SlideShare a Scribd company logo
1 of 45
Chromatin looping as a target for altering erythroid
gene expression
Ivan Krivega, PhD
Laboratory of Cellular and Developmental Biology, NIDDK, NIH
How do different cell and tissue types arise?
Changes in gene expression drive developmental progression
The activity of enhancers underlies cell-specific transcription patterns
Enhancers contact genes over long distances
protein
complex
gene
enhancer
Krivega, Dean. Curr Opin Genet Dev. 2012.
Questions:
1. How do enhancers loop to target genes?
2. Can loops be manipulated to change disease-associated
gene expression?
Questions:
1. How do enhancers loop to target genes?
• role of looping factor LDB1
2. Can loops be manipulated to change disease-associated
gene expression?
The mammalian β-globin loci
Locus control region (LCR) enhancer loops to genes
determining which one is active as development proceeds
Tolhuis et al, Mol. Cell, 2002
Palstra et al, Nat. Genet., 2003
adult embryo
mouse
bmajbmin bh1 ey 10 kb
LCR
eGgAgdb
fetusadult OR genesembryo
human
LCR
Drissen et al, Genes Dev., 2004
Vakoc et al, Cell, 2005
Song et al. Mol. Cell, 2007
Yun et al, NAR, 2014
LDB1 complex
LDB1
NLSdimerization domain (DD) LIM interaction domain
(LID)
N C
Orthologue of D.melanogaster Chip, cloned in a screen for enhancer facilitators
Highly conserved, no DNA-binding or enzymatic activity, widely expressed
Morcillo et al, Genes Dev., 1997
Muhopadhyay et al, Development, 2003
Wadman et al, EMBO J, 1997
Required for erythropoiesis
WT Ldb1 null
E8.5 embryo
no blood
LID
LIM1 LIM2LMO2
LDB1
Methods: Chromatin Immunoprecipitation (ChIP)
ChIP-qPCR ChIP-seq
Chromatin Immunoprecipitation with erythroid samples
Mouse erythroid cells from mouse E14.5 fetal liver
Human primary adult erythroid cells
Krivega, Dean. Erythropoiesis-Methods and Protocols. 2017. In press.
0
0.05
0.1
0.15
0.2
0.25
γ proδ proβ proGapdh
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
IgG
LDB1
HS4HS3HS2HS1
enrichment
Methods: Chromatin Capture (3C)
DNA purification qPCRLigation
Chromatin
Digestion
Crosslinking of
interacting Loci
Krivega, Dean. Erythropoiesis-Methods and Protocols. 2017. In press.
Human primary adult progenitors and erythroid cells
0
0.5
1
1.5
2
2.5
3
3.5
5225000 5235000 5245000 5255000 5265000 5275000 5285000 5295000 5305000
EcoRI
CD34(+)
Adult Erythroblasts
LCR
β δ γ
G
εγ
A
Interactionfrequency
Song et al, Mol. Cell, 2007
LDB1 is required for LCR looping and β–globin transcription activation
3’ HS1 bmaj bh1 ey HS2
Chr 7: 110950000-11101000
interactionfrequency
#1
#2
#3
Ldb1 KD
LDB1
GATA-1
actin
0
1.0
2.0
3.0
εy βH1 βMaj
relativeexpression
Control
Ldb1 KD #1
Ldb1 KD #2
β-globin
MEL Induced MEL
0
0.05
0.1
0.15
0.2
enrichment
Control
ΔCore
**
TBP LDB1
0
0.05
0.1
0.15
0.2
0.25
enrichment
Control
ΔCore
ΔCore/GATA
0
0.05
0.1
0.15
0.2
0.25
enrichment
Control
ΔCore
ΔCore/GATA
HS2 βmaj necdin HS2 βmaj necdin
*
**
βmaj necdin
GATA1
CRISPR/Cas9 editing of the bmaj globin promoter
Krivega and Dean, Submitted
* - p<0.05, **-p<0.01 by Student’s t-test
GATA TATA +1
Control
ΔCore
ΔCore/GATA
KLF1 20 nt
interactionfrequency
0
2
4
6
8
10
12
0 10000 20000 30000 40000 50000 60000 70000
BglII
Control
ΔCore
ΔCore/GATA1
Uninduced Control
βmin βmaj βh1 εy
HS2
relativeexpression
βmaj βmin
0
0.05
0.1
0.15
0.2
Control
ΔCore
ΔCore/GATA
LDB1 occupancy at βmaj promoter is required for looping
GATA TATA +1
Control
ΔCore
ΔCore/GATA
KLF1 20 nt
αLDB1
αHA
αTub
LDB1 FL
LDB1 FL rescued β-globin expression in LDB1 KD MEL cells
LDB1 FL
DD NLS LIDHA
0
0.2
0.4
0.6
0.8
1
1.2
1.4
relativeexpression
β-globin
Endogenous
Ldb1
LDB1 FL
Ldb1
Krivega, Dale, Dean. Genes Dev. 2014
MEL Ldb1 KD
DD is required for β-globin gene rescue
αHA
αTub
αHA
αTub
αHA
αTub
LDB1ΔDD
0
0.2
0.4
0.6
0.8
1
1.2
1.4
β-globin
relativeexpression
LDB1 FL
DD NLS LIDHA
LDB1ΔDD
MEL Ldb1 KD
0
1
2
3
4
5
6
103659323 103679323 103699323 103719323
Empty
LDB1 FL
LMO-DD
DD
Empty uninduced
εyβh1βmajβmin
interactionfrequency
chr 7
HS2
DD-LMO
LMO-DD
LMO2
DD
DDHA LMO2
DD
LDB1
DD
LMO/DD
relativeexpression
0
0.2
0.4
0.6
0.8
1
1.2
β-globin
Dimerization of LDB1 is sufficient for chromatin looping
MEL Ldb1 KD
LMO-DD
LDB1 FL
0
0.2
0.4
0.6
0.8
1
1.2
1.4
LDB1Δ1
LDB1Δ2
LDB1Δ3
LDB1Δ4/5
1 3 4 5
1 2 4 5
1 2 3
4 52 3
4 52 31 LDB1 FL αHA
αTub
LDB1Δ1 LDB1Δ2
LDB1Δ3 LDB1Δ4/5 FL
FL
αHA
αTub
LDB1 DD can be functionally sub-divided
β-globin
relativeexpression
MEL Ldb1 KD
DD
DD Δ14 5
1 2 3 4 5
2 3
DD Δ4/51 2 3
