SlideShare a Scribd company logo
1 of 20
Download to read offline
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
DOI:10.5121/ijfcst.2016.6101 1
OPTIMIZATION OF TECHNOLOGICAL PROCESS TO
DECREASE DIMENSIONS OF CIRCUITS XOR, MANU-
FECTURED BASED ON FIELD-EFFECT HETEROTRAN-
SISTORS
E.L. Pankratov1
, E.A. Bulaeva1,2
1
Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod, 603950,
Russia
2
Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky
Street, Nizhny Novgorod, 603950, Russia
ABSTRACT
The paper describes an approach of increasing of integration rate of elements of integrated circuits. The
approach has been illustrated by example of manufacturing of a circuit XOR. Framework the approach one
should manufacture a heterostructure with specific configuration. After that several special areas of the
heterostructure should be doped by diffusion and/or ion implantation and optimization of annealing of do-
pant and/or radiation defects. We analyzed redistribution of dopant with account redistribution of radiation
defects to formulate recommendations to decrease dimensions of integrated circuits by using analytical
approaches of modeling of technological process.
KEYWORDS
Circuits XOR; increasing of density of elements; optimization of technological process.
1. INTRODUCTION
One of intensively solving problems of solid state electronics is improvement of frequency cha-
racteristics of electronic devices and their reliability. Another intensively solving problem is in-
creasing of integration rate of integrated circuits with decreasing of their dimensions [1-9]. To
solve these problems they were used searching materials with higher values of charge carriers
motilities, development new and elaboration existing technological approaches [1-14]. In the
present paper we consider circuit XOR from [15]. Based on recently considered approaches [16-
23] we consider an approach to decrease dimensions of the circuit. The approach based on manu-
facturing a heterostructure, which consist of a substrate and an epitaxial layer. The epitaxial layer
manufactured with several sections. To manufacture these sections another materials have been
used. These sections have been doped by diffusion or ion implantation. The doping gives a possi-
bility to generate another type of conductivity (p or n). After finishing of manufacturing of the
circuit XOR these sections will be used by sources, drains and gates (see Fig. 1). Dopant and rad-
iation defects should be annealed after finishing the dopant diffusion and the ion implantation.
Our aim framework the paper is analysis of redistribution of dopant and redistribution of radiation
defects to prognosis technological process. The accompanying aim of the present paper is devel-
opment of analytical approach for prognosis technological processes with account all required
influenced factors.
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
2
2. METHOD OF SOLUTION
We solve our aim by calculation and analysis distribution of concentrations of dopants in space
and time. The required distribution has been determined by solving the second Fick's law in the
following form [24,25]
( ) ( ) ( ) ( )






+





+





=
z
tzyxC
D
zy
tzyxC
D
yx
tzyxC
D
xt
tzyxC
CCC
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,,,,,,,,,,
. (1)
Boundary and initial conditions for the equations are
Fig. 1. Structure of epitaxial layer. View from top
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
3
( ) 0
,,,
0
=
∂
∂
=x
x
tzyxC
,
( ) 0
,,,
=
∂
∂
= xLx
x
tzyxC
,
( ) 0
,,,
0
=
∂
∂
=y
y
tzyxC
,
( ) 0
,,,
=
∂
∂
= yLx
y
tzyxC
,
( ) 0
,,,
0
=
∂
∂
=z
z
tzyxC
,
( ) 0
,,,
=
∂
∂
= zLx
z
tzyxC
, C(x,y,z,0)=f (x,y,z). (2)
Here the function C(x,y,z,t) describes the distribution of concentration of dopant in space and
time. DС describes distribution the dopant diffusion coefficient in space and as a function of tem-
perature of annealing. Dopant diffusion coefficient will be changed with changing of materials of
heterostructure, heating and cooling of heterostructure during annealing of dopant or radiation
defects (with account Arrhenius law). Dependences of dopant diffusion coefficient on coordinate
in heterostructure, temperature of annealing and concentrations of dopant and radiation defects
could be written as [26-28]
( ) ( )
( )
( ) ( )
( ) 







++





+= 2*
2
2*1
,,,,,,
1
,,,
,,,
1,,,
V
tzyxV
V
tzyxV
TzyxP
tzyxC
TzyxDD LC ςςξ γ
γ
. (3)
Here function DL (x,y,z,T) describes dependences of dopant diffusion coefficient on coordinate
and temperature of annealing T. Function P (x,y,z,T) describes the same dependences of the limit
of solubility of dopant. The parameter γ is integer and usually could be varying in the following
interval γ ∈[1,3]. The parameter describes quantity of charged defects, which interacting (in aver-
age) with each atom of dopant. Ref.[26] describes more detailed information about dependence of
dopant diffusion coefficient on concentration of dopant. Spatio-temporal distribution of concen-
tration of radiation vacancies described by the function V (x,y,z,t). The equilibrium distribution of
concentration of vacancies has been denoted as V*
. It is known, that doping of materials by diffu-
sion did not leads to radiation damage of materials. In this situation ζ1=ζ2=0. We determine spa-
tio-temporal distributions of concentrations of radiation defects by solving the following system
of equations [27,28]
( ) ( ) ( ) ( ) ( ) ( ) ×−





∂
∂
∂
∂
+





∂
∂
∂
∂
=
∂
∂
Tzyxk
y
tzyxI
TzyxD
yx
tzyxI
TzyxD
xt
tzyxI
IIII ,,,
,,,
,,,
,,,
,,,
,,,
,
( ) ( ) ( ) ( ) ( ) ( )tzyxVtzyxITzyxk
z
tzyxI
TzyxD
z
tzyxI VII ,,,,,,,,,
,,,
,,,,,, ,
2
−





∂
∂
∂
∂
+× (4)
( ) ( ) ( ) ( ) ( ) ( )×−





∂
∂
∂
∂
+





∂
∂
∂
∂
=
∂
∂
Tzyxk
y
tzyxV
TzyxD
yx
tzyxV
TzyxD
xt
tzyxV
VVVV ,,,
,,,
,,,
,,,
,,,
,,,
,
( ) ( ) ( ) ( ) ( ) ( )tzyxVtzyxITzyxk
z
tzyxV
TzyxD
z
tzyxV VIV ,,,,,,,,,
,,,
,,,,,, ,
2
−





∂
∂
∂
∂
+× .
Boundary and initial conditions for these equations are
( ) 0
,,,
0
=
∂
∂
=x
x
tzyxρ
,
( ) 0
,,,
=
∂
∂
= xLx
x
tzyxρ
,
( ) 0
,,,
0
=
∂
∂
=y
y
tzyxρ
,
( ) 0
,,,
=
∂
∂
= yLy
y
tzyxρ
,
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
4
( ) 0
,,,
0
=
∂
∂
=z
z
tzyxρ
,
( ) 0
,,,
=
∂
∂
= zLz
z
tzyxρ
, ρ (x,y,z,0)=fρ (x,y,z). (5)
Here ρ =I,V. We denote spatio-temporal distribution of concentration of radiation interstitials as I
(x,y,z,t). Dependences of the diffusion coefficients of point radiation defects on coordinate and
temperature have been denoted as Dρ(x,y,z,T). The quadric on concentrations terms of Eqs. (4)
describes generation divacancies and diinterstitials. Parameter of recombination of point radiation
defects and parameters of generation of simplest complexes of point radiation defects have been
denoted as the following functions kI,V(x,y,z,T), kI,I(x,y,z,T) and kV,V(x,y,z,T), respectively.
Now let us calculate distributions of concentrations of divacancies ΦV(x,y,z,t) and diinterstitials
ΦI(x,y,z,t) in space and time by solving the following system of equations [27,28]
( ) ( ) ( ) ( ) ( ) +




 Φ
+




 Φ
=
Φ
ΦΦ
y
tzyx
TzyxD
yx
tzyx
TzyxD
xt
tzyx I
I
I
I
I
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,
,,,
,,,
,,,
,,,
( ) ( ) ( ) ( ) ( ) ( )tzyxITzyxktzyxITzyxk
z
tzyx
TzyxD
z
III
I
I ,,,,,,,,,,,,
,,,
,,, 2
, −+




 Φ
+ Φ
∂
∂
∂
∂
(6)
( ) ( ) ( ) ( ) ( ) +




 Φ
+




 Φ
=
Φ
ΦΦ
y
tzyx
TzyxD
yx
tzyx
TzyxD
xt
tzyx V
V
V
V
V
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,,,
,,,
,,,
,,,
,,,
( ) ( ) ( ) ( ) ( ) ( )tzyxVTzyxktzyxVTzyxk
z
tzyx
TzyxD
z
VVV
V
V ,,,,,,,,,,,,
,,,
,,, 2
, −+




 Φ
+ Φ
∂
∂
∂
∂
.
Boundary and initial conditions for these equations are
( )
0
,,,
0
=
∂
Φ∂
=x
x
tzyxρ
,
( )
0
,,,
=
∂
Φ∂
= xLx
x
tzyxρ
,
( )
0
,,,
0
=
∂
Φ∂
=y
y
tzyxρ
,
( )
0
,,,
=
∂
Φ∂
= yLy
y
tzyxρ
,
( )
0
,,,
0
=
∂
Φ∂
=z
z
tzyxρ
,
( )
0
,,,
=
∂
Φ∂
= zLz
z
tzyxρ
, ΦI (x,y,z,0)=fΦI (x,y,z), ΦV (x,y,z,0)=fΦV (x,y,z). (7)
The functions DΦρ(x,y,z,T) describe dependences of the diffusion coefficients of the above com-
plexes of radiation defects on coordinate and temperature. The functions kI(x,y,z,T) and kV(x,y,z,
T) describe the parameters of decay of these complexes on coordinate and temperature.
To describe physical processes they are usually solving nonlinear equations with space and time
varying coefficients. In this situation only several limiting cases have been analyzed [29-32]. One
way to solve the problem is solving the Eqs. (1), (4), (6) by the Bubnov-Galerkin approach [33]
after appropriate transformation of these transformation. To determine the spatio-temporal distri-
bution of concentration of dopant we transform the Eq.(1) to the following integro- differential
form
( ) ( )
( ) ( )
( )
×∫ ∫ ∫ 





++=∫ ∫ ∫
t y
L
z
L
L
x
L
y
L
z
L
zyx y zx y z V
wvxV
V
wvxV
TwvxDudvdwdtwvuC
LLL
zyx
0
2*
2
2*1
,,,,,,
1,,,,,,
τ
ς
τ
ς
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
5
( )
( )
( ) ( ) ( )
( )
×∫ ∫ ∫ 





++





+×
t x
L
z
L
L
zy x z TzyxP
wyuC
TwyuD
LL
zy
d
x
wvxC
TwvxP
wvxC
0 ,,,
,,,
1,,,
,,,
,,,
,,,
1 γ
γ
γ
γ
τ
ξτ
∂
τ∂τ
ξ
( ) ( )
( )
( ) ( ) ×∫ ∫ ∫+





++×
t x
L
y
L
L
zx x y
TzvuD
LL
zx
d
y
wyuC
V
wyuV
V
wyuV
0
2*
2
2*1 ,,,
,,,,,,,,,
1 τ
∂
τ∂τ
ς
τ
ς
( ) ( )
( )
( )
( )
( ) +





+





++×
yx
LL
yx
d
z
zvuC
TzyxP
zvuC
V
zvuV
V
zvuV
τ
∂
τ∂τ
ξ
τ
ς
τ
ς γ
γ
,,,
,,,
,,,
1
,,,,,,
1 2*
2
2*1
( )∫ ∫ ∫+
x
L
y
L
z
L
zyx x y z
udvdwdwvuf
LLL
zyx
,, . (1a)
Now let us determine solution of Eq.(1a) by Bubnov-Galerkin approach [33]. To use the ap-
proach we consider solution of the Eq.(1a) as the following series
( ) ( ) ( ) ( ) ( )∑=
=
N
n
nCnnnnC tezcycxcatzyxC
0
0 ,,, .
Here ( ) ( )[ ]222
0
22
exp −−−
++−= zyxCnC LLLtDnte π , cn(χ) =cos(π nχ/Lχ). Number of terms N in the
series is finite. The above series is almost the same with solution of linear Eq.(1) (i.e. for ξ=0)
and averaged dopant diffusion coefficient D0. Substitution of the series into Eq.(1a) leads to the
following result
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫



×



∑+−=∑
==
t y
L
z
L
N
n
nCnnnnC
zy
N
n
nCnnn
C
y z
ewcvcxca
LL
zy
tezsysxs
n
azyx
0 11
32
1
γ
τ
π
( )
( ) ( )
( )
( ) ( ) ( )×∑





++



×
=
N
n
nnnCL vcxsaTwvxD
V
wvxV
V
wvxV
TwvxP 1
2*
2
2*1 ,,,
,,,,,,
1
,,,
τ
ς
τ
ς
ξ
γ
( ) ( ) ( ) ( ) ( ) ( )
( )∫ ∫ ∫ ×









∑+−×
=
t x
L
z
L
N
m
mCmmmmC
zx
nCn
x z TwyuP
ewcycuca
LL
zx
dewcn
0 1 ,,,
1 γ
γ
ξ
τττ
( ) ( ) ( )
( )
( ) ( ) ( ) ( ) ×∑





++×
=
ττ
τ
ς
τ
ς dewcysucn
V
wyuV
V
wyuV
TwyuD
N
n
nCnnnL
1
2*
2
2*1
,,,,,,
1,,,
( )
( )
( ) ( ) ( ) ( ) ×∫ ∫ ∫









∑+−×
=
t x
L
y
L
N
n
nCnnnnCL
yx
nC
x y
ezcvcuca
TzvuP
TzvuD
LL
yx
a
0 1,,,
1,,,
γ
γ
τ
ξ
( ) ( )
( )
( ) ( ) ( ) ( ) ×+∑





++×
=
zyx
N
n
nCnnnnC
LLL
zyx
dezsvcucan
V
zvuV
V
zvuV
ττ
τ
ς
τ
ς
1
2*
2
2*1
,,,,,,
1
( )∫ ∫ ∫×
x
L
y
L
z
Lx y z
udvdwdwvuf ,, ,
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
6
where sn(χ)=sin(πnχ/Lχ). We used condition of orthogonality to determine coefficients an in the
considered series. The coefficients an could be calculated for any quantity of terms N. In the
common case the relations could be written as
( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫



×



∑+−=∑−
==
t L L L N
n
nCnnnnCL
zy
N
n
nC
nCzyx
x y z
ezcycxcaTzyxD
LL
te
n
aLLL
0 0 0 0 1
2
1
65
222
1,,,
2
γ
τ
ππ
( )
( ) ( )
( )
( ) ( ) ( ) ( )×∑





++



×
=
N
n
nCnnn
nC
ezcycxs
n
a
V
zyxV
V
zyxV
TzyxP 1
2*
2
2*1 2
,,,,,,
1
,,,
τ
τ
ς
τ
ς
ξ
γ
( ) ( )[ ] ( ) ( )[ ] ( )×∫ ∫ ∫ ∫−






−+






−+×
t L L L
Ln
z
nn
y
n
x y z
TzyxDdxdydzdzc
n
L
zszyc
n
L
ysy
0 0 0 0
,,,11 τ
ππ
( ) ( ) ( ) ( ) ( )
( )
( )


++









∑+×
=
*1
1
,,,
1
,,,
1,,,
V
zyxV
TzyxP
ezcycxcaTzyxD
N
n
nCnnnnCL
τ
ς
ξ
τ γ
γ
( )
( )
( ) ( )
( )
( ) ( )[ ]∑ ×






−+





++


+
=
N
n
nC
n
x
n
n
a
xc
n
L
xsx
V
zyxV
V
zyxV
V
zyxV
1
2*
2
2*12*
2
2
1
,,,,,,
1
,,,
π
τ
ς
τ
ς
τ
ς
( ) ( ) ( ) ( ) ( ) ( )[ ] ×−






−+× 22
2
12
2 π
τ
π
τ
π
yx
n
z
nnCnnn
zx
LL
dxdydzdzc
n
L
zszezcysxc
LL
( ) ( ) ( ) ( )
( )
( )
( )∫ ∫ ∫ ∫ 


++









∑+×
=
t L L L N
n
nCnnnnC
x y z
V
zyxV
TzyxP
ezcycxca
0 0 0 0
2*
2
2
1
,,,
1
,,,
1
τ
ς
ξ
τ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ×∑






−+

+
=
N
n
n
x
nnnn
nC
L xc
n
L
xsxzsycxc
n
a
TzyxD
V
zyxV
1
*1 1,,,
,,,
π
τ
ς
( ) ( )[ ] ( ) ( ) ( )[ ]∑ ∫ ×






−++






−+×
=
N
n
L
n
x
nnCn
y
n
x
xc
n
L
xsxdxdydzdeyc
n
L
ysy
1 0
11
π
ττ
π
( ) ( )[ ] ( ) ( )[ ] ( )∫ ∫






−+






−+×
y z
L L
n
z
nn
y
n xdydzdzyxfzc
n
L
zszyc
n
L
ysy
0 0
,,11
ππ
.
As an example for γ=0 we obtain
( ) ( )[ ] ( ) ( )[ ] ( ) ( ){∫ ∫ ∫ +






−+






−+=
x y zL L L
nn
y
nn
y
nnC xsxydzdzyxfzc
n
L
zszyc
n
L
ysya
0 0 0
,,11
ππ
( )[ ] ( ) ( ) ( ) ( )[ ] ( )






∫ ∫ ∫ ∫ ×






−+



−×
t L L L
Ln
y
nnn
x
n
x y z
TzyxDyc
n
L
ysyycxs
n
xd
n
L
xc
0 0 0 0
,,,12
2
1
ππ
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
7
( ) ( )[ ] ( ) ( )
( ) ( )
×





+





++






−+×
TzyxPV
zyxV
V
zyxV
zc
n
L
zsz n
y
n
,,,
1
,,,,,,
11 2*
2
2*1 γ
ξτ
ς
τ
ς
π
( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )×∫ ∫ ∫ ∫






