SlideShare a Scribd company logo
1 of 108
Download to read offline
Study of Invariant-based Method for
Accelerating Aerospace Composite Test Certification
Filipe Amorim Gonรงalves Giesteira
Supervisors:
Albertino Josรฉ Castanho Arteiro
Antรณnio Torres Marques
Composite Systems (SC) โ€“ EM0115
Integrated Master in Mechanical Engineering
April, 2019
ii
[ blank page ]
iii
Abstract
The present report was developed within the scope of the Composite Systems course, lectured at the
Faculty of Engineering of the University of Porto (FEUP).
In the first chapters a solid and concise overview of the theory of elasticity is made. Its correct
understanding is essential to grasp the theory and the rationale behind trace method. One of the main
goals of this report, is to fill some theoretical gap often observed in the technical literature. Thus, several
extensive and theoretical demonstration are detailed throughout the first chapters.
Based on the basic fundamental concepts of 2D elasticity, the lamina governing equations were
compiled and summarized in a single chapter, coherent and of simple notation. Which allows the
experienced reader to jump in the demonstrations and use this report also as search tool.
Classical Laminated Plate Theory (CLPT) is assumed perfectly assimilated in most of the research
material regarding Trace Invariant-approach. Keeping that in mind, it was dedicated a specific
introductory chapter detailing the laminate governing equations.
Carrying on the theoretical character of this report, it is first presented the complete background of Trace
and their mathematical and physical applications, from the Ply to the Laminate concept.
Finally, the Matlabยฎ code implementing the automatic computation process of the in-plane stiffness
properties of a given laminate is presented. The tool only requires the Ply longitudinal modulus as the
unique input.
Keywords
2D Elasticity, Generalized Hookโ€™s Law, Plane Elasticity, Plane Stress, Plane Strain, Ply, Laminate,
Laminae, Classical Laminated Plate Theory, Master Ply Concept, Trace, Invariant-base Method,
Aerospace, Aeronautics, Composite Testing, Composite Design
iv
[ blank page ]
v
Contents
Contents .............................................................................................................................................v
List of Acronyms ............................................................................................................................... vii
List of Figures .................................................................................................................................... ix
List of Tables ..................................................................................................................................... xi
1 Introduction..................................................................................................................................13
1.1 Context of the Report ....................................................................................................................13
1.2 Report Structure............................................................................................................................13
1.3 Basic Mathematical Nomenclature.................................................................................................14
2 Trace - Aerospace Industry ..........................................................................................................15
2.1 Composites in Aerospace Industry.................................................................................................15
2.2 Composite Certification and Testing in Aerospace Industry.............................................................16
3 Theory of Linear Elasticity for Continuum Medium ........................................................................17
3.1 Introduction...................................................................................................................................17
3.2 Stress Tensor ...............................................................................................................................17
3.3 Strain Tensor................................................................................................................................22
3.4 Generalized Hookeโ€™s Law..............................................................................................................25
3.4.1 Theoretical Background...............................................................................................25
3.5 Transformation Matrix ...................................................................................................................29
3.5.1 General Definition........................................................................................................29
3.5.2 Modified Transformation Matrix....................................................................................30
3.6 2D Linear Elasticity .......................................................................................................................46
3.6.1 Types of Plane Linear Elastic Problems........................................................................46
3.6.2 Dynamic Equilibrium....................................................................................................47
3.6.3 2D Hookeโ€™s Law โ€“ Isotropic Material Behavior..............................................................48
3.6.4 Strain-Displacement Fields Relation.............................................................................52
3.6.5 Eliminating Stress and Strain in the z direction .............................................................52
3.7 Review of the Governing Equations for 2D Elasticity ......................................................................54
3.7.1 Displacement Field......................................................................................................54
3.7.2 Strain Field..................................................................................................................54
3.7.3 2D Hookeโ€™s Law โ€“ Isotropic Material Behavior..............................................................55
3.7.4 2D Hookeโ€™s Law โ€“ Orthotropic Material Behavior ..........................................................55
3.7.5 Total Stress-Strain Relation (Extra) ..............................................................................57
3.7.6 Dynamic Equilibrium....................................................................................................58
