( ) +
∫ ∫ ∫
∂
∂
=
∫ ∫ ∫
t y
L
z
L
V
z
y
x
L
y
L
z
L
z
y
x y z
x y z
d
v
d
w
d
x
w
v
x
V
T
w
v
x
D
L
L
z
y
u
d
v
d
w
d
t
w
v
u
V
L
L
L
z
y
x
0
,
,
,
,
,
,
,
,
, τ
τ
( ) ( ) ( ) ×
∫ ∫ ∫
∂
∂
+
∫ ∫ ∫
∂
∂
+
t x
L
y
L
y
x
t x
L
z
L
V
z
x x y
x z z
z
v
u
V
L
L
y
x
d
u
d
w
d
x
w
y
u
V
T
w
y
u
D
L
L
z
x
0
0
,
,
,
,
,
,
,
,
,
τ
τ
τ
( ) ( ) ( ) ( ) −
∫ ∫ ∫
−
×
x
L
y
L
z
L
V
I
z
y
x
V
x y z
u
d
v
d
w
d
t
w
v
u
V
t
w
v
u
I
T
w
v
u
k
L
L
L
z
y
x
d
u
d
v
d
T
z
v
u
D ,
,
,
,
,
,
,
,
,
,
,
, ,
τ
( ) ( ) ( )
∫ ∫ ∫
+
∫ ∫ ∫
−
x
L
y
L
z
L
V
z
y
x
x
L
y
L
z
L
V
V
z
y
x x y z
x y z
u
d
v
d
w
d
w
v
u
f
L
L
L
z
y
x
u
d
v
d
w
d
t
w
v
u
V
T
w
v
u
k
L
L
L
z
y
x
,
,
,
,
,
,
,
, 2
, .
We determine spatio-temporal distributions of concentrations of point defects as the same series
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
8
( ) ( ) ( ) ( ) ( )
∑
=
=
N
n
n
n
n
n
n t
e
z
c
y
c
x
c
a
t
z
y
x
1
0 ,
,
, ρ
ρ
ρ .
Parameters anρ should be determined in future. Substitution of the series into Eqs.(4a) leads to the
following results
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫ ∫
−
=
∑
=
=
N
n
t y
L
z
L
I
n
n
nI
z
y
x
N
n
nI
n
n
n
nI
y z
v
d
w
d
T
w
v
x
D
z
c
y
c
a
L
L
L
z
y
t
e
z
s
y
s
x
s
n
a
z
y
x
1 0
1
3
3
,
,
,
π
π
( ) ( ) ( ) ( ) ( ) ( ) ( ) −
∑ ∫ ∫ ∫
−
×
=
N
n
t x
L
z
L
I
n
n
nI
n
nI
z
y
x
n
nI
x z
d
u
d
w
d
T
w
y
u
D
z
c
x
c
e
y
s
a
L
L
L
z
x
x
s
d
e
1 0
,
,
, τ
τ
π
τ
τ
( ) ( ) ( ) ( ) ( ) ( )×
∫ ∫ ∫
−
∑ ∫ ∫ ∫
−
=
x
L
y
L
z
L
I
I
N
n
t x
L
y
L
I
n
n
nI
n
nI
z
y
x x y z
x y
T
v
v
u
k
d
u
d
v
d
T
z
v
u
D
y
c
x
c
e
z
s
a
L
L
L
y
x
,
,
,
,
,
, ,
1 0
τ
τ
π
( ) ( ) ( ) ( ) ( ) ( ) ( )×
∫ ∫ ∫ ∑
−





∑
×
=
=
x
L
y
L
z
L
N
n
n
n
n
nI
z
y
x
z
y
x
N
n
nI
n
n
n
nI
x y z
w
c
v
c
u
c
a
L
L
L
z
y
x
L
L
L
z
y
x
u
d
v
d
w
d
t
e
w
c
v
c
u
c
a
1
2
1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∫ ∫ ∫
+
∑
×
=
x
L
y
L
z
L
I
N
n
V
I
nV
n
n
n
nV
nI
x y z
u
d
v
d
w
d
w
v
u
f
u
d
v
d
w
d
T
v
v
u
k
t
e
w
c
v
c
u
c
a
t
e ,
,
,
,
,
1
,
z
y
x L
L
L
z
y
x
×
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫ ∫
−
=
∑
=
=
N
n
t y
L
z
L
V
n
n
nV
z
y
x
N
n
nV
n
n
n
nV
y z
v
d
w
d
T
w
v
x
D
z
c
y
c
a
L
L
L
z
y
t
e
z
s
y
s
x
s
n
a
z
y
x
1 0
1
3
3
,
,
,
π
π
( ) ( ) ( ) ( ) ( ) ( ) ( ) −
∑ ∫ ∫ ∫
−
×
=
N
n
t x
L
z
L
V
n
n
nV
n
nV
z
y
x
n
nV
x z
d
u
d
w
d
T
w
y
u
D
z
c
x
c
e
y
s
a
L
L
L
z
x
x
s
d
e
1 0
,
,
, τ
τ
π
τ
τ
( ) ( ) ( ) ( ) ( ) ( )×
∫ ∫ ∫
−
∑ ∫ ∫ ∫
−
=
x
L
y
L
z
L
V
V
N
n
t x
L
y
L
V
n
n
nV
n
nV
z
y
x x y z
x y
T
v
v
u
k
d
u
d
v
d
T
z
v
u
D
y
c
x
c
e
z
s
a
L
L
L
y
x
,
,
,
,
,
, ,
1 0
τ
τ
π
( ) ( ) ( ) ( ) ( ) ( ) ( )×
∫ ∫ ∫ ∑
−





∑
×
=
=
x
L
y
L
z
L
N
n
n
n
n
nI
z
y
x
z
y
x
N
n
nI
n
n
n
nV
x y z
w
c
v
c
u
c
a
L
L
L
z
y
x
L
L
L
z
y
x
u
d
v
d
w
d
t
e
w
c
v
c
u
c
a
1
2
1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∫ ∫ ∫
+
∑
×
=
x
L
y
L
z
L
V
N
n
V
I
nV
n
n
n
nV
nI
x y z
u
d
v
d
w
d
w
v
u
f
u
d
v
d
w
d
T
v
v
u
k
t
e
w
c
v
c
u
c
a
t
e ,
,
,
,
,
1
,
z
y
x L
L
L
z
y
x
× .
We used orthogonality condition of functions of the considered series framework the heterostruc-
ture to calculate coefficients anρ. The coefficients an could be calculated for any quantity of terms
N. In the common case equations for the required coefficients could be written as
( ) ( )
[ ] ( ) ( )
[ ] ×
∑ ∫ ∫ ∫






−
+
+
−
−
=
∑
−
=
=
N
n
t L L
n
y
n
y
n
nI
x
N
n
nI
nI
z
y
x
x y
y
c
n
L
y
s
y
L
x
c
n
a
L
t
e
n
a
L
L
L
1 0 0 0
2
1
6
5
2
2
2
1
2
2
2
2
1
2
1
π
π
π
( ) ( ) ( )
[ ] ( ) ( )
{
∑ ∫ ∫ +
−
∫






−
+
×
=
N
n
t L
n
nI
y
L
nI
n
z
n
I
x
z
x
s
x
n
a
L
d
e
x
d
y
d
z
d
z
c
n
L
z
s
z
T
z
y
x
D
1 0 0
2
0
2
2
1
1
2
,
,
,
π
τ
τ
π
( )
[ ] ( ) ( ) ( )
[ ] ( )
[ ]×
∫ ∫ −






−
+
+



−
+
+
y z
L L
n
n
z
n
z
I
n
x
x
y
c
z
d
z
c
n
L
z
s
z
L
T
z
y
x
D
x
c
n
L
L
0 0
2
1
1
2
2
2
,
,
,
1
2
π
π
( ) ( ) ( ) ( )
[ ] ( ) −
∫






−
+
+
×
z
L
nI
n
z
n
z
I
nI d
e
x
d
y
d
z
d
z
c
n
L
z
s
z
L
T
z
y
x
D
d
e
x
d
y
d
0
1
2
2
2
,
,
, τ
τ
π
τ
τ
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
9
( ) ( )
[ ] ( ) ( )
[ ] ×
∑ ∫ ∫ ∫






−
+
+






−
+
+
−
=
N
n
t L L
n
y
n
y
n
x
n
x
nI
z
x y
y
c
n
L
y
s
y
L
x
c
n
L
x
s
x
L
n
a
L 1 0 0 0
2
1
2
2
2
1
2
2
2
2
1
π
π
π
( )
[ ] ( ) ( ) ( ) ( )
[ ]
∑ ∫



+
−
+
−
∫ −
×
=
N
n
L
n
x
x
nI
nI
L
nI
I
n
x
z
x
c
n
L
L
t
e
a
d
e
x
d
y
d
z
d
T
z
y
x
D
z
c
1 0
2
0
1
2
2
2
,
,
,
2
1
π
τ
τ
( )} ( ) ( )
[ ] ( ) ( )
[ ]
∫ ∫



+
−
+






−
+
+
+
y z
L L
n
z
z
I
I
n
y
n
y
n z
c
n
L
L
T
z
y
x
k
y
c
n
L
y
s
y
L
x
s
x
0 0
, 1
2
2
,
,
,
1
2
2
2
2
π
π
( )} ( ) ( ) ( ) ( )
[ ] {
∑ ∫ ∫ +






−
+
+
−
+
=
N
n
L L
y
n
x
n
x
nV
nI
nV
nI
n
x y
L
x
c
n
L
x
s
x
L
t
e
t
e
a
a
x
d
y
d
z
d
z
s
z
1 0 0
1
2
2
2
2
π
( ) ( )
[ ] ( ) ( ) ( )
[ ]
∫ ×






−
+
+



−
+
+
z
L
n
z
n
z
V
I
n
y
n z
d
z
c
n
L
z
s
z
L
T
z
y
x
k
y
c
n
L
y
s
y
0
, 1
2
2
2
,
,
,
1
2
2
2
π
π
( ) ( )
[ ] ( ) ( )
[ ] ( )×
∑ ∫ ∫ ∫






−
+






−
+
+
×
=
N
n
L L L
I
n
y
n
n
x
n
x y z
T
z
y
x
f
y
c
n
L
y
s
y
x
c
n
L
x
s
x
x
d
y
d
1 0 0 0
,
,
,
1
1
π
π
( ) ( )
[ ] x
d
y
d
z
d
z
c
n
L
z
s
z
L n
z
n
z






−
+
+
× 1
2
2
2
π
( ) ( )
[ ] ( ) ( )
[ ] ×
∑ ∫ ∫ ∫






−
+
+
−
−
=
∑
−
=
=
N
n
t L L
n
y
n
y
n
nV
x
N
n
nV
nV
z
y
x
x y
y
c
n
L
y
s
y
L
x
c
n
a
L
t
e
n
a
L
L
L
1 0 0 0
2
1
6
5
2
2
2
1
2
2
2
2
1
2
1
π
π
π
( ) ( ) ( )
[ ] ( ) ( )
{
∑ ∫ ∫ +
−
∫






−
+
×
=
N
n
t L
n
nV
y
L
nV
n
z
n
V
x
z
x
s
x
n
a
L
d
e
x
d
y
d
z
d
z
c
n
L
z
s
z
T
z
y
x
D
1 0 0
2
0
2
2
1
1
2
,
,
,
π
τ
τ
π
( )
[ ] ( ) ( ) ( )
[ ] ( )
[ ]×
∫ ∫ −






−
+
+



−
+
+
y z
L L
n
n
z
n
z
V
n
x
x
y
c
z
d
z
c
n
L
z
s
z
L
T
z
y
x
D
x
c
n
L
L
0 0
2
1
1
2
2
2
,
,
,
1
2
π
π
( ) ( ) ( ) ( )
[ ] ( ) −
∫