−++×
t L L L
nnn
y
nnnCnCn
x y z
zcysxc
n
L
xsxxcedexdydzdzc
0 0 0 0
21
π
τττ
( ) ( )[ ]
( )
( ) ( )
( )
×





++





+






−+× 2*
2
2*1
,,,,,,
1
,,,
11
V
zyxV
V
zyxV
TzyxP
zc
n
L
zsz n
y
n
τ
ς
τ
ς
ξ
π γ
( ) ( ) ( ) ( ) ( )[ ] ( ) ( ){∫ ∫ ∫ ×






−++×
t L L
nnn
x
nnnCL
x y
ysycxc
n
L
xsxxcedxdydzdTzyxD
0 0 0
1,,,
π
ττ
( )[ ] ( ) ( )
( )
( )
( )∫ 


++





+



−+×
zL
Lnn
y
V
zyxV
TzyxP
TzyxDzsyc
n
L
y
0
2*
2
2
,,,
1
,,,
1,,,21
τ
ς
ξ
π γ
( ) ( )
1
65
222
*1
,,,
−




−





+ te
n
LLL
dxdydzd
V
zyxV
nC
zzz
π
τ
τ
ς .
For γ = 1 one can obtain the following relation to determine required parameters
( ) ( ) ( ) ( )∫ ∫ ∫+±−=
x y zL L L
nnnnn
n
n
nC
xdydzdzyxfzcycxca
0 0 0
2
,,4
2
αβ
α
β
,
where ( ) ( ) ( ) ( ) ( ) ( )
( )
∫ ∫ ∫ ∫ ×





++=
t L L L
nnnnC
zy
n
x y z
V
zyxV
V
zyxV
zcycxse
n
LL
0 0 0 0
2*
2
2*12
,,,,,,
12
2
τ
ς
τ
ςτ
π
ξ
α
( )
( )
( ) ( )[ ] ( ) ( )[ ] ×+






−+






−+×
n
LL
dxdydzdzc
n
L
zszyc
n
L
ysy
TzyxP
TzyxD zx
n
z
nn
y
n
L
2
2
11
,,,
,,,
π
ξ
τ
ππ
( ) ( ) ( ) ( )[ ] ( ) ( )
( )
( ) ( )[ ] ×∫ ∫ ∫ ∫






−−






−+×
t L L L
n
z
n
L
nn
x
nnnC
x y z
zc
n
L
zsz
TzyxP
TzyxD
zcxc
n
L
xsxxce
0 0 0 0
1
,,,
,,,
1
ππ
τ
( )
( )
( ) ( )
( )
( ) ×+





++×
n
LL
dxdydyszd
V
zyxV
V
zyxV
TzyxP
TzyxD yx
n
L
22*
2
2*1
2
2
,,,,,,
1
,,,
,,,
π
ξ
τ
τ
ς
τ
ς
( ) ( ) ( ) ( ) ( )
( )
( ) ( )
( )
×∫ ∫ ∫ ∫ 





++×
t L L L
L
nnnnC
x y z
V
zyxV
V
zyxV
TzyxP
TzyxD
zsycxce
0 0 0 0
2*
2
2*1
,,,,,,
1
,,,
,,,
2
τ
ς
τ
ςτ
( ) ( )[ ] ( ) ( )[ ] τ
ππ
dxdydzdyc
n
L
ysyxc
n
L
xsx n
y
nn
x
n






−+






−+× 11 , ( )×∫=
t
nC
zy
n e
n
LL
0
2
2
τ
π
β
( ) ( ) ( ) ( )[ ] ( ) ( ) ( )
( )
∫ ∫ ∫ ×





++






−+×
x y zL L L
nn
y
nnn
V
zyxV
V
zyxV
zcyc
n
L
ysyycxs
0 0 0
2*
2
2*1
,,,,,,
112
τ
ς
τ
ς
π
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
8
( ) ( ) ( )[ ] ( ) ( ) ( )×∫ ∫ ∫+






−+×
t L L
nnnC
zx
n
z
nL
x y
ysxce
n
LL
dxdydzdzc
n
L
zszTzyxD
0 0 0
2
2
2
1,,, τ
π
τ
π
( ) ( )[ ] ( ) ( ) ( ) ( )
( )
×∫ 





++






−+×
zL
nLn
x
n
V
zyxV
V
zyxV
zcTzyxDxc
n
L
xsx
0
2*
2
2*1
,,,,,,
1,,,1
τ
ς
τ
ς
π
( ) ( )[ ] ( ) ( ) ( )[ ] ×∫ ∫






−++






−+×
t L
n
x
nnC
yx
n
z
n
x
xc
n
L
xsxe
n
LL
dxdydzdzc
n
L
zsz
0 0
2
1
2
1
π
τ
π
τ
π
( ) ( ) ( )[ ] ( ) ( ) ( )
( )
∫ ∫ ×





++






−+×
y z
L L
Ln
y
nn
V
zyxV
V
zyxV
TzyxDyc
n
L
ysyxc
0 0
2*
2
2*1
,,,,,,
1,,,1
τ
ς
τ
ς
π
( ) ( ) ( ) 65222
2 nteLLLdxdydyczdzs nCzyxnn πτ −× .
The same approach could be used for calculation parameters an for different values of parameterγ.
However the relations are bulky and will not be presented in the paper. Advantage of the ap-
proach is absent of necessity to join dopant concentration on interfaces of heterostructure.
The same Bubnov-Galerkin approach has been used for solution the Eqs.(4). Previously we trans-
form the differential equations to the following integro- differential form
( ) ( ) ( ) +∫ ∫ ∫
∂
∂
=∫ ∫ ∫
t y
L
z
L
I
zy
x
L
y
L
z
L
zyx y zx y z
dvdwd
x
wvxI
TwvxD
LL
zy
udvdwdtwvuI
LLL
zyx
0
,,,
,,,,,, τ
τ
( ) ( ) ( ) ( )×∫ ∫ ∫−∫ ∫ ∫
∂
∂
+
x
L
y
L
z
L
VI
zyx
t x
L
z
L
I
zx x y zx z
twvuITwvuk
LLL
zyx
dudwd
x
wyuI
TwyuD
LL
zx
,,,,,,
,,,
,,, ,
0
τ
τ
( ) ( ) ( ) ×−∫ ∫ ∫
∂
∂
+×
zyx
t x
L
y
L
I
yx
LLL
zyx
dudvdTzvuD
z
zvuI
LL
yx
udvdwdtwvuV
x y0
,,,
,,,
,,, τ
τ
( ) ( ) ( )∫ ∫ ∫+∫ ∫ ∫×
x
L
y
L
z
L
I
zyx
x
L
y
L
z
L
II
x y zx y z
udvdwdwvuf
LLL
zyx
udvdwdtwvuITwvuk ,,,,,,,, 2
, (4a)
( ) ( ) ( ) +∫ ∫ ∫
∂
∂
=∫ ∫ ∫
t y
L
z
L
V
zy
x
L
y
L
z
L
zyx y zx y z
dvdwd
x
wvxV
TwvxD
LL
zy
udvdwdtwvuV
LLL
zyx
0
,,,
,,,,,, τ
τ
( ) ( ) ( ) ×∫ ∫ ∫
∂
∂
+∫ ∫ ∫
∂
∂
+
t x
L
y
L
yx
t x
L
z
L
V
zx x yx z z
zvuV
LL
yx
dudwd
x
wyuV
TwyuD
LL
zx
00
,,,,,,
,,,
τ
τ
τ
( ) ( ) ( ) ( ) −∫ ∫ ∫−×
x
L
y
L
z
L
VI
zyx
V
x y z
udvdwdtwvuVtwvuITwvuk
LLL
zyx
dudvdTzvuD ,,,,,,,,,,,, ,
τ
( ) ( ) ( )∫ ∫ ∫+∫ ∫ ∫−
x
L
y
L
z
L
V
zyx
x
L
y
L
z
L
VV
zyx x y zx y z
udvdwdwvuf
LLL
zyx
udvdwdtwvuVTwvuk
LLL
zyx
,,,,,,,, 2
, .
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
9
We determine spatio-temporal distributions of concentrations of point defects as the same series
( ) ( ) ( ) ( ) ( )∑=
=
N
n
nnnnn tezcycxcatzyx
1
0 ,,, ρρρ .
Parameters anρ should be determined in future. Substitution of the series into Eqs.(4a) leads to the
following results
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−=∑
==
N
n
t y
L
z
L
InnnI
zyx
N
n
nInnn
nI
y z
vdwdTwvxDzcyca
LLL
zy
tezsysxs
n
azyx
1 01
33
,,,
π
π
( ) ( ) ( ) ( ) ( ) ( ) ( ) −∑ ∫ ∫ ∫−×
=
N
n
t x
L
z
L
InnnInnI
zyx
nnI
x z
dudwdTwyuDzcxceysa
LLL
zx
xsde
1 0
,,, ττ
π
ττ
( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫−∑ ∫ ∫ ∫−
=
x
L
y
L
z
L
II
N
n
t x
L
y
L
InnnInnI
zyx x y zx y
TvvukdudvdTzvuDycxcezsa
LLL
yx
,,,,,, ,
1 0
ττ
π
( ) ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫ ∑−



∑×
==
x
L
y
L
z
L
N
n
nnnnI
zyxzyx
N
n
nInnnnI
x y z
wcvcuca
LLL
zyx
LLL
zyx
udvdwdtewcvcuca
1
2
1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫+∑×
=
x
L
y
L
z
L
I
N
n
VInVnnnnVnI
x y z
udvdwdwvufudvdwdTvvuktewcvcucate ,,,,,
1
,
zyx
LLLzyx×
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−=∑
==
N
n
t y
L
z
L
VnnnV
zyx
N
n
nVnnn
nV
y z
vdwdTwvxDzcyca
LLL
zy
tezsysxs
n
azyx
1 01
33
,,,
π
π
( ) ( ) ( ) ( ) ( ) ( ) ( ) −∑ ∫ ∫ ∫−×
=
N
n
t x
L
z
L
VnnnVnnV
zyx
nnV
x z
dudwdTwyuDzcxceysa
LLL
zx
xsde
1 0
,,, ττ
π
ττ
( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫−∑ ∫ ∫ ∫−
=
x
L
y
L
z
L
VV
N
n
t x
L
y
L
VnnnVnnV
zyx x y zx y
TvvukdudvdTzvuDycxcezsa
LLL
yx
,,,,,, ,
1 0
ττ
π
( ) ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫ ∑−



∑×
==
x
L
y
L
z
L
N
n
nnnnI
zyxzyx
N
n
nInnnnV
x y z
wcvcuca
LLL
zyx
LLL
zyx
udvdwdtewcvcuca
1
2
1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫+∑×
=
x
L
y
L
z
L
V
N
n
VInVnnnnVnI
x y z
udvdwdwvufudvdwdTvvuktewcvcucate ,,,,,
1
,
zyx
LLLzyx× .
We used orthogonality condition of functions of the considered series framework the heterostruc-
ture to calculate coefficients anρ. The coefficients an could be calculated for any quantity of terms
N. In the common case equations for the required coefficients could be written as
( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫






−++−−=∑−
==
N
n
t L L
n
y
nyn
nI
x
N
n
nI
nIzyx
x y
yc
n
L
ysyLxc
n
a
L
te
n
aLLL
1 0 0 0
2
1
65
222
12
2
221
2
1
πππ
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
10
( ) ( ) ( )[ ] ( ) ( ){∑ ∫ ∫ +−∫






−+×
=
N
n
t L
n
nI
y
L
nIn
z
nI
xz
xsx
n
a
L
dexdydzdzc
n
L
zszTzyxD
1 0 0
2
0
2
2
1
1
2
,,,
π
ττ
π
( )[ ] ( ) ( ) ( )[ ] ( )[ ]×∫ ∫ −






−++



−++
y z
L L
nn
z
nzIn
x
x
yczdzc
n
L
zszLTzyxDxc
n
L
L
0 0
2112
2
2,,,12
ππ
( ) ( ) ( ) ( )[ ] ( ) −∫






−++×
zL
nIn
z
nzInI dexdydzdzc
n
L
zszLTzyxDdexdyd
0
12
2
2,,, ττ
π
ττ
( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫






−++






−++−
=
N
n
t L L
n
y
nyn
x
nx
nI
z
x y
yc
n
L
ysyLxc
n
L
xsxL
n
a
L 1 0 0 0
2
12
2
212
2
2
2
1
πππ
( )[ ] ( ) ( ) ( ) ( )[ ]∑ ∫



+−+−∫ −×
=
N
n
L
n
x
xnInI
L
nIIn
xz
xc
n
L
LteadexdydzdTzyxDzc
1 0
2
0
12
2
2,,,21
π
ττ
( )} ( ) ( )[ ] ( ) ( )[ ]∫ ∫



+−+






−+++
y z
L L
n
z
zIIn
y
nyn zc
n
L
LTzyxkyc
n
L
ysyLxsx
0 0
, 12
2
,,,12
2
22
ππ
( )} ( ) ( ) ( ) ( )[ ] {∑ ∫ ∫ +






−++−+
=
N
n
L L
yn
x
nxnVnInVnIn
x y
Lxc
n
L
xsxLteteaaxdydzdzsz
1 0 0
12
2
22
π
( ) ( )[ ] ( ) ( ) ( )[ ]∫ ×






−++



−++
zL
n
z
nzVIn
y
n zdzc
n
L
zszLTzyxkyc
n
L
ysy
0
, 12
2
2,,,12
2
2
ππ
( ) ( )[ ] ( ) ( )[ ] ( )×∑ ∫ ∫ ∫






−+






−++×
=
N
n
L L L
In
y
nn
x
n
x y z
Tzyxfyc
n
L
ysyxc
n
L
xsxxdyd
1 0 0 0
,,,11
ππ
( ) ( )[ ] xdydzdzc
n
L
zszL n
z
nz






−++× 12
2
2
π
( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫






−++−−=∑−
==
N
n
t L L
n
y
nyn
nV
x
N
n
nV
nVzyx
x y
yc
n
L
ysyLxc
n
a
L
te
n
aLLL
1 0 0 0
2
1
65
222
12
2
221
2
1
πππ
( ) ( ) ( )[ ] ( ) ( ){∑ ∫ ∫ +−∫






−+×
=
N
n
t L
n
nV
y
L
nVn
z
nV
xz
xsx
n
a
L
dexdydzdzc
n
L
zszTzyxD
1 0 0
2
0
2
2
1
1
2
,,,
π
ττ
π
( )[ ] ( ) ( ) ( )[ ] ( )[ ]×∫ ∫ −






−++



−++
y z
L L
nn
z
nzVn
x
x
yczdzc
n
L
zszLTzyxDxc
n
L
L
0 0
2112
2
2,,,12
ππ
( ) ( ) ( ) ( )[ ] ( ) −∫






−++×
zL
nVn
z
nzVnV
dexdydzdzc
n
L
zszLTzyxDdexdyd
0
12
2
2,,, ττ
π
ττ
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
11
( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫






−++






−++−
=
N
n
t L L
n
y
nyn
x
nx
nV
z
x y
yc
n
L
ysyLxc
n
L
xsxL
n
a
L 1 0 0 0
2
12
2
212
2
2
2
1
πππ
( )[ ] ( ) ( ) ( ) ( )[ ]∑ ∫



+−+−∫ −×
=
N
n
L
n
x
xnVnV
L
nVVn
xz
xc
n
L
LteadexdydzdTzyxDzc
1 0
2
0
12
2
2,,,21
π
ττ
( )} ( ) ( )[ ] ( ) ( )[ ]∫ ∫



+−+






−+++
y z
L L
n
z
zVVn
y
nyn zc
n
L
LTzyxkyc
n
L
ysyLxsx
0 0
, 12
2
,,,12
2
22
ππ
( )} ( ) ( ) ( ) ( )[ ] {∑ ∫ ∫ +






−++−+
=
N
n
L L
yn
x
nxnVnInVnIn
x y
Lxc
n
L
xsxLteteaaxdydzdzsz
1 0 0
12
2
22
π
( ) ( )[ ] ( ) ( ) ( )[ ]∫ ×






−++



−++
zL
n
z
nzVIn
y
n zdzc
n
L
zszLTzyxkyc
n
L
ysy
0
, 12
2
2,,,12
2
2
ππ
( ) ( )[ ] ( ) ( )[ ] ( )×∑ ∫ ∫ ∫






−+






−++×
=
N
n
L L L
Vn
y
nn
x
n
x y z
Tzyxfyc
n
L
ysyxc
n
L
xsxxdyd
1 0 0 0
,,,11
ππ
( ) ( )[ ] xdydzdzc
n
L
zszL n
z
nz






−++× 12
2
2
π
.
In the final form relations for required parameters could be written as
( )





 −
+−
+
±
+
−=
A
yb
yb
Ab
b
Ab
a nInV
nI
2
3
4
2
3
4
3
4
44
λγ
,
nInI
nInInInInI
nV
a
aa
a
χ
λδγ ++
−=
2
,
where ( ) ( ) ( ) ( )[ ] ( ){∫ ∫ ∫ ++






−++=
x y zL L L
ynn
x
nxnn Lysyxc
n
L
xsxLTzyxkte
0 0 0
, 212
2
2,,,2
π
γ ρρρρ
( )[ ] ( ) ( )[ ] xdydzdzc
n
L
zszLyc
n
L
n
z
nzn
y






−++



−+ 12
2
212
2 ππ
, ( )×∫=
t
n
x
n e
nL 0
2
2
1
τ
π
δ ρρ
( ) ( )[ ] ( ) ( )[ ] ( ) [∫ ∫ ∫ −






−+






−+×
x y zL L L
n
z
nn
y
n ydzdTzyxDzc
n
L
zszyc
n
L
ysy
0 0 0
1,,,1
2
1
2
ρ
ππ
( )] ( ) ( ) ( )[ ] ( )[ ] {∫ ∫ ∫ ∫ +−






−+++−
t L L L
znn
x
nxn
y
n
x y z
Lycxc
n
L
xsxLe
nL
dxdxc
0 0 0 0
2
21122
2
1
2
π
τ
π
τ ρ
( ) ( )[ ] ( ) ( ) ( ){∫ ∫ ++