4 Orthotropic Lamina Constitutive Equations ...................................................................................59
4.1 Theory Background.......................................................................................................................59
4.2 Nomenclature Modification โ€“ Composites Specifications ................................................................59
4.3 Equations Summary......................................................................................................................60
5 Classical Laminated Plate Theory ................................................................................................64
5.1 Plate Definition and Modeling ........................................................................................................64
5.2 Kirchhoff Assumptions...................................................................................................................65
5.3 Plate Kinematics and Governing Equations....................................................................................66
5.4 Kirchhoff vS Reissner Plate Theory................................................................................................69
5.5 Laminate Definition, Classification and Designation........................................................................71
5.6 Laminate Kinematics and Governing Equations .............................................................................75
5.6.1 Generalized Loads or Load Resultants.........................................................................75
5.6.2 Hygrothermal Behavior ................................................................................................79
5.6.3 Generalized Strains and Stress Field ...........................................................................79
6 Invariant-based Approach - The Master Ply Concept....................................................................81
6.1 Theoretical Background.................................................................................................................81
vi
6.2 Master Ply Concept.......................................................................................................................84
6.2.1 Engineering Elastic Parameters...................................................................................84
6.2.2 Plane Stress Stiffness Coefficients...............................................................................84
6.2.3 Trace-Normalized Factors ...........................................................................................86
6.2.4 Master Ply Stiffness Properties ....................................................................................92
6.3 Master Laminate Concept .............................................................................................................93
6.4 Trace Approach โ€“ UD Coupons Testing and Ply Stiffness Matrix....................................................95
6.5 Trace Approach โ€“ Laminate Testing and In-plane Stiffness Matrix................................................ 100
7 Conclusions and Future Work ....................................................................................................103
References.....................................................................................................................................105
vii
List of Acronyms
1D โ€“ One Dimension/Dimensional
2D โ€“ Two Dimension/Dimensional
3D โ€“ Three Dimension/Dimensional
CAD โ€“ Computer Aided Design
CAE โ€“ Computer Aided Engineering
CFRP โ€“ Carbon Fiber Reinforced Polymers
CLPT โ€“ Classical Laminated Plate Theory
CSM โ€“ Chopped Strand Mat
FEA โ€“ Finite Element Analysis
FEM โ€“ Finite Element Method
FEUP โ€“ Faculty of Engineering of University of Porto
FRP โ€“ Fiber Reinforced Polymers
GFRP โ€“ Glass Fiber Reinforced Polymers
UD โ€“ Unidirectional
List of Acronyms
viii
[ blank page ]
ix
List of Figures
Figure 1- Illustration of the main goals aimed with this introductory chapter. ....................................15
Figure 2- a) Composite structure of A380 [9]. b) Composite materials used in Boeing 787 body [11].
.........................................................................................................................................................15
Figure 3- Definition of the nomenclature adopted for shear stresses acting on the differential volume
element [1]........................................................................................................................................18
Figure 4- a) Cauchy tetrahedron formed by slicing a parallelepiped along an arbitrary plane define by
the normal vector ๐‘› . b) Infinitesimal triangular portion of a generic 2D body...................................20
Figure 5- Nomenclature adopted for the shear stress definition, for the distortion of the differential
Cartesian element..............................................................................................................................24
Figure 6- a) Schematic representation of the algorithm used to codify Voigt notation in a second order
tensor. b) Illustration of the relation between Elastic and Hyperelastic materials for small strains
condition...........................................................................................................................................28
Figure 7- Illustration of the angles between the transformed ๐‘ฅโ€™-axis and the original cartesian coordinate
system. .............................................................................................................................................29
Figure 8- Illustration of the individual rotations of the Euler angles. Image adapted from [5]. ............29
Figure 9- Definition of the nomenclature used to define the coordinates transformation matrix. The ๐œƒ,
๐œ‘, and ๐œ“, represent the rotation angle about the z, x and y axis respectively. .....................................30
Figure 10- a) Plane Stress schematic geometry. b) Plane Strain schematic geometry..........................46
Figure 11- Illustration of different fiber reinforcement architectures: a) Chopped Strand Mat (CSM) [4];
b) Woven fabric [10]; c) Knitted fabric [12]; and d) Ply stacking [13]................................................59
Figure 12- Schematic representation of the Orthotropic axes in a UD ply...........................................59
Figure 13- Schematic representation of the transformation of the Coordinate system. The blank square
indicates that the transformation relations are not bounded to a particular transformation direction โˆ—, e.g.