−
+
+
×
z
L
nV
n
z
n
z
V
nV
d
e
x
d
y
d
z
d
z
c
n
L
z
s
z
L
T
z
y
x
D
d
e
x
d
y
d
0
1
2
2
2
,
,
, τ
τ
π
τ
τ
( ) ( )
[ ] ( ) ( )
[ ] ×
∑ ∫ ∫ ∫






−
+
+






−
+
+
−
=
N
n
t L L
n
y
n
y
n
x
n
x
nV
z
x y
y
c
n
L
y
s
y
L
x
c
n
L
x
s
x
L
n
a
L 1 0 0 0
2
1
2
2
2
1
2
2
2
2
1
π
π
π
( )
[ ] ( ) ( ) ( ) ( )
[ ]
∑ ∫



+
−
+
−
∫ −
×
=
N
n
L
n
x
x
nV
nV
L
nV
V
n
x
z
x
c
n
L
L
t
e
a
d
e
x
d
y
d
z
d
T
z
y
x
D
z
c
1 0
2
0
1
2
2
2
,
,
,
2
1
π
τ
τ
( )} ( ) ( )
[ ] ( ) ( )
[ ]
∫ ∫



+
−
+






−
+
+
+
y z
L L
n
z
z
V
V
n
y
n
y
n z
c
n
L
L
T
z
y
x
k
y
c
n
L
y
s
y
L
x
s
x
0 0
, 1
2
2
,
,
,
1
2
2
2
2
π
π
( )} ( ) ( ) ( ) ( )
[ ] {
∑ ∫ ∫ +






−
+
+
−
+
=
N
n
L L
y
n
x
n
x
nV
nI
nV
nI
n
x y
L
x
c
n
L
x
s
x
L
t
e
t
e
a
a
x
d
y
d
z
d
z
s
z
1 0 0
1
2
2
2
2
π
( ) ( )
[ ] ( ) ( ) ( )
[ ]
∫ ×






−
+
+



−
+
+
z
L
n
z
n
z
V
I
n
y
n z
d
z
c
n
L
z
s
z
L
T
z
y
x
k
y
c
n
L
y
s
y
0
, 1
2
2
2
,
,
,
1
2
2
2
π
π
( ) ( )
[ ] ( ) ( )
[ ] ( )×
∑ ∫ ∫ ∫






−
+






−
+
+
×
=
N
n
L L L
V
n
y
n
n
x
n
x y z
T
z
y
x
f
y
c
n
L
y
s
y
x
c
n
L
x
s
x
x
d
y
d
1 0 0 0
,
,
,
1
1
π
π
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
10
( ) ( )
[ ] x
d
y
d
z
d
z
c
n
L
z
s
z
L n
z
n
z






−
+
+
× 1
2
2
2
π
.
In the final form relations for required parameters could be written as
( )







 −
+
−
+
±
+
−
=
A
y
b
y
b
A
b
b
A
b
a nI
nV
nI
2
3
4
2
3
4
3
4
4
4
λ
γ
,
nI
nI
nI
nI
nI
nI
nI
nV
a
a
a
a
χ
λ
δ
γ +
+
−
=
2
,
where ( ) ( ) ( ) ( )
[ ] ( )
{
∫ ∫ ∫ +
+






−
+
+
=
x y z
L L L
y
n
n
x
n
x
n
n L
y
s
y
x
c
n
L
x
s
x
L
T
z
y
x
k
t
e
0 0 0
, 2
1
2
2
2
,
,
,
2
π
γ ρ
ρ
ρ
ρ
( )
[ ] ( ) ( )
[ ] x
d
y
d
z
d
z
c
n
L
z
s
z
L
y
c
n
L
n
z
n
z
n
y






−
+
+



−
+ 1
2
2
2
1
2
2 π
π
, ( )×
∫
=
t
n
x
n e
n
L 0
2
2
1
τ
π
δ ρ
ρ
( ) ( )
[ ] ( ) ( )
[ ] ( ) [
∫ ∫ ∫ −






−
+






−
+
×
x y z
L L L
n
z
n
n
y
n y
d
z
d
T
z
y
x
D
z
c
n
L
z
s
z
y
c
n
L
y
s
y
0 0 0
1
,
,
,
1
2
1
2
ρ
π
π
( )] ( ) ( ) ( )
[ ] ( )
[ ] {
∫ ∫ ∫ ∫ +
−






−
+
+
+
−
t L L L
z
n
n
x
n
x
n
y
n
x y z
L
y
c
x
c
n
L
x
s
x
L
e
n
L
d
x
d
x
c
0 0 0 0
2
2
1
1
2
2
2
1
2
π
τ
π
τ ρ
( ) ( )
[ ] ( ) ( ) ( )
{
∫ ∫ +
+



−
+
+
t L
n
n
z
n
z
n
x
x
s
x
e
n
L
d
x
d
y
d
z
d
T
z
y
x
D
z
c
n
L
z
s
z
0 0
2
2
2
1
,
,
,
1
2
2
2 τ
π
τ
π
ρ
ρ
( )
[ ] ( ) ( )
[ ] ( )
[ ] ( ) ×
∫ ∫ −






−
+
+



−
+
+
y z
L L
n
n
y
n
y
n
x
x z
d
T
z
y
x
D
z
c
y
c
n
L
y
s
y
L
x
c
n
L
L
0 0
,
,
,
2
1
1
2
1
2 ρ
π
π
( )
t
e
n
L
L
L
d
x
d
y
d n
z
y
x
ρ
π
τ 6
5
2
2
2
−
× , ( ) ( )
[ ] ( )
[ ]
∫ ∫



+
−
+






−
+
=
x y
L L
n
y
y
n
x
n
nIV y
c
n
L
L
x
c
n
L
x
s
x
0 0
1
2
2
1
π
π
χ
( )} ( ) ( ) ( )
[ ] ( ) ( )
t
e
t
e
x
d
y
d
z
d
z
c
n
L
z
s
z
L
T
z
y
x
k
y
s
y nV
nI
L
n
z
n
z
V
I
n
z
∫






−
+
+
+
0
, 1
2
2
2
,
,
,
2
π
,
( ) ( )
[ ] ( ) ( )
[ ] ( ) ( )
[ ]
∫ ∫ ∫ ×






−
+






−
+






−
+
=
x y z
L L L
n
z
n
n
y
n
n
x
n
n z
c
n
L
z
s
z
y
c
n
L
y
s
y
x
c
n
L
x
s
x
0 0 0
1
1
1
π
π
π
λ ρ
( ) x
d
y
d
z
d
T
z
y
x
f ,
,
,
ρ
× , 2
2
4 nI
nI
nI
nV
b χ
γ
γ
γ −
= , nI
nI
nV
nI
nI
nI
nI
nV
b γ
χ
δ
χ
δ
δ
γ
γ −
−
= 2
3
2 ,
2
2
3
4
8 b
b
y
A −
+
= , ( ) 2
2
2
2 nI
nI
nV
nI
nI
nV
nI
nV
nI
nI
nV
b χ
λ
λ
δ
χ
δ
γ
γ
λ
δ
γ −
+
−
+
= , ×
= nI
b λ
2
1
nI
nI
nV
nI
nV
λ
χ
δ
δ
γ −
× ,
4
3
3 3
2
3 3
2
3b
b
q
p
q
q
p
q
y −
+
+
−
−
+
= , 2
4
2
3
4
2
9
3
b
b
b
b
p
−
= ,
( ) 3
4
2
4
1
3
2
3
3
54
27
9
2 b
b
b
b
b
b
q +
−
= .
We determine distributions of concentrations of simplest complexes of radiation defects in space
and time as the following functional series
( ) ( ) ( ) ( ) ( )
∑
=
Φ
=
Φ
N
n
n
n
n
n
n t
e
z
c
y
c
x
c
a
t
z
y
x
1
0 ,
,
, ρ
ρ
ρ .
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
11
Here anΦρ are the coefficients, which should be determined. Let us previously transform the Eqs.
(6) to the following integro-differential form
( ) ( ) ( ) ×
∫ ∫ ∫
Φ
=
∫ ∫ ∫Φ Φ
t y
L
z
L
I
I
x
L
y
L
z
L
I
z
y
x y z
x y z
d
v
d
w
d
x
w
v
x
T
w
v
x
D
u
d
v
d
w
d
t
w
v
u
L
L
L
z
y
x
0
,
,
,
,
,
,
,
,
, τ
∂
τ
∂
( ) ( ) ( )
∫ ∫ ∫ ×
+
∫ ∫ ∫
Φ
+
× Φ
Φ
t x
L
y
L
I
y
x
t x
L
z
L
I
I
z
x
z
y x y
x z
T
z
v
u
D
L
L
y
x
d
u
d
w
d
y
w
y
u
T
w
y
u
D
L
L
z
x
L
L
z
y
0
0
,
,
,
,
,
,
,
,
, τ
∂
τ
∂
( ) ( ) ( ) −
∫ ∫ ∫
+
Φ
×
x
L
y
L
z
L
I
I
z
y
x
I
x y z
u
d
v
d
w
d
w
v
u
I
T
w
v
u
k
L
L
L
z
y
x
d
u
d
v
d
z
z
v
u
τ
τ
∂
τ
∂
,
,
,
,
,
,
,
,
, 2
, (6a)
( ) ( ) ( )
∫ ∫ ∫
+
∫ ∫ ∫
− Φ
x
L
y
L
z
L
I
z
y
x
x
L
y
L
z
L
I
z
y
x x y z
x y z
u
d
v
d
w
d
w
v
u
f
L
L
L
z
y
x
u
d
v
d
w
d
w
v
u
I
T
w
v
u
k
L
L
L
z
y
x
,
,
,
,
,
,
,
, τ
( ) ( ) ( ) ×
∫ ∫ ∫
Φ
=
∫ ∫ ∫Φ Φ
t y
L
z
L
V
V
x
L
y
L
z
L
V
z
y
x y z
x y z
d
v
d
w
d
x
w
v
x
T
w
v
x
D
u
d
v
d
w
d
t
w
v
u
L
L
L
z
y
x
0
,
,
,
,
,
,
,
,
, τ
∂
τ
∂
( ) ( ) ( )
∫ ∫ ∫ ×
+
∫ ∫ ∫
Φ
+
× Φ
Φ
t x
L
y
L
V
y
x
t x
L
z
L
V
V
z
x
z
y x y
x z
T
z
v
u
D
L
L
y
x
d
u
d
w
d
y
w
y
u
T
w
y
u
D
L
L
z
x
L
L
z
y
0
0
,
,
,
,
,
,
,
,
, τ
∂
τ
∂
( ) ( ) ( ) −
∫ ∫ ∫
+
Φ
×
x
L
y
L
z
L
V
V
z
y
x
V
x y z
u
d
v
d
w
d
w
v
u
V
T
w
v
u
k
L
L
L
z
y
x
d
u
d
v
d
z
z
v
u
τ
τ
∂
τ
∂
,
,
,
,
,
,
,
,
, 2
,
( ) ( ) ( )
∫ ∫ ∫
+
∫ ∫ ∫
− Φ
x
L
y
L
z
L
V
z
y
x
x
L
y
L
z
L
V
z
y
x x y z
x y z
u
d
v
d
w
d
w
v
u
f
L
L
L
z
y
x
u
d
v
d
w
d
w
v
u
V
T
w
v
u
k
L
L
L
z
y
x
,
,
,
,
,
,
,
, τ .
Substitution of the previously considered series in the Eqs.(6a) leads to the following form
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×
∑ ∫ ∫ ∫
−
=
∑
−
=
Φ
=
Φ
N
n
t y
L
z
L
n
n
nI
n
I
n
z
y
x
N
n
nI
n
n
n
I
n
y z
w
c
v
c
t
e
x
s
a
n
L
L
L
z
y
t
e
z
s
y
s
x
s
n
a
z
y
x
1 0
1
3
3
π
π
( ) ( ) ( ) ( ) ×
∑ ∫ ∫ ∫
−
×
=
Φ
Φ
Φ
N
n
t x
L
z
L
I
n
n
I
n
z
y
x
I
x z
d
u
d
w
d
T
w
v
u
D
w
c
u
c
a
L
L
L
z
x
d
v
d
w
d
T
w
v
x
D
1 0
,
,
,
,
,
, τ
π
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) +
∑ ∫ ∫ ∫
−
×
=
Φ
Φ
Φ
Φ
N
n
t x
L
y
L
I
n
n
I
n
n
I
n
z
y
x
I
n
n
x y
d
u
d
v
d
T
z
v
u
D
v
c
u
c
t
e
z
s
a
n
L
L
L
y
x
t
e
y
s
n
1 0
,
,
, τ
π
( ) ( ) ( ) ×
∫ ∫ ∫
+
∫ ∫ ∫
+ Φ
x
L
y
L
z
L
I
x
L
y
L
z
L
I
I
z
y
x x y z
x y z
u
d
v
d
w
d
w
v
u
f
u
d
v
d
w
d
w
v
u
I
T
w
v
u
k
L
L
L
z
y
x
,
,
,
,
,
,
,
, 2
, τ
( ) ( )
∫ ∫ ∫
−
×
x
L
y
L
z
L
I
z
y
x
z
y
x x y z
u
d
v
d
w
d
w
v
u
I
T
w
v
u
k
L
L
L
z
y
x
L
L
L
z
y
x
τ
,
,
,
,
,
,
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×
∑ ∫ ∫ ∫
−
=
∑
−
=
Φ
=
Φ
N
n
t y
L
z
L
n
n
nV
n
V
n
z
y
x
N
n
nV
n
n
n
V
n
y z
w
c
v
c
t
e
x
s
a
n
L
L
L
z
y
t
e
z
s
y
s
x
s
n
a
z
y
x
1 0
1
3
3
π
π
( ) ( ) ( ) ( ) ×
∑ ∫ ∫ ∫
−
×
=
Φ
Φ
N
n
t x
L
z
L
V
n
n
z
y
x
V
x z
d
u
d
w
d
T
w
v
u
D
w
c
u
c
n
L
L
L
z
x
d
v
d
w
d
T
w
v
x
D
1 0
,
,
,
,
,
, τ
π
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫ ∫
−
×
=
Φ
Φ
Φ
Φ
N
n
t x
L
y
L
V
n
n
V
n
n
z
y
x
V
n
n
V
n
x y
d
u
d
v
d
T
z
v
u
D
v
c
u
c
t
e
z
s
n
L
L
L
y
x
t
e
y
s
a
1 0
,
,
, τ
π
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
12
( ) ( ) ( ) ×
∫ ∫ ∫
+
∫ ∫ ∫
+
× Φ
Φ
x
L
y
L
z
L
V
x
L
y
L
z
L
V
V
z
y
x
V
n
x y z
x y z
u
d
v
d
w
d
w
v
u
f
u
d
v
d
w
d
w
v
u
V
T
w
v
u
k
L
L
L
z
y
x
a ,
,
,
,
,
,
,
, 2
,
τ
( ) ( )
∫ ∫ ∫
−
×
x
L
y
L
z
L
V
z
y
x
z
y
x x y z
u
d
v
d
w
d
w
v
u
V
T
w
v
u
k
L
L
L
z
y
x
L
L
L
z
y
x
τ
,
,
,
,
,
, .
We used orthogonality condition of functions of the considered series framework the heterostruc-
ture to calculate coefficients anΦρ. The coefficients anΦρ could be calculated for any quantity of
terms N. In the common case equations for the required coefficients could be written as
( ) ( )
[ ] ( ) ( )
[ ] ×
∑∫ ∫ ∫