−++
t L
nn
z
n
z
n
x
xsxe
nL
dxdydzdTzyxDzc
n
L
zsz
0 0
2
2
2
1
,,,12
2
2 τ
π
τ
π
ρρ
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
12
( )[ ] ( ) ( )[ ] ( )[ ] ( ) ×∫ ∫ −






−++



−++
y z
L L
nn
y
nyn
x
x zdTzyxDzcyc
n
L
ysyLxc
n
L
L
0 0
,,,211
2
12 ρ
ππ
( )te
n
LLL
dxdyd n
zyx
ρ
π
τ 65
222
−× , ( ) ( )[ ] ( )[ ]∫ ∫



+−+






−+=
x yL L
n
y
yn
x
nnIV yc
n
L
Lxc
n
L
xsx
0 0
12
2
1
ππ
χ
( )} ( ) ( ) ( )[ ] ( ) ( )tetexdydzdzc
n
L
zszLTzyxkysy nVnI
L
n
z
nzVIn
z
∫






−+++
0
, 12
2
2,,,2
π
,
( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]∫ ∫ ∫ ×






−+






−+






−+=
x y zL L L
n
z
nn
y
nn
x
nn zc
n
L
zszyc
n
L
ysyxc
n
L
xsx
0 0 0
111
πππ
λ ρ
( ) xdydzdTzyxf ,,,ρ× , 22
4 nInInInV
b χγγγ −= , nInInVnInInInInV
b γχδχδδγγ −−= 2
3
2 ,
2
2
3
48 bbyA −+= , ( ) 22
2
2 nInInVnInInVnInVnInInV
b χλλδχδγγλδγ −+−+= , ×= nI
b λ21
nInInVnInV
λχδδγ −× ,
4
33 323 32
3b
b
qpqqpqy −++−−+= , 2
4
2
342
9
3
b
bbb
p
−
= ,
( ) 3
4
2
4132
3
3
542792 bbbbbbq +−= .
We determine distributions of concentrations of simplest complexes of radiation defects in space
and time as the following functional series
( ) ( ) ( ) ( ) ( )∑=Φ
=
Φ
N
n
nnnnn tezcycxcatzyx
1
0 ,,, ρρρ .
Here anΦρ are the coefficients, which should be determined. Let us previously transform the Eqs.
(6) to the following integro-differential form
( ) ( ) ( ) ×∫ ∫ ∫
Φ
=∫ ∫ ∫Φ Φ
t y
L
z
L
I
I
x
L
y
L
z
L
I
zyx y zx y z
dvdwd
x
wvx
TwvxDudvdwdtwvu
LLL
zyx
0
,,,
,,,,,, τ
∂
τ∂
( ) ( ) ( )∫ ∫ ∫ ×+∫ ∫ ∫
Φ
+× ΦΦ
t x
L
y
L
I
yx
t x
L
z
L
I
I
zxzy x yx z
TzvuD
LL
yx
dudwd
y
wyu
TwyuD
LL
zx
LL
zy
00
,,,
,,,
,,, τ
∂
τ∂
( ) ( ) ( ) −∫ ∫ ∫+
Φ
×
x
L
y
L
z
L
II
zyx
I
x y z
udvdwdwvuITwvuk
LLL
zyx
dudvd
z
zvu
ττ
∂
τ∂
,,,,,,
,,, 2
, (6a)
( ) ( ) ( )∫ ∫ ∫+∫ ∫ ∫− Φ
x
L
y
L
z
L
I
zyx
x
L
y
L
z
L
I
zyx x y zx y z
udvdwdwvuf
LLL
zyx
udvdwdwvuITwvuk
LLL
zyx
,,,,,,,, τ
( ) ( ) ( ) ×∫ ∫ ∫
Φ
=∫ ∫ ∫Φ Φ
t y
L
z
L
V
V
x
L
y
L
z
L
V
zyx y zx y z
dvdwd
x
wvx
TwvxDudvdwdtwvu
LLL
zyx
0
,,,
,,,,,, τ
∂
τ∂
( ) ( ) ( )∫ ∫ ∫ ×+∫ ∫ ∫
Φ
+× ΦΦ
t x
L
y
L
V
yx
t x
L
z
L
V
V
zxzy x yx z
TzvuD
LL
yx
dudwd
y
wyu
TwyuD
LL
zx
LL
zy
00
,,,
,,,
,,, τ
∂
τ∂
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
13
( ) ( ) ( ) −∫ ∫ ∫+
Φ
×
x
L
y
L
z
L
VV
zyx
V
x y z
udvdwdwvuVTwvuk
LLL
zyx
dudvd
z
zvu
ττ
∂
τ∂
,,,,,,
,,, 2
,
( ) ( ) ( )∫ ∫ ∫+∫ ∫ ∫− Φ
x
L
y
L
z
L
V
zyx
x
L
y
L
z
L
V
zyx x y zx y z
udvdwdwvuf
LLL
zyx
udvdwdwvuVTwvuk
LLL
zyx
,,,,,,,, τ .
Substitution of the previously considered series in the Eqs.(6a) leads to the following form
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−=∑−
=
Φ
=
Φ
N
n
t y
L
z
L
nnnInIn
zyx
N
n
nInnn
In
y z
wcvctexsan
LLL
zy
tezsysxs
n
a
zyx
1 01
33
π
π
( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−×
=
ΦΦΦ
N
n
t x
L
z
L
InnIn
zyx
I
x z
dudwdTwvuDwcuca
LLL
zx
dvdwdTwvxD
1 0
,,,,,, τ
π
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) +∑ ∫ ∫ ∫−×
=
ΦΦΦΦ
N
n
t x
L
y
L
InnInnIn
zyx
Inn
x y
dudvdTzvuDvcuctezsan
LLL
yx
teysn
1 0
,,, τ
π
( ) ( ) ( ) ×∫ ∫ ∫+∫ ∫ ∫+ Φ
x
L
y
L
z
L
I
x
L
y
L
z
L
II
zyx x y zx y z
udvdwdwvufudvdwdwvuITwvuk
LLL
zyx
,,,,,,,, 2
, τ
( ) ( )∫ ∫ ∫−×
x
L
y
L
z
L
I
zyxzyx x y z
udvdwdwvuITwvuk
LLL
zyx
LLL
zyx
τ,,,,,,
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−=∑−
=
Φ
=
Φ
N
n
t y
L
z
L
nnnVnVn
zyx
N
n
nVnnn
Vn
y z
wcvctexsan
LLL
zy
tezsysxs
n
a
zyx
1 01
33
π
π
( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−×
=
ΦΦ
N
n
t x
L
z
L
Vnn
zyx
V
x z
dudwdTwvuDwcucn
LLL
zx
dvdwdTwvxD
1 0
,,,,,, τ
π
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−×
=
ΦΦΦΦ
N
n
t x
L
y
L
VnnVnn
zyx
VnnVn
x y
dudvdTzvuDvcuctezsn
LLL
yx
teysa
1 0
,,, τ
π
( ) ( ) ( ) ×∫ ∫ ∫+∫ ∫ ∫+× ΦΦ
x
L
y
L
z
L
V
x
L
y
L
z
L
VV
zyx
Vn
x y zx y z
udvdwdwvufudvdwdwvuVTwvuk
LLL
zyx
a ,,,,,,,, 2
,
τ
( ) ( )∫ ∫ ∫−×
x
L
y
L
z
L
V
zyxzyx x y z
udvdwdwvuVTwvuk
LLL
zyx
LLL
zyx
τ,,,,,, .
We used orthogonality condition of functions of the considered series framework the heterostruc-
ture to calculate coefficients anΦρ. The coefficients anΦρ could be calculated for any quantity of
terms N. In the common case equations for the required coefficients could be written as
( ) ( )[ ] ( ) ( )[ ] ×∑∫ ∫ ∫






−++−−=∑−
==
Φ
Φ
N
n
t L L
n
y
nyn
x
N
n
In
Inzyx
x y
yc
n
L
ysyLxc
L
te
n
aLLL
1 0 0 01
65
222
12
2
221
2
1
πππ
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
14
( ) ( ) ( )[ ] ( ) ( ){∑∫ ∫ +−∫






−+×
=
ΦΦ
Φ
N
n
t L
n
L
Inn
z
nI
In
xz
xsxdexdydzdzc
n
L
zszTzyxD
n
a
1 0 00
2
2
2
1
1
2
,,,
π
ττ
π
( )[ ] ( )[ ] ( ) ( ) ( )[ ] ×∫ ∫






−+−



−++ Φ
y z
L L
n
z
nInn
x
x xdydzdzc
n
L
zszTzyxDycxc
n
L
L
0 0
1
2
,,,2112
2 ππ
( ) ( ) ( )[ ] ( ) ( )[ ]∑ ∫ ∫ ∫



+−+






−+−×
=
ΦΦ
Φ
N
n
t L L
n
y
nn
x
n
In
xy
In
In
x y
yc
n
L
ysyxc
n
L
xsx
n
a
L
d
Ln
e
a
1 0 0 0
22
12
2
21
22
1
πππ
τ
τ
} ( )[ ] ( ) ( ) ( ) ( )[ ]∑ ∫ ∫



+−+∫ −+
=
Φ
Φ
ΦΦ
N
n
t L
n
x
In
In
L
InIny
xz
xc
n
L
e
n
a
dexdydzdTzyxDycL
1 0 0
33
0
1
2
1
,,,21
π
τ
π
ττ
( )} ( ) ( )[ ] ( ) ( ) ( )[ ]∫



+−∫






−++
zy L
n
z
II
L
n
y
nn zc
n
L
TzyxktzyxIyc
n
L
ysyxsx
0
,
2
0
1
2
,,,,,,1
2 ππ
( )} ( ) ( ) ( )[ ] ( )[ ]∑ ∫ ∫ ∫



+−






−+−+
=
Φ
Φ
N
n
t L L
n
y
n
x
nIn
In
n
x y
yc
n
L
xc
n
L
xsxe
n
a
xdydzdzsz
1 0 0 0
33
1
2
1
2
1
ππ
τ
π
( )} ( ) ( )[ ] ( ) ( ) ×∑+∫






−++
=
Φ
N
n
In
L
In
z
nn
n
a
xdydzdtzyxITzyxkzc
n
L
zszysy
z
1
33
0
1
,,,,,,1
2 ππ
( ) ( ) ( )[ ] ( ) ( )[ ] ( )[ ]∫ ∫ ∫ ∫



+−






−+






−+× Φ
t L L L
n
z
n
y
nn
x
nIn
x y z
zc
n
L
yc
n
L
ysyxc
n
L
xsxe
0 0 0 0
1
2
1
2
1
2 πππ
τ
( )} ( ) xdydzdzyxfzsz In
,,Φ
+
( ) ( )[ ] ( ) ( )[ ] ×∑∫ ∫ ∫






−++−−=∑−
==
Φ
Φ
N
n
t L L
n
y
nyn
x
N
n
Vn
Vnzyx
x y
yc
n
L
ysyLxc
L
te
n
aLLL
1 0 0 01
65
222
12
2
221
2
1
πππ
( ) ( ) ( )[ ] ( ) ( ){∑∫ ∫ +−∫






−+×
=
ΦΦ
Φ
N
n
t L
n
L
Vnn
z
nV
Vn
xz
xsxdexdydzdzc
n
L
zszTzyxD
n
a
1 0 00
2
2
2
1
1
2
,,,
π
ττ
π
( )[ ] ( )[ ] ( ) ( ) ( )[ ] ×∫ ∫






−+−



−++ Φ
y z
L L
n
z
nVnn
x
x xdydzdzc
n
L
zszTzyxDycxc
n
L
L
0 0
1
2
,,,2112
2 ππ
( ) ( ) ( )[ ] ( ) ( )[ ]∑ ∫ ∫ ∫



+−+






−+−×
=
ΦΦ
Φ
N
n
t L L
n
y
nn
x
n
Vn
xy
Vn
Vn
x y
yc
n
L
ysyxc
n
L
xsx
n
a
L
d
Ln
e
a
1 0 0 0
22
12
2
21
22
1
πππ
τ
τ
} ( )[ ] ( ) ( ) ( ) ( )[ ]∑ ∫ ∫



+−+∫ −+
=
Φ
Φ
ΦΦ
N
n
t L
n
x
Vn
Vn
L
VnVny
xz
xc
n
L
e
n
a
dexdydzdTzyxDycL
1 0 0
33
0
1
2
1
,,,21
π
τ
π
ττ
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
15
( )} ( ) ( )[ ] ( ) ( ) ( )[ ]∫



+−∫






−++
zy L
n
z
VV
L
n
y
nn zc
n
L
TzyxktzyxVyc
n
L
ysyxsx
0
,
2
0
1
2
,,,,,,1
2 ππ
( )} ( ) ( ) ( )[ ] ( )[ ]∑ ∫ ∫ ∫



+−






−+−+
=
Φ
Φ
N
n
t L L
n
y
n
x
nVn
Vn
n
x y
yc
n
L
xc
n
L
xsxe
n
a
xdydzdzsz
1 0 0 0
33
1
2
1
2
1
ππ
τ
π
( )} ( ) ( )[ ] ( ) ( ) ×∑+∫






−++
=
Φ
N
n
Vn
L
Vn
z
nn
n
a
xdydzdtzyxVTzyxkzc
n
L
zszysy
z
1
33
0
1
,,,,,,1
2 ππ
( ) ( ) ( )[ ] ( ) ( )[ ] ( )[ ]∫ ∫ ∫ ∫