off-axis โ€“ principal axis or principal axis โ€“ off-axis rotation. .............................................................60
Figure 14- Plate geometric definition along with the sign convention adopted for the displacements,
rotations, distributed and point loads and distributed and point momentums. Highlight of the middle
plane geometric reference [2]. ...........................................................................................................64
Figure 15- In-plane and out-of-plane displacement field in a thin plate [2].........................................66
Figure 16- Illustration of design capabilities using composite laminates, pointing out the two extreme
cases of mechanical behavior: a) Unidirectional laminate and b) Quasi-isotropic laminate [3]............71
Figure 17- Geometry and orientation of the fiber in a: a) Angle-ply and b) Cross-ply laminated panel
under transverse loading [8]. Two laminates with the exact same manufacturing orientation but with
different loading orientation. .............................................................................................................72
Figure 18- Representation of the two typical references used to define the beginning of the layup
direction, a) a callout line specifically introduced with this purpose; and b) the tool surface [6]. ........73
Figure 19- Schematic definition of the Clockwise warp direction, the sign convention adopted for the
(+) and (-) directions [6]....................................................................................................................73
Figure 20- Schematic illustration of the typical strain and stress fields shape, observed in composite
laminates when CLPT is applied. ......................................................................................................75
Figure 21- Schematic representation of the construction process of Table 6 and Table 7. ...................89
Figure 22- Schematic representation of the construction process of Table 1 and Table 2 from [7]. .....94
Figure 23- Schematic illustration of the experimental process use to determine the: a) longitudinal and
b) transverse elastic properties by Uniaxial Tensile Test of FRP coupons. .........................................95
x
Figure 24- Indirect measurement of Shear Modulus (๐บ12), elastic property of FRP, by Off-axis Tensile
Test. .................................................................................................................................................95
Figure 25- Schematic illustration of the +-45ยบ Tensile Shear Test method to determine the shear
modulus............................................................................................................................................96
xi
List of Tables
Table 1- Summary of the most important and distinct mathematical nomenclature used throughout the
report................................................................................................................................................14
Table 2- Summary of all simplifications made to the general stiffness matrix. ...................................27
Table 3- Examples of laminate stacking sequence notations and their description. .............................74
Table 4- Example of categories of laminates regarding the previous classifications............................74
Table 5- Summary of the mechanical quantities used to describe the mechanical behavior of thin plates.
.........................................................................................................................................................77
Table 6- Carbon Fiber/Epoxy composite coupons properties: engineering constants, plane stress
stiffness components and Trace [20]..................................................................................................87
Table 7- Carbon Fiber/Epoxy composite coupons trace and normalized properties: trace-normalized
engineering constants, and trace-normalized plane stress stiffness components [20]..........................88
Table 8- Additional statistics regarding the contribution of the plane stress stiffness coefficients for the
Trace. ...............................................................................................................................................90
Table 9- Basic statistics regarding the longitudinal stiffness coefficient for different orientations of
analysis.............................................................................................................................................91
Table 10- Master Ply mechanical and stiffness properties [20]...........................................................92
Table 11- Simple numerical exercise to illustrate the independence between the Trace-normalized
engineering and stiffness coefficients [20].........................................................................................92
xii
[ blank page ]
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
13
1 Introduction
1.1 Context of the Report
This report was developed within the Composite System course, lectured in the Integrated
Master in Mechanical Engineering โ€“ Specialty Structural Engineering and Machine Design, at Faculty
of Engineering of University of Porto (FEUP). The first (but not necessarily major) goal of this report
is divided in: (i) understand and produce a review type work, of the theory and applications of the master
ply concept; and (ii) develop an algorithm or script, based in MATLABยฎ programming language,
capable of computing the in-plane stiffness properties of a given laminate. However, the author was
slightly beyond this task and also sought to demonstrate the background behind some important concepts
of the Elasticity Theory and the Classical Laminated Plate Theory (CLPT).
1.2 Report Structure
The present report is divided in 8 main chapters, being the last two chapters dedicated to the
conclusions and future work, and literature references respectively. Chapter 2 presents itself as an
introductory chapter. Which aims to justifies the particularly important use and interest of the invariant-
based concept, in the aeronautics and aerospace industry. Even though the Master Ply concept had not
been detailed at this moment, its advantages and basic usage ideas are detailed.
Chapter 3 is essentially theoretical, and can be seen as an extra topic, which was exported and
condensed from several classic elasticity theory literature references. However, it was completely
reformulated in order to focus only on the demonstration and explanation of the concepts fundamental
to chapter 4 and necessary to really understand the Master Ply or Trace Concept. Thus, this chapter can
be omitted if a more practical reading is desired, without risks of misunderstanding the next chapters.