−
+
+
−
−
=
∑
−
=
=
Φ
Φ
N
n
t L L
n
y
n
y
n
x
N
n
I
n
I
n
z
y
x
x y
y
c
n
L
y
s
y
L
x
c
L
t
e
n
a
L
L
L
1 0 0 0
1
6
5
2
2
2
1
2
2
2
2
1
2
1
π
π
π
( ) ( ) ( )
[ ] ( ) ( )
{
∑∫ ∫ +
−
∫






−
+
×
=
Φ
Φ
Φ
N
n
t L
n
L
I
n
n
z
n
I
I
n
x
z
x
s
x
d
e
x
d
y
d
z
d
z
c
n
L
z
s
z
T
z
y
x
D
n
a
1 0 0
0
2
2
2
1
1
2
,
,
,
π
τ
τ
π
( )
[ ] ( )
[ ] ( ) ( ) ( )
[ ] ×
∫ ∫






−
+
−



−
+
+ Φ
y z
L L
n
z
n
I
n
n
x
x x
d
y
d
z
d
z
c
n
L
z
s
z
T
z
y
x
D
y
c
x
c
n
L
L
0 0
1
2
,
,
,
2
1
1
2
2 π
π
( ) ( ) ( )
[ ] ( ) ( )
[ ]
∑ ∫ ∫ ∫



+
−
+






−
+
−
×
=
Φ
Φ
Φ
N
n
t L L
n
y
n
n
x
n
I
n
x
y
I
n
I
n
x y
y
c
n
L
y
s
y
x
c
n
L
x
s
x
n
a
L
d
L
n
e
a
1 0 0 0
2
2
1
2
2
2
1
2
2
1
π
π
π
τ
τ
} ( )
[ ] ( ) ( ) ( ) ( )
[ ]
∑ ∫ ∫



+
−
+
∫ −
+
=
Φ
Φ
Φ
Φ
N
n
t L
n
x
I
n
I
n
L
I
n
I
n
y
x
z
x
c
n
L
e
n
a
d
e
x
d
y
d
z
d
T
z
y
x
D
y
c
L
1 0 0
3
3
0
1
2
1
,
,
,
2
1
π
τ
π
τ
τ
( )} ( ) ( )
[ ] ( ) ( ) ( )
[ ]
∫



+
−
∫






−
+
+
z
y L
n
z
I
I
L
n
y
n
n z
c
n
L
T
z
y
x
k
t
z
y
x
I
y
c
n
L
y
s
y
x
s
x
0
,
2
0
1
2
,
,
,
,
,
,
1
2 π
π
( )} ( ) ( ) ( )
[ ] ( )
[ ]
∑ ∫ ∫ ∫



+
−






−
+
−
+
=
Φ
Φ
N
n
t L L
n
y
n
x
n
I
n
I
n
n
x y
y
c
n
L
x
c
n
L
x
s
x
e
n
a
x
d
y
d
z
d
z
s
z
1 0 0 0
3
3
1
2
1
2
1
π
π
τ
π
( )} ( ) ( )
[ ] ( ) ( ) ×
∑
+
∫






−
+
+
=
Φ
N
n
I
n
L
I
n
z
n
n
n
a
x
d
y
d
z
d
t
z
y
x
I
T
z
y
x
k
z
c
n
L
z
s
z
y
s
y
z
1
3
3
0
1
,
,
,
,
,
,
1
2 π
π
( ) ( ) ( )
[ ] ( ) ( )
[ ] ( )
[ ]
∫ ∫ ∫ ∫



+
−






−
+






−
+
× Φ
t L L L
n
z
n
y
n
n
x
n
I
n
x y z
z
c
n
L
y
c
n
L
y
s
y
x
c
n
L
x
s
x
e
0 0 0 0
1
2
1
2
1
2 π
π
π
τ
( )} ( ) x
d
y
d
z
d
z
y
x
f
z
s
z I
n
,
,
Φ
+
( ) ( )
[ ] ( ) ( )
[ ] ×
∑∫ ∫ ∫






−
+
+
−
−
=
∑
−
=
=
Φ
Φ
N
n
t L L
n
y
n
y
n
x
N
n
V
n
V
n
z
y
x
x y
y
c
n
L
y
s
y
L
x
c
L
t
e
n
a
L
L
L
1 0 0 0
1
6
5
2
2
2
1
2
2
2
2
1
2
1
π
π
π
( ) ( ) ( )
[ ] ( ) ( )
{
∑∫ ∫ +
−
∫






−
+
×
=
Φ
Φ
Φ
N
n
t L
n
L
V
n
n
z
n
V
V
n
x
z
x
s
x
d
e
x
d
y
d
z
d
z
c
n
L
z
s
z
T
z
y
x
D
n
a
1 0 0
0
2
2
2
1
1
2
,
,
,
π
τ
τ
π
( )
[ ] ( )
[ ] ( ) ( ) ( )
[ ] ×
∫ ∫






−
+
−



−
+
+ Φ
y z
L L
n
z
n
V
n
n
x
x x
d
y
d
z
d
z
c
n
L
z
s
z
T
z
y
x
D
y
c
x
c
n
L
L
0 0
1
2
,
,
,
2
1
1
2
2 π
π
( ) ( ) ( )
[ ] ( ) ( )
[ ]
∑ ∫ ∫ ∫



+
−
+






−
+
−
×
=
Φ
Φ
Φ
N
n
t L L
n
y
n
n
x
n
V
n
x
y
V
n
V
n
x y
y
c
n
L
y
s
y
x
c
n
L
x
s
x
n
a
L
d
L
n
e
a
1 0 0 0
2
2
1
2
2
2
1
2
2
1
π
π
π
τ
τ
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
13
} ( )
[ ] ( ) ( ) ( ) ( )
[ ]
∑ ∫ ∫



+
−
+
∫ −
+
=
Φ
Φ
Φ
Φ
N
n
t L
n
x
V
n
V
n
L
V
n
V
n
y
x
z
x
c
n
L
e
n
a
d
e
x
d
y
d
z
d
T
z
y
x
D
y
c
L
1 0 0
3
3
0
1
2
1
,
,
,
2
1
π
τ
π
τ
τ
( )} ( ) ( )
[ ] ( ) ( ) ( )
[ ]
∫



+
−
∫






−
+
+
z
y L
n
z
V
V
L
n
y
n
n z
c
n
L
T
z
y
x
k
t
z
y
x
V
y
c
n
L
y
s
y
x
s
x
0
,
2
0
1
2
,
,
,
,
,
,
1
2 π
π
( )} ( ) ( ) ( )
[ ] ( )
[ ]
∑ ∫ ∫ ∫



+
−






−
+
−
+
=
Φ
Φ
N
n
t L L
n
y
n
x
n
V
n
V
n
n
x y
y
c
n
L
x
c
n
L
x
s
x
e
n
a
x
d
y
d
z
d
z
s
z
1 0 0 0
3
3
1
2
1
2
1
π
π
τ
π
( )} ( ) ( )
[ ] ( ) ( ) ×
∑
+
∫






−
+
+
=
Φ
N
n
V
n
L
V
n
z
n
n
n
a
x
d
y
d
z
d
t
z
y
x
V
T
z
y
x
k
z
c
n
L
z
s
z
y
s
y
z
1
3
3
0
1
,
,
,
,
,
,
1
2 π
π
( ) ( ) ( )
[ ] ( ) ( )
[ ] ( )
[ ]
∫ ∫ ∫ ∫