+−






−+






−+× Φ
t L L L
n
z
n
y
nn
x
nVn
x y z
zc
n
L
yc
n
L
ysyxc
n
L
xsxe
0 0 0 0
1
2
1
2
1
2 πππ
τ
( )} ( ) xdydzdzyxfzsz Vn
,,Φ
+ .
3. DISCUSSION
In this section we analyzed redistribution of dopant with account redistribution of radiation de-
fects. The analysis shown, that presents of interface between materials of heterostructure gives a
possibility to increase absolute value of gradient of concentration of dopant outside of enriched
are by the dopant (see Figs. 2 and 3). At the same time homogeneity of concentration of dopant in
enriched area increases (see Figs. 2 and 3). The effects could be find, when dopant diffusion coef-
ficient in the doped area is larger, than in the nearest areas. Otherwise absolute value of gradient
of concentration of dopant decreases outside enriched by the dopant area (see Fig. 4). However
the decreasing could be partially or fully compensated by using high doping of materials. The
high doping leads to significant nonlinearity of diffusion of dopant. To increase compactness of
the considered circuits XOR it is attracted an interest the first relation between values of dopant
diffusion coefficient.
Fig.2a. Spatial distributions of infused dopant concentration in the considered heterostructure. The consi-
dered direction perpendicular to the interface between epitaxial layer substrate. Difference between values
of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of curves
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
16
x
0.0
0.5
1.0
1.5
2.0
C(x,Θ)
2
3
4
1
0 L/4 L/2 3L/4 L
Epitaxial layer Substrate
Fig.2b. Spatial distributions of infused dopant concentration in the considered heterostructure. Curves 1 and
3 corresponds to annealing time Θ=0.0048(Lx
2
+Ly
2
+Lz
2
)/D0. Curves 2 and 4 corresponds to annealing time
Θ=0.0057(Lx
2
+Ly
2
+Lz
2
)/D0. Curves 1 and 2 corresponds to homogenous sample. Curves 3 and 4 corres-
ponds to the considered heterostructure. Difference between values of dopant diffusion coefficient in layers
of heterostructure increases with increasing of number of curves
x
0.00000
0.00001
0.00010
0.00100
0.01000
0.10000
1.00000
C(x,Θ)
fC(x)
L/40 L/2 3L/4 Lx0
1
2
Substrate
Epitaxial
layer 1
Epitaxial
layer 2
Fig.3. Implanted dopant distributions in heterostructure in heterostructure with two epitaxial layers (solid
lines) and with one epitaxial layer (dushed lines) for different values of annealing time. Difference between
values of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of
curves
Increasing of annealing time leads to acceleration of diffusion. In this situation one can find in-
creasing quantity of dopant in materials near doped sections. If annealing time is small, the do-
pant can not achieves nearest interface between layers of heterostructure. These effects are shown
by Figs. 5 and 6. We used recently introduced criterion [16-23] to estimate compromise value of
annealing time. Framework the criterion we approximate real distribution of concentration of do-
pant by idealized step-wise distribution ψ (x,y,z), which would be better to use for minimization
dimensions of elements of the considered circuit XOR [19-26]. Farther the required compromise
annealing time has been calculated by minimization the following mean-squared error
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
17
( ) ( )[ ]∫ ∫ ∫ −Θ=
x y zL L L
zyx
xdydzdzyxzyxC
LLL
U
0 0 0
,,,,,
1
ψ . (8)
C(x,Θ)
0 Lx
2
1
3
4
Fig. 4. Distributions of concentrations of infused dopant in the considered heterostructure. Curve 1 is the
idealized distribution of dopant. Curves 2-4 are the real distributions of concentrations of dopant for differ-
ent values of annealing time for increasing of annealing time with increasing of number of curve
x
C(x,Θ)
1
2
3
4
0 L
Fig. 5. Distributions of concentrations of implanted dopant in the considered heterostructure. Curve 1 is the
idealized distribution of dopant. Curves 2-4 are the real distributions of concentrations of dopant for differ-
ent values of annealing time for increasing of annealing time with increasing of number of curve
We analyzed optimal value of annealing time. The analysis shows, that optimal value of anneal-
ing time for ion type of doping is smaller, than optimal value of annealing time for diffusion type
of doping. It is known, that ion doping of materials leads to radiation damage of doped materials.
In this situation radiation defects should be annealed. The annealing leads to the above difference
between optimal values of annealing time of dopant. The annealing of implanted dopant is neces-
sary in the case, when the dopant did not achieved nearest interface between layers of heterostruc-
ture during annealing of radiation defects.
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
18
It should be noted, that using diffusion type of doping did not leads to radiation damage of mate-
rials. However radiation damage of materials during ion doping gives a possibility to decrease
mismatch-induced stress in heterostructure [34].
4. CONCLUSIONS
In this paper we introduced an approach to decrease dimensions of a circuit XOR. The approach
based on optimization of manufacturing field-effect heterotransistors, which includes into itself
the considered circuit.
ACKNOWLEDGEMENTS
This work is supported by the agreement of August 27, 2013 № 02.В.49.21.0003 between The
Ministry of education and science of the Russian Federation and Lobachevsky State University of
Nizhni Novgorod, educational fellowship for scientific research of Government of Russian, edu-
cational fellowship for scientific research of Government of Nizhny Novgorod region of Russia
and of Nizhny Novgorod State University of Architecture and Civil Engineering.
REFERENCES
[1] S.T. Shishiyanu, T.S. Shishiyanu, S.K. Railyan. Shallow p-n-junctions in Si prepared by pulse photon
annealing. Semiconductors. Vol. 36 (5). P. 611-617 (2002).
[2] M.J. Kumar, T.V. Singh. Quantum confinement effects in strained silicon MOSFETs MOSFETs. Int.
J. Nanoscience. Vol. 7 (2-3). P. 81-84 (2008).
[3] D. Fathi, B. Forouzandeh. Accurate analysis of global interconnects in nano-FPGAs. Nano. Vol. 4 (3).
P. 171-176 (2009).
[4] D. Fathi, B. Forouzandeh, N. Masoumi. New enhanced noise analysis in active mixers in nanoscale
technologies. Nano. Vol. 4 (4). P. 233-238 (2009).
[5] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Lit-
vin, V.V. Milenin, A.V. Sachenko. Au–TiBx−n-6H-SiC Schottky barrier diodes: the features of cur-
rent flow in rectifying and nonrectifying contacts. Semiconductors. Vol. 43 (7). P. 897-903 (2009).
[6] Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. High-performance InGaP/GaAs
pnp δ-doped heterojunction bipolar transistor. Semiconductors. Vol. 43 (7). С. 971-974 (2009).
[7] P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi,
R.G. Gordon. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxy-
sulfide buffer layer. Appl. Phys. Lett. Vol. 102 (5). P. 053901-053905 (2013).
[8] J.G. Reynolds, C.L. Reynolds, Jr.A. Mohanta, J.F. Muth, J.E. Rowe, H.O. Everitt, D.E. Aspnes. Shal-
low acceptor complexes in p-type ZnO. Appl. Phys. Lett. Vol. 102 (15). P. 152114-152118 (2013).
[9] S.A. Chachuli, P.N.A. Fasyar, N. Soin, N.M. Karim, N. Yusop. Pareto ANOVA analysis for CMOS
0.18 µm two-stage Op-amp. Mat. Sci. Sem. Proc. Vol. 24. P. 9-14 (2014).
[10] N.I. Volokobinskaya, I.N. Komarov, T.V. Matioukhina, V.I. Rechetniko, A.A. Rush, I.V. Falina, A.S.
Yastrebov. Investigation of technological processes of manufacturing of the bipolar power high-
voltage transistors with a grid of inclusions in the collector region. Semiconductors. Vol. 35 (8). P.
1013-1017 (2001).
[11] G. Volovich. Modern chips UM3Ch class D manufactured by firm MPS. Modern Electronics. Issue 2.
P. 10-17 (2006).
[12] M.V. Dunga, L. Chung-Hsun, X. Xuemei, D.D. Lu, A.M. Niknejad, H. Chenming. Modeling ad-
vanced FET technology in a compact model. IEEE Transactions on Electron Devices. Vol. 53 (9). P.
157-162 (2006).
[13] A. Kerentsev, V. Lanin. Constructive-technological features of MOSFET-transistors. Power Electron-
ics. Issue 1. P. 34-38 (2008).
[14] C. Senthilpari, K. Diwakar, A.K. Singh. Low Energy, Low Latency and High Speed Array Divider
Circuit Using a Shannon Theorem Based Adder Cell. Recent Patents on Nanotechnology. Vol. 3 (1).
P. 61-72 (2009).
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
19
[15] M.M. Fouad, H.H. Amer, A.H. Madian, M.B. Abdelhalim. Current Mode Logic Testing of
XOR/XNOR Circuit: A Case Study Original. Circuits and Systems. Vol. 4 (4). P. 364-368 (2013).
[16] E.L. Pankratov. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion-
coefficient nonuniformity. Russian Microelectronics. 2007. V.36 (1). P. 33-39.
[17] E.L. Pankratov. Redistribution of dopant during annealing of radiative defects in a multilayer struc-
ture by laser scans for production an implanted-junction rectifiers. Int. J. Nanoscience. Vol. 7 (4-5). P.
187–197 (2008).
[18] E.L. Pankratov. Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure
by optimized laser annealing. J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010).
[19] E.L.Pankratov, E.A. Bulaeva. Increasing of sharpness of diffusion-junction heterorectifier by using
radiation processing. Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1-1250028-8 (2012).
[20] E.L. Pankratov, E.A. Bulaeva. Application of native inhomogeneities to increase com pactness of
vertical field-effect transistors. J. Comp. Theor. Nanoscience. Vol. 10 (4). P. 888-893 (2013).
[21] E.L. Pankratov, E.A. Bulaeva. An approach to manufacture of bipolar transistors in thin film struc-
tures. On the method of optimization. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014).
[22] E.L. Pankratov, E.A. Bulaeva. Optimization of annealing of dopant to increase sharp-ness of p-n-
junctions in a heterostructure with drain of dopant. Applied Nanoscience. Vol. 4 (5). P. 537-541
(2014).
[23] E.L. Pankratov, E.A. Bulaeva. An approach to optimize regimes of manufacturing of complementary
horizontal field-effect transistor. Int. J. Rec. Adv. Phys. Vol. 3 (2). P. 55-73 (2014).
[24] V.I. Lachin, N.S. Savelov. Electronics (Phoenix, Rostov-na-Donu, 2001).
[25] N.A. Avaev, Yu.E. Naumov, V.T. Frolkin. Basis of microelectronics (Radio and communication,
Moscow, 1991).
[26] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991).
[27] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev,
1979, in Russian).
[28] P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicon. Rev. Mod.
Phys. 1989. Vol. 61. № 2. P. 289-388.
[29] W.-X. Ni, G.V. Hansson, J.-E. Sundgren, L. Hultman, L.R. Wallenberg, J.-Y. Yao, L.C. Markert, J.E.
Greene, -function-shaped Sb-doping profiles in Si(001) obtained using a low-energy accelerated-ion
source during molecular-beam epitaxy. Phys. Rev. B. Vol. 46 (12). P. 7551-7558 (1992).
[30] B.A. Zon, S.B. Ledovskii, A.N. Likholet. Lattice diffusion of impurity enhanced by a surface hetero-
geneous reaction. Tech. Phys. Vol. 45 (4). P. 419-424 (2000).
[31] F. Faupel, W. Frank, M.-P. Macht, H. Mehrer, V. Naundorf, K. Ratzke, H. R. Schober, S.K. Sharma,
H. Teichler. Diffusion in metallic glasses and supercooled melts. Reviews of modern physics. Vol. 75
(1). P. 237-280 (2003).
[32] S.A. Bahrani, Y. Jannot, A. Degiovanni. A New Silicon p‐n Junction Photocell for Con-verting Solar
Radiation into Electrical Power. J. Appl. Phys. Vol. 114 (14). P. 143509-143516 (2014).
[33] M.L. Krasnov, A.I. Kiselev, G.I. Makarenko. Integral equations (Science, Moscow, 1976).
[34] E.L. Pankratov, E.A. Bulaeva. On the relations between porosity of heterostructured materials and
mismatch-induced stress. J. Comp. Theor. Nanoscience. Vol. 11 (1). P. 91-101 (2014).
AUTHORS
Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary
school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University:
from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra-
diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio-
physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro-
structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo-
rod State University of Architecture and Civil Engineering. 2012-2015 Full Doctor course in Radi-
ophysical Department of Nizhny Novgorod State University. Since 2015 E.L. Pankratov is an Associate
Professor of Nizhny Novgorod State University. He has 135 published papers in area of his researches.
Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of
village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school
“Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec-
International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016
20
ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she
is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in
the University. Since 2014 E.A. Bulaeva is in a PhD program in Radiophysical Department of Nizhny
Novgorod State University. She has 90 published papers in area of her researches.

More Related Content

What's hot

ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ijoejournal
 
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCESON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCESmsejjournal
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ijfcstjournal
 
On prognozisys of manufacturing double base
On prognozisys of manufacturing double baseOn prognozisys of manufacturing double base
On prognozisys of manufacturing double basemsejjournal
 
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...ijoejournal
 
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...JaresJournal
 
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...JaresJournal
 
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...antjjournal
 
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...ijrap
 
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ijaceeejournal
 
Modeling of manufacturing of a field effect transistor to determine condition...
Modeling of manufacturing of a field effect transistor to determine condition...Modeling of manufacturing of a field effect transistor to determine condition...
Modeling of manufacturing of a field effect transistor to determine condition...ijcsa
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...jedt_journal
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...antjjournal
 

What's hot (13)

ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
 
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCESON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
 
On prognozisys of manufacturing double base
On prognozisys of manufacturing double baseOn prognozisys of manufacturing double base
On prognozisys of manufacturing double base
 
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
 
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
 
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
 
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
 
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
 
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
 
Modeling of manufacturing of a field effect transistor to determine condition...
Modeling of manufacturing of a field effect transistor to determine condition...Modeling of manufacturing of a field effect transistor to determine condition...
Modeling of manufacturing of a field effect transistor to determine condition...
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
 

Viewers also liked

Motorcycle Policy in Taiwan - Public Discussion Part 4
Motorcycle Policy in Taiwan - Public Discussion Part 4Motorcycle Policy in Taiwan - Public Discussion Part 4
Motorcycle Policy in Taiwan - Public Discussion Part 4TH Schee
 
20141128_エンジニア×営業@DevLOVE関西_営業の声も聞いてくれ
20141128_エンジニア×営業@DevLOVE関西_営業の声も聞いてくれ20141128_エンジニア×営業@DevLOVE関西_営業の声も聞いてくれ
20141128_エンジニア×営業@DevLOVE関西_営業の声も聞いてくれMaiko Nakajima
 
Cazarré Mktcom - Boletim 3
Cazarré Mktcom - Boletim 3Cazarré Mktcom - Boletim 3
Cazarré Mktcom - Boletim 3Luiz CAZARRÉ
 
Rescaldo 4º evento da aula magna da universidade da tribo
Rescaldo 4º evento da aula magna da universidade da triboRescaldo 4º evento da aula magna da universidade da tribo
Rescaldo 4º evento da aula magna da universidade da triboMiguel Duarte
 
Speecheskw
SpeecheskwSpeecheskw
Speecheskwjaloisi
 
Social Media Marketing
Social Media MarketingSocial Media Marketing
Social Media MarketingLiang Wang
 
关于会议那些事儿
关于会议那些事儿关于会议那些事儿
关于会议那些事儿Alite Yu
 
Outlook2003
Outlook2003Outlook2003
Outlook2003RS712003
 
Roteiro de estudos 4º
Roteiro de estudos 4ºRoteiro de estudos 4º
Roteiro de estudos 4ºpablonaba
 
Clustbigfim frequent itemset mining of
Clustbigfim frequent itemset mining ofClustbigfim frequent itemset mining of
Clustbigfim frequent itemset mining ofijfcstjournal
 
Next generation chemicals and materials - Lee Sang Yup
Next generation chemicals and materials - Lee Sang YupNext generation chemicals and materials - Lee Sang Yup
Next generation chemicals and materials - Lee Sang YupWorld Economic Forum
 
Đêm_Đông -Nguyễn Văn Thương -pw
Đêm_Đông -Nguyễn Văn Thương -pw Đêm_Đông -Nguyễn Văn Thương -pw
Đêm_Đông -Nguyễn Văn Thương -pw Daklak Training College
 
Open Zorgdata (#reshape09 event)
Open Zorgdata (#reshape09 event)Open Zorgdata (#reshape09 event)
Open Zorgdata (#reshape09 event)Robert Houtenbos
 
A secret guide to wearing flats this season
A secret guide to wearing flats this seasonA secret guide to wearing flats this season
A secret guide to wearing flats this seasonSangam Vesh
 

Viewers also liked (17)

Motorcycle Policy in Taiwan - Public Discussion Part 4
Motorcycle Policy in Taiwan - Public Discussion Part 4Motorcycle Policy in Taiwan - Public Discussion Part 4
Motorcycle Policy in Taiwan - Public Discussion Part 4
 
5 Tips for LinkedIn Profile
5 Tips for LinkedIn Profile5 Tips for LinkedIn Profile
5 Tips for LinkedIn Profile
 
20141128_エンジニア×営業@DevLOVE関西_営業の声も聞いてくれ
20141128_エンジニア×営業@DevLOVE関西_営業の声も聞いてくれ20141128_エンジニア×営業@DevLOVE関西_営業の声も聞いてくれ
20141128_エンジニア×営業@DevLOVE関西_営業の声も聞いてくれ
 
Cazarré Mktcom - Boletim 3
Cazarré Mktcom - Boletim 3Cazarré Mktcom - Boletim 3
Cazarré Mktcom - Boletim 3
 
Rescaldo 4º evento da aula magna da universidade da tribo
Rescaldo 4º evento da aula magna da universidade da triboRescaldo 4º evento da aula magna da universidade da tribo
Rescaldo 4º evento da aula magna da universidade da tribo
 
Speecheskw
SpeecheskwSpeecheskw
Speecheskw
 
Social Media Marketing
Social Media MarketingSocial Media Marketing
Social Media Marketing
 
关于会议那些事儿
关于会议那些事儿关于会议那些事儿
关于会议那些事儿
 
Outlook2003
Outlook2003Outlook2003
Outlook2003
 
UK CCC: Matthew Bell's presentation to CCCW 4 Dec 2014
UK CCC: Matthew Bell's presentation to CCCW 4 Dec 2014UK CCC: Matthew Bell's presentation to CCCW 4 Dec 2014
UK CCC: Matthew Bell's presentation to CCCW 4 Dec 2014
 
Roteiro de estudos 4º
Roteiro de estudos 4ºRoteiro de estudos 4º
Roteiro de estudos 4º
 
Clustbigfim frequent itemset mining of
Clustbigfim frequent itemset mining ofClustbigfim frequent itemset mining of
Clustbigfim frequent itemset mining of
 
Next generation chemicals and materials - Lee Sang Yup
Next generation chemicals and materials - Lee Sang YupNext generation chemicals and materials - Lee Sang Yup
Next generation chemicals and materials - Lee Sang Yup
 
Đêm_Đông -Nguyễn Văn Thương -pw
Đêm_Đông -Nguyễn Văn Thương -pw Đêm_Đông -Nguyễn Văn Thương -pw
Đêm_Đông -Nguyễn Văn Thương -pw
 
Open Zorgdata (#reshape09 event)
Open Zorgdata (#reshape09 event)Open Zorgdata (#reshape09 event)
Open Zorgdata (#reshape09 event)
 
EVOLUCION DE LA WEB
EVOLUCION DE LA WEBEVOLUCION DE LA WEB
EVOLUCION DE LA WEB
 
A secret guide to wearing flats this season
A secret guide to wearing flats this seasonA secret guide to wearing flats this season
A secret guide to wearing flats this season
 

Similar to Optimization of XOR Circuits

On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several SourcesOn Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several Sourcesmsejjournal
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...ijfcstjournal
 
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCESON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCESmsejjournal
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...ijrap
 
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...ijcsa
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...msejjournal
 
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ijoejournal
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSZac Darcy
 
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction RectifiersInfluence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction RectifiersZac Darcy
 
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...JaresJournal
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...ijrap
 
An approach to decrease dimentions of logical
An approach to decrease dimentions of logicalAn approach to decrease dimentions of logical
An approach to decrease dimentions of logicalijcsa
 
ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...
ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...
ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...msejjournal
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...ijrap
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...ijrap
 
Optimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
Optimization of Manufacturing of Circuits XOR to Decrease Their DimensionsOptimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
Optimization of Manufacturing of Circuits XOR to Decrease Their Dimensionsijrap
 
Decreasing of quantity of radiation de fects in
Decreasing of quantity of radiation de fects inDecreasing of quantity of radiation de fects in
Decreasing of quantity of radiation de fects inijcsa
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...antjjournal
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...antjjournal
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSZac Darcy
 

Similar to Optimization of XOR Circuits (20)

On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several SourcesOn Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
 
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCESON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
 
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
 
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction RectifiersInfluence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
 
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
 
An approach to decrease dimentions of logical
An approach to decrease dimentions of logicalAn approach to decrease dimentions of logical
An approach to decrease dimentions of logical
 
ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...
ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...
ON PROGNOZISYS OF MANUFACTURING DOUBLE-BASE HETEROTRANSISTOR AND OPTIMIZATION...
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
 
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
Optimization of Manufacture of Field-Effect Heterotransistors without P-N-Jun...
 
Optimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
Optimization of Manufacturing of Circuits XOR to Decrease Their DimensionsOptimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
Optimization of Manufacturing of Circuits XOR to Decrease Their Dimensions
 
Decreasing of quantity of radiation de fects in
Decreasing of quantity of radiation de fects inDecreasing of quantity of radiation de fects in
Decreasing of quantity of radiation de fects in
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
 

More from ijfcstjournal

A SURVEY TO REAL-TIME MESSAGE-ROUTING NETWORK SYSTEM WITH KLA MODELLING
A SURVEY TO REAL-TIME MESSAGE-ROUTING NETWORK SYSTEM WITH KLA MODELLINGA SURVEY TO REAL-TIME MESSAGE-ROUTING NETWORK SYSTEM WITH KLA MODELLING
A SURVEY TO REAL-TIME MESSAGE-ROUTING NETWORK SYSTEM WITH KLA MODELLINGijfcstjournal
 
A COMPARATIVE ANALYSIS ON SOFTWARE ARCHITECTURE STYLES
A COMPARATIVE ANALYSIS ON SOFTWARE ARCHITECTURE STYLESA COMPARATIVE ANALYSIS ON SOFTWARE ARCHITECTURE STYLES
A COMPARATIVE ANALYSIS ON SOFTWARE ARCHITECTURE STYLESijfcstjournal
 
SYSTEM ANALYSIS AND DESIGN FOR A BUSINESS DEVELOPMENT MANAGEMENT SYSTEM BASED...
SYSTEM ANALYSIS AND DESIGN FOR A BUSINESS DEVELOPMENT MANAGEMENT SYSTEM BASED...SYSTEM ANALYSIS AND DESIGN FOR A BUSINESS DEVELOPMENT MANAGEMENT SYSTEM BASED...
SYSTEM ANALYSIS AND DESIGN FOR A BUSINESS DEVELOPMENT MANAGEMENT SYSTEM BASED...ijfcstjournal
 
AN ALGORITHM FOR SOLVING LINEAR OPTIMIZATION PROBLEMS SUBJECTED TO THE INTERS...
AN ALGORITHM FOR SOLVING LINEAR OPTIMIZATION PROBLEMS SUBJECTED TO THE INTERS...AN ALGORITHM FOR SOLVING LINEAR OPTIMIZATION PROBLEMS SUBJECTED TO THE INTERS...
AN ALGORITHM FOR SOLVING LINEAR OPTIMIZATION PROBLEMS SUBJECTED TO THE INTERS...ijfcstjournal
 
LBRP: A RESILIENT ENERGY HARVESTING NOISE AWARE ROUTING PROTOCOL FOR UNDER WA...
LBRP: A RESILIENT ENERGY HARVESTING NOISE AWARE ROUTING PROTOCOL FOR UNDER WA...LBRP: A RESILIENT ENERGY HARVESTING NOISE AWARE ROUTING PROTOCOL FOR UNDER WA...
LBRP: A RESILIENT ENERGY HARVESTING NOISE AWARE ROUTING PROTOCOL FOR UNDER WA...ijfcstjournal
 
STRUCTURAL DYNAMICS AND EVOLUTION OF CAPSULE ENDOSCOPY (PILL CAMERA) TECHNOLO...
STRUCTURAL DYNAMICS AND EVOLUTION OF CAPSULE ENDOSCOPY (PILL CAMERA) TECHNOLO...STRUCTURAL DYNAMICS AND EVOLUTION OF CAPSULE ENDOSCOPY (PILL CAMERA) TECHNOLO...
STRUCTURAL DYNAMICS AND EVOLUTION OF CAPSULE ENDOSCOPY (PILL CAMERA) TECHNOLO...ijfcstjournal
 
AN OPTIMIZED HYBRID APPROACH FOR PATH FINDING
AN OPTIMIZED HYBRID APPROACH FOR PATH FINDINGAN OPTIMIZED HYBRID APPROACH FOR PATH FINDING
AN OPTIMIZED HYBRID APPROACH FOR PATH FINDINGijfcstjournal
 
EAGRO CROP MARKETING FOR FARMING COMMUNITY
EAGRO CROP MARKETING FOR FARMING COMMUNITYEAGRO CROP MARKETING FOR FARMING COMMUNITY
EAGRO CROP MARKETING FOR FARMING COMMUNITYijfcstjournal
 
EDGE-TENACITY IN CYCLES AND COMPLETE GRAPHS
EDGE-TENACITY IN CYCLES AND COMPLETE GRAPHSEDGE-TENACITY IN CYCLES AND COMPLETE GRAPHS
EDGE-TENACITY IN CYCLES AND COMPLETE GRAPHSijfcstjournal
 
COMPARATIVE STUDY OF DIFFERENT ALGORITHMS TO SOLVE N QUEENS PROBLEM
COMPARATIVE STUDY OF DIFFERENT ALGORITHMS TO SOLVE N QUEENS PROBLEMCOMPARATIVE STUDY OF DIFFERENT ALGORITHMS TO SOLVE N QUEENS PROBLEM
COMPARATIVE STUDY OF DIFFERENT ALGORITHMS TO SOLVE N QUEENS PROBLEMijfcstjournal
 
PSTECEQL: A NOVEL EVENT QUERY LANGUAGE FOR VANET’S UNCERTAIN EVENT STREAMS
PSTECEQL: A NOVEL EVENT QUERY LANGUAGE FOR VANET’S UNCERTAIN EVENT STREAMSPSTECEQL: A NOVEL EVENT QUERY LANGUAGE FOR VANET’S UNCERTAIN EVENT STREAMS
PSTECEQL: A NOVEL EVENT QUERY LANGUAGE FOR VANET’S UNCERTAIN EVENT STREAMSijfcstjournal
 
CLUSTBIGFIM-FREQUENT ITEMSET MINING OF BIG DATA USING PRE-PROCESSING BASED ON...
CLUSTBIGFIM-FREQUENT ITEMSET MINING OF BIG DATA USING PRE-PROCESSING BASED ON...CLUSTBIGFIM-FREQUENT ITEMSET MINING OF BIG DATA USING PRE-PROCESSING BASED ON...
CLUSTBIGFIM-FREQUENT ITEMSET MINING OF BIG DATA USING PRE-PROCESSING BASED ON...ijfcstjournal
 
A MUTATION TESTING ANALYSIS AND REGRESSION TESTING
A MUTATION TESTING ANALYSIS AND REGRESSION TESTINGA MUTATION TESTING ANALYSIS AND REGRESSION TESTING
A MUTATION TESTING ANALYSIS AND REGRESSION TESTINGijfcstjournal
 
GREEN WSN- OPTIMIZATION OF ENERGY USE THROUGH REDUCTION IN COMMUNICATION WORK...
GREEN WSN- OPTIMIZATION OF ENERGY USE THROUGH REDUCTION IN COMMUNICATION WORK...GREEN WSN- OPTIMIZATION OF ENERGY USE THROUGH REDUCTION IN COMMUNICATION WORK...
GREEN WSN- OPTIMIZATION OF ENERGY USE THROUGH REDUCTION IN COMMUNICATION WORK...ijfcstjournal
 
A NEW MODEL FOR SOFTWARE COSTESTIMATION USING HARMONY SEARCH
A NEW MODEL FOR SOFTWARE COSTESTIMATION USING HARMONY SEARCHA NEW MODEL FOR SOFTWARE COSTESTIMATION USING HARMONY SEARCH
A NEW MODEL FOR SOFTWARE COSTESTIMATION USING HARMONY SEARCHijfcstjournal
 
AGENT ENABLED MINING OF DISTRIBUTED PROTEIN DATA BANKS
AGENT ENABLED MINING OF DISTRIBUTED PROTEIN DATA BANKSAGENT ENABLED MINING OF DISTRIBUTED PROTEIN DATA BANKS
AGENT ENABLED MINING OF DISTRIBUTED PROTEIN DATA BANKSijfcstjournal
 
International Journal on Foundations of Computer Science & Technology (IJFCST)
International Journal on Foundations of Computer Science & Technology (IJFCST)International Journal on Foundations of Computer Science & Technology (IJFCST)
International Journal on Foundations of Computer Science & Technology (IJFCST)ijfcstjournal
 
AN INTRODUCTION TO DIGITAL CRIMES
AN INTRODUCTION TO DIGITAL CRIMESAN INTRODUCTION TO DIGITAL CRIMES
AN INTRODUCTION TO DIGITAL CRIMESijfcstjournal
 
DISTRIBUTION OF MAXIMAL CLIQUE SIZE UNDER THE WATTS-STROGATZ MODEL OF EVOLUTI...
DISTRIBUTION OF MAXIMAL CLIQUE SIZE UNDER THE WATTS-STROGATZ MODEL OF EVOLUTI...DISTRIBUTION OF MAXIMAL CLIQUE SIZE UNDER THE WATTS-STROGATZ MODEL OF EVOLUTI...
DISTRIBUTION OF MAXIMAL CLIQUE SIZE UNDER THE WATTS-STROGATZ MODEL OF EVOLUTI...ijfcstjournal
 
A STATISTICAL COMPARATIVE STUDY OF SOME SORTING ALGORITHMS
A STATISTICAL COMPARATIVE STUDY OF SOME SORTING ALGORITHMSA STATISTICAL COMPARATIVE STUDY OF SOME SORTING ALGORITHMS
A STATISTICAL COMPARATIVE STUDY OF SOME SORTING ALGORITHMSijfcstjournal
 

More from ijfcstjournal (20)

A SURVEY TO REAL-TIME MESSAGE-ROUTING NETWORK SYSTEM WITH KLA MODELLING
A SURVEY TO REAL-TIME MESSAGE-ROUTING NETWORK SYSTEM WITH KLA MODELLINGA SURVEY TO REAL-TIME MESSAGE-ROUTING NETWORK SYSTEM WITH KLA MODELLING
A SURVEY TO REAL-TIME MESSAGE-ROUTING NETWORK SYSTEM WITH KLA MODELLING
 
A COMPARATIVE ANALYSIS ON SOFTWARE ARCHITECTURE STYLES
A COMPARATIVE ANALYSIS ON SOFTWARE ARCHITECTURE STYLESA COMPARATIVE ANALYSIS ON SOFTWARE ARCHITECTURE STYLES
A COMPARATIVE ANALYSIS ON SOFTWARE ARCHITECTURE STYLES
 
SYSTEM ANALYSIS AND DESIGN FOR A BUSINESS DEVELOPMENT MANAGEMENT SYSTEM BASED...
SYSTEM ANALYSIS AND DESIGN FOR A BUSINESS DEVELOPMENT MANAGEMENT SYSTEM BASED...SYSTEM ANALYSIS AND DESIGN FOR A BUSINESS DEVELOPMENT MANAGEMENT SYSTEM BASED...
SYSTEM ANALYSIS AND DESIGN FOR A BUSINESS DEVELOPMENT MANAGEMENT SYSTEM BASED...
 
AN ALGORITHM FOR SOLVING LINEAR OPTIMIZATION PROBLEMS SUBJECTED TO THE INTERS...
AN ALGORITHM FOR SOLVING LINEAR OPTIMIZATION PROBLEMS SUBJECTED TO THE INTERS...AN ALGORITHM FOR SOLVING LINEAR OPTIMIZATION PROBLEMS SUBJECTED TO THE INTERS...
AN ALGORITHM FOR SOLVING LINEAR OPTIMIZATION PROBLEMS SUBJECTED TO THE INTERS...
 
LBRP: A RESILIENT ENERGY HARVESTING NOISE AWARE ROUTING PROTOCOL FOR UNDER WA...
LBRP: A RESILIENT ENERGY HARVESTING NOISE AWARE ROUTING PROTOCOL FOR UNDER WA...LBRP: A RESILIENT ENERGY HARVESTING NOISE AWARE ROUTING PROTOCOL FOR UNDER WA...
LBRP: A RESILIENT ENERGY HARVESTING NOISE AWARE ROUTING PROTOCOL FOR UNDER WA...
 
STRUCTURAL DYNAMICS AND EVOLUTION OF CAPSULE ENDOSCOPY (PILL CAMERA) TECHNOLO...
STRUCTURAL DYNAMICS AND EVOLUTION OF CAPSULE ENDOSCOPY (PILL CAMERA) TECHNOLO...STRUCTURAL DYNAMICS AND EVOLUTION OF CAPSULE ENDOSCOPY (PILL CAMERA) TECHNOLO...
STRUCTURAL DYNAMICS AND EVOLUTION OF CAPSULE ENDOSCOPY (PILL CAMERA) TECHNOLO...
 
AN OPTIMIZED HYBRID APPROACH FOR PATH FINDING
AN OPTIMIZED HYBRID APPROACH FOR PATH FINDINGAN OPTIMIZED HYBRID APPROACH FOR PATH FINDING
AN OPTIMIZED HYBRID APPROACH FOR PATH FINDING
 
EAGRO CROP MARKETING FOR FARMING COMMUNITY
EAGRO CROP MARKETING FOR FARMING COMMUNITYEAGRO CROP MARKETING FOR FARMING COMMUNITY
EAGRO CROP MARKETING FOR FARMING COMMUNITY
 
EDGE-TENACITY IN CYCLES AND COMPLETE GRAPHS
EDGE-TENACITY IN CYCLES AND COMPLETE GRAPHSEDGE-TENACITY IN CYCLES AND COMPLETE GRAPHS
EDGE-TENACITY IN CYCLES AND COMPLETE GRAPHS
 
COMPARATIVE STUDY OF DIFFERENT ALGORITHMS TO SOLVE N QUEENS PROBLEM
COMPARATIVE STUDY OF DIFFERENT ALGORITHMS TO SOLVE N QUEENS PROBLEMCOMPARATIVE STUDY OF DIFFERENT ALGORITHMS TO SOLVE N QUEENS PROBLEM
COMPARATIVE STUDY OF DIFFERENT ALGORITHMS TO SOLVE N QUEENS PROBLEM
 
PSTECEQL: A NOVEL EVENT QUERY LANGUAGE FOR VANET’S UNCERTAIN EVENT STREAMS
PSTECEQL: A NOVEL EVENT QUERY LANGUAGE FOR VANET’S UNCERTAIN EVENT STREAMSPSTECEQL: A NOVEL EVENT QUERY LANGUAGE FOR VANET’S UNCERTAIN EVENT STREAMS
PSTECEQL: A NOVEL EVENT QUERY LANGUAGE FOR VANET’S UNCERTAIN EVENT STREAMS
 
CLUSTBIGFIM-FREQUENT ITEMSET MINING OF BIG DATA USING PRE-PROCESSING BASED ON...
CLUSTBIGFIM-FREQUENT ITEMSET MINING OF BIG DATA USING PRE-PROCESSING BASED ON...CLUSTBIGFIM-FREQUENT ITEMSET MINING OF BIG DATA USING PRE-PROCESSING BASED ON...
CLUSTBIGFIM-FREQUENT ITEMSET MINING OF BIG DATA USING PRE-PROCESSING BASED ON...
 
A MUTATION TESTING ANALYSIS AND REGRESSION TESTING
A MUTATION TESTING ANALYSIS AND REGRESSION TESTINGA MUTATION TESTING ANALYSIS AND REGRESSION TESTING
A MUTATION TESTING ANALYSIS AND REGRESSION TESTING
 
GREEN WSN- OPTIMIZATION OF ENERGY USE THROUGH REDUCTION IN COMMUNICATION WORK...
GREEN WSN- OPTIMIZATION OF ENERGY USE THROUGH REDUCTION IN COMMUNICATION WORK...GREEN WSN- OPTIMIZATION OF ENERGY USE THROUGH REDUCTION IN COMMUNICATION WORK...
GREEN WSN- OPTIMIZATION OF ENERGY USE THROUGH REDUCTION IN COMMUNICATION WORK...
 
A NEW MODEL FOR SOFTWARE COSTESTIMATION USING HARMONY SEARCH
A NEW MODEL FOR SOFTWARE COSTESTIMATION USING HARMONY SEARCHA NEW MODEL FOR SOFTWARE COSTESTIMATION USING HARMONY SEARCH
A NEW MODEL FOR SOFTWARE COSTESTIMATION USING HARMONY SEARCH
 
AGENT ENABLED MINING OF DISTRIBUTED PROTEIN DATA BANKS
AGENT ENABLED MINING OF DISTRIBUTED PROTEIN DATA BANKSAGENT ENABLED MINING OF DISTRIBUTED PROTEIN DATA BANKS
AGENT ENABLED MINING OF DISTRIBUTED PROTEIN DATA BANKS
 
International Journal on Foundations of Computer Science & Technology (IJFCST)
International Journal on Foundations of Computer Science & Technology (IJFCST)International Journal on Foundations of Computer Science & Technology (IJFCST)
International Journal on Foundations of Computer Science & Technology (IJFCST)
 
AN INTRODUCTION TO DIGITAL CRIMES
AN INTRODUCTION TO DIGITAL CRIMESAN INTRODUCTION TO DIGITAL CRIMES
AN INTRODUCTION TO DIGITAL CRIMES
 
DISTRIBUTION OF MAXIMAL CLIQUE SIZE UNDER THE WATTS-STROGATZ MODEL OF EVOLUTI...
DISTRIBUTION OF MAXIMAL CLIQUE SIZE UNDER THE WATTS-STROGATZ MODEL OF EVOLUTI...DISTRIBUTION OF MAXIMAL CLIQUE SIZE UNDER THE WATTS-STROGATZ MODEL OF EVOLUTI...
DISTRIBUTION OF MAXIMAL CLIQUE SIZE UNDER THE WATTS-STROGATZ MODEL OF EVOLUTI...
 