However, it is important to notice that some subchapters such as subchapter 3.4 and 3.5 have theoretical
derivations not found in a single textbook or article (at least to the best of the authorโ€™s knowledge). They
resulted from research of several technical and theoretical literature, and from mathematical work from
the author. Thus, even if the reader only intends to use this report as a catalogue tool, it is very interesting
to explore subchapter 3.4 and 3.5 (even in a superficial way) and check that several typically used
formulae are indeed derived from considerations not completely explained and defined. For example,
the transformation matrices were derived for a generic transformation, from one axis to another. It
wasnโ€™t assumed any kind of preference (as common practice in the majority of textbooks) related to the
transformation, e.g. from the off-axis to the principal axis of the orthotropic lamina, or vice-versa.
In chapter 4, a brief and concise summary of the formulae that govern the linear elastic behavior
of lamina is done. With the concepts fresh and clear in the readerโ€™s mind from the previous chapter, the
lamina governing equations are detailed.
Chapter 5 exposes the hypothesis and assumptions necessary to formulate the Classical
Laminate Plate Theory. The governing equation of thin laminates will be derived and a brief comment
regarding thick laminates will also be done.
The Trace or Master Ply concept is finally explored in chapter 6, backed up in the basic and
more theoretical concepts explored in the previous chapters. Its theoretical background, definition and
applications are some of the topics approached in this chapter.
In chapter 7, the main conclusions and future works are drawn.
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
14
1.3 Basic Mathematical Nomenclature
In order to ease the understanding of the (sometimes heavy) mathematical treatment, the author
slightly drifted away from the nomenclature usually seen in technical classic literature regarding,
Theory of elasticity, FEM and Composites Laminates [3], [14], [15], [16], [17], [18], [19], [20], [21].
The nomenclature used was similar to the one adopted in the Kinematics and Dynamics course, lectured
at FEUP, and considered by the author as more intuitive. Thus, in order to avoid misunderstandings,
Table 1 details the most relevant nomenclature adopted. This only concerns generic nomenclature; each
variable and symbol will be defined whenever necessary and convenient.
Table 1- Summary of the most important and distinct mathematical nomenclature used throughout the report.
| | Column Vector
| | ๐‘‡ Row Vector
[ ]
Matrix of any general dimension, with the exception of a column
vector
[ ๐พ ]
Stiffness matrix whose terms are structure/element properties
(depending on the geometry and material)
[ ๐ถ ] Stiffness tensor (or matrix) whose terms are material properties
[ ๐‘† ] Compliance tensor (or matrix) whose terms are material properties
[ ๐‘„ ] Plane Stress reduced Stiffness Matrix
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
15
2 Trace - Aerospace Industry
2.1 Composites in Aerospace Industry
The aim of this introductory chapter is to highlight the relation between the aerospace industry
and Trace - the invariant-based method applied to Fiber Reinforced Polymers (FRP), and presented
throughout chapter 6. Three important questions, illustrated in Figure 1, will be โ€œansweredโ€ in this
chapter.
As first detailed by [20], trace is a novel invariant-based approach to describe the stiffness and
strength of Carbon Fiber Reinforced Polymers (CFRP). Several authors [20], [7], [22], [23], [24], [25]
already proposed and detailed strength-related applications of trace, and sizing and scaling methods
using this invariant-based approach. However, this report will only deal with the characterization of the
in-plane stiffness for plane stress by the Trace material property concept. Which forces the author to
leave the Trace-characterization of composite strength issues for future works.
FRP offer significant advantages over current conventional engineering materials in the
aerospace and aeronautic industry. Among other properties, at least their high fatigue and corrosion
resistance, and the capability of properties tailoring and material design optimization should be
highlighted. These superior properties promote relevant improvements such as reduced inspection and
maintenance costs, and increased passenger comfort level. In the particular case of CFRP, attractive
specific mechanical properties such as: high strength-to-weight ratio, high modulus-to-weight ratio
leading to a lower weight (and consequently higher fuel efficiency and lower emissions), have propelled
their increasing used in the aircraft industry [20], [26]. Hence, CFRP have been widely used to
manufacture different structural components such as aileron, flaps, landing-gear doors and other
structural parts. As illustrated in Figure 1 a)-b), these high-performance composite materials clearly rule
the aerospace composite material application spectrum.
As it will be detailed further in chapter 6, the Master Ply concept is only applicable with high
accuracy for composite systems based on carbon and aramid fibers. Satisfactory results were achieved
for GFRP but with lower accuracy when compared to CFRP [20], [7]. This could be considered as a
particular high limitation or drawback from this method. However, as already mentioned, the bigger
โ€œpieceโ€ of FRP used in aerospace industry corresponds precisely to carbon fiber based composite
systems, ensuring that Trace perfectly โ€œfitsโ€ for the aerospace industry.
Figure 2- a) Composite structure of A380 [9]. b) Composite materials used in Boeing 787 body [11].