+
−






−
+






−
+
× Φ
t L L L
n
z
n
y
n
n
x
n
V
n
x y z
z
c
n
L
y
c
n
L
y
s
y
x
c
n
L
x
s
x
e
0 0 0 0
1
2
1
2
1
2 π
π
π
τ
( )} ( ) x
d
y
d
z
d
z
y
x
f
z
s
z V
n
,
,
Φ
+ .
3. DISCUSSION
In this section we compare spatial distributions of concentrations of dopant in a heterostructure
with overlayer and without the overlayer. Fig. 2 shows result of the above comparison. One can
find from the figure, that using the overlayer gives a possibility to manufacture more shallow p-n-
junction in comparison with p-n-junction in the heterostructure without the overlayer. At the same
time analysis of redistribution of radiation defects shows, that implantation of ions of dopant
through the overlayer gives a possibility to decrease quantity of radiation defects in the epitaxial
layer.
Fig.2. Distributions of concentration of implanted dopant in the considered heterostructure.
Curves 1 and 3 describe distributions of concentration of implanted dopant in the heterostructure
with overlayer. Curve 1 describes distribution of concentration of implanted dopant for the case,
when dopant diffusion coefficient in the overlayer is larger, than in the epitaxial layer. Curve 2
describes distribution of concentration of implanted dopant for the case, when dopant diffusion
coefficient in the overlayer is smaller, than in the epitaxial layer. Curve 2 describes distribution of
concentration of implanted dopant in the heterostructure without overlayer.
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
14
It should be noted, that manufacturing the considered implanted-junction rectifier near interface
between layers of heterostructure gives a possibility to increase sharpness of the p-n-junction and
at the same time to increase homogeneity of concentration of the dopant in the enriched area [15-
19]. In this situation it is practicably to choose appropriate thickness of epitaxial layer.
4. CONCLUSIONS
In this paper we analyzed distributions of concentration of implanted dopant in heterostructure
with overlayer and without overlayer during manufacture an implanted -heterojunction rectifier.
We determine conditions, which correspond to decrease depth of the p-n-junction.
ACKNOWLEDGEMENTS
This work is supported by the agreement of August 27, 2013 № 02.В.49.21.0003 between The
Ministry of education and science of the Russian Federation and Lobachevsky State University of
Nizhni Novgorod, educational fellowship for scientific research of Government of Russia, educa-
tional fellowship for scientific research of Government of Nizhny Novgorod region of Russia and
educational fellowship for scientific research of Nizhny Novgorod State University of Architec-
ture and Civil Engineering.
REFERENCES
[1] V.I. Lachin, N.S. Savelov. Electronics (Phoenix, Rostov-na-Donu, 2001).
[2] D. Fathi, B. Forouzandeh. Accurate analysis of global interconnects in nano-FPGAs. Nano. Vol. 4
(3). P. 171-176 (2009).
[3] D. Fathi, B. Forouzandeh, N. Masoumi. New enhanced noise analysis in active mixers in nanoscale
technologies. Nano. Vol. 4 (4). P. 233-238 (2009).
[4] S.A. Chachuli, P.N.A. Fasyar, N. Soin, N.M. Karim, N. Yusop. Pareto ANOVA analysis for CMOS
0.18 µm two-stage Op-amp. Mat. Sci. Sem. Proc. Vol. 24. P. 9-14 (2014).
[5] Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. High-performance InGaP/GaAs
pnp δ-doped heterojunction bipolar transistor Semiconductors. Vol. 43 (7). P. 971-974 (2009).
[6] J.Y. Choi, Ch. Park. A Thyristor-Only Input ESD Protection Scheme for CMOS RF ICs. Circuits and
Systems. Vol. 2 (3). P. 170-182 (2011).
[7] M.J. Kumar, T.V. Singh. Quantum confinement effects in strained silicon MOSFETs MOSFETs. Int.
J. Nanoscience. Vol. 7 (2-3). P. 81-84 (2008).
[8] P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi,
R.G. Gordon. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxy-
sulfide buffer layer. Appl. Phys. Lett. Vol. 102 (5). P. 053901-053905 (2013).
[9] R. Laajimi, M. Masmoudi. High-Performance CMOS Current Mirrors: Application to Linear Volt-
age-to-Current Converter Used for Two-Stage Operational Amplifier. Circuits and Systems. Vol. 3
(4). P. 311-316 (2012).
[10] A. Ghorbani, A. Ghanaatian. A Novel High CMRR, Low Power and Low Voltage COS with QFG.
Circuits and Systems. Vol. 3 (3). P. 263-268 (2012).
[11] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991).
[12] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev,
1979, in Russian).
[13] P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicin. Rev. Mod.
Phys. Vol. 61 (2). P. 289-388 (1989).
[14] M.L. Krasnov, A.I. Kiselev, G.I. Makarenko. Integral equations ("Science", Moscow, 1976).
[15] E.L. Pankratov. Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure
by optimized laser annealing. J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010).
[16] E.L. Pankratov, E.A. Bulaeva. Doping of materials during manufacture p-n-junctions and bipolar
transistors. Analytical approaches to model technological approaches and ways of optimization of dis-
tributions of dopants. Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013).
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
15
[17] E.L. Pankratov, E.A. Bulaeva. Doping of materials during manufacture p-n-junctions and bipolar
transistors. Analytical approaches to model technological approaches and ways of optimization of dis-
tributions of dopants. J. Comp. Theor. Nanoscience. Vol. 12 (6). P. 976-990 (2014).
[18] E.L. Pankratov, E.A. Bulaeva. An approach to manufacture of bipolar transistors in thin film struc-
tures. On the method of optimization. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014).
[19] E.L. Pankratov, E.A. Bulaeva. An approach to decrease dimensions of field-effect transistors without
p-n-junctions. Int. J. Mod. Phys. B. Vol. 28 (27). P. 1450190-1-1450190-17 (2014).
AUTHORS
Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary
school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University:
from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra-
diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio-
physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro-
structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo-
rod State University of Architecture and Civil Engineering. 2012-2015 Full Doctor course in Radiophysical
Department of Nizhny Novgorod State University. Since 2015 E.L. Pankratov is an Associate Professor of
Nizhny Novgorod State University. He has 135 published papers in area of his researches.
Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of
village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school
“Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec-
ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she
is a student of courses “Translator in the field of professional communication” and “Design (interior art)”
in the University. Since 2014 E.A. Bulaeva is in a PhD program in Radiophysical Department of Nizhny
Novgorod State University. She has 90 published papers in area of her researches.

More Related Content

Similar to INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS

OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...ijrap
 
Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...ijfcstjournal
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ijoejournal
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...jedt_journal
 
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ijaceeejournal
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...antjjournal
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...antjjournal
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...antjjournal
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...ijrap
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...ijrap
 
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...ijoejournal
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ijfcstjournal
 
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...ijcsitcejournal
 
Decreasing of quantity of radiation de fects in
Decreasing of quantity of radiation de fects inDecreasing of quantity of radiation de fects in
Decreasing of quantity of radiation de fects inijcsa
 
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...BRNSS Publication Hub
 
DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...
DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...
DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...msejjournal
 
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...msejjournal
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...ijrap
 

Similar to INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS (20)

OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
 
Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
 
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
 
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
 
Decreasing of quantity of radiation de fects in
Decreasing of quantity of radiation de fects inDecreasing of quantity of radiation de fects in
Decreasing of quantity of radiation de fects in
 
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...
DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...
DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...
 
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
 

Recently uploaded

Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 

Recently uploaded (20)

Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 

INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS

  • 1. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 DOI : 10.5121/ijitmc.2016.4101 1 INFLUENCE OF OVERLAYERS ON DEPTH OF IM- PLANTED-HETEROJUNCTION RECTIFIERS E.L. Pankratov1 , E.A. Bulaeva1,2 1 Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950, Russia 2 Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky street, Nizhny Novgorod, 603950, Russia ABSTRACT In this paper we compare distributions of concentrations of dopants in an implanted-junction rectifiers in a heterostructures with an overlayer and without the overlayer. Conditions for decreasing of depth of the considered p-n-junction have been formulated. KEYWORDS Heterostructures; implanted-junction rectifiers: overlayers. 1. INTRODUCTION In the present time integration rate of elements of integrated circuits intensively increasing. At the same time dimensions of the above elements decreases. To increase integration rate of elements of integrated circuits and to increase dimensions of the same elements are have been elaborated different approaches [1-10]. In the present paper we consider a heterostructure with two layers: a substrate and an epitaxial layer. The heterostructure could include into itself a third layer: an overlayer (see Figs. 1). We assume, that type of conductivity of the substrate (n or p) is known. The epitaxial layer has been doped by ion implantation to manufacture required type of conduc- tivity (p or n). Farther we consider annealing of radiation defects. Main aim of the present paper is comparison two ways of ion doping of the epitaxial layer: ion doping of epitaxial layer and ion doping of epitaxial layer through the overlayer. Fig. 1a. Heterostructure, which consist of a substrate and an epitaxial layer with initial distribution of implanted dopant
  • 2. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 2 x D(x) D1 D2 0 L a fC(x) D0 Substrate Epitaxial layer b Overlayer Fig. 1b. Heterostructure, which consist of a substrate, an epitaxial layer and an overlayer with initial distri- bution of implanted dopant 2. METHOD OF SOLUTION To solve our aim we determine spatio-temporal distributions of concentrations of dopants. We calculate the required distributions by solving the second Fick's law in the following form [1] ( ) ( ) ( ) ( )       +       +       = z t z y x C D z y t z y x C D y x t z y x C D x t t z y x C C C C ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , , , , , , , , , , , , . (1) Boundary and initial conditions for the equations are ( ) 0 , , , 0 = ∂ ∂ = x x t z y x C , ( ) 0 , , , = ∂ ∂ = x L x x t z y x C , ( ) 0 , , , 0 = ∂ ∂ = y y t z y x C , ( ) 0 , , , = ∂ ∂ = y L x y t z y x C , ( ) 0 , , , 0 = ∂ ∂ = z z t z y x C , ( ) 0 , , , = ∂ ∂ = z L x z t z y x C , C(x,y,z,0)=f (x,y,z). (2) Here the function C(x,y,z,t) describes the distribution of concentration of dopant in space and time. DС describes distribution the dopant diffusion coefficient in space and as a function of tem- perature of annealing. Dopant diffusion coefficient will be changed with changing of materials of heterostructure, heating and cooling of heterostructure during annealing of dopant or radiation defects (with account Arrhenius law). Dependences of dopant diffusion coefficient on coordinate in heterostructure, temperature of annealing and concentrations of dopant and radiation defects could be written as [11-13] ( ) ( ) ( ) ( ) ( ) ( )         + +       + = 2 * 2 2 * 1 , , , , , , 1 , , , , , , 1 , , , V t z y x V V t z y x V T z y x P t z y x C T z y x D D L C ς ς ξ γ γ . (3) Here function DL (x,y,z,T) describes dependences of dopant diffusion coefficient on coordinate and temperature of annealing T. Function P (x,y,z,T) describes the same dependences of the limit of solubility of dopant. The parameter γ is integer and usually could be varying in the following
  • 3. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 3 interval γ ∈[1,3]. The parameter describes quantity of charged defects, which interacting (in aver- age) with each atom of dopant. Ref.[11] describes more detailed information about dependence of dopant diffusion coefficient on concentration of dopant. Spatio-temporal distribution of concen- tration of radiation vacancies described by the function V (x,y,z,t). The equilibrium distribution of concentration of vacancies has been denoted as V* . It is known, that doping of materials by diffu- sion did not leads to radiation damage of materials. In this situation ζ1=ζ2=0. We determine spa- tio-temporal distributions of concentrations of radiation defects by solving the following system of equations [12,13] ( ) ( ) ( ) ( ) ( ) ( ) × −       ∂ ∂ ∂ ∂ +       ∂ ∂ ∂ ∂ = ∂ ∂ T z y x k y t z y x I T z y x D y x t z y x I T z y x D x t t z y x I I I I I , , , , , , , , , , , , , , , , , , , ( ) ( ) ( ) ( ) ( ) ( ) t z y x V t z y x I T z y x k z t z y x I T z y x D z t z y x I V I I , , , , , , , , , , , , , , , , , , , 2 −       ∂ ∂ ∂ ∂ + × (4) ( ) ( ) ( ) ( ) ( ) ( )× −       ∂ ∂ ∂ ∂ +       ∂ ∂ ∂ ∂ = ∂ ∂ T z y x k y t z y x V T z y x D y x t z y x V T z y x D x t t z y x V V V V V , , , , , , , , , , , , , , , , , , , ( ) ( ) ( ) ( ) ( ) ( ) t z y x V t z y x I T z y x k z t z y x V T z y x D z t z y x V V I V , , , , , , , , , , , , , , , , , , , 2 −       ∂ ∂ ∂ ∂ + × . Boundary and initial conditions for these equations are ( ) 0 , , , 0 = ∂ ∂ = x x t z y x ρ , ( ) 0 , , , = ∂ ∂ = x L x x t z y x ρ , ( ) 0 , , , 0 = ∂ ∂ = y y t z y x ρ , ( ) 0 , , , = ∂ ∂ = y L y y t z y x ρ , ( ) 0 , , , 0 = ∂ ∂ = z z t z y x ρ , ( ) 0 , , , = ∂ ∂ = z L z z t z y x ρ , ρ (x,y,z,0)=fρ (x,y,z). (5) Here ρ =I,V. We denote spatio-temporal distribution of concentration of radiation interstitials as I (x,y,z,t). Dependences of the diffusion coefficients of point radiation defects on coordinate and temperature have been denoted as Dρ(x,y,z,T). The quadric on concentrations terms of Eqs. (4) describes generation divacancies and diinterstitials. Parameter of recombination of point radiation defects and parameters of generation of simplest complexes of point radiation defects have been denoted as the following functions kI,V(x,y,z,T), kI,I(x,y,z,T) and kV,V(x,y,z,T), respectively. Now let us calculate distributions of concentrations of divacancies ΦV(x,y,z,t) and diinterstitials ΦI(x,y,z,t) in space and time by solving the following system of equations [12,13] ( ) ( ) ( ) ( ) ( ) +       Φ +       Φ = Φ Φ Φ y t z y x T z y x D y x t z y x T z y x D x t t z y x I I I I I ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , , , , , , , , , , , , , , , ( ) ( ) ( ) ( ) ( ) ( ) t z y x I T z y x k t z y x I T z y x k z t z y x T z y x D z I I I I I , , , , , , , , , , , , , , , , , , 2 , − +       Φ + Φ ∂ ∂ ∂ ∂ (6) ( ) ( ) ( ) ( ) ( ) +       Φ +       Φ = Φ Φ Φ y t z y x T z y x D y x t z y x T z y x D x t t z y x V V V V V ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , , , , , , , , , , , , , , , ( ) ( ) ( ) ( ) ( ) ( ) t z y x V T z y x k t z y x V T z y x k z t z y x T z y x D z V V V V V , , , , , , , , , , , , , , , , , , 2 , − +       Φ + Φ ∂ ∂ ∂ ∂ . Boundary and initial conditions for these equations are
  • 4. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 4 ( ) 0 , , , 0 = ∂ Φ ∂ = x x t z y x ρ , ( ) 0 , , , = ∂ Φ ∂ = x L x x t z y x ρ , ( ) 0 , , , 0 = ∂ Φ ∂ = y y t z y x ρ , ( ) 0 , , , = ∂ Φ ∂ = y L y y t z y x ρ , ( ) 0 , , , 0 = ∂ Φ ∂ = z z t z y x ρ , ( ) 0 , , , = ∂ Φ ∂ = z L z z t z y x ρ , ΦI (x,y,z,0)=fΦI (x,y,z), ΦV (x,y,z,0)=fΦV (x,y,z). (7) The functions DΦρ(x,y,z,T) describe dependences of the diffusion coefficients of the above com- plexes of radiation defects on coordinate and temperature. The functions kI(x,y,z,T) and kV(x,y,z, T) describe the parameters of decay of these complexes on coordinate and temperature. To determine spatio-temporal distribution of concentration of dopant we transform the Eq.(1) to the following integro-differential form ( ) ( ) ( ) ( ) ( ) × ∫ ∫ ∫       + + = ∫ ∫ ∫ t y L z L L x L y L z L z y x y z x y z V w v x V V w v x V T w v x D u d v d w d t w v u C L L L z y x 0 2 * 2 2 * 1 , , , , , , 1 , , , , , , τ ς τ ς ( ) ( ) ( ) ( ) ( ) ( ) × ∫ ∫ ∫       + +       + × t x L z L L z y x z T z y x P w y u C T w y u D L L z y d x w v x C T w v x P w v x C 0 , , , , , , 1 , , , , , , , , , , , , 1 γ γ γ γ τ ξ τ ∂ τ ∂ τ ξ ( ) ( ) ( ) ( ) ( ) × ∫ ∫ ∫ +       + + × t x L y L L z x x y T z v u D L L z x d y w y u C V w y u V V w y u V 0 2 * 2 2 * 1 , , , , , , , , , , , , 1 τ ∂ τ ∂ τ ς τ ς ( ) ( ) ( ) ( ) ( ) ( ) +       +       + + × y x L L y x d z z v u C T z y x P z v u C V z v u V V z v u V τ ∂ τ ∂ τ ξ τ ς τ ς γ γ , , , , , , , , , 1 , , , , , , 1 2 * 2 2 * 1 ( ) ∫ ∫ ∫ + x L y L z L z y x x y z u d v d w d w v u f L L L z y x , , . (1a) Now let us determine solution of Eq.(1a) by Bubnov-Galerkin approach [14]. To use the ap- proach we consider solution of the Eq.(1a) as the following series ( ) ( ) ( ) ( ) ( ) ∑ = = N n nC n n n nC t e z c y c x c a t z y x C 0 0 , , , . Here ( ) ( ) [ ] 2 2 2 0 2 2 exp − − − + + − = z y x C nC L L L t D n t e π , cn(χ)=cos(π nχ/Lχ). Number of terms N in the series is finite. The above series is almost the same with solution of linear Eq.(1) (i.e. for ξ=0) and averaged dopant diffusion coefficient D0. Substitution of the series into Eq.(1a) leads to the following result ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫    ×      ∑ + − = ∑ = = t y L z L N n nC n n n nC z y N n nC n n n C y z e w c v c x c a L L z y t e z s y s x s n a z y x 0 1 1 3 2 1 γ τ π ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∑       + +    × = N n n n nC L v c x s a T w v x D V w v x V V w v x V T w v x P 1 2 * 2 2 * 1 , , , , , , , , , 1 , , , τ ς τ ς ξ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ×            ∑ + − × = t x L z L N m mC m m m mC z x nC n x z T w y u P e w c y c u c a L L z x d e w c n 0 1 , , , 1 γ γ ξ τ τ τ