The complete DD is not required for LDB1 homodimerization
αLMO2
αETO2
αLDB1
αTAL1
αHA
WT MEL cells
Input
DD
Input
DDΔ1
Input
DDΔ4/5
αHA
αLDB1
αHA
αLDB1
WT MEL
0
1
2
3
4
5
6
7
103659323 103679323 103699323 103719323
Empty
LDB1 FL
LDB1 Δ1
LDB1 Δ2
LDB1 Δ3
LDB1 Δ4/5
Empty uninduced
εyβh1βmajβmin
chr 7
Interactionfrequency
Dimerization of LDB1 is required for chromatin looping
HS2
LDB1 FL
LDB1 Δ4/5
LDB1
LDB1 Δ4/5
+1TATA
LCR
Pol II
TFIID
TBP
β-major
GATA1 TAL1
LMO2
LDB1
GATA
GATA1TAL1
LMO2
LDB1
+1TATA
LCR
β-major
GATA1 TAL1
LMO2
LDB1Δ4/5
GATA
GATA1TAL1
LMO2
LDB1Δ4/5
Model: LCR/β-major looping is established through
LDB1 homodimerization
Krivega, Dale, Dean. Genes Dev. 2014
The DD 4/5 region interacts with FOG1
0
0.1
0.2
0.3
0.4
0.5
0.6
HS2 β necdin
enrichment
Empty
Ldb1 FL
Ldb1 Δ4/5
*
*
*
*
LDB1 FL
LDB1Δ4/5
FOG1
αFOG1
αLDB1
αGATA1
αLMO2
WT MEL cells
E47
LID
LIM1 LIM2
αFOG1
αGATA1
αLMO2
αHA
Ldb1 KD
HA-LDB1 FL
Ldb1 KD
HA-LDB1Δ4/5
αFOG1
αLMO2
αHA
* - p<0.05
* - p<0.05, **-p<0.01 by Student’s t-test
Krivega, Dale, Dean. Genes Dev. 2014
4/5 region of LDB1 is required for regulation of FOG1-dependent genes
4/5-dependent
genes
4/5-independent
genes
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Empty
Ldb1 FL
Ldb1 Δ4/5
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
Empty
Ldb1 FL
Ldb1 Δ4/5
LDB1 FL
LDB1 Δ4/5
496 LDB1-activated genes rescued by
LDB1 FL expression in Lbd1 KD cells
147 genes
4/5-dependent
349 genes
4/5-independent
FOG1
4/5-dependent 4/5-independent
*
*
*
* *
*
*
relativeexpression
enrichmentenrichment
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Empty
LDB1 FL
LDB1Δ4/5
4/5 region of LDB1 is required for regulation of FOG1-dependent genes
*
LDB1 FL
LDB1Δ4/5
* - p<0.05, **-p<0.01 by Student’s t-test
GATA1
LDB1 DD 4/5 region is required for proper activation of
blood disease-associated genes
V205M mutation of GATA-1 abolishes
its interaction with FOG1 and causes
X-linked dyserythropoietic anemia
(Nichols et al., Nature Genetics, 2000)
Human disease-associated
homologs from OMIM
4/5-dependent
genes
4/5-independent
genes
Mouse gene
Human homolog
Disease association
(OMIM base)
0
5
10
15
20
25
30
35
4/5-dependent
4/5-independent
all
p=.001
p=.93
%ofdiseaseassociatedgenes
blood related diseases others
Krivega, Dale, Dean. Genes Dev. 2014
Questions:
1. How do enhancers loop to target genes?
• role of looping factor LDB1
2. Can loops be manipulated to change disease-
associated gene expression?
• forced looping
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
HS3 HS2 HS1 εy βh1 βmaj βmin mCD4
IgG
HA
enrichment
0
0.5
1
1.5
2
2.5
3
103658500 103678500 103698500 103718500
BglII
Control
βZF-DD
Induced Control
βmin βmaj βh1 εy
HS2
interactionfrequency
Forced LCR looping using ZF-DD
G1E+GATA1
0
1
2
3
4
5
6
7
relativeexpression
βmaj
G1E
Deng et al, Cell, 2012
DD
βZF-DD
βZF HA
G1E cells (GATA1 null)
no βmaj expression
Forced LCR looping using dCas9-DDΔ4/5
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
HS5 HS4 HS3 HS2 HS1 ey βh1 β-major β-minor 3'HS1 necdin
HA Control
HA βmaj-DDΔ4/5
enrichment
0
2
4
6
8
10
12
14
16
0 10000 20000 30000 40000 50000 60000 70000
BglII
Control
dCas9-DΔ4/5
Induced Control
0
2
4
6
8
10
12
14
16
relativeexpression
βmaj
HS2
βmin βmaj βh1 εy
interactionfrequency
βmaj-DDΔ4/5
UMEL IMEL
Krivega and Dean, Submitted
4/5DD
dCas9-DDΔ4/5
dCas9 HA Uninduced MEL
no βmaj expression
Globin gene expression during development
HbF HbA
There are 2 ‘switches’ in globin gene expression
After the γ to b switch, β-thalassemia and sickle cell disease become manifest
Elevated fetal hemoglobin in adults moderates severity of the b-hemoglobinopathies
Forced chromatin looping to activated γ-globin genes
expression
e d bS
fetus adultOR genes embryo
human LCR
OR genes
Gg Ag
γZF
LDB1
DD
adult stage
Reversal of chromatin looping by γZF-LDB1-DD in
primary human adult erythroid cells
adult
CD34(+)
progenitor cells expansion
5-6 days
differentiation
10-12 days
lentiviral infection GFP sort
γZF DD
Deng*, Rupon*, Krivega et al, Cell, 2014
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
HS2 ε pro γ pro δ pro β pro HS40 α pro CD4
enrichment
IgG
HA
HA
interactionfrequency
Reversal of chromatin looping by γZF-LDB1-DD in
primary human adult erythroid cells
εy
0
0.2
0.4
0.6
0.8
1
1.2
5220000 5230000 5240000 5250000 5260000 5270000 5280000 5290000 5300000 5310000 5320000
EcoRI
Control
γZF-DD
Ag Ggδβ
LCR
Reactivation of the γ-globin gene in primary human
erythroid cells by γZF-DD