A STATISTICAL COMPARATIVE STUDY OF SOME SORTING ALGORITHMS
A STATISTICAL COMPARATIVE STUDY OF SOME SORTING ALGORITHMSA STATISTICAL COMPARATIVE STUDY OF SOME SORTING ALGORITHMS
A STATISTICAL COMPARATIVE STUDY OF SOME SORTING ALGORITHMS
 

Recently uploaded

Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraDeakin University
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Neo4j
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Unlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsUnlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsPrecisely
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 

Recently uploaded (20)

Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptxVulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning era
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
Unlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsUnlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power Systems
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 

Optimization of XOR Circuits

  • 1. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 DOI:10.5121/ijfcst.2016.6101 1 OPTIMIZATION OF TECHNOLOGICAL PROCESS TO DECREASE DIMENSIONS OF CIRCUITS XOR, MANU- FECTURED BASED ON FIELD-EFFECT HETEROTRAN- SISTORS E.L. Pankratov1 , E.A. Bulaeva1,2 1 Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia 2 Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky Street, Nizhny Novgorod, 603950, Russia ABSTRACT The paper describes an approach of increasing of integration rate of elements of integrated circuits. The approach has been illustrated by example of manufacturing of a circuit XOR. Framework the approach one should manufacture a heterostructure with specific configuration. After that several special areas of the heterostructure should be doped by diffusion and/or ion implantation and optimization of annealing of do- pant and/or radiation defects. We analyzed redistribution of dopant with account redistribution of radiation defects to formulate recommendations to decrease dimensions of integrated circuits by using analytical approaches of modeling of technological process. KEYWORDS Circuits XOR; increasing of density of elements; optimization of technological process. 1. INTRODUCTION One of intensively solving problems of solid state electronics is improvement of frequency cha- racteristics of electronic devices and their reliability. Another intensively solving problem is in- creasing of integration rate of integrated circuits with decreasing of their dimensions [1-9]. To solve these problems they were used searching materials with higher values of charge carriers motilities, development new and elaboration existing technological approaches [1-14]. In the present paper we consider circuit XOR from [15]. Based on recently considered approaches [16- 23] we consider an approach to decrease dimensions of the circuit. The approach based on manu- facturing a heterostructure, which consist of a substrate and an epitaxial layer. The epitaxial layer manufactured with several sections. To manufacture these sections another materials have been used. These sections have been doped by diffusion or ion implantation. The doping gives a possi- bility to generate another type of conductivity (p or n). After finishing of manufacturing of the circuit XOR these sections will be used by sources, drains and gates (see Fig. 1). Dopant and rad- iation defects should be annealed after finishing the dopant diffusion and the ion implantation. Our aim framework the paper is analysis of redistribution of dopant and redistribution of radiation defects to prognosis technological process. The accompanying aim of the present paper is devel- opment of analytical approach for prognosis technological processes with account all required influenced factors.
  • 2. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 2 2. METHOD OF SOLUTION We solve our aim by calculation and analysis distribution of concentrations of dopants in space and time. The required distribution has been determined by solving the second Fick's law in the following form [24,25] ( ) ( ) ( ) ( )       +      +      = z tzyxC D zy tzyxC D yx tzyxC D xt tzyxC CCC ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,,,,,,,,,,, . (1) Boundary and initial conditions for the equations are Fig. 1. Structure of epitaxial layer. View from top
  • 3. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 3 ( ) 0 ,,, 0 = ∂ ∂ =x x tzyxC , ( ) 0 ,,, = ∂ ∂ = xLx x tzyxC , ( ) 0 ,,, 0 = ∂ ∂ =y y tzyxC , ( ) 0 ,,, = ∂ ∂ = yLx y tzyxC , ( ) 0 ,,, 0 = ∂ ∂ =z z tzyxC , ( ) 0 ,,, = ∂ ∂ = zLx z tzyxC , C(x,y,z,0)=f (x,y,z). (2) Here the function C(x,y,z,t) describes the distribution of concentration of dopant in space and time. DС describes distribution the dopant diffusion coefficient in space and as a function of tem- perature of annealing. Dopant diffusion coefficient will be changed with changing of materials of heterostructure, heating and cooling of heterostructure during annealing of dopant or radiation defects (with account Arrhenius law). Dependences of dopant diffusion coefficient on coordinate in heterostructure, temperature of annealing and concentrations of dopant and radiation defects could be written as [26-28] ( ) ( ) ( ) ( ) ( ) ( )         ++      += 2* 2 2*1 ,,,,,, 1 ,,, ,,, 1,,, V tzyxV V tzyxV TzyxP tzyxC TzyxDD LC ςςξ γ γ . (3) Here function DL (x,y,z,T) describes dependences of dopant diffusion coefficient on coordinate and temperature of annealing T. Function P (x,y,z,T) describes the same dependences of the limit of solubility of dopant. The parameter γ is integer and usually could be varying in the following interval γ ∈[1,3]. The parameter describes quantity of charged defects, which interacting (in aver- age) with each atom of dopant. Ref.[26] describes more detailed information about dependence of dopant diffusion coefficient on concentration of dopant. Spatio-temporal distribution of concen- tration of radiation vacancies described by the function V (x,y,z,t). The equilibrium distribution of concentration of vacancies has been denoted as V* . It is known, that doping of materials by diffu- sion did not leads to radiation damage of materials. In this situation ζ1=ζ2=0. We determine spa- tio-temporal distributions of concentrations of radiation defects by solving the following system of equations [27,28] ( ) ( ) ( ) ( ) ( ) ( ) ×−      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ = ∂ ∂ Tzyxk y tzyxI TzyxD yx tzyxI TzyxD xt tzyxI IIII ,,, ,,, ,,, ,,, ,,, ,,, , ( ) ( ) ( ) ( ) ( ) ( )tzyxVtzyxITzyxk z tzyxI TzyxD z tzyxI VII ,,,,,,,,, ,,, ,,,,,, , 2 −      ∂ ∂ ∂ ∂ +× (4) ( ) ( ) ( ) ( ) ( ) ( )×−      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ = ∂ ∂ Tzyxk y tzyxV TzyxD yx tzyxV TzyxD xt tzyxV VVVV ,,, ,,, ,,, ,,, ,,, ,,, , ( ) ( ) ( ) ( ) ( ) ( )tzyxVtzyxITzyxk z tzyxV TzyxD z tzyxV VIV ,,,,,,,,, ,,, ,,,,,, , 2 −      ∂ ∂ ∂ ∂ +× . Boundary and initial conditions for these equations are ( ) 0 ,,, 0 = ∂ ∂ =x x tzyxρ , ( ) 0 ,,, = ∂ ∂ = xLx x tzyxρ , ( ) 0 ,,, 0 = ∂ ∂ =y y tzyxρ , ( ) 0 ,,, = ∂ ∂ = yLy y tzyxρ ,
  • 4. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 4 ( ) 0 ,,, 0 = ∂ ∂ =z z tzyxρ , ( ) 0 ,,, = ∂ ∂ = zLz z tzyxρ , ρ (x,y,z,0)=fρ (x,y,z). (5) Here ρ =I,V. We denote spatio-temporal distribution of concentration of radiation interstitials as I (x,y,z,t). Dependences of the diffusion coefficients of point radiation defects on coordinate and temperature have been denoted as Dρ(x,y,z,T). The quadric on concentrations terms of Eqs. (4) describes generation divacancies and diinterstitials. Parameter of recombination of point radiation defects and parameters of generation of simplest complexes of point radiation defects have been denoted as the following functions kI,V(x,y,z,T), kI,I(x,y,z,T) and kV,V(x,y,z,T), respectively. Now let us calculate distributions of concentrations of divacancies ΦV(x,y,z,t) and diinterstitials ΦI(x,y,z,t) in space and time by solving the following system of equations [27,28] ( ) ( ) ( ) ( ) ( ) +      Φ +      Φ = Φ ΦΦ y tzyx TzyxD yx tzyx TzyxD xt tzyx I I I I I ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,, ,,, ,,, ,,, ,,, ( ) ( ) ( ) ( ) ( ) ( )tzyxITzyxktzyxITzyxk z tzyx TzyxD z III I I ,,,,,,,,,,,, ,,, ,,, 2 , −+      Φ + Φ ∂ ∂ ∂ ∂ (6) ( ) ( ) ( ) ( ) ( ) +      Φ +      Φ = Φ ΦΦ y tzyx TzyxD yx tzyx TzyxD xt tzyx V V V V V ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ,,, ,,, ,,, ,,, ,,, ( ) ( ) ( ) ( ) ( ) ( )tzyxVTzyxktzyxVTzyxk z tzyx TzyxD z VVV V V ,,,,,,,,,,,, ,,, ,,, 2 , −+      Φ + Φ ∂ ∂ ∂ ∂ . Boundary and initial conditions for these equations are ( ) 0 ,,, 0 = ∂ Φ∂ =x x tzyxρ , ( ) 0 ,,, = ∂ Φ∂ = xLx x tzyxρ , ( ) 0 ,,, 0 = ∂ Φ∂ =y y tzyxρ , ( ) 0 ,,, = ∂ Φ∂ = yLy y tzyxρ , ( ) 0 ,,, 0 = ∂ Φ∂ =z z tzyxρ , ( ) 0 ,,, = ∂ Φ∂ = zLz z tzyxρ , ΦI (x,y,z,0)=fΦI (x,y,z), ΦV (x,y,z,0)=fΦV (x,y,z). (7) The functions DΦρ(x,y,z,T) describe dependences of the diffusion coefficients of the above com- plexes of radiation defects on coordinate and temperature. The functions kI(x,y,z,T) and kV(x,y,z, T) describe the parameters of decay of these complexes on coordinate and temperature. To describe physical processes they are usually solving nonlinear equations with space and time varying coefficients. In this situation only several limiting cases have been analyzed [29-32]. One way to solve the problem is solving the Eqs. (1), (4), (6) by the Bubnov-Galerkin approach [33] after appropriate transformation of these transformation. To determine the spatio-temporal distri- bution of concentration of dopant we transform the Eq.(1) to the following integro- differential form ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫       ++=∫ ∫ ∫ t y L z L L x L y L z L zyx y zx y z V wvxV V wvxV TwvxDudvdwdtwvuC LLL zyx 0 2* 2 2*1 ,,,,,, 1,,,,,, τ ς τ ς
  • 5. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 5 ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫       ++      +× t x L z L L zy x z TzyxP wyuC TwyuD LL zy d x wvxC TwvxP wvxC 0 ,,, ,,, 1,,, ,,, ,,, ,,, 1 γ γ γ γ τ ξτ ∂ τ∂τ ξ ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫+      ++× t x L y L L zx x y TzvuD LL zx d y wyuC V wyuV V wyuV 0 2* 2 2*1 ,,, ,,,,,,,,, 1 τ ∂ τ∂τ ς τ ς ( ) ( ) ( ) ( ) ( ) ( ) +      +      ++× yx LL yx d z zvuC TzyxP zvuC V zvuV V zvuV τ ∂ τ∂τ ξ τ ς τ ς γ γ ,,, ,,, ,,, 1 ,,,,,, 1 2* 2 2*1 ( )∫ ∫ ∫+ x L y L z L zyx x y z udvdwdwvuf LLL zyx ,, . (1a) Now let us determine solution of Eq.(1a) by Bubnov-Galerkin approach [33]. To use the ap- proach we consider solution of the Eq.(1a) as the following series ( ) ( ) ( ) ( ) ( )∑= = N n nCnnnnC tezcycxcatzyxC 0 0 ,,, . Here ( ) ( )[ ]222 0 22 exp −−− ++−= zyxCnC LLLtDnte π , cn(χ) =cos(π nχ/Lχ). Number of terms N in the series is finite. The above series is almost the same with solution of linear Eq.(1) (i.e. for ξ=0) and averaged dopant diffusion coefficient D0. Substitution of the series into Eq.(1a) leads to the following result ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫    ×    ∑+−=∑ == t y L z L N n nCnnnnC zy N n nCnnn C y z ewcvcxca LL zy tezsysxs n azyx 0 11 32 1 γ τ π ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑      ++    × = N n nnnCL vcxsaTwvxD V wvxV V wvxV TwvxP 1 2* 2 2*1 ,,, ,,,,,, 1 ,,, τ ς τ ς ξ γ ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ×          ∑+−× = t x L z L N m mCmmmmC zx nCn x z TwyuP ewcycuca LL zx dewcn 0 1 ,,, 1 γ γ ξ τττ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑      ++× = ττ τ ς τ ς dewcysucn V wyuV V wyuV TwyuD N n nCnnnL 1 2* 2 2*1 ,,,,,, 1,,, ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫          ∑+−× = t x L y L N n nCnnnnCL yx nC x y ezcvcuca TzvuP TzvuD LL yx a 0 1,,, 1,,, γ γ τ ξ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×+∑      ++× = zyx N n nCnnnnC LLL zyx dezsvcucan V zvuV V zvuV ττ τ ς τ ς 1 2* 2 2*1 ,,,,,, 1 ( )∫ ∫ ∫× x L y L z Lx y z udvdwdwvuf ,, ,
  • 6. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 6 where sn(χ)=sin(πnχ/Lχ). We used condition of orthogonality to determine coefficients an in the considered series. The coefficients an could be calculated for any quantity of terms N. In the common case the relations could be written as ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫    ×    ∑+−=∑− == t L L L N n nCnnnnCL zy N n nC nCzyx x y z ezcycxcaTzyxD LL te n aLLL 0 0 0 0 1 2 1 65 222 1,,, 2 γ τ ππ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑      ++    × = N n nCnnn nC ezcycxs n a V zyxV V zyxV TzyxP 1 2* 2 2*1 2 ,,,,,, 1 ,,, τ τ ς τ ς ξ γ ( ) ( )[ ] ( ) ( )[ ] ( )×∫ ∫ ∫ ∫−       −+       −+× t L L L Ln z nn y n x y z TzyxDdxdydzdzc n L zszyc n L ysy 0 0 0 0 ,,,11 τ ππ ( ) ( ) ( ) ( ) ( ) ( ) ( )   ++          ∑+× = *1 1 ,,, 1 ,,, 1,,, V zyxV TzyxP ezcycxcaTzyxD N n nCnnnnCL τ ς ξ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]∑ ×       −+      ++   + = N n nC n x n n a xc n L xsx V zyxV V zyxV V zyxV 1 2* 2 2*12* 2 2 1 ,,,,,, 1 ,,, π τ ς τ ς τ ς ( ) ( ) ( ) ( ) ( ) ( )[ ] ×−       −+× 22 2 12 2 π τ π τ π yx n z nnCnnn zx LL dxdydzdzc n L zszezcysxc LL ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫    ++          ∑+× = t L L L N n nCnnnnC x y z V zyxV TzyxP ezcycxca 0 0 0 0 2* 2 2 1 ,,, 1 ,,, 1 τ ς ξ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ×∑       −+  + = N n n x nnnn nC L xc n L xsxzsycxc n a TzyxD V zyxV 1 *1 1,,, ,,, π τ ς ( ) ( )[ ] ( ) ( ) ( )[ ]∑ ∫ ×       −++       −+× = N n L n x nnCn y n x xc n L xsxdxdydzdeyc n L ysy 1 0 11 π ττ π ( ) ( )[ ] ( ) ( )[ ] ( )∫ ∫       −+       −+× y z L L n z nn y n xdydzdzyxfzc n L zszyc n L ysy 0 0 ,,11 ππ . As an example for γ=0 we obtain ( ) ( )[ ] ( ) ( )[ ] ( ) ( ){∫ ∫ ∫ +       −+       −+= x y zL L L nn y nn y nnC xsxydzdzyxfzc n L zszyc n L ysya 0 0 0 ,,11 ππ ( )[ ] ( ) ( ) ( ) ( )[ ] ( )       ∫ ∫ ∫ ∫ ×       −+    −× t L L L Ln y nnn x n x y z TzyxDyc n L ysyycxs n xd n L xc 0 0 0 0 ,,,12 2 1 ππ