Trace Applicability to
CFRP types?
FRP in the Aerospace
Indutry?
Trace &
Aerospace
What is Trace?
Composite testing in the
Aerospace Industry?
Revolution of CFRP
Testing by Trace
Figure 1- Illustration of the main goals aimed with this introductory chapter.
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
16
2.2 Composite Certification and Testing in Aerospace Industry
The procedure followed so far in this chapter was a top-down approach, starting with the higher-
level concerns. It was already proved the adequacy of Trace to aerospace industry. However, what are
the real advantages of Trace, and why is it used for? In order to clarify these questions, first is necessary
to establish some considerations regarding composite testing.
It is mandatory to test FRP in order to support design, quality management, and certification
programs. Characterizing the specific properties of composites through experimental testing is critical
to ensure their compliance with the client, industry, national, and international standard requirements
and specifications. When compared to polymeric materials (at some degree) and metals, it is quite
difficult and complex to measure material properties (stiffness and strength) of composites due to fiber
orientation. In other words, FRP systems do not exhibit isotropic behavior, demonstrating diverse
material properties and failure modes in different directions.
The complexity of composite systems testing is illustrated by the availability of the wide range
of standards and test procedures. There are over 150 standards available that outline and detail the
experimental testing of FRP. In addition to national and international standards from institutions such
as DIN, EN, ISO or ASTM, there are aircraft industry-specific standards designed by major companies
such as Boeing, Airbus and even NASA [26], [27].
Composite materials testing complexity is not only based on the stringency of the testing
procedures, but also in the number of necessary tests to fully characterize the material system. In one
hand, flexural and compressive properties must be tested independently since it is not possible to predict
them based on tensile properties (off-plane behavior). On the other hand, in order to be able to
completely characterize the shear properties in different directions, there are many different techniques
available for measuring shear properties (e.g. lap shear test, V-notch shear test, ยฑ45ยฐ in-plane shear test,
short beam shear test, etc.) [26], [27].
Due to the critical safety concerns and demanding service conditions of the aeronautics industry,
material testing goes beyond the โ€œbasicโ€ mechanical properties (i.e. the three normal stresses which are
characterized in the nine-component stress tensor). Non-ambient conditions such as extreme
temperature and humidity/moisture (hygroscopic behavior) need to be considered along with fatigue
tests, which are critical for aerospace structural applications. Shifting from the mechanical design of
composite materials to the development of tough durable systems, the study of โ€œeffects of defectsโ€
emerged. Compression-after-impact (CAI) testing evaluates the tolerance of a composite material to
damage (e.g. structural damage caused by a bird strike or due to contact with other foreign objects during
flight or maintenance). In other words, evaluates the structural integrity after impact or damage tolerance
behavior. More specific tests such as open-hole compression (e.g. open-hole and filled-hole tensile), and
end-loading compression and shear tests ought also to be performed.
The relation between FRP testing and the aerospace industry was already described in the
previous two paragraphs. Finally, it must be highlighted where and how Trace influences these complex
FRP tests. At this point of the report, it can be said and unanimously accepted that the simplification of
CFRP unit testing implies cost and time reduction of the overall product testing in the aerospace
industry. This is precisely the main advantage of Trace, to simplify composite testing by reduction of
the number of necessary tests to fully characterize FRP. In chapter 6, how Trace reduces the number of
necessary tests is explained in detail.
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
17
3 Theory of Linear Elasticity for Continuum Medium
3.1 Introduction
The linear elastic theory tries to model the mechanical behavior of continuum linear elastic
solids. And until the current century as proven its potential in a variety of engineering problems.
However, its usability lies on the capacity of assuming proper simplifications [28]
In this chapter, the basic constitutive equations for 2D linear elasticity will be derived. The
equations here demonstrated, are fundamental and will be directly used for the derivation of the ply
constitutive equations. Thus, this chapter can be considered as a literature review section. And, if the
reader already masters the basic concepts of linear elasticity, it can skip directly to chapter 4.
The approach followed is similar to the one typically carried in solid mechanics or strength of
materials classic literature. Basic concepts (valid for generic 3D anisotropic behavior) are progressively
simplified and particularized aiming the physical or engineering application in hands, in this case, the
2D orthotropic problem constitutive equations. The major difference might be the depth of study. The
starting point was the formulation of the stress and strain tensor in their generic form (considering
already the linear elastic assumptions). After deriving the two second order tensors, and underlining
their assumptions, the relation between the two was considered. Videlicet, the generalized Hookeโ€™s Law
was stated and explored. Supported in concepts previously discussed, and some referred within the last
subchapter, the Generalized Hookeโ€™s Law will be continuously simplified until reaching the most often
used and refined formula in 2D linear elasticity. The equations of motion will first be presented within
the stress tensor definition subchapter. However, later it will be dedicated a specific section for 2D
dynamic equilibrium. Due to the importance of the referential transformation matrix in the study of ply
mechanical behavior, a specific subchapter will also be dedicated to it.