* - p<0.05 by Student’s t-test
0
10
20
30
40
50
60
70
80
90
γZF-DD γZF Control
γ-globin/(γ-globin+β-globin)
% γ-globin of total
* *
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
γZF-DD γZF Control
γ-globin/α-globin
*
*
0
0.5
1
1.5
2
2.5
γZF-DD γZF Control
β-globin/α-globin
γ-globin β-globin
*
*
γZF-DD Activates HbF Production
Control
Control
Control Control
Control Control
γZF-DD γZF-DD γZF-DD
γZF-DD γZF-DD γZF-DD
* - p<0.05 by Student’s t-test
Control γZF γZF-DD
Pancellular Distribution of HbF
DAPI
HbF
Model: Manipulation of chromatin loops can overcome
developmental silencing to activate gene expression
γZF DD
Adult erythroid cells
+++
AdultFetal
LCR
LDB1
Adult
+
LCR
Deng*, Rupon*, Krivega et al, Cell, 2014
Questions:
1. How do enhancers loop to target genes?
• role of looping factor LDB1
2. Can loops be manipulated to change disease-associated
gene expression?
• forced looping
• pharmacological inhibition of epigenetic factors activity
Epigenetic reversal of chromatin looping
g-globin repression
H3K9me2 G9a
MTX
UNC0638
eGgAgdb
LCR
H3K9me2
Phase I-III
UNC0638
UNC0638
UNC0638
0 21
Control
Phase I
7 14
Phase II
Phase III
UNC0638
Days
UNC0638 UNC0638
CD34(+) cells from three
healthy donors were
differentiated ex vivo in 3 phase
serum free culture system
Krivega*, Byrnes* et al, Blood. 2015
expansion differentiation
Inhibition of G9a methyltransferase activity in adult human
erythrocytes stimulates fetal hemoglobin production
* - p<0.05 by Student’s t-test
0
5
10
15
20
25
30
35
40
Control Phase I Phase II Phase III Phase I-III
HbF(%)
*
*
*
0
5
10
15
20
25
30
35
0 0.031 0.062 0.12 0.25 0.5 1
HbF(%)
UNC0638 (μM)
*
*
*
*
*
*
0
10
20
30
40
50
60
70
80
90
100
0 0.031 0.062 0.12 0.25 0.5 1
HbF(%)
UNC0638 (μM)
*
0
5
10
15
20
25
30
γ-globin
expression
0
10
20
30
40
50
60
70
β-globin
expression
0
5
10
15
20
25
30
35
α-globin
Control
Phase II
expression
*
*
G9a inhibition activates fetal and represses adult β-globin genes
* - p<0.05 by Student’s t-test
NS
Control Phase II
G9a inactivation stimulates pancellular HbF production
Control Phase II
G9a inactivation reduces H3K9me2 at β-globin locus
* - p<0.05, ** - p<0.01 by Student’s t-test
0
0.05
0.1
0.15
0.2
0.25
HS4 HS3 HS2 HS1 γ pro δ pro β pro
H3K9me2 Control
H3K9me2 Phase II
relativeenrichment
*
*
*
** **
****
LDB1 complex occupies reactivated γ-globin genes
* - p<0.05 by Student’s t-test
0
0.05
0.1
0.15
0.2
0.25
IgG Control
IgG Phase II
Ldb1 Control
Ldb1 Phase II
*
*
*
0
1
2
3
4
5
6
7
LDB1
0
1
2
3
4
5
6
7
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
IgG Control
IgG Phase II
GATA-1
Control
GATA-1
enrichmentenrichment
HS4 HS3 HS2 HS1 γ pro δ pro β pro Gapdh
*
*
*
**
*
LDB1
LDB1
G9a inhibition induces γ-globin promoter-LCR looping
0
0.5
1
1.5
2
2.5
3
3.5
5225000 5235000 5245000 5255000 5265000 5275000 5285000 5295000 5305000
EcoRI
Control
Phase II
LCR
εAg Ggb d
Interactionfrequency
Model: Epigenetic changes can relieve silencing by allowing
chromatin loops to reactivate gene expression
Adult erythroid cells
G9a
MT
+++
AdultFetal
H3K9me2
LCR
LDB1
Adult
++
LCR
X
Krivega*, Byrnes* et al, Blood. 2015
Summary
Enhancer mechanisms: Homodimerization of LDB1 protein through DD domain is
required for looping and transcription activation of b-globin genes.
Expression of blood disease-associated genes depends on interaction between LDB1 and
FOG1 proteins.
Enhancer looping manipulation: In adult erythroid cells, the LCR can be targeted to the
fetal g-globin genes by an ZF-DD based peptide resulting in their re-activation.
Inhibiting G9a methyltransferase activity relieves y-globin silencing in adult erythroid cells
resulting in redistribution of LDB1, LCR looping and g-globin re-activation.
These experiments suggest that chromosome looping can be considered a
therapeutic target for gene activation in b-hemoglobinopathies.
g-globin expression is pan-cellular and is increased to levels
potentially therapeutic in b-thalassemia and sickle cell disease
with balanced decrease in b-globin expression
Gene Regulation and Development Section
Laboratory of Cellular and Developmental Biology, NIDDK
Ann Dean
Xiang Guo
Luis Diaz
Ben Leadem
Maria Soledad Ivaldi
Guo-you Liu
Jun Zhang
LCDB Bioinformatics
Ryan Dale
NIDDK Genomics Core
Harold Smith
Collaborators
Jeffery Miller, Colleen Byrnes, Jaira F. de Vasconcellos
NIDDK, NIH
Gerd Blobel, Wulan Deng, Jeremy Rupon
CHOP, Philadelphia, PA
Stefano Rivella, Laura Breda
CHOP, Philadelphia, PA
Acknowledgements