  • 7. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 7 ( ) ( )[ ] ( ) ( ) ( ) ( ) ×      +      ++       −+× TzyxPV zyxV V zyxV zc n L zsz n y n ,,, 1 ,,,,,, 11 2* 2 2*1 γ ξτ ς τ ς π ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )×∫ ∫ ∫ ∫       −++× t L L L nnn y nnnCnCn x y z zcysxc n L xsxxcedexdydzdzc 0 0 0 0 21 π τττ ( ) ( )[ ] ( ) ( ) ( ) ( ) ×      ++      +       −+× 2* 2 2*1 ,,,,,, 1 ,,, 11 V zyxV V zyxV TzyxP zc n L zsz n y n τ ς τ ς ξ π γ ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ){∫ ∫ ∫ ×       −++× t L L nnn x nnnCL x y ysycxc n L xsxxcedxdydzdTzyxD 0 0 0 1,,, π ττ ( )[ ] ( ) ( ) ( ) ( ) ( )∫    ++      +    −+× zL Lnn y V zyxV TzyxP TzyxDzsyc n L y 0 2* 2 2 ,,, 1 ,,, 1,,,21 τ ς ξ π γ ( ) ( ) 1 65 222 *1 ,,, −     −      + te n LLL dxdydzd V zyxV nC zzz π τ τ ς . For γ = 1 one can obtain the following relation to determine required parameters ( ) ( ) ( ) ( )∫ ∫ ∫+±−= x y zL L L nnnnn n n nC xdydzdzyxfzcycxca 0 0 0 2 ,,4 2 αβ α β , where ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫ ×      ++= t L L L nnnnC zy n x y z V zyxV V zyxV zcycxse n LL 0 0 0 0 2* 2 2*12 ,,,,,, 12 2 τ ς τ ςτ π ξ α ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ×+       −+       −+× n LL dxdydzdzc n L zszyc n L ysy TzyxP TzyxD zx n z nn y n L 2 2 11 ,,, ,,, π ξ τ ππ ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ] ×∫ ∫ ∫ ∫       −−       −+× t L L L n z n L nn x nnnC x y z zc n L zsz TzyxP TzyxD zcxc n L xsxxce 0 0 0 0 1 ,,, ,,, 1 ππ τ ( ) ( ) ( ) ( ) ( ) ( ) ×+      ++× n LL dxdydyszd V zyxV V zyxV TzyxP TzyxD yx n L 22* 2 2*1 2 2 ,,,,,, 1 ,,, ,,, π ξ τ τ ς τ ς ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫       ++× t L L L L nnnnC x y z V zyxV V zyxV TzyxP TzyxD zsycxce 0 0 0 0 2* 2 2*1 ,,,,,, 1 ,,, ,,, 2 τ ς τ ςτ ( ) ( )[ ] ( ) ( )[ ] τ ππ dxdydzdyc n L ysyxc n L xsx n y nn x n       −+       −+× 11 , ( )×∫= t nC zy n e n LL 0 2 2 τ π β ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ∫ ∫ ∫ ×      ++       −+× x y zL L L nn y nnn V zyxV V zyxV zcyc n L ysyycxs 0 0 0 2* 2 2*1 ,,,,,, 112 τ ς τ ς π
  • 8. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 8 ( ) ( ) ( )[ ] ( ) ( ) ( )×∫ ∫ ∫+       −+× t L L nnnC zx n z nL x y ysxce n LL dxdydzdzc n L zszTzyxD 0 0 0 2 2 2 1,,, τ π τ π ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ×∫       ++       −+× zL nLn x n V zyxV V zyxV zcTzyxDxc n L xsx 0 2* 2 2*1 ,,,,,, 1,,,1 τ ς τ ς π ( ) ( )[ ] ( ) ( ) ( )[ ] ×∫ ∫       −++       −+× t L n x nnC yx n z n x xc n L xsxe n LL dxdydzdzc n L zsz 0 0 2 1 2 1 π τ π τ π ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ∫ ∫ ×      ++       −+× y z L L Ln y nn V zyxV V zyxV TzyxDyc n L ysyxc 0 0 2* 2 2*1 ,,,,,, 1,,,1 τ ς τ ς π ( ) ( ) ( ) 65222 2 nteLLLdxdydyczdzs nCzyxnn πτ −× . The same approach could be used for calculation parameters an for different values of parameterγ. However the relations are bulky and will not be presented in the paper. Advantage of the ap- proach is absent of necessity to join dopant concentration on interfaces of heterostructure. The same Bubnov-Galerkin approach has been used for solution the Eqs.(4). Previously we trans- form the differential equations to the following integro- differential form ( ) ( ) ( ) +∫ ∫ ∫ ∂ ∂ =∫ ∫ ∫ t y L z L I zy x L y L z L zyx y zx y z dvdwd x wvxI TwvxD LL zy udvdwdtwvuI LLL zyx 0 ,,, ,,,,,, τ τ ( ) ( ) ( ) ( )×∫ ∫ ∫−∫ ∫ ∫ ∂ ∂ + x L y L z L VI zyx t x L z L I zx x y zx z twvuITwvuk LLL zyx dudwd x wyuI TwyuD LL zx ,,,,,, ,,, ,,, , 0 τ τ ( ) ( ) ( ) ×−∫ ∫ ∫ ∂ ∂ +× zyx t x L y L I yx LLL zyx dudvdTzvuD z zvuI LL yx udvdwdtwvuV x y0 ,,, ,,, ,,, τ τ ( ) ( ) ( )∫ ∫ ∫+∫ ∫ ∫× x L y L z L I zyx x L y L z L II x y zx y z udvdwdwvuf LLL zyx udvdwdtwvuITwvuk ,,,,,,,, 2 , (4a) ( ) ( ) ( ) +∫ ∫ ∫ ∂ ∂ =∫ ∫ ∫ t y L z L V zy x L y L z L zyx y zx y z dvdwd x wvxV TwvxD LL zy udvdwdtwvuV LLL zyx 0 ,,, ,,,,,, τ τ ( ) ( ) ( ) ×∫ ∫ ∫ ∂ ∂ +∫ ∫ ∫ ∂ ∂ + t x L y L yx t x L z L V zx x yx z z zvuV LL yx dudwd x wyuV TwyuD LL zx 00 ,,,,,, ,,, τ τ τ ( ) ( ) ( ) ( ) −∫ ∫ ∫−× x L y L z L VI zyx V x y z udvdwdtwvuVtwvuITwvuk LLL zyx dudvdTzvuD ,,,,,,,,,,,, , τ ( ) ( ) ( )∫ ∫ ∫+∫ ∫ ∫− x L y L z L V zyx x L y L z L VV zyx x y zx y z udvdwdwvuf LLL zyx udvdwdtwvuVTwvuk LLL zyx ,,,,,,,, 2 , .
  • 9. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 9 We determine spatio-temporal distributions of concentrations of point defects as the same series ( ) ( ) ( ) ( ) ( )∑= = N n nnnnn tezcycxcatzyx 1 0 ,,, ρρρ . Parameters anρ should be determined in future. Substitution of the series into Eqs.(4a) leads to the following results ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−=∑ == N n t y L z L InnnI zyx N n nInnn nI y z vdwdTwvxDzcyca LLL zy tezsysxs n azyx 1 01 33 ,,, π π ( ) ( ) ( ) ( ) ( ) ( ) ( ) −∑ ∫ ∫ ∫−× = N n t x L z L InnnInnI zyx nnI x z dudwdTwyuDzcxceysa LLL zx xsde 1 0 ,,, ττ π ττ ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫−∑ ∫ ∫ ∫− = x L y L z L II N n t x L y L InnnInnI zyx x y zx y TvvukdudvdTzvuDycxcezsa LLL yx ,,,,,, , 1 0 ττ π ( ) ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫ ∑−    ∑× == x L y L z L N n nnnnI zyxzyx N n nInnnnI x y z wcvcuca LLL zyx LLL zyx udvdwdtewcvcuca 1 2 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫+∑× = x L y L z L I N n VInVnnnnVnI x y z udvdwdwvufudvdwdTvvuktewcvcucate ,,,,, 1 , zyx LLLzyx× ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−=∑ == N n t y L z L VnnnV zyx N n nVnnn nV y z vdwdTwvxDzcyca LLL zy tezsysxs n azyx 1 01 33 ,,, π π ( ) ( ) ( ) ( ) ( ) ( ) ( ) −∑ ∫ ∫ ∫−× = N n t x L z L VnnnVnnV zyx nnV x z dudwdTwyuDzcxceysa LLL zx xsde 1 0 ,,, ττ π ττ ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫−∑ ∫ ∫ ∫− = x L y L z L VV N n t x L y L VnnnVnnV zyx x y zx y TvvukdudvdTzvuDycxcezsa LLL yx ,,,,,, , 1 0 ττ π ( ) ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫ ∑−    ∑× == x L y L z L N n nnnnI zyxzyx N n nInnnnV x y z wcvcuca LLL zyx LLL zyx udvdwdtewcvcuca 1 2 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫+∑× = x L y L z L V N n VInVnnnnVnI x y z udvdwdwvufudvdwdTvvuktewcvcucate ,,,,, 1 , zyx LLLzyx× . We used orthogonality condition of functions of the considered series framework the heterostruc- ture to calculate coefficients anρ. The coefficients an could be calculated for any quantity of terms N. In the common case equations for the required coefficients could be written as ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫       −++−−=∑− == N n t L L n y nyn nI x N n nI nIzyx x y yc n L ysyLxc n a L te n aLLL 1 0 0 0 2 1 65 222 12 2 221 2 1 πππ
  • 10. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 10 ( ) ( ) ( )[ ] ( ) ( ){∑ ∫ ∫ +−∫       −+× = N n t L n nI y L nIn z nI xz xsx n a L dexdydzdzc n L zszTzyxD 1 0 0 2 0 2 2 1 1 2 ,,, π ττ π ( )[ ] ( ) ( ) ( )[ ] ( )[ ]×∫ ∫ −       −++    −++ y z L L nn z nzIn x x yczdzc n L zszLTzyxDxc n L L 0 0 2112 2 2,,,12 ππ ( ) ( ) ( ) ( )[ ] ( ) −∫       −++× zL nIn z nzInI dexdydzdzc n L zszLTzyxDdexdyd 0 12 2 2,,, ττ π ττ ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫       −++       −++− = N n t L L n y nyn x nx nI z x y yc n L ysyLxc n L xsxL n a L 1 0 0 0 2 12 2 212 2 2 2 1 πππ ( )[ ] ( ) ( ) ( ) ( )[ ]∑ ∫    +−+−∫ −× = N n L n x xnInI L nIIn xz xc n L LteadexdydzdTzyxDzc 1 0 2 0 12 2 2,,,21 π ττ ( )} ( ) ( )[ ] ( ) ( )[ ]∫ ∫    +−+       −+++ y z L L n z zIIn y nyn zc n L LTzyxkyc n L ysyLxsx 0 0 , 12 2 ,,,12 2 22 ππ ( )} ( ) ( ) ( ) ( )[ ] {∑ ∫ ∫ +       −++−+ = N n L L yn x nxnVnInVnIn x y Lxc n L xsxLteteaaxdydzdzsz 1 0 0 12 2 22 π ( ) ( )[ ] ( ) ( ) ( )[ ]∫ ×       −++    −++ zL n z nzVIn y n zdzc n L zszLTzyxkyc n L ysy 0 , 12 2 2,,,12 2 2 ππ ( ) ( )[ ] ( ) ( )[ ] ( )×∑ ∫ ∫ ∫       −+       −++× = N n L L L In y nn x n x y z Tzyxfyc n L ysyxc n L xsxxdyd 1 0 0 0 ,,,11 ππ ( ) ( )[ ] xdydzdzc n L zszL n z nz       −++× 12 2 2 π ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫       −++−−=∑− == N n t L L n y nyn nV x N n nV nVzyx x y yc n L ysyLxc n a L te n aLLL 1 0 0 0 2 1 65 222 12 2 221 2 1 πππ ( ) ( ) ( )[ ] ( ) ( ){∑ ∫ ∫ +−∫       −+× = N n t L n nV y L nVn z nV xz xsx n a L dexdydzdzc n L zszTzyxD 1 0 0 2 0 2 2 1 1 2 ,,, π ττ π ( )[ ] ( ) ( ) ( )[ ] ( )[ ]×∫ ∫ −       −++    −++ y z L L nn z nzVn x x yczdzc n L zszLTzyxDxc n L L 0 0 2112 2 2,,,12 ππ ( ) ( ) ( ) ( )[ ] ( ) −∫       −++× zL nVn z nzVnV dexdydzdzc n L zszLTzyxDdexdyd 0 12 2 2,,, ττ π ττ
  • 11. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 11 ( ) ( )[ ] ( ) ( )[ ] ×∑ ∫ ∫ ∫       −++       −++− = N n t L L n y nyn x nx nV z x y yc n L ysyLxc n L xsxL n a L 1 0 0 0 2 12 2 212 2 2 2 1 πππ ( )[ ] ( ) ( ) ( ) ( )[ ]∑ ∫    +−+−∫ −× = N n L n x xnVnV L nVVn xz xc n L LteadexdydzdTzyxDzc 1 0 2 0 12 2 2,,,21 π ττ ( )} ( ) ( )[ ] ( ) ( )[ ]∫ ∫    +−+       −+++ y z L L n z zVVn y nyn zc n L LTzyxkyc n L ysyLxsx 0 0 , 12 2 ,,,12 2 22 ππ ( )} ( ) ( ) ( ) ( )[ ] {∑ ∫ ∫ +       −++−+ = N n L L yn x nxnVnInVnIn x y Lxc n L xsxLteteaaxdydzdzsz 1 0 0 12 2 22 π ( ) ( )[ ] ( ) ( ) ( )[ ]∫ ×       −++    −++ zL n z nzVIn y n zdzc n L zszLTzyxkyc n L ysy 0 , 12 2 2,,,12 2 2 ππ ( ) ( )[ ] ( ) ( )[ ] ( )×∑ ∫ ∫ ∫       −+       −++× = N n L L L Vn y nn x n x y z Tzyxfyc n L ysyxc n L xsxxdyd 1 0 0 0 ,,,11 ππ ( ) ( )[ ] xdydzdzc n L zszL n z nz       −++× 12 2 2 π . In the final form relations for required parameters could be written as ( )       − +− + ± + −= A yb yb Ab b Ab a nInV nI 2 3 4 2 3 4 3 4 44 λγ , nInI nInInInInI nV a aa a χ λδγ ++ −= 2 , where ( ) ( ) ( ) ( )[ ] ( ){∫ ∫ ∫ ++       −++= x y zL L L ynn x nxnn Lysyxc n L xsxLTzyxkte 0 0 0 , 212 2 2,,,2 π γ ρρρρ ( )[ ] ( ) ( )[ ] xdydzdzc n L zszLyc n L n z nzn y       −++    −+ 12 2 212 2 ππ , ( )×∫= t n x n e nL 0 2 2 1 τ π δ ρρ ( ) ( )[ ] ( ) ( )[ ] ( ) [∫ ∫ ∫ −       −+       −+× x y zL L L n z nn y n ydzdTzyxDzc n L zszyc n L ysy 0 0 0 1,,,1 2 1 2 ρ ππ ( )] ( ) ( ) ( )[ ] ( )[ ] {∫ ∫ ∫ ∫ +−       −+++− t L L L znn x nxn y n x y z Lycxc n L xsxLe nL dxdxc 0 0 0 0 2 21122 2 1 2 π τ π τ ρ ( ) ( )[ ] ( ) ( ) ( ){∫ ∫ ++    −++ t L nn z n z n x xsxe nL dxdydzdTzyxDzc n L zsz 0 0 2 2 2 1 ,,,12 2 2 τ π τ π ρρ
  • 12. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 12 ( )[ ] ( ) ( )[ ] ( )[ ] ( ) ×∫ ∫ −       −++    −++ y z L L nn y nyn x x zdTzyxDzcyc n L ysyLxc n L L 0 0 ,,,211 2 12 ρ ππ ( )te n LLL dxdyd n zyx ρ π τ 65 222 −× , ( ) ( )[ ] ( )[ ]∫ ∫    +−+       −+= x yL L n y yn x nnIV yc n L Lxc n L xsx 0 0 12 2 1 ππ χ ( )} ( ) ( ) ( )[ ] ( ) ( )tetexdydzdzc n L zszLTzyxkysy nVnI L n z nzVIn z ∫       −+++ 0 , 12 2 2,,,2 π , ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]∫ ∫ ∫ ×       −+       −+       −+= x y zL L L n z nn y nn x nn zc n L zszyc n L ysyxc n L xsx 0 0 0 111 πππ λ ρ ( ) xdydzdTzyxf ,,,ρ× , 22 4 nInInInV b χγγγ −= , nInInVnInInInInV b γχδχδδγγ −−= 2 3 2 , 2 2 3 48 bbyA −+= , ( ) 22 2 2 nInInVnInInVnInVnInInV b χλλδχδγγλδγ −+−+= , ×= nI b λ21 nInInVnInV λχδδγ −× , 4 33 323 32 3b b qpqqpqy −++−−+= , 2 4 2 342 9 3 b bbb p − = , ( ) 3 4 2 4132 3 3 542792 bbbbbbq +−= . We determine distributions of concentrations of simplest complexes of radiation defects in space and time as the following functional series ( ) ( ) ( ) ( ) ( )∑=Φ = Φ N n nnnnn tezcycxcatzyx 1 0 ,,, ρρρ . Here anΦρ are the coefficients, which should be determined. Let us previously transform the Eqs. (6) to the following integro-differential form ( ) ( ) ( ) ×∫ ∫ ∫ Φ =∫ ∫ ∫Φ Φ t y L z L I I x L y L z L I zyx y zx y z dvdwd x wvx TwvxDudvdwdtwvu LLL zyx 0 ,,, ,,,,,, τ ∂ τ∂ ( ) ( ) ( )∫ ∫ ∫ ×+∫ ∫ ∫ Φ +× ΦΦ t x L y L I yx t x L z L I I zxzy x yx z TzvuD LL yx dudwd y wyu TwyuD LL zx LL zy 00 ,,, ,,, ,,, τ ∂ τ∂ ( ) ( ) ( ) −∫ ∫ ∫+ Φ × x L y L z L II zyx I x y z udvdwdwvuITwvuk LLL zyx dudvd z zvu ττ ∂ τ∂ ,,,,,, ,,, 2 , (6a) ( ) ( ) ( )∫ ∫ ∫+∫ ∫ ∫− Φ x L y L z L I zyx x L y L z L I zyx x y zx y z udvdwdwvuf LLL zyx udvdwdwvuITwvuk LLL zyx ,,,,,,,, τ ( ) ( ) ( ) ×∫ ∫ ∫ Φ =∫ ∫ ∫Φ Φ t y L z L V V x L y L z L V zyx y zx y z dvdwd x wvx TwvxDudvdwdtwvu LLL zyx 0 ,,, ,,,,,, τ ∂ τ∂ ( ) ( ) ( )∫ ∫ ∫ ×+∫ ∫ ∫ Φ +× ΦΦ t x L y L V yx t x L z L V V zxzy x yx z TzvuD LL yx dudwd y wyu TwyuD LL zx LL zy 00 ,,, ,,, ,,, τ ∂ τ∂
  • 13. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 13 ( ) ( ) ( ) −∫ ∫ ∫+ Φ × x L y L z L VV zyx V x y z udvdwdwvuVTwvuk LLL zyx dudvd z zvu ττ ∂ τ∂ ,,,,,, ,,, 2 , ( ) ( ) ( )∫ ∫ ∫+∫ ∫ ∫− Φ x L y L z L V zyx x L y L z L V zyx x y zx y z udvdwdwvuf LLL zyx udvdwdwvuVTwvuk LLL zyx ,,,,,,,, τ . Substitution of the previously considered series in the Eqs.(6a) leads to the following form ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−=∑− = Φ = Φ N n t y L z L nnnInIn zyx N n nInnn In y z wcvctexsan LLL zy tezsysxs n a zyx 1 01 33 π π ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−× = ΦΦΦ N n t x L z L InnIn zyx I x z dudwdTwvuDwcuca LLL zx dvdwdTwvxD 1 0 ,,,,,, τ π τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) +∑ ∫ ∫ ∫−× = ΦΦΦΦ N n t x L y L InnInnIn zyx Inn x y dudvdTzvuDvcuctezsan LLL yx teysn 1 0 ,,, τ π ( ) ( ) ( ) ×∫ ∫ ∫+∫ ∫ ∫+ Φ x L y L z L I x L y L z L II zyx x y zx y z udvdwdwvufudvdwdwvuITwvuk LLL zyx ,,,,,,,, 2 , τ ( ) ( )∫ ∫ ∫−× x L y L z L I zyxzyx x y z udvdwdwvuITwvuk LLL zyx LLL zyx τ,,,,,, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−=∑− = Φ = Φ N n t y L z L nnnVnVn zyx N n nVnnn Vn y z wcvctexsan LLL zy tezsysxs n a zyx 1 01 33 π π ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−× = ΦΦ N n t x L z L Vnn zyx V x z dudwdTwvuDwcucn LLL zx dvdwdTwvxD 1 0 ,,,,,, τ π τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−× = ΦΦΦΦ N n t x L y L VnnVnn zyx VnnVn x y dudvdTzvuDvcuctezsn LLL yx teysa 1 0 ,,, τ π ( ) ( ) ( ) ×∫ ∫ ∫+∫ ∫ ∫+× ΦΦ x L y L z L V x L y L z L VV zyx Vn x y zx y z udvdwdwvufudvdwdwvuVTwvuk LLL zyx a ,,,,,,,, 2 , τ ( ) ( )∫ ∫ ∫−× x L y L z L V zyxzyx x y z udvdwdwvuVTwvuk LLL zyx LLL zyx τ,,,,,, . We used orthogonality condition of functions of the considered series framework the heterostruc- ture to calculate coefficients anΦρ. The coefficients anΦρ could be calculated for any quantity of terms N. In the common case equations for the required coefficients could be written as ( ) ( )[ ] ( ) ( )[ ] ×∑∫ ∫ ∫       −++−−=∑− == Φ Φ N n t L L n y nyn x N n In Inzyx x y yc n L ysyLxc L te n aLLL 1 0 0 01 65 222 12 2 221 2 1 πππ