3.2 Stress Tensor
In terms of continuum mechanics, anisotropic materials are materials that have different
mechanical properties depending on the direction of measurement. Concerning the mechanical behavior,
only the stiffness moduli and limit elastic stress parameters will be relevant. Concerning others fields of
interest, the anisotropy concept can be generalized, and we end up with anisotropy throughout the solid
relating to: thermal conductivity, magnetic permeability, refraction index, etc. [29].
From the solid mechanics of homogeneous materials1
[29], the tension matrix is a second order
tensor with 3x3 dimension. This second order Cartesian tensor is also called the Cauchy Stress Tensor
and has the form [30]:
[ ๐œŽ ] = [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง
] ( 3.1 )
The nomenclature adopted in the definition of the stresses, is illustrated in Figure 3. In index
notation, the stress ( )๐‘–๐‘— corresponds to the stress component acting in the j-direction, on a surface or
plane normal to i-direction. In other words, the first subscript refers to the plane in which the stress acts;
and the second subscript the direction about which the stress acts. Regarding the algebraic value, the
positive sign will be left for tension stresses and the negative for compression stresses.
1
Homogeneous materials are materials in which the mechanical properties of any given point are
equal to the specific properties of the solid. In other words, macroscopically, the specific properties are
independent of the point of analysis [29].
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
18
The previous tensor shown in equation ( 3.1 ) has 9 terms; however, it can be shown that only
6 of them are independent. The stress matrix is symmetric to its main diagonal, and the symmetry
conditions or relations are also called the reciprocity property of the stress tensor. The symmetry
relations can be derived by the following principles or Cauchy Equations of Motion [1]:
โ€ข According to the principle of conservation of linear momentum, if the continuum body is in
static equilibrium it can be demonstrated that the components of the Cauchy stress tensor in
every material point in the body satisfies the linear equilibrium equation (equation of motion
for null acceleration)2
.
[ ๐œŽ ] โˆ‡ + | ๐‘“ | = | ๐‘Ž | = | 0 | โ‡’ ( 3.2 )
[
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง
]
[
๐œ•
๐œ•๐‘ฅ
๐œ•
๐œ•๐‘ฆ
๐œ•
๐œ•๐‘ฅ ]
๐œŒ๐‘‘๐‘‰ + |
๐‘“๐‘ฅ
๐‘“๐‘ฆ
๐‘“๐‘ง
| ๐œŒ๐‘‘๐‘‰ = |
๐‘Ž ๐‘ฅ
๐‘Ž ๐‘ฆ
๐‘Ž ๐‘ง
| ๐œŒ๐‘‘๐‘‰ = |
0
0
0
| ( 3.3 )
Or making explicit each component of the vector equation comes:
(
๐œ•๐œŽ๐‘ฅ๐‘ฅ
๐œ•๐‘ฅ
+
๐œ•๐œ ๐‘ฅ๐‘ฆ
๐œ•๐‘ฆ
+
๐œ•๐œ ๐‘ฅ๐‘ง
๐œ•๐‘ง
) + ๐‘“๐‘ฅ = ๐œŒ โˆ™ ๐‘Ž ๐‘ฅ = ๐œŒ โˆ™
๐œ•2
๐œ•๐‘ก2
๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ง) = 0 ( 3.4 )
(
๐œ•๐œ ๐‘ฆ๐‘ฅ
๐œ•๐‘ฅ
+
๐œ•๐œŽ ๐‘ฆ๐‘ฆ
๐œ•๐‘ฆ
+
๐œ•๐œ ๐‘ฆ๐‘ง
๐œ•๐‘ง
) + ๐‘“๐‘ฆ = ๐œŒ โˆ™ ๐‘Ž ๐‘ฆ = ๐œŒ โˆ™
๐œ•2
๐œ•๐‘ก2
๐‘ฃ(๐‘ฅ, ๐‘ฆ, ๐‘ง) = 0 ( 3.5 )
(
๐œ•๐œ ๐‘ง๐‘ฅ
๐œ•๐‘ฅ
+
๐œ•๐œ ๐‘ง๐‘ฆ
๐œ•๐‘ฆ
+
๐œ•๐œŽ๐‘ง๐‘ง
๐œ•๐‘ง
) + ๐‘“๐‘ง = ๐œŒ โˆ™ ๐‘Ž ๐‘ง = ๐œŒ โˆ™
๐œ•2
๐œ•๐‘ก2
๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ง) = 0 ( 3.6 )
๐‘Ž Total acceleration = local acceleration + convective acceleration
๐‘“๐‘ฅ, ๐‘“๐‘ฆ, ๐‘“๐‘ง Volume forces acting on the x, y, and z direction respectively
๐‘‘๐‘‰ Differential of Volume, ๐‘‘๐‘‰ = ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง
2
The Cauchy Equation for the Conservation of Linear Momentum will be important in the formulation of the finite
element.