More Related Content

What's hot

Irvin PLoS Genet 2014
Irvin PLoS Genet 2014Irvin PLoS Genet 2014
Irvin PLoS Genet 2014
Jordan Irvin
 
In Vitro Characterization of a Novel Cis-acting Element (NCE) in the Cd4 Locus
In Vitro Characterization of a Novel Cis-acting Element (NCE) in the Cd4 Locus In Vitro Characterization of a Novel Cis-acting Element (NCE) in the Cd4 Locus
In Vitro Characterization of a Novel Cis-acting Element (NCE) in the Cd4 Locus
Yordan Penev
 
2009 JCEM Detection of growth hormone doping by gene expression profiling of ...
2009 JCEM Detection of growth hormone doping by gene expression profiling of ...2009 JCEM Detection of growth hormone doping by gene expression profiling of ...
2009 JCEM Detection of growth hormone doping by gene expression profiling of ...
Selina Sutton
 
Study of the Association of PCSK9/Eam1104I Gene Polymorphism with Plasma Lipi...
Study of the Association of PCSK9/Eam1104I Gene Polymorphism with Plasma Lipi...Study of the Association of PCSK9/Eam1104I Gene Polymorphism with Plasma Lipi...
Study of the Association of PCSK9/Eam1104I Gene Polymorphism with Plasma Lipi...
SSR Institute of International Journal of Life Sciences
 

What's hot (20)

Masters Defense
Masters DefenseMasters Defense
Masters Defense
 
RIP 24Feb2016v4
RIP 24Feb2016v4RIP 24Feb2016v4
RIP 24Feb2016v4
 
TALENs: A WIDELY APPLICABLE TECHNOLOGY FOR TARGETED GENOME EDITING
TALENs: A WIDELY APPLICABLE TECHNOLOGY FOR TARGETED GENOME EDITINGTALENs: A WIDELY APPLICABLE TECHNOLOGY FOR TARGETED GENOME EDITING
TALENs: A WIDELY APPLICABLE TECHNOLOGY FOR TARGETED GENOME EDITING
 
Session 1.2 Chiorazzi
Session 1.2 ChiorazziSession 1.2 Chiorazzi
Session 1.2 Chiorazzi
 
Session 1.2: Chiorazzi
Session 1.2: ChiorazziSession 1.2: Chiorazzi
Session 1.2: Chiorazzi
 
Poster_mainFin1
Poster_mainFin1Poster_mainFin1
Poster_mainFin1
 
E research feb2016 sifting the needles in the haystack
E research feb2016 sifting the needles in the haystackE research feb2016 sifting the needles in the haystack
E research feb2016 sifting the needles in the haystack
 
Irvin PLoS Genet 2014
Irvin PLoS Genet 2014Irvin PLoS Genet 2014
Irvin PLoS Genet 2014
 
Making genome edits in mammalian cells
Making genome edits in mammalian cellsMaking genome edits in mammalian cells
Making genome edits in mammalian cells
 
In Vitro Characterization of a Novel Cis-acting Element (NCE) in the Cd4 Locus
In Vitro Characterization of a Novel Cis-acting Element (NCE) in the Cd4 Locus In Vitro Characterization of a Novel Cis-acting Element (NCE) in the Cd4 Locus
In Vitro Characterization of a Novel Cis-acting Element (NCE) in the Cd4 Locus
 
Pool of peptides
Pool of peptidesPool of peptides
Pool of peptides
 
2009 JCEM Detection of growth hormone doping by gene expression profiling of ...
2009 JCEM Detection of growth hormone doping by gene expression profiling of ...2009 JCEM Detection of growth hormone doping by gene expression profiling of ...
2009 JCEM Detection of growth hormone doping by gene expression profiling of ...
 
ACMG Workshop 2011
ACMG Workshop 2011ACMG Workshop 2011
ACMG Workshop 2011
 
Cancer Research: Effects of Insulin-like Factor -2 (IGF-2), Collagen, and Fib...
Cancer Research: Effects of Insulin-like Factor -2 (IGF-2), Collagen, and Fib...Cancer Research: Effects of Insulin-like Factor -2 (IGF-2), Collagen, and Fib...
Cancer Research: Effects of Insulin-like Factor -2 (IGF-2), Collagen, and Fib...
 
ABRCMS Poster2012
ABRCMS Poster2012ABRCMS Poster2012
ABRCMS Poster2012
 
Adenosine deaminase (ADA) immunodeficiency
Adenosine deaminase (ADA) immunodeficiencyAdenosine deaminase (ADA) immunodeficiency
Adenosine deaminase (ADA) immunodeficiency
 
IRJET- Subcellular Localization of Transmembrane E-cadherin-GFP Fusion Pr...
IRJET-  	  Subcellular Localization of Transmembrane E-cadherin-GFP Fusion Pr...IRJET-  	  Subcellular Localization of Transmembrane E-cadherin-GFP Fusion Pr...
IRJET- Subcellular Localization of Transmembrane E-cadherin-GFP Fusion Pr...
 
FINAL (5)
FINAL (5)FINAL (5)
FINAL (5)
 
Targeted T-cell receptor beta immune repertoire sequencing in several FFPE ti...
Targeted T-cell receptor beta immune repertoire sequencing in several FFPE ti...Targeted T-cell receptor beta immune repertoire sequencing in several FFPE ti...
Targeted T-cell receptor beta immune repertoire sequencing in several FFPE ti...
 
Study of the Association of PCSK9/Eam1104I Gene Polymorphism with Plasma Lipi...
Study of the Association of PCSK9/Eam1104I Gene Polymorphism with Plasma Lipi...Study of the Association of PCSK9/Eam1104I Gene Polymorphism with Plasma Lipi...
Study of the Association of PCSK9/Eam1104I Gene Polymorphism with Plasma Lipi...
 