  • 14. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 14 ( ) ( ) ( )[ ] ( ) ( ){∑∫ ∫ +−∫       −+× = ΦΦ Φ N n t L n L Inn z nI In xz xsxdexdydzdzc n L zszTzyxD n a 1 0 00 2 2 2 1 1 2 ,,, π ττ π ( )[ ] ( )[ ] ( ) ( ) ( )[ ] ×∫ ∫       −+−    −++ Φ y z L L n z nInn x x xdydzdzc n L zszTzyxDycxc n L L 0 0 1 2 ,,,2112 2 ππ ( ) ( ) ( )[ ] ( ) ( )[ ]∑ ∫ ∫ ∫    +−+       −+−× = ΦΦ Φ N n t L L n y nn x n In xy In In x y yc n L ysyxc n L xsx n a L d Ln e a 1 0 0 0 22 12 2 21 22 1 πππ τ τ } ( )[ ] ( ) ( ) ( ) ( )[ ]∑ ∫ ∫    +−+∫ −+ = Φ Φ ΦΦ N n t L n x In In L InIny xz xc n L e n a dexdydzdTzyxDycL 1 0 0 33 0 1 2 1 ,,,21 π τ π ττ ( )} ( ) ( )[ ] ( ) ( ) ( )[ ]∫    +−∫       −++ zy L n z II L n y nn zc n L TzyxktzyxIyc n L ysyxsx 0 , 2 0 1 2 ,,,,,,1 2 ππ ( )} ( ) ( ) ( )[ ] ( )[ ]∑ ∫ ∫ ∫    +−       −+−+ = Φ Φ N n t L L n y n x nIn In n x y yc n L xc n L xsxe n a xdydzdzsz 1 0 0 0 33 1 2 1 2 1 ππ τ π ( )} ( ) ( )[ ] ( ) ( ) ×∑+∫       −++ = Φ N n In L In z nn n a xdydzdtzyxITzyxkzc n L zszysy z 1 33 0 1 ,,,,,,1 2 ππ ( ) ( ) ( )[ ] ( ) ( )[ ] ( )[ ]∫ ∫ ∫ ∫    +−       −+       −+× Φ t L L L n z n y nn x nIn x y z zc n L yc n L ysyxc n L xsxe 0 0 0 0 1 2 1 2 1 2 πππ τ ( )} ( ) xdydzdzyxfzsz In ,,Φ + ( ) ( )[ ] ( ) ( )[ ] ×∑∫ ∫ ∫       −++−−=∑− == Φ Φ N n t L L n y nyn x N n Vn Vnzyx x y yc n L ysyLxc L te n aLLL 1 0 0 01 65 222 12 2 221 2 1 πππ ( ) ( ) ( )[ ] ( ) ( ){∑∫ ∫ +−∫       −+× = ΦΦ Φ N n t L n L Vnn z nV Vn xz xsxdexdydzdzc n L zszTzyxD n a 1 0 00 2 2 2 1 1 2 ,,, π ττ π ( )[ ] ( )[ ] ( ) ( ) ( )[ ] ×∫ ∫       −+−    −++ Φ y z L L n z nVnn x x xdydzdzc n L zszTzyxDycxc n L L 0 0 1 2 ,,,2112 2 ππ ( ) ( ) ( )[ ] ( ) ( )[ ]∑ ∫ ∫ ∫    +−+       −+−× = ΦΦ Φ N n t L L n y nn x n Vn xy Vn Vn x y yc n L ysyxc n L xsx n a L d Ln e a 1 0 0 0 22 12 2 21 22 1 πππ τ τ } ( )[ ] ( ) ( ) ( ) ( )[ ]∑ ∫ ∫    +−+∫ −+ = Φ Φ ΦΦ N n t L n x Vn Vn L VnVny xz xc n L e n a dexdydzdTzyxDycL 1 0 0 33 0 1 2 1 ,,,21 π τ π ττ
  • 15. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 15 ( )} ( ) ( )[ ] ( ) ( ) ( )[ ]∫    +−∫       −++ zy L n z VV L n y nn zc n L TzyxktzyxVyc n L ysyxsx 0 , 2 0 1 2 ,,,,,,1 2 ππ ( )} ( ) ( ) ( )[ ] ( )[ ]∑ ∫ ∫ ∫    +−       −+−+ = Φ Φ N n t L L n y n x nVn Vn n x y yc n L xc n L xsxe n a xdydzdzsz 1 0 0 0 33 1 2 1 2 1 ππ τ π ( )} ( ) ( )[ ] ( ) ( ) ×∑+∫       −++ = Φ N n Vn L Vn z nn n a xdydzdtzyxVTzyxkzc n L zszysy z 1 33 0 1 ,,,,,,1 2 ππ ( ) ( ) ( )[ ] ( ) ( )[ ] ( )[ ]∫ ∫ ∫ ∫    +−       −+       −+× Φ t L L L n z n y nn x nVn x y z zc n L yc n L ysyxc n L xsxe 0 0 0 0 1 2 1 2 1 2 πππ τ ( )} ( ) xdydzdzyxfzsz Vn ,,Φ + . 3. DISCUSSION In this section we analyzed redistribution of dopant with account redistribution of radiation de- fects. The analysis shown, that presents of interface between materials of heterostructure gives a possibility to increase absolute value of gradient of concentration of dopant outside of enriched are by the dopant (see Figs. 2 and 3). At the same time homogeneity of concentration of dopant in enriched area increases (see Figs. 2 and 3). The effects could be find, when dopant diffusion coef- ficient in the doped area is larger, than in the nearest areas. Otherwise absolute value of gradient of concentration of dopant decreases outside enriched by the dopant area (see Fig. 4). However the decreasing could be partially or fully compensated by using high doping of materials. The high doping leads to significant nonlinearity of diffusion of dopant. To increase compactness of the considered circuits XOR it is attracted an interest the first relation between values of dopant diffusion coefficient. Fig.2a. Spatial distributions of infused dopant concentration in the considered heterostructure. The consi- dered direction perpendicular to the interface between epitaxial layer substrate. Difference between values of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of curves
  • 16. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 16 x 0.0 0.5 1.0 1.5 2.0 C(x,Θ) 2 3 4 1 0 L/4 L/2 3L/4 L Epitaxial layer Substrate Fig.2b. Spatial distributions of infused dopant concentration in the considered heterostructure. Curves 1 and 3 corresponds to annealing time Θ=0.0048(Lx 2 +Ly 2 +Lz 2 )/D0. Curves 2 and 4 corresponds to annealing time Θ=0.0057(Lx 2 +Ly 2 +Lz 2 )/D0. Curves 1 and 2 corresponds to homogenous sample. Curves 3 and 4 corres- ponds to the considered heterostructure. Difference between values of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of curves x 0.00000 0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 C(x,Θ) fC(x) L/40 L/2 3L/4 Lx0 1 2 Substrate Epitaxial layer 1 Epitaxial layer 2 Fig.3. Implanted dopant distributions in heterostructure in heterostructure with two epitaxial layers (solid lines) and with one epitaxial layer (dushed lines) for different values of annealing time. Difference between values of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of curves Increasing of annealing time leads to acceleration of diffusion. In this situation one can find in- creasing quantity of dopant in materials near doped sections. If annealing time is small, the do- pant can not achieves nearest interface between layers of heterostructure. These effects are shown by Figs. 5 and 6. We used recently introduced criterion [16-23] to estimate compromise value of annealing time. Framework the criterion we approximate real distribution of concentration of do- pant by idealized step-wise distribution ψ (x,y,z), which would be better to use for minimization dimensions of elements of the considered circuit XOR [19-26]. Farther the required compromise annealing time has been calculated by minimization the following mean-squared error
  • 17. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 17 ( ) ( )[ ]∫ ∫ ∫ −Θ= x y zL L L zyx xdydzdzyxzyxC LLL U 0 0 0 ,,,,, 1 ψ . (8) C(x,Θ) 0 Lx 2 1 3 4 Fig. 4. Distributions of concentrations of infused dopant in the considered heterostructure. Curve 1 is the idealized distribution of dopant. Curves 2-4 are the real distributions of concentrations of dopant for differ- ent values of annealing time for increasing of annealing time with increasing of number of curve x C(x,Θ) 1 2 3 4 0 L Fig. 5. Distributions of concentrations of implanted dopant in the considered heterostructure. Curve 1 is the idealized distribution of dopant. Curves 2-4 are the real distributions of concentrations of dopant for differ- ent values of annealing time for increasing of annealing time with increasing of number of curve We analyzed optimal value of annealing time. The analysis shows, that optimal value of anneal- ing time for ion type of doping is smaller, than optimal value of annealing time for diffusion type of doping. It is known, that ion doping of materials leads to radiation damage of doped materials. In this situation radiation defects should be annealed. The annealing leads to the above difference between optimal values of annealing time of dopant. The annealing of implanted dopant is neces- sary in the case, when the dopant did not achieved nearest interface between layers of heterostruc- ture during annealing of radiation defects.
  • 18. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 18 It should be noted, that using diffusion type of doping did not leads to radiation damage of mate- rials. However radiation damage of materials during ion doping gives a possibility to decrease mismatch-induced stress in heterostructure [34]. 4. CONCLUSIONS In this paper we introduced an approach to decrease dimensions of a circuit XOR. The approach based on optimization of manufacturing field-effect heterotransistors, which includes into itself the considered circuit. ACKNOWLEDGEMENTS This work is supported by the agreement of August 27, 2013 № 02.В.49.21.0003 between The Ministry of education and science of the Russian Federation and Lobachevsky State University of Nizhni Novgorod, educational fellowship for scientific research of Government of Russian, edu- cational fellowship for scientific research of Government of Nizhny Novgorod region of Russia and of Nizhny Novgorod State University of Architecture and Civil Engineering. REFERENCES [1] S.T. Shishiyanu, T.S. Shishiyanu, S.K. Railyan. Shallow p-n-junctions in Si prepared by pulse photon annealing. Semiconductors. Vol. 36 (5). P. 611-617 (2002). [2] M.J. Kumar, T.V. Singh. Quantum confinement effects in strained silicon MOSFETs MOSFETs. Int. J. Nanoscience. Vol. 7 (2-3). P. 81-84 (2008). [3] D. Fathi, B. Forouzandeh. Accurate analysis of global interconnects in nano-FPGAs. Nano. Vol. 4 (3). P. 171-176 (2009). [4] D. Fathi, B. Forouzandeh, N. Masoumi. New enhanced noise analysis in active mixers in nanoscale technologies. Nano. Vol. 4 (4). P. 233-238 (2009). [5] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Lit- vin, V.V. Milenin, A.V. Sachenko. Au–TiBx−n-6H-SiC Schottky barrier diodes: the features of cur- rent flow in rectifying and nonrectifying contacts. Semiconductors. Vol. 43 (7). P. 897-903 (2009). [6] Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. High-performance InGaP/GaAs pnp δ-doped heterojunction bipolar transistor. Semiconductors. Vol. 43 (7). С. 971-974 (2009). [7] P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi, R.G. Gordon. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxy- sulfide buffer layer. Appl. Phys. Lett. Vol. 102 (5). P. 053901-053905 (2013). [8] J.G. Reynolds, C.L. Reynolds, Jr.A. Mohanta, J.F. Muth, J.E. Rowe, H.O. Everitt, D.E. Aspnes. Shal- low acceptor complexes in p-type ZnO. Appl. Phys. Lett. Vol. 102 (15). P. 152114-152118 (2013). [9] S.A. Chachuli, P.N.A. Fasyar, N. Soin, N.M. Karim, N. Yusop. Pareto ANOVA analysis for CMOS 0.18 µm two-stage Op-amp. Mat. Sci. Sem. Proc. Vol. 24. P. 9-14 (2014). [10] N.I. Volokobinskaya, I.N. Komarov, T.V. Matioukhina, V.I. Rechetniko, A.A. Rush, I.V. Falina, A.S. Yastrebov. Investigation of technological processes of manufacturing of the bipolar power high- voltage transistors with a grid of inclusions in the collector region. Semiconductors. Vol. 35 (8). P. 1013-1017 (2001). [11] G. Volovich. Modern chips UM3Ch class D manufactured by firm MPS. Modern Electronics. Issue 2. P. 10-17 (2006). [12] M.V. Dunga, L. Chung-Hsun, X. Xuemei, D.D. Lu, A.M. Niknejad, H. Chenming. Modeling ad- vanced FET technology in a compact model. IEEE Transactions on Electron Devices. Vol. 53 (9). P. 157-162 (2006). [13] A. Kerentsev, V. Lanin. Constructive-technological features of MOSFET-transistors. Power Electron- ics. Issue 1. P. 34-38 (2008). [14] C. Senthilpari, K. Diwakar, A.K. Singh. Low Energy, Low Latency and High Speed Array Divider Circuit Using a Shannon Theorem Based Adder Cell. Recent Patents on Nanotechnology. Vol. 3 (1). P. 61-72 (2009).
  • 19. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 19 [15] M.M. Fouad, H.H. Amer, A.H. Madian, M.B. Abdelhalim. Current Mode Logic Testing of XOR/XNOR Circuit: A Case Study Original. Circuits and Systems. Vol. 4 (4). P. 364-368 (2013). [16] E.L. Pankratov. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion- coefficient nonuniformity. Russian Microelectronics. 2007. V.36 (1). P. 33-39. [17] E.L. Pankratov. Redistribution of dopant during annealing of radiative defects in a multilayer struc- ture by laser scans for production an implanted-junction rectifiers. Int. J. Nanoscience. Vol. 7 (4-5). P. 187–197 (2008). [18] E.L. Pankratov. Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure by optimized laser annealing. J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010). [19] E.L.Pankratov, E.A. Bulaeva. Increasing of sharpness of diffusion-junction heterorectifier by using radiation processing. Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1-1250028-8 (2012). [20] E.L. Pankratov, E.A. Bulaeva. Application of native inhomogeneities to increase com pactness of vertical field-effect transistors. J. Comp. Theor. Nanoscience. Vol. 10 (4). P. 888-893 (2013). [21] E.L. Pankratov, E.A. Bulaeva. An approach to manufacture of bipolar transistors in thin film struc- tures. On the method of optimization. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014). [22] E.L. Pankratov, E.A. Bulaeva. Optimization of annealing of dopant to increase sharp-ness of p-n- junctions in a heterostructure with drain of dopant. Applied Nanoscience. Vol. 4 (5). P. 537-541 (2014). [23] E.L. Pankratov, E.A. Bulaeva. An approach to optimize regimes of manufacturing of complementary horizontal field-effect transistor. Int. J. Rec. Adv. Phys. Vol. 3 (2). P. 55-73 (2014). [24] V.I. Lachin, N.S. Savelov. Electronics (Phoenix, Rostov-na-Donu, 2001). [25] N.A. Avaev, Yu.E. Naumov, V.T. Frolkin. Basis of microelectronics (Radio and communication, Moscow, 1991). [26] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991). [27] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev, 1979, in Russian). [28] P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicon. Rev. Mod. Phys. 1989. Vol. 61. № 2. P. 289-388. [29] W.-X. Ni, G.V. Hansson, J.-E. Sundgren, L. Hultman, L.R. Wallenberg, J.-Y. Yao, L.C. Markert, J.E. Greene, -function-shaped Sb-doping profiles in Si(001) obtained using a low-energy accelerated-ion source during molecular-beam epitaxy. Phys. Rev. B. Vol. 46 (12). P. 7551-7558 (1992). [30] B.A. Zon, S.B. Ledovskii, A.N. Likholet. Lattice diffusion of impurity enhanced by a surface hetero- geneous reaction. Tech. Phys. Vol. 45 (4). P. 419-424 (2000). [31] F. Faupel, W. Frank, M.-P. Macht, H. Mehrer, V. Naundorf, K. Ratzke, H. R. Schober, S.K. Sharma, H. Teichler. Diffusion in metallic glasses and supercooled melts. Reviews of modern physics. Vol. 75 (1). P. 237-280 (2003). [32] S.A. Bahrani, Y. Jannot, A. Degiovanni. A New Silicon p‐n Junction Photocell for Con-verting Solar Radiation into Electrical Power. J. Appl. Phys. Vol. 114 (14). P. 143509-143516 (2014). [33] M.L. Krasnov, A.I. Kiselev, G.I. Makarenko. Integral equations (Science, Moscow, 1976). [34] E.L. Pankratov, E.A. Bulaeva. On the relations between porosity of heterostructured materials and mismatch-induced stress. J. Comp. Theor. Nanoscience. Vol. 11 (1). P. 91-101 (2014). AUTHORS Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University: from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra- diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio- physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro- structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo- rod State University of Architecture and Civil Engineering. 2012-2015 Full Doctor course in Radi- ophysical Department of Nizhny Novgorod State University. Since 2015 E.L. Pankratov is an Associate Professor of Nizhny Novgorod State University. He has 135 published papers in area of his researches. Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school “Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec-
  • 20. International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016 20 ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in the University. Since 2014 E.A. Bulaeva is in a PhD program in Radiophysical Department of Nizhny Novgorod State University. She has 90 published papers in area of her researches.