  • 5. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 5 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑       + + × = τ τ τ ς τ ς d e w c y s u c n V w y u V V w y u V T w y u D N n nC n n n L 1 2 * 2 2 * 1 , , , , , , 1 , , , ( ) ( ) ( ) ( ) ( ) ( ) × ∫ ∫ ∫            ∑ + − × = t x L y L N n nC n n n nC L y x nC x y e z c v c u c a T z v u P T z v u D L L y x a 0 1 , , , 1 , , , γ γ τ ξ ( ) ( ) ( ) ( ) ( ) ( ) ( ) × + ∑       + + × = z y x N n nC n n n nC L L L z y x d e z s v c u c a n V z v u V V z v u V τ τ τ ς τ ς 1 2 * 2 2 * 1 , , , , , , 1 ( ) ∫ ∫ ∫ × x L y L z L x y z u d v d w d w v u f , , , where sn(χ)=sin(πnχ/Lχ). We used condition of orthogonality to determine coefficients an in the considered series. The coefficients an could be calculated for any quantity of terms N. In the common case the relations could be written as ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫    ×      ∑ + − = ∑ − = = t L L L N n nC n n n nC L z y N n nC nC z y x x y z e z c y c x c a T z y x D L L t e n a L L L 0 0 0 0 1 2 1 6 5 2 2 2 1 , , , 2 γ τ π π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∑       + +    × = N n nC n n n nC e z c y c x s n a V z y x V V z y x V T z y x P 1 2 * 2 2 * 1 2 , , , , , , 1 , , , τ τ ς τ ς ξ γ ( ) ( ) [ ] ( ) ( ) [ ] ( )× ∫ ∫ ∫ ∫ −       − +       − + × t L L L L n z n n y n x y z T z y x D d x d y d z d z c n L z s z y c n L y s y 0 0 0 0 , , , 1 1 τ π π ( ) ( ) ( ) ( ) ( ) ( ) ( )    + +            ∑ + × = * 1 1 , , , 1 , , , 1 , , , V z y x V T z y x P e z c y c x c a T z y x D N n nC n n n nC L τ ς ξ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ∑ ×       − +       + +    + = N n nC n x n n a x c n L x s x V z y x V V z y x V V z y x V 1 2 * 2 2 * 1 2 * 2 2 1 , , , , , , 1 , , , π τ ς τ ς τ ς ( ) ( ) ( ) ( ) ( ) ( ) [ ] × −       − + × 2 2 2 1 2 2 π τ π τ π y x n z n nC n n n z x L L d x d y d z d z c n L z s z e z c y s x c L L ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫    + +            ∑ + × = t L L L N n nC n n n nC x y z V z y x V T z y x P e z c y c x c a 0 0 0 0 2 * 2 2 1 , , , 1 , , , 1 τ ς ξ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] × ∑       − +    + = N n n x n n n n nC L x c n L x s x z s y c x c n a T z y x D V z y x V 1 * 1 1 , , , , , , π τ ς ( ) ( ) [ ] ( ) ( ) ( ) [ ] ∑ ∫ ×       − + +       − + × = N n L n x n nC n y n x x c n L x s x d x d y d z d e y c n L y s y 1 0 1 1 π τ τ π ( ) ( ) [ ] ( ) ( ) [ ] ( ) ∫ ∫       − +       − + × y z L L n z n n y n x d y d z d z y x f z c n L z s z y c n L y s y 0 0 , , 1 1 π π . As an example for γ=0 we obtain ( ) ( ) [ ] ( ) ( ) [ ] ( ) ( ) { ∫ ∫ ∫ +       − +       − + = x y z L L L n n y n n y n nC x s x y d z d z y x f z c n L z s z y c n L y s y a 0 0 0 , , 1 1 π π
  • 6. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 6 ( ) [ ] ( ) ( ) ( ) ( ) [ ] ( )        ∫ ∫ ∫ ∫ ×       − +    − × t L L L L n y n n n x n x y z T z y x D y c n L y s y y c x s n x d n L x c 0 0 0 0 , , , 1 2 2 1 π π ( ) ( ) [ ] ( ) ( ) ( ) ( ) ×       +       + +       − + × T z y x P V z y x V V z y x V z c n L z s z n y n , , , 1 , , , , , , 1 1 2 * 2 2 * 1 γ ξ τ ς τ ς π ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( )× ∫ ∫ ∫ ∫       − + + × t L L L n n n y n n nC nC n x y z z c y s x c n L x s x x c e d e x d y d z d z c 0 0 0 0 2 1 π τ τ τ ( ) ( ) [ ] ( ) ( ) ( ) ( ) ×       + +       +       − + × 2 * 2 2 * 1 , , , , , , 1 , , , 1 1 V z y x V V z y x V T z y x P z c n L z s z n y n τ ς τ ς ξ π γ ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) { ∫ ∫ ∫ ×       − + + × t L L n n n x n n nC L x y y s y c x c n L x s x x c e d x d y d z d T z y x D 0 0 0 1 , , , π τ τ ( ) [ ] ( ) ( ) ( ) ( ) ( ) ∫    + +       +    − + × z L L n n y V z y x V T z y x P T z y x D z s y c n L y 0 2 * 2 2 , , , 1 , , , 1 , , , 2 1 τ ς ξ π γ ( ) ( ) 1 6 5 2 2 2 * 1 , , , −     −       + t e n L L L d x d y d z d V z y x V nC z z z π τ τ ς . For γ=1 one can obtain the following relation to determine required parameters ( ) ( ) ( ) ( ) ∫ ∫ ∫ + ± − = x y z L L L n n n n n n n nC x d y d z d z y x f z c y c x c a 0 0 0 2 , , 4 2 α β α β , where ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫ ×       + + = t L L L n n n nC z y n x y z V z y x V V z y x V z c y c x s e n L L 0 0 0 0 2 * 2 2 * 1 2 , , , , , , 1 2 2 τ ς τ ς τ π ξ α ( ) ( ) ( ) ( ) [ ] ( ) ( ) [ ] × +       − +       − + × n L L d x d y d z d z c n L z s z y c n L y s y T z y x P T z y x D z x n z n n y n L 2 2 1 1 , , , , , , π ξ τ π π ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) [ ] × ∫ ∫ ∫ ∫       − −       − + × t L L L n z n L n n x n n nC x y z z c n L z s z T z y x P T z y x D z c x c n L x s x x c e 0 0 0 0 1 , , , , , , 1 π π τ ( ) ( ) ( ) ( ) ( ) ( ) × +       + + × n L L d x d y d y s z d V z y x V V z y x V T z y x P T z y x D y x n L 2 2 * 2 2 * 1 2 2 , , , , , , 1 , , , , , , π ξ τ τ ς τ ς ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∫ ∫ ∫ ∫       + + × t L L L L n n n nC x y z V z y x V V z y x V T z y x P T z y x D z s y c x c e 0 0 0 0 2 * 2 2 * 1 , , , , , , 1 , , , , , , 2 τ ς τ ς τ ( ) ( ) [ ] ( ) ( ) [ ] τ π π d x d y d z d y c n L y s y x c n L x s x n y n n x n       − +       − + × 1 1 , ( )× ∫ = t nC z y n e n L L 0 2 2 τ π β
  • 7. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 7 ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ∫ ∫ ∫ ×       + +       − + × x y z L L L n n y n n n V z y x V V z y x V z c y c n L y s y y c x s 0 0 0 2 * 2 2 * 1 , , , , , , 1 1 2 τ ς τ ς π ( ) ( ) ( ) [ ] ( ) ( ) ( )× ∫ ∫ ∫ +       − + × t L L n n nC z x n z n L x y y s x c e n L L d x d y d z d z c n L z s z T z y x D 0 0 0 2 2 2 1 , , , τ π τ π ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) × ∫       + +       − + × z L n L n x n V z y x V V z y x V z c T z y x D x c n L x s x 0 2 * 2 2 * 1 , , , , , , 1 , , , 1 τ ς τ ς π ( ) ( ) [ ] ( ) ( ) ( ) [ ] × ∫ ∫       − + +       − + × t L n x n nC y x n z n x x c n L x s x e n L L d x d y d z d z c n L z s z 0 0 2 1 2 1 π τ π τ π ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ∫ ∫ ×       + +       − + × y z L L L n y n n V z y x V V z y x V T z y x D y c n L y s y x c 0 0 2 * 2 2 * 1 , , , , , , 1 , , , 1 τ ς τ ς π ( ) ( ) ( ) 6 5 2 2 2 2 n t e L L L d x d y d y c z d z s nC z y x n n π τ − × . The same approach could be used for calculation parameters an for different values of parameter γ. However the relations are bulky and will not be presented in the paper. Advantage of the ap- proach is absent of necessity to join dopant concentration on interfaces of heterostructure. The same Bubnov-Galerkin approach has been used for solution the Eqs.(4). Previously we trans- form the differential equations to the following integro- differential form ( ) ( ) ( ) + ∫ ∫ ∫ ∂ ∂ = ∫ ∫ ∫ t y L z L I z y x L y L z L z y x y z x y z d v d w d x w v x I T w v x D L L z y u d v d w d t w v u I L L L z y x 0 , , , , , , , , , τ τ ( ) ( ) ( ) ( )× ∫ ∫ ∫ − ∫ ∫ ∫ ∂ ∂ + x L y L z L V I z y x t x L z L I z x x y z x z t w v u I T w v u k L L L z y x d u d w d x w y u I T w y u D L L z x , , , , , , , , , , , , , 0 τ τ ( ) ( ) ( ) × − ∫ ∫ ∫ ∂ ∂ + × z y x t x L y L I y x L L L z y x d u d v d T z v u D z z v u I L L y x u d v d w d t w v u V x y 0 , , , , , , , , , τ τ ( ) ( ) ( ) ∫ ∫ ∫ + ∫ ∫ ∫ × x L y L z L I z y x x L y L z L I I x y z x y z u d v d w d w v u f L L L z y x u d v d w d t w v u I T w v u k , , , , , , , , 2 , (4a) ( ) ( ) ( ) + ∫ ∫ ∫ ∂ ∂ = ∫ ∫ ∫ t y L z L V z y x L y L z L z y x y z x y z d v d w d x w v x V T w v x D L L z y u d v d w d t w v u V L L L z y x 0 , , , , , , , , , τ τ ( ) ( ) ( ) × ∫ ∫ ∫ ∂ ∂ + ∫ ∫ ∫ ∂ ∂ + t x L y L y x t x L z L V z x x y x z z z v u V L L y x d u d w d x w y u V T w y u D L L z x 0 0 , , , , , , , , , τ τ τ ( ) ( ) ( ) ( ) − ∫ ∫ ∫ − × x L y L z L V I z y x V x y z u d v d w d t w v u V t w v u I T w v u k L L L z y x d u d v d T z v u D , , , , , , , , , , , , , τ ( ) ( ) ( ) ∫ ∫ ∫ + ∫ ∫ ∫ − x L y L z L V z y x x L y L z L V V z y x x y z x y z u d v d w d w v u f L L L z y x u d v d w d t w v u V T w v u k L L L z y x , , , , , , , , 2 , . We determine spatio-temporal distributions of concentrations of point defects as the same series
  • 8. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 8 ( ) ( ) ( ) ( ) ( ) ∑ = = N n n n n n n t e z c y c x c a t z y x 1 0 , , , ρ ρ ρ . Parameters anρ should be determined in future. Substitution of the series into Eqs.(4a) leads to the following results ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ − = ∑ = = N n t y L z L I n n nI z y x N n nI n n n nI y z v d w d T w v x D z c y c a L L L z y t e z s y s x s n a z y x 1 0 1 3 3 , , , π π ( ) ( ) ( ) ( ) ( ) ( ) ( ) − ∑ ∫ ∫ ∫ − × = N n t x L z L I n n nI n nI z y x n nI x z d u d w d T w y u D z c x c e y s a L L L z x x s d e 1 0 , , , τ τ π τ τ ( ) ( ) ( ) ( ) ( ) ( )× ∫ ∫ ∫ − ∑ ∫ ∫ ∫ − = x L y L z L I I N n t x L y L I n n nI n nI z y x x y z x y T v v u k d u d v d T z v u D y c x c e z s a L L L y x , , , , , , , 1 0 τ τ π ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∫ ∫ ∫ ∑ −      ∑ × = = x L y L z L N n n n n nI z y x z y x N n nI n n n nI x y z w c v c u c a L L L z y x L L L z y x u d v d w d t e w c v c u c a 1 2 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∫ ∫ ∫ + ∑ × = x L y L z L I N n V I nV n n n nV nI x y z u d v d w d w v u f u d v d w d T v v u k t e w c v c u c a t e , , , , , 1 , z y x L L L z y x × ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ − = ∑ = = N n t y L z L V n n nV z y x N n nV n n n nV y z v d w d T w v x D z c y c a L L L z y t e z s y s x s n a z y x 1 0 1 3 3 , , , π π ( ) ( ) ( ) ( ) ( ) ( ) ( ) − ∑ ∫ ∫ ∫ − × = N n t x L z L V n n nV n nV z y x n nV x z d u d w d T w y u D z c x c e y s a L L L z x x s d e 1 0 , , , τ τ π τ τ ( ) ( ) ( ) ( ) ( ) ( )× ∫ ∫ ∫ − ∑ ∫ ∫ ∫ − = x L y L z L V V N n t x L y L V n n nV n nV z y x x y z x y T v v u k d u d v d T z v u D y c x c e z s a L L L y x , , , , , , , 1 0 τ τ π ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∫ ∫ ∫ ∑ −      ∑ × = = x L y L z L N n n n n nI z y x z y x N n nI n n n nV x y z w c v c u c a L L L z y x L L L z y x u d v d w d t e w c v c u c a 1 2 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∫ ∫ ∫ + ∑ × = x L y L z L V N n V I nV n n n nV nI x y z u d v d w d w v u f u d v d w d T v v u k t e w c v c u c a t e , , , , , 1 , z y x L L L z y x × . We used orthogonality condition of functions of the considered series framework the heterostruc- ture to calculate coefficients anρ. The coefficients an could be calculated for any quantity of terms N. In the common case equations for the required coefficients could be written as ( ) ( ) [ ] ( ) ( ) [ ] × ∑ ∫ ∫ ∫       − + + − − = ∑ − = = N n t L L n y n y n nI x N n nI nI z y x x y y c n L y s y L x c n a L t e n a L L L 1 0 0 0 2 1 6 5 2 2 2 1 2 2 2 2 1 2 1 π π π ( ) ( ) ( ) [ ] ( ) ( ) { ∑ ∫ ∫ + − ∫       − + × = N n t L n nI y L nI n z n I x z x s x n a L d e x d y d z d z c n L z s z T z y x D 1 0 0 2 0 2 2 1 1 2 , , , π τ τ π ( ) [ ] ( ) ( ) ( ) [ ] ( ) [ ]× ∫ ∫ −       − + +    − + + y z L L n n z n z I n x x y c z d z c n L z s z L T z y x D x c n L L 0 0 2 1 1 2 2 2 , , , 1 2 π π ( ) ( ) ( ) ( ) [ ] ( ) − ∫       − + + × z L nI n z n z I nI d e x d y d z d z c n L z s z L T z y x D d e x d y d 0 1 2 2 2 , , , τ τ π τ τ