Similar to Chromatin looping as a target for altering gene expression

Dimethyl sulfoxide activates tumorn ecrosisfactor p53 mediated apoptosi and
Dimethyl sulfoxide activates tumorn ecrosisfactor p53 mediated apoptosi andDimethyl sulfoxide activates tumorn ecrosisfactor p53 mediated apoptosi and
Dimethyl sulfoxide activates tumorn ecrosisfactor p53 mediated apoptosi and
rkkoiri
 
Dimethyl sulfoxide activates tumorn ecrosisfactor p53 mediated apoptosi and
Dimethyl sulfoxide activates tumorn ecrosisfactor p53 mediated apoptosi andDimethyl sulfoxide activates tumorn ecrosisfactor p53 mediated apoptosi and
Dimethyl sulfoxide activates tumorn ecrosisfactor p53 mediated apoptosi and
rkkoiri
 
PhD Poster - UKEMS Conference 2008
PhD Poster - UKEMS Conference 2008PhD Poster - UKEMS Conference 2008
PhD Poster - UKEMS Conference 2008
Donna Johnson
 

Similar to Chromatin looping as a target for altering gene expression (20)

ChrDec talk 2014
ChrDec talk 2014ChrDec talk 2014
ChrDec talk 2014
 
Dr. Mahra Nourbakhsh: The Involvement of Diacylglycerol Acyltransferase (DGAT...
Dr. Mahra Nourbakhsh: The Involvement of Diacylglycerol Acyltransferase (DGAT...Dr. Mahra Nourbakhsh: The Involvement of Diacylglycerol Acyltransferase (DGAT...
Dr. Mahra Nourbakhsh: The Involvement of Diacylglycerol Acyltransferase (DGAT...
 
Dimethyl sulfoxide activates tumorn ecrosisfactor p53 mediated apoptosi and
Dimethyl sulfoxide activates tumorn ecrosisfactor p53 mediated apoptosi andDimethyl sulfoxide activates tumorn ecrosisfactor p53 mediated apoptosi and
Dimethyl sulfoxide activates tumorn ecrosisfactor p53 mediated apoptosi and
 
Dimethyl sulfoxide activates tumorn ecrosisfactor p53 mediated apoptosi and
Dimethyl sulfoxide activates tumorn ecrosisfactor p53 mediated apoptosi andDimethyl sulfoxide activates tumorn ecrosisfactor p53 mediated apoptosi and
Dimethyl sulfoxide activates tumorn ecrosisfactor p53 mediated apoptosi and
 
boston2 corrected .ppt
boston2 corrected .pptboston2 corrected .ppt
boston2 corrected .ppt
 
KDM5 epigenetic modifiers as a focus for drug discovery
KDM5 epigenetic modifiers as a focus for drug discoveryKDM5 epigenetic modifiers as a focus for drug discovery
KDM5 epigenetic modifiers as a focus for drug discovery
 
Epiroadmap20
Epiroadmap20Epiroadmap20
Epiroadmap20
 
10 letschka
10 letschka10 letschka
10 letschka
 
Li, Shuxin
Li, ShuxinLi, Shuxin
Li, Shuxin
 
SFN-2013
SFN-2013SFN-2013
SFN-2013
 
publication 4
publication 4publication 4
publication 4
 
2015 DevSem NIH
2015 DevSem NIH2015 DevSem NIH
2015 DevSem NIH
 
Evaluation of the lacZ gene in Escherichia coli mutagenesis using pBluescript...
Evaluation of the lacZ gene in Escherichia coli mutagenesis using pBluescript...Evaluation of the lacZ gene in Escherichia coli mutagenesis using pBluescript...
Evaluation of the lacZ gene in Escherichia coli mutagenesis using pBluescript...
 
Developmental cascade of morphogens Define Drosophila Body Plan
Developmental cascade of morphogens Define Drosophila Body PlanDevelopmental cascade of morphogens Define Drosophila Body Plan
Developmental cascade of morphogens Define Drosophila Body Plan
 
PhD Poster - UKEMS Conference 2008
PhD Poster - UKEMS Conference 2008PhD Poster - UKEMS Conference 2008
PhD Poster - UKEMS Conference 2008
 
Biomedical Relation Extraction for Knowledge Graph Completion
Biomedical Relation Extraction for Knowledge Graph CompletionBiomedical Relation Extraction for Knowledge Graph Completion
Biomedical Relation Extraction for Knowledge Graph Completion
 
journal.pone.0046482.PDF
journal.pone.0046482.PDFjournal.pone.0046482.PDF
journal.pone.0046482.PDF
 
Nitub workshop july 2018
Nitub workshop july 2018Nitub workshop july 2018
Nitub workshop july 2018
 
Poster FINAL
Poster FINALPoster FINAL
Poster FINAL
 
New Directions in Targeted Therapeutic Approaches for Older Adults with Mantl...
New Directions in Targeted Therapeutic Approaches for Older Adults with Mantl...New Directions in Targeted Therapeutic Approaches for Older Adults with Mantl...
New Directions in Targeted Therapeutic Approaches for Older Adults with Mantl...
 

Recently uploaded

CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
Cherry
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
Cherry
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
Cherry
 
COMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demeritsCOMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demerits
Cherry
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
seri bangash
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
Cherry
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
Cherry
 
Lipids: types, structure and important functions.
Lipids: types, structure and important functions.Lipids: types, structure and important functions.
Lipids: types, structure and important functions.
Cherry
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
NazaninKarimi6
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
levieagacer
 

Recently uploaded (20)

CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
 
COMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demeritsCOMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demerits
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptx
 
Understanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution MethodsUnderstanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution Methods
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 
Concept of gene and Complementation test.pdf
Concept of gene and Complementation test.pdfConcept of gene and Complementation test.pdf
Concept of gene and Complementation test.pdf
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 
GBSN - Microbiology (Unit 4) Concept of Asepsis
GBSN - Microbiology (Unit 4) Concept of AsepsisGBSN - Microbiology (Unit 4) Concept of Asepsis
GBSN - Microbiology (Unit 4) Concept of Asepsis
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Site specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfSite specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdf
 
Lipids: types, structure and important functions.
Lipids: types, structure and important functions.Lipids: types, structure and important functions.
Lipids: types, structure and important functions.
 