๐œ ๐‘ฆ๐‘ฅ
๐œ ๐‘ฅ๐‘ฆ
๐‘ฆ
๐‘ฅ๐œ ๐‘ฆ๐‘ฅ
๐œ ๐‘ฅ๐‘ฆ
๐œ ๐‘ง๐‘ฅ
๐œ ๐‘ฅ๐‘ง
๐‘ง
๐‘ฅ๐œ ๐‘ง๐‘ฅ
๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ง๐‘ฆ
๐œ ๐‘ฆ๐‘ง
๐‘ง
๐‘ฆ๐œ ๐‘ง๐‘ฆ
๐œ ๐‘ฆ๐‘ง
Figure 3- Definition of the nomenclature adopted for shear stresses acting on the differential volume element [1].
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
19
โ€ข According to the analogous principle regarding the conservation of angular momentum, the
angular equilibrium requires that the summation of moments with respect to an arbitrary axis is
null. Analytically it can be written:
[(๐œ ๐‘ฆ๐‘ง +
๐œ•๐œ ๐‘ฆ๐‘ง
๐œ•๐‘ฆ
๐‘‘๐‘ฆ
2
) + (๐œ ๐‘ฆ๐‘ง โˆ’
๐œ•๐œ ๐‘ฆ๐‘ง
๐œ•๐‘ฆ
๐‘‘๐‘ฆ
2
) โˆ’ (๐œ ๐‘ง๐‘ฆ +
๐œ•๐œ ๐‘ง๐‘ฆ
๐œ•๐‘ง
๐‘‘๐‘ง
2
)
โˆ’ (๐œ ๐‘ง๐‘ฆ โˆ’
๐œ•๐œ ๐‘ง๐‘ฆ
๐œ•๐‘ง
๐‘‘๐‘ง
2
)]
๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง
2
= 0
( 3.7 )
[โˆ’ (๐œ ๐‘ฅ๐‘ง +
๐œ•๐œ ๐‘ฅ๐‘ง
๐œ•๐‘ฅ
๐‘‘๐‘ฅ
2
) โˆ’ (๐œ ๐‘ฅ๐‘ง โˆ’
๐œ•๐œ ๐‘ฅ๐‘ง
๐œ•๐‘ฅ
๐‘‘๐‘ฅ
2
) + (๐œ ๐‘ง๐‘ฅ +
๐œ•๐œ ๐‘ง๐‘ฅ
๐œ•๐‘ง
๐‘‘๐‘ง
2
)
+ (๐œ ๐‘ง๐‘ฅ โˆ’
๐œ•๐œ ๐‘ง๐‘ฅ
๐œ•๐‘ง
๐‘‘๐‘ง
2
)]
๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง
2
= 0
( 3.8 )
[(๐œ ๐‘ฅ๐‘ฆ +
๐œ•๐œ ๐‘ฅ๐‘ฆ
๐œ•๐‘ฅ
๐‘‘๐‘ฅ
2
) + (๐œ ๐‘ฅ๐‘ฆ โˆ’
๐œ•๐œ ๐‘ฅ๐‘ฆ
๐œ•๐‘ฅ
๐‘‘๐‘ฅ
2
) โˆ’ (๐œ ๐‘ฆ๐‘ฅ +
๐œ•๐œ ๐‘ฆ๐‘ฅ
๐œ•๐‘ฆ
๐‘‘๐‘ฆ
2
)
โˆ’ (๐œ ๐‘ฆ๐‘ฅ โˆ’
๐œ•๐œ ๐‘ฆ๐‘ฅ
๐œ•๐‘ฆ
๐‘‘๐‘ฆ
2
)]
๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง
2
= 0
( 3.9 )
The vector equilibrium equation will degenerate in the symmetry relations. They can now be
easily obtained by just solving the three angular momentum equilibrium equations. The final relations
are:
๐œ ๐‘ฆ๐‘ง = ๐œ ๐‘ง๐‘ฆ
๐œ ๐‘ฅ๐‘ง = ๐œ ๐‘ง๐‘ฅ
๐œ ๐‘ฅ๐‘ฆ = ๐œ ๐‘ฆ๐‘ฅ
( 3.10 )
From equation ( 3.1 ) and ( 3.10 ) we can finally write:
[ ๐œŽ ] = [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง
] = [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฅ๐‘ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ง ๐œŽ๐‘ง๐‘ง
] = [
๐œŽ ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
โ€ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
โ€ฆ โ€ฆ ๐œŽ๐‘ง๐‘ง
] ( 3.11 )
As indexed in the definition of second order tensor, equation ( 3.1 ) encloses the cartesian
components for a surface perpendicular to each one of the cartesian coordinate axis, as detailed in the
following equation:
[ ๐œŽ ] = [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง
] = [
| ๐‘‡ ๐‘’ ๐‘ฅ | ๐‘‡
| ๐‘‡ ๐‘’ ๐‘ฆ | ๐‘‡
| ๐‘‡ ๐‘’ ๐‘ง | ๐‘‡
] ( 3.12 )
Where:
| ๐‘‡ ๐‘’ ๐‘ฅ | Stress vector acting on plane normal to x-direction
| ๐‘‡ ๐‘’ ๐‘ฆ | Stress vector acting on plane normal to y-direction
| ๐‘‡ ๐‘’ ๐‘ง | Stress vector acting on plane normal to z-direction
In a similar manner, the Cauchy Equation [1], allows to compute the resulting stress vector,
perpendicular to any arbitrary plane, acting on a generic point of coordinates (x,y,z). The Cauchy relation
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
20
can be given in two matrix forms, a condensed and a more explicit form. The two are respectively given
by:
| ๐‘‡ | = [ ๐œŽ ] ๐‘‡ | ๐‘› | โ‡’ | ๐‘‡ | = [
| ๐‘‡ ๐‘’ ๐‘ฅ | ๐‘‡
| ๐‘‡ ๐‘’ ๐‘ฆ | ๐‘‡
| ๐‘‡ ๐‘’ ๐‘ง | ๐‘‡
]
๐‘‡
| ๐‘› | ( 3.13 )
|
๐‘‡๐‘ฅ
๐‘‡๐‘ฆ
๐‘‡๐‘ง
| = [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง
]
๐‘‡
|
๐‘› ๐‘ฅ
๐‘› ๐‘ฆ
๐‘› ๐‘ง
| = [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฆ๐‘ฅ ๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฅ๐‘ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ง๐‘ฆ
๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ง ๐œŽ๐‘ง๐‘ง
] |
๐‘› ๐‘ฅ
๐‘› ๐‘ฆ
๐‘› ๐‘ง
| ( 3.14 )
Where:
| ๐‘› | Vector of the direction cosines perpendicular to an arbitrary plane
[ ๐œŽ ] Stress tensor matrix
| ๐‘‡ | Stress vector acting on a plane with normal unit vector | ๐‘›|
Or considering the symmetry stated in the final equation ( 3.11 ), by the properties of the transposition
operation of a matrix it results:
[
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง
]
๐‘‡
= [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
โ€ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
โ€ฆ โ€ฆ ๐œŽ๐‘ง๐‘ง
]
๐‘‡
= [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
โ€ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
โ€ฆ โ€ฆ ๐œŽ๐‘ง๐‘ง
] ( 3.15 )
|
๐‘‡๐‘ฅ
๐‘‡๐‘ฆ
๐‘‡๐‘ง
| = [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง
]
๐‘‡
|
๐‘› ๐‘ฅ
๐‘› ๐‘ฆ
๐‘› ๐‘ง
| = [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
โ€ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
โ€ฆ โ€ฆ ๐œŽ๐‘ง๐‘ง
] |
๐‘› ๐‘ฅ
๐‘› ๐‘ฆ
๐‘› ๐‘ง
|
( 3.16 )
The Cauchy equation can be usually demonstrated by writing the static equilibrium equations:
(i) for an infinitesimal interior tetrahedron element of a linear elastic body - in the case of 3D general
case; (ii) or for an infinitesimal triangle - in the case of 2D particular case. Figure 4 illustrates both cases.
z
x
y๐‘‘๐ด ๐‘ฆ
๐‘‘๐ด ๐‘ฅ
๐‘‘๐ด ๐‘ง
โˆ’