  • 9. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 9 ( ) ( ) [ ] ( ) ( ) [ ] × ∑ ∫ ∫ ∫       − + +       − + + − = N n t L L n y n y n x n x nI z x y y c n L y s y L x c n L x s x L n a L 1 0 0 0 2 1 2 2 2 1 2 2 2 2 1 π π π ( ) [ ] ( ) ( ) ( ) ( ) [ ] ∑ ∫    + − + − ∫ − × = N n L n x x nI nI L nI I n x z x c n L L t e a d e x d y d z d T z y x D z c 1 0 2 0 1 2 2 2 , , , 2 1 π τ τ ( )} ( ) ( ) [ ] ( ) ( ) [ ] ∫ ∫    + − +       − + + + y z L L n z z I I n y n y n z c n L L T z y x k y c n L y s y L x s x 0 0 , 1 2 2 , , , 1 2 2 2 2 π π ( )} ( ) ( ) ( ) ( ) [ ] { ∑ ∫ ∫ +       − + + − + = N n L L y n x n x nV nI nV nI n x y L x c n L x s x L t e t e a a x d y d z d z s z 1 0 0 1 2 2 2 2 π ( ) ( ) [ ] ( ) ( ) ( ) [ ] ∫ ×       − + +    − + + z L n z n z V I n y n z d z c n L z s z L T z y x k y c n L y s y 0 , 1 2 2 2 , , , 1 2 2 2 π π ( ) ( ) [ ] ( ) ( ) [ ] ( )× ∑ ∫ ∫ ∫       − +       − + + × = N n L L L I n y n n x n x y z T z y x f y c n L y s y x c n L x s x x d y d 1 0 0 0 , , , 1 1 π π ( ) ( ) [ ] x d y d z d z c n L z s z L n z n z       − + + × 1 2 2 2 π ( ) ( ) [ ] ( ) ( ) [ ] × ∑ ∫ ∫ ∫       − + + − − = ∑ − = = N n t L L n y n y n nV x N n nV nV z y x x y y c n L y s y L x c n a L t e n a L L L 1 0 0 0 2 1 6 5 2 2 2 1 2 2 2 2 1 2 1 π π π ( ) ( ) ( ) [ ] ( ) ( ) { ∑ ∫ ∫ + − ∫       − + × = N n t L n nV y L nV n z n V x z x s x n a L d e x d y d z d z c n L z s z T z y x D 1 0 0 2 0 2 2 1 1 2 , , , π τ τ π ( ) [ ] ( ) ( ) ( ) [ ] ( ) [ ]× ∫ ∫ −       − + +    − + + y z L L n n z n z V n x x y c z d z c n L z s z L T z y x D x c n L L 0 0 2 1 1 2 2 2 , , , 1 2 π π ( ) ( ) ( ) ( ) [ ] ( ) − ∫       − + + × z L nV n z n z V nV d e x d y d z d z c n L z s z L T z y x D d e x d y d 0 1 2 2 2 , , , τ τ π τ τ ( ) ( ) [ ] ( ) ( ) [ ] × ∑ ∫ ∫ ∫       − + +       − + + − = N n t L L n y n y n x n x nV z x y y c n L y s y L x c n L x s x L n a L 1 0 0 0 2 1 2 2 2 1 2 2 2 2 1 π π π ( ) [ ] ( ) ( ) ( ) ( ) [ ] ∑ ∫    + − + − ∫ − × = N n L n x x nV nV L nV V n x z x c n L L t e a d e x d y d z d T z y x D z c 1 0 2 0 1 2 2 2 , , , 2 1 π τ τ ( )} ( ) ( ) [ ] ( ) ( ) [ ] ∫ ∫    + − +       − + + + y z L L n z z V V n y n y n z c n L L T z y x k y c n L y s y L x s x 0 0 , 1 2 2 , , , 1 2 2 2 2 π π ( )} ( ) ( ) ( ) ( ) [ ] { ∑ ∫ ∫ +       − + + − + = N n L L y n x n x nV nI nV nI n x y L x c n L x s x L t e t e a a x d y d z d z s z 1 0 0 1 2 2 2 2 π ( ) ( ) [ ] ( ) ( ) ( ) [ ] ∫ ×       − + +    − + + z L n z n z V I n y n z d z c n L z s z L T z y x k y c n L y s y 0 , 1 2 2 2 , , , 1 2 2 2 π π ( ) ( ) [ ] ( ) ( ) [ ] ( )× ∑ ∫ ∫ ∫       − +       − + + × = N n L L L V n y n n x n x y z T z y x f y c n L y s y x c n L x s x x d y d 1 0 0 0 , , , 1 1 π π
  • 10. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 10 ( ) ( ) [ ] x d y d z d z c n L z s z L n z n z       − + + × 1 2 2 2 π . In the final form relations for required parameters could be written as ( )         − + − + ± + − = A y b y b A b b A b a nI nV nI 2 3 4 2 3 4 3 4 4 4 λ γ , nI nI nI nI nI nI nI nV a a a a χ λ δ γ + + − = 2 , where ( ) ( ) ( ) ( ) [ ] ( ) { ∫ ∫ ∫ + +       − + + = x y z L L L y n n x n x n n L y s y x c n L x s x L T z y x k t e 0 0 0 , 2 1 2 2 2 , , , 2 π γ ρ ρ ρ ρ ( ) [ ] ( ) ( ) [ ] x d y d z d z c n L z s z L y c n L n z n z n y       − + +    − + 1 2 2 2 1 2 2 π π , ( )× ∫ = t n x n e n L 0 2 2 1 τ π δ ρ ρ ( ) ( ) [ ] ( ) ( ) [ ] ( ) [ ∫ ∫ ∫ −       − +       − + × x y z L L L n z n n y n y d z d T z y x D z c n L z s z y c n L y s y 0 0 0 1 , , , 1 2 1 2 ρ π π ( )] ( ) ( ) ( ) [ ] ( ) [ ] { ∫ ∫ ∫ ∫ + −       − + + + − t L L L z n n x n x n y n x y z L y c x c n L x s x L e n L d x d x c 0 0 0 0 2 2 1 1 2 2 2 1 2 π τ π τ ρ ( ) ( ) [ ] ( ) ( ) ( ) { ∫ ∫ + +    − + + t L n n z n z n x x s x e n L d x d y d z d T z y x D z c n L z s z 0 0 2 2 2 1 , , , 1 2 2 2 τ π τ π ρ ρ ( ) [ ] ( ) ( ) [ ] ( ) [ ] ( ) × ∫ ∫ −       − + +    − + + y z L L n n y n y n x x z d T z y x D z c y c n L y s y L x c n L L 0 0 , , , 2 1 1 2 1 2 ρ π π ( ) t e n L L L d x d y d n z y x ρ π τ 6 5 2 2 2 − × , ( ) ( ) [ ] ( ) [ ] ∫ ∫    + − +       − + = x y L L n y y n x n nIV y c n L L x c n L x s x 0 0 1 2 2 1 π π χ ( )} ( ) ( ) ( ) [ ] ( ) ( ) t e t e x d y d z d z c n L z s z L T z y x k y s y nV nI L n z n z V I n z ∫       − + + + 0 , 1 2 2 2 , , , 2 π , ( ) ( ) [ ] ( ) ( ) [ ] ( ) ( ) [ ] ∫ ∫ ∫ ×       − +       − +       − + = x y z L L L n z n n y n n x n n z c n L z s z y c n L y s y x c n L x s x 0 0 0 1 1 1 π π π λ ρ ( ) x d y d z d T z y x f , , , ρ × , 2 2 4 nI nI nI nV b χ γ γ γ − = , nI nI nV nI nI nI nI nV b γ χ δ χ δ δ γ γ − − = 2 3 2 , 2 2 3 4 8 b b y A − + = , ( ) 2 2 2 2 nI nI nV nI nI nV nI nV nI nI nV b χ λ λ δ χ δ γ γ λ δ γ − + − + = , × = nI b λ 2 1 nI nI nV nI nV λ χ δ δ γ − × , 4 3 3 3 2 3 3 2 3b b q p q q p q y − + + − − + = , 2 4 2 3 4 2 9 3 b b b b p − = , ( ) 3 4 2 4 1 3 2 3 3 54 27 9 2 b b b b b b q + − = . We determine distributions of concentrations of simplest complexes of radiation defects in space and time as the following functional series ( ) ( ) ( ) ( ) ( ) ∑ = Φ = Φ N n n n n n n t e z c y c x c a t z y x 1 0 , , , ρ ρ ρ .
  • 11. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 11 Here anΦρ are the coefficients, which should be determined. Let us previously transform the Eqs. (6) to the following integro-differential form ( ) ( ) ( ) × ∫ ∫ ∫ Φ = ∫ ∫ ∫Φ Φ t y L z L I I x L y L z L I z y x y z x y z d v d w d x w v x T w v x D u d v d w d t w v u L L L z y x 0 , , , , , , , , , τ ∂ τ ∂ ( ) ( ) ( ) ∫ ∫ ∫ × + ∫ ∫ ∫ Φ + × Φ Φ t x L y L I y x t x L z L I I z x z y x y x z T z v u D L L y x d u d w d y w y u T w y u D L L z x L L z y 0 0 , , , , , , , , , τ ∂ τ ∂ ( ) ( ) ( ) − ∫ ∫ ∫ + Φ × x L y L z L I I z y x I x y z u d v d w d w v u I T w v u k L L L z y x d u d v d z z v u τ τ ∂ τ ∂ , , , , , , , , , 2 , (6a) ( ) ( ) ( ) ∫ ∫ ∫ + ∫ ∫ ∫ − Φ x L y L z L I z y x x L y L z L I z y x x y z x y z u d v d w d w v u f L L L z y x u d v d w d w v u I T w v u k L L L z y x , , , , , , , , τ ( ) ( ) ( ) × ∫ ∫ ∫ Φ = ∫ ∫ ∫Φ Φ t y L z L V V x L y L z L V z y x y z x y z d v d w d x w v x T w v x D u d v d w d t w v u L L L z y x 0 , , , , , , , , , τ ∂ τ ∂ ( ) ( ) ( ) ∫ ∫ ∫ × + ∫ ∫ ∫ Φ + × Φ Φ t x L y L V y x t x L z L V V z x z y x y x z T z v u D L L y x d u d w d y w y u T w y u D L L z x L L z y 0 0 , , , , , , , , , τ ∂ τ ∂ ( ) ( ) ( ) − ∫ ∫ ∫ + Φ × x L y L z L V V z y x V x y z u d v d w d w v u V T w v u k L L L z y x d u d v d z z v u τ τ ∂ τ ∂ , , , , , , , , , 2 , ( ) ( ) ( ) ∫ ∫ ∫ + ∫ ∫ ∫ − Φ x L y L z L V z y x x L y L z L V z y x x y z x y z u d v d w d w v u f L L L z y x u d v d w d w v u V T w v u k L L L z y x , , , , , , , , τ . Substitution of the previously considered series in the Eqs.(6a) leads to the following form ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∑ ∫ ∫ ∫ − = ∑ − = Φ = Φ N n t y L z L n n nI n I n z y x N n nI n n n I n y z w c v c t e x s a n L L L z y t e z s y s x s n a z y x 1 0 1 3 3 π π ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ − × = Φ Φ Φ N n t x L z L I n n I n z y x I x z d u d w d T w v u D w c u c a L L L z x d v d w d T w v x D 1 0 , , , , , , τ π τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) + ∑ ∫ ∫ ∫ − × = Φ Φ Φ Φ N n t x L y L I n n I n n I n z y x I n n x y d u d v d T z v u D v c u c t e z s a n L L L y x t e y s n 1 0 , , , τ π ( ) ( ) ( ) × ∫ ∫ ∫ + ∫ ∫ ∫ + Φ x L y L z L I x L y L z L I I z y x x y z x y z u d v d w d w v u f u d v d w d w v u I T w v u k L L L z y x , , , , , , , , 2 , τ ( ) ( ) ∫ ∫ ∫ − × x L y L z L I z y x z y x x y z u d v d w d w v u I T w v u k L L L z y x L L L z y x τ , , , , , , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∑ ∫ ∫ ∫ − = ∑ − = Φ = Φ N n t y L z L n n nV n V n z y x N n nV n n n V n y z w c v c t e x s a n L L L z y t e z s y s x s n a z y x 1 0 1 3 3 π π ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ − × = Φ Φ N n t x L z L V n n z y x V x z d u d w d T w v u D w c u c n L L L z x d v d w d T w v x D 1 0 , , , , , , τ π τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ − × = Φ Φ Φ Φ N n t x L y L V n n V n n z y x V n n V n x y d u d v d T z v u D v c u c t e z s n L L L y x t e y s a 1 0 , , , τ π