GBSN - Biochemistry (Unit 3) Metabolism
GBSN - Biochemistry (Unit 3) MetabolismGBSN - Biochemistry (Unit 3) Metabolism
GBSN - Biochemistry (Unit 3) Metabolism
 
Energy is the beat of life irrespective of the domains. ATP- the energy curre...
Energy is the beat of life irrespective of the domains. ATP- the energy curre...Energy is the beat of life irrespective of the domains. ATP- the energy curre...
Energy is the beat of life irrespective of the domains. ATP- the energy curre...
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneyX-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 

Chromatin looping as a target for altering gene expression

  • 1. Chromatin looping as a target for altering erythroid gene expression Ivan Krivega, PhD Laboratory of Cellular and Developmental Biology, NIDDK, NIH
  • 2. How do different cell and tissue types arise? Changes in gene expression drive developmental progression The activity of enhancers underlies cell-specific transcription patterns Enhancers contact genes over long distances protein complex gene enhancer Krivega, Dean. Curr Opin Genet Dev. 2012.
  • 3. Questions: 1. How do enhancers loop to target genes? 2. Can loops be manipulated to change disease-associated gene expression?
  • 4. Questions: 1. How do enhancers loop to target genes? • role of looping factor LDB1 2. Can loops be manipulated to change disease-associated gene expression?
  • 5. The mammalian β-globin loci Locus control region (LCR) enhancer loops to genes determining which one is active as development proceeds Tolhuis et al, Mol. Cell, 2002 Palstra et al, Nat. Genet., 2003 adult embryo mouse bmajbmin bh1 ey 10 kb LCR eGgAgdb fetusadult OR genesembryo human LCR Drissen et al, Genes Dev., 2004 Vakoc et al, Cell, 2005 Song et al. Mol. Cell, 2007 Yun et al, NAR, 2014 LDB1 complex
  • 6. LDB1 NLSdimerization domain (DD) LIM interaction domain (LID) N C Orthologue of D.melanogaster Chip, cloned in a screen for enhancer facilitators Highly conserved, no DNA-binding or enzymatic activity, widely expressed Morcillo et al, Genes Dev., 1997 Muhopadhyay et al, Development, 2003 Wadman et al, EMBO J, 1997 Required for erythropoiesis WT Ldb1 null E8.5 embryo no blood LID LIM1 LIM2LMO2 LDB1
  • 7. Methods: Chromatin Immunoprecipitation (ChIP) ChIP-qPCR ChIP-seq
  • 8. Chromatin Immunoprecipitation with erythroid samples Mouse erythroid cells from mouse E14.5 fetal liver Human primary adult erythroid cells Krivega, Dean. Erythropoiesis-Methods and Protocols. 2017. In press. 0 0.05 0.1 0.15 0.2 0.25 γ proδ proβ proGapdh 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 IgG LDB1 HS4HS3HS2HS1 enrichment
  • 9. Methods: Chromatin Capture (3C) DNA purification qPCRLigation Chromatin Digestion Crosslinking of interacting Loci Krivega, Dean. Erythropoiesis-Methods and Protocols. 2017. In press. Human primary adult progenitors and erythroid cells 0 0.5 1 1.5 2 2.5 3 3.5 5225000 5235000 5245000 5255000 5265000 5275000 5285000 5295000 5305000 EcoRI CD34(+) Adult Erythroblasts LCR β δ γ G εγ A Interactionfrequency
  • 10. Song et al, Mol. Cell, 2007 LDB1 is required for LCR looping and β–globin transcription activation 3’ HS1 bmaj bh1 ey HS2 Chr 7: 110950000-11101000 interactionfrequency #1 #2 #3 Ldb1 KD LDB1 GATA-1 actin 0 1.0 2.0 3.0 εy βH1 βMaj relativeexpression Control Ldb1 KD #1 Ldb1 KD #2 β-globin MEL Induced MEL
  • 11. 0 0.05 0.1 0.15 0.2 enrichment Control ΔCore ** TBP LDB1 0 0.05 0.1 0.15 0.2 0.25 enrichment Control ΔCore ΔCore/GATA 0 0.05 0.1 0.15 0.2 0.25 enrichment Control ΔCore ΔCore/GATA HS2 βmaj necdin HS2 βmaj necdin * ** βmaj necdin GATA1 CRISPR/Cas9 editing of the bmaj globin promoter Krivega and Dean, Submitted * - p<0.05, **-p<0.01 by Student’s t-test GATA TATA +1 Control ΔCore ΔCore/GATA KLF1 20 nt
  • 12. interactionfrequency 0 2 4 6 8 10 12 0 10000 20000 30000 40000 50000 60000 70000 BglII Control ΔCore ΔCore/GATA1 Uninduced Control βmin βmaj βh1 εy HS2 relativeexpression βmaj βmin 0 0.05 0.1 0.15 0.2 Control ΔCore ΔCore/GATA LDB1 occupancy at βmaj promoter is required for looping GATA TATA +1 Control ΔCore ΔCore/GATA KLF1 20 nt
  • 13. αLDB1 αHA αTub LDB1 FL LDB1 FL rescued β-globin expression in LDB1 KD MEL cells LDB1 FL DD NLS LIDHA 0 0.2 0.4 0.6 0.8 1 1.2 1.4 relativeexpression β-globin Endogenous Ldb1 LDB1 FL Ldb1 Krivega, Dale, Dean. Genes Dev. 2014 MEL Ldb1 KD
  • 14. DD is required for β-globin gene rescue αHA αTub αHA αTub αHA αTub LDB1ΔDD 0 0.2 0.4 0.6 0.8 1 1.2 1.4 β-globin relativeexpression LDB1 FL DD NLS LIDHA LDB1ΔDD MEL Ldb1 KD
  • 15. 0 1 2 3 4 5 6 103659323 103679323 103699323 103719323 Empty LDB1 FL LMO-DD DD Empty uninduced εyβh1βmajβmin interactionfrequency chr 7 HS2 DD-LMO LMO-DD LMO2 DD DDHA LMO2 DD LDB1 DD LMO/DD relativeexpression 0 0.2 0.4 0.6 0.8 1 1.2 β-globin Dimerization of LDB1 is sufficient for chromatin looping MEL Ldb1 KD LMO-DD LDB1 FL
  • 16. 0 0.2 0.4 0.6 0.8 1 1.2 1.4 LDB1Δ1 LDB1Δ2 LDB1Δ3 LDB1Δ4/5 1 3 4 5 1 2 4 5 1 2 3 4 52 3 4 52 31 LDB1 FL αHA αTub LDB1Δ1 LDB1Δ2 LDB1Δ3 LDB1Δ4/5 FL FL αHA αTub LDB1 DD can be functionally sub-divided β-globin relativeexpression MEL Ldb1 KD
  • 17. DD DD Δ14 5 1 2 3 4 5 2 3 DD Δ4/51 2 3 The complete DD is not required for LDB1 homodimerization αLMO2 αETO2 αLDB1 αTAL1 αHA WT MEL cells Input DD Input DDΔ1 Input DDΔ4/5 αHA αLDB1 αHA αLDB1 WT MEL
  • 18. 0 1 2 3 4 5 6 7 103659323 103679323 103699323 103719323 Empty LDB1 FL LDB1 Δ1 LDB1 Δ2 LDB1 Δ3 LDB1 Δ4/5 Empty uninduced εyβh1βmajβmin chr 7 Interactionfrequency Dimerization of LDB1 is required for chromatin looping HS2 LDB1 FL LDB1 Δ4/5
  • 19. LDB1 LDB1 Δ4/5 +1TATA LCR Pol II TFIID TBP β-major GATA1 TAL1 LMO2 LDB1 GATA GATA1TAL1 LMO2 LDB1 +1TATA LCR β-major GATA1 TAL1 LMO2 LDB1Δ4/5 GATA GATA1TAL1 LMO2 LDB1Δ4/5 Model: LCR/β-major looping is established through LDB1 homodimerization Krivega, Dale, Dean. Genes Dev. 2014
  • 20. The DD 4/5 region interacts with FOG1 0 0.1 0.2 0.3 0.4 0.5 0.6 HS2 β necdin enrichment Empty Ldb1 FL Ldb1 Δ4/5 * * * * LDB1 FL LDB1Δ4/5 FOG1 αFOG1 αLDB1 αGATA1 αLMO2 WT MEL cells E47 LID LIM1 LIM2 αFOG1 αGATA1 αLMO2 αHA Ldb1 KD HA-LDB1 FL Ldb1 KD HA-LDB1Δ4/5 αFOG1 αLMO2 αHA * - p<0.05 * - p<0.05, **-p<0.01 by Student’s t-test Krivega, Dale, Dean. Genes Dev. 2014
  • 21. 4/5 region of LDB1 is required for regulation of FOG1-dependent genes 4/5-dependent genes 4/5-independent genes
  • 22. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Empty Ldb1 FL Ldb1 Δ4/5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Empty Ldb1 FL Ldb1 Δ4/5 LDB1 FL LDB1 Δ4/5 496 LDB1-activated genes rescued by LDB1 FL expression in Lbd1 KD cells 147 genes 4/5-dependent 349 genes 4/5-independent FOG1 4/5-dependent 4/5-independent * * * * * * * relativeexpression enrichmentenrichment 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Empty LDB1 FL LDB1Δ4/5 4/5 region of LDB1 is required for regulation of FOG1-dependent genes * LDB1 FL LDB1Δ4/5 * - p<0.05, **-p<0.01 by Student’s t-test GATA1
  • 23. LDB1 DD 4/5 region is required for proper activation of blood disease-associated genes V205M mutation of GATA-1 abolishes its interaction with FOG1 and causes X-linked dyserythropoietic anemia (Nichols et al., Nature Genetics, 2000) Human disease-associated homologs from OMIM 4/5-dependent genes 4/5-independent genes Mouse gene Human homolog Disease association (OMIM base) 0 5 10 15 20 25 30 35 4/5-dependent 4/5-independent all p=.001 p=.93 %ofdiseaseassociatedgenes blood related diseases others Krivega, Dale, Dean. Genes Dev. 2014
  • 24. Questions: 1. How do enhancers loop to target genes? • role of looping factor LDB1 2. Can loops be manipulated to change disease- associated gene expression? • forced looping
  • 25. 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 HS3 HS2 HS1 εy βh1 βmaj βmin mCD4 IgG HA enrichment 0 0.5 1 1.5 2 2.5 3 103658500 103678500 103698500 103718500 BglII Control βZF-DD Induced Control βmin βmaj βh1 εy HS2 interactionfrequency Forced LCR looping using ZF-DD G1E+GATA1 0 1 2 3 4 5 6 7 relativeexpression βmaj G1E Deng et al, Cell, 2012 DD βZF-DD βZF HA G1E cells (GATA1 null) no βmaj expression
  • 26. Forced LCR looping using dCas9-DDΔ4/5 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 HS5 HS4 HS3 HS2 HS1 ey βh1 β-major β-minor 3'HS1 necdin HA Control HA βmaj-DDΔ4/5 enrichment 0 2 4 6 8 10 12 14 16 0 10000 20000 30000 40000 50000 60000 70000 BglII Control dCas9-DΔ4/5 Induced Control 0 2 4 6 8 10 12 14 16 relativeexpression βmaj HS2 βmin βmaj βh1 εy interactionfrequency βmaj-DDΔ4/5 UMEL IMEL Krivega and Dean, Submitted 4/5DD dCas9-DDΔ4/5 dCas9 HA Uninduced MEL no βmaj expression
  • 27. Globin gene expression during development HbF HbA There are 2 ‘switches’ in globin gene expression After the γ to b switch, β-thalassemia and sickle cell disease become manifest Elevated fetal hemoglobin in adults moderates severity of the b-hemoglobinopathies
  • 28. Forced chromatin looping to activated γ-globin genes expression e d bS fetus adultOR genes embryo human LCR OR genes Gg Ag γZF LDB1 DD adult stage
  • 29. Reversal of chromatin looping by γZF-LDB1-DD in primary human adult erythroid cells adult CD34(+) progenitor cells expansion 5-6 days differentiation 10-12 days lentiviral infection GFP sort γZF DD Deng*, Rupon*, Krivega et al, Cell, 2014 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 HS2 ε pro γ pro δ pro β pro HS40 α pro CD4 enrichment IgG HA HA
  • 30. interactionfrequency Reversal of chromatin looping by γZF-LDB1-DD in primary human adult erythroid cells εy 0 0.2 0.4 0.6 0.8 1 1.2 5220000 5230000 5240000 5250000 5260000 5270000 5280000 5290000 5300000 5310000 5320000 EcoRI Control γZF-DD Ag Ggδβ LCR
  • 31. Reactivation of the γ-globin gene in primary human erythroid cells by γZF-DD * - p<0.05 by Student’s t-test 0 10 20 30 40 50 60 70 80 90 γZF-DD γZF Control γ-globin/(γ-globin+β-globin) % γ-globin of total * * 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 γZF-DD γZF Control γ-globin/α-globin * * 0 0.5 1 1.5 2 2.5 γZF-DD γZF Control β-globin/α-globin γ-globin β-globin * *
  • 32. γZF-DD Activates HbF Production Control Control Control Control Control Control γZF-DD γZF-DD γZF-DD γZF-DD γZF-DD γZF-DD * - p<0.05 by Student’s t-test
  • 33. Control γZF γZF-DD Pancellular Distribution of HbF DAPI HbF
  • 34. Model: Manipulation of chromatin loops can overcome developmental silencing to activate gene expression γZF DD Adult erythroid cells +++ AdultFetal LCR LDB1 Adult + LCR Deng*, Rupon*, Krivega et al, Cell, 2014
  • 35. Questions: 1. How do enhancers loop to target genes? • role of looping factor LDB1 2. Can loops be manipulated to change disease-associated gene expression? • forced looping • pharmacological inhibition of epigenetic factors activity
  • 36. Epigenetic reversal of chromatin looping g-globin repression H3K9me2 G9a MTX UNC0638 eGgAgdb LCR H3K9me2 Phase I-III UNC0638 UNC0638 UNC0638 0 21 Control Phase I 7 14 Phase II Phase III UNC0638 Days UNC0638 UNC0638 CD34(+) cells from three healthy donors were differentiated ex vivo in 3 phase serum free culture system Krivega*, Byrnes* et al, Blood. 2015 expansion differentiation
  • 37. Inhibition of G9a methyltransferase activity in adult human erythrocytes stimulates fetal hemoglobin production * - p<0.05 by Student’s t-test 0 5 10 15 20 25 30 35 40 Control Phase I Phase II Phase III Phase I-III HbF(%) * * * 0 5 10 15 20 25 30 35 0 0.031 0.062 0.12 0.25 0.5 1 HbF(%) UNC0638 (μM) * * * * * * 0 10 20 30 40 50 60 70 80 90 100 0 0.031 0.062 0.12 0.25 0.5 1 HbF(%) UNC0638 (μM) *
  • 39. Control Phase II G9a inactivation stimulates pancellular HbF production Control Phase II
  • 40. G9a inactivation reduces H3K9me2 at β-globin locus * - p<0.05, ** - p<0.01 by Student’s t-test 0 0.05 0.1 0.15 0.2 0.25 HS4 HS3 HS2 HS1 γ pro δ pro β pro H3K9me2 Control H3K9me2 Phase II relativeenrichment * * * ** ** ****
  • 41. LDB1 complex occupies reactivated γ-globin genes * - p<0.05 by Student’s t-test 0 0.05 0.1 0.15 0.2 0.25 IgG Control IgG Phase II Ldb1 Control Ldb1 Phase II * * * 0 1 2 3 4 5 6 7 LDB1 0 1 2 3 4 5 6 7 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 IgG Control IgG Phase II GATA-1 Control GATA-1 enrichmentenrichment HS4 HS3 HS2 HS1 γ pro δ pro β pro Gapdh * * * ** * LDB1 LDB1
  • 42. G9a inhibition induces γ-globin promoter-LCR looping 0 0.5 1 1.5 2 2.5 3 3.5 5225000 5235000 5245000 5255000 5265000 5275000 5285000 5295000 5305000 EcoRI Control Phase II LCR εAg Ggb d Interactionfrequency
  • 43. Model: Epigenetic changes can relieve silencing by allowing chromatin loops to reactivate gene expression Adult erythroid cells G9a MT +++ AdultFetal H3K9me2 LCR LDB1 Adult ++ LCR X Krivega*, Byrnes* et al, Blood. 2015
  • 44. Summary Enhancer mechanisms: Homodimerization of LDB1 protein through DD domain is required for looping and transcription activation of b-globin genes. Expression of blood disease-associated genes depends on interaction between LDB1 and FOG1 proteins. Enhancer looping manipulation: In adult erythroid cells, the LCR can be targeted to the fetal g-globin genes by an ZF-DD based peptide resulting in their re-activation. Inhibiting G9a methyltransferase activity relieves y-globin silencing in adult erythroid cells resulting in redistribution of LDB1, LCR looping and g-globin re-activation. These experiments suggest that chromosome looping can be considered a therapeutic target for gene activation in b-hemoglobinopathies. g-globin expression is pan-cellular and is increased to levels potentially therapeutic in b-thalassemia and sickle cell disease with balanced decrease in b-globin expression
  • 45. Gene Regulation and Development Section Laboratory of Cellular and Developmental Biology, NIDDK Ann Dean Xiang Guo Luis Diaz Ben Leadem Maria Soledad Ivaldi Guo-you Liu Jun Zhang LCDB Bioinformatics Ryan Dale NIDDK Genomics Core Harold Smith Collaborators Jeffery Miller, Colleen Byrnes, Jaira F. de Vasconcellos NIDDK, NIH Gerd Blobel, Wulan Deng, Jeremy Rupon CHOP, Philadelphia, PA Stefano Rivella, Laura Breda CHOP, Philadelphia, PA Acknowledgements