  • 12. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 12 ( ) ( ) ( ) × ∫ ∫ ∫ + ∫ ∫ ∫ + × Φ Φ x L y L z L V x L y L z L V V z y x V n x y z x y z u d v d w d w v u f u d v d w d w v u V T w v u k L L L z y x a , , , , , , , , 2 , τ ( ) ( ) ∫ ∫ ∫ − × x L y L z L V z y x z y x x y z u d v d w d w v u V T w v u k L L L z y x L L L z y x τ , , , , , , . We used orthogonality condition of functions of the considered series framework the heterostruc- ture to calculate coefficients anΦρ. The coefficients anΦρ could be calculated for any quantity of terms N. In the common case equations for the required coefficients could be written as ( ) ( ) [ ] ( ) ( ) [ ] × ∑∫ ∫ ∫       − + + − − = ∑ − = = Φ Φ N n t L L n y n y n x N n I n I n z y x x y y c n L y s y L x c L t e n a L L L 1 0 0 0 1 6 5 2 2 2 1 2 2 2 2 1 2 1 π π π ( ) ( ) ( ) [ ] ( ) ( ) { ∑∫ ∫ + − ∫       − + × = Φ Φ Φ N n t L n L I n n z n I I n x z x s x d e x d y d z d z c n L z s z T z y x D n a 1 0 0 0 2 2 2 1 1 2 , , , π τ τ π ( ) [ ] ( ) [ ] ( ) ( ) ( ) [ ] × ∫ ∫       − + −    − + + Φ y z L L n z n I n n x x x d y d z d z c n L z s z T z y x D y c x c n L L 0 0 1 2 , , , 2 1 1 2 2 π π ( ) ( ) ( ) [ ] ( ) ( ) [ ] ∑ ∫ ∫ ∫    + − +       − + − × = Φ Φ Φ N n t L L n y n n x n I n x y I n I n x y y c n L y s y x c n L x s x n a L d L n e a 1 0 0 0 2 2 1 2 2 2 1 2 2 1 π π π τ τ } ( ) [ ] ( ) ( ) ( ) ( ) [ ] ∑ ∫ ∫    + − + ∫ − + = Φ Φ Φ Φ N n t L n x I n I n L I n I n y x z x c n L e n a d e x d y d z d T z y x D y c L 1 0 0 3 3 0 1 2 1 , , , 2 1 π τ π τ τ ( )} ( ) ( ) [ ] ( ) ( ) ( ) [ ] ∫    + − ∫       − + + z y L n z I I L n y n n z c n L T z y x k t z y x I y c n L y s y x s x 0 , 2 0 1 2 , , , , , , 1 2 π π ( )} ( ) ( ) ( ) [ ] ( ) [ ] ∑ ∫ ∫ ∫    + −       − + − + = Φ Φ N n t L L n y n x n I n I n n x y y c n L x c n L x s x e n a x d y d z d z s z 1 0 0 0 3 3 1 2 1 2 1 π π τ π ( )} ( ) ( ) [ ] ( ) ( ) × ∑ + ∫       − + + = Φ N n I n L I n z n n n a x d y d z d t z y x I T z y x k z c n L z s z y s y z 1 3 3 0 1 , , , , , , 1 2 π π ( ) ( ) ( ) [ ] ( ) ( ) [ ] ( ) [ ] ∫ ∫ ∫ ∫    + −       − +       − + × Φ t L L L n z n y n n x n I n x y z z c n L y c n L y s y x c n L x s x e 0 0 0 0 1 2 1 2 1 2 π π π τ ( )} ( ) x d y d z d z y x f z s z I n , , Φ + ( ) ( ) [ ] ( ) ( ) [ ] × ∑∫ ∫ ∫       − + + − − = ∑ − = = Φ Φ N n t L L n y n y n x N n V n V n z y x x y y c n L y s y L x c L t e n a L L L 1 0 0 0 1 6 5 2 2 2 1 2 2 2 2 1 2 1 π π π ( ) ( ) ( ) [ ] ( ) ( ) { ∑∫ ∫ + − ∫       − + × = Φ Φ Φ N n t L n L V n n z n V V n x z x s x d e x d y d z d z c n L z s z T z y x D n a 1 0 0 0 2 2 2 1 1 2 , , , π τ τ π ( ) [ ] ( ) [ ] ( ) ( ) ( ) [ ] × ∫ ∫       − + −    − + + Φ y z L L n z n V n n x x x d y d z d z c n L z s z T z y x D y c x c n L L 0 0 1 2 , , , 2 1 1 2 2 π π ( ) ( ) ( ) [ ] ( ) ( ) [ ] ∑ ∫ ∫ ∫    + − +       − + − × = Φ Φ Φ N n t L L n y n n x n V n x y V n V n x y y c n L y s y x c n L x s x n a L d L n e a 1 0 0 0 2 2 1 2 2 2 1 2 2 1 π π π τ τ
  • 13. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 13 } ( ) [ ] ( ) ( ) ( ) ( ) [ ] ∑ ∫ ∫    + − + ∫ − + = Φ Φ Φ Φ N n t L n x V n V n L V n V n y x z x c n L e n a d e x d y d z d T z y x D y c L 1 0 0 3 3 0 1 2 1 , , , 2 1 π τ π τ τ ( )} ( ) ( ) [ ] ( ) ( ) ( ) [ ] ∫    + − ∫       − + + z y L n z V V L n y n n z c n L T z y x k t z y x V y c n L y s y x s x 0 , 2 0 1 2 , , , , , , 1 2 π π ( )} ( ) ( ) ( ) [ ] ( ) [ ] ∑ ∫ ∫ ∫    + −       − + − + = Φ Φ N n t L L n y n x n V n V n n x y y c n L x c n L x s x e n a x d y d z d z s z 1 0 0 0 3 3 1 2 1 2 1 π π τ π ( )} ( ) ( ) [ ] ( ) ( ) × ∑ + ∫       − + + = Φ N n V n L V n z n n n a x d y d z d t z y x V T z y x k z c n L z s z y s y z 1 3 3 0 1 , , , , , , 1 2 π π ( ) ( ) ( ) [ ] ( ) ( ) [ ] ( ) [ ] ∫ ∫ ∫ ∫    + −       − +       − + × Φ t L L L n z n y n n x n V n x y z z c n L y c n L y s y x c n L x s x e 0 0 0 0 1 2 1 2 1 2 π π π τ ( )} ( ) x d y d z d z y x f z s z V n , , Φ + . 3. DISCUSSION In this section we compare spatial distributions of concentrations of dopant in a heterostructure with overlayer and without the overlayer. Fig. 2 shows result of the above comparison. One can find from the figure, that using the overlayer gives a possibility to manufacture more shallow p-n- junction in comparison with p-n-junction in the heterostructure without the overlayer. At the same time analysis of redistribution of radiation defects shows, that implantation of ions of dopant through the overlayer gives a possibility to decrease quantity of radiation defects in the epitaxial layer. Fig.2. Distributions of concentration of implanted dopant in the considered heterostructure. Curves 1 and 3 describe distributions of concentration of implanted dopant in the heterostructure with overlayer. Curve 1 describes distribution of concentration of implanted dopant for the case, when dopant diffusion coefficient in the overlayer is larger, than in the epitaxial layer. Curve 2 describes distribution of concentration of implanted dopant for the case, when dopant diffusion coefficient in the overlayer is smaller, than in the epitaxial layer. Curve 2 describes distribution of concentration of implanted dopant in the heterostructure without overlayer.
  • 14. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 14 It should be noted, that manufacturing the considered implanted-junction rectifier near interface between layers of heterostructure gives a possibility to increase sharpness of the p-n-junction and at the same time to increase homogeneity of concentration of the dopant in the enriched area [15- 19]. In this situation it is practicably to choose appropriate thickness of epitaxial layer. 4. CONCLUSIONS In this paper we analyzed distributions of concentration of implanted dopant in heterostructure with overlayer and without overlayer during manufacture an implanted -heterojunction rectifier. We determine conditions, which correspond to decrease depth of the p-n-junction. ACKNOWLEDGEMENTS This work is supported by the agreement of August 27, 2013 № 02.В.49.21.0003 between The Ministry of education and science of the Russian Federation and Lobachevsky State University of Nizhni Novgorod, educational fellowship for scientific research of Government of Russia, educa- tional fellowship for scientific research of Government of Nizhny Novgorod region of Russia and educational fellowship for scientific research of Nizhny Novgorod State University of Architec- ture and Civil Engineering. REFERENCES [1] V.I. Lachin, N.S. Savelov. Electronics (Phoenix, Rostov-na-Donu, 2001). [2] D. Fathi, B. Forouzandeh. Accurate analysis of global interconnects in nano-FPGAs. Nano. Vol. 4 (3). P. 171-176 (2009). [3] D. Fathi, B. Forouzandeh, N. Masoumi. New enhanced noise analysis in active mixers in nanoscale technologies. Nano. Vol. 4 (4). P. 233-238 (2009). [4] S.A. Chachuli, P.N.A. Fasyar, N. Soin, N.M. Karim, N. Yusop. Pareto ANOVA analysis for CMOS 0.18 µm two-stage Op-amp. Mat. Sci. Sem. Proc. Vol. 24. P. 9-14 (2014). [5] Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. High-performance InGaP/GaAs pnp δ-doped heterojunction bipolar transistor Semiconductors. Vol. 43 (7). P. 971-974 (2009). [6] J.Y. Choi, Ch. Park. A Thyristor-Only Input ESD Protection Scheme for CMOS RF ICs. Circuits and Systems. Vol. 2 (3). P. 170-182 (2011). [7] M.J. Kumar, T.V. Singh. Quantum confinement effects in strained silicon MOSFETs MOSFETs. Int. J. Nanoscience. Vol. 7 (2-3). P. 81-84 (2008). [8] P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi, R.G. Gordon. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxy- sulfide buffer layer. Appl. Phys. Lett. Vol. 102 (5). P. 053901-053905 (2013). [9] R. Laajimi, M. Masmoudi. High-Performance CMOS Current Mirrors: Application to Linear Volt- age-to-Current Converter Used for Two-Stage Operational Amplifier. Circuits and Systems. Vol. 3 (4). P. 311-316 (2012). [10] A. Ghorbani, A. Ghanaatian. A Novel High CMRR, Low Power and Low Voltage COS with QFG. Circuits and Systems. Vol. 3 (3). P. 263-268 (2012). [11] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991). [12] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev, 1979, in Russian). [13] P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicin. Rev. Mod. Phys. Vol. 61 (2). P. 289-388 (1989). [14] M.L. Krasnov, A.I. Kiselev, G.I. Makarenko. Integral equations ("Science", Moscow, 1976). [15] E.L. Pankratov. Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure by optimized laser annealing. J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010). [16] E.L. Pankratov, E.A. Bulaeva. Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of dis- tributions of dopants. Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013).
  • 15. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 15 [17] E.L. Pankratov, E.A. Bulaeva. Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of dis- tributions of dopants. J. Comp. Theor. Nanoscience. Vol. 12 (6). P. 976-990 (2014). [18] E.L. Pankratov, E.A. Bulaeva. An approach to manufacture of bipolar transistors in thin film struc- tures. On the method of optimization. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014). [19] E.L. Pankratov, E.A. Bulaeva. An approach to decrease dimensions of field-effect transistors without p-n-junctions. Int. J. Mod. Phys. B. Vol. 28 (27). P. 1450190-1-1450190-17 (2014). AUTHORS Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University: from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra- diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio- physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro- structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo- rod State University of Architecture and Civil Engineering. 2012-2015 Full Doctor course in Radiophysical Department of Nizhny Novgorod State University. Since 2015 E.L. Pankratov is an Associate Professor of Nizhny Novgorod State University. He has 135 published papers in area of his researches. Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school “Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec- ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in the University. Since 2014 E.A. Bulaeva is in a PhD program in Radiophysical Department of Nizhny Novgorod State University. She has 90 published papers in area of her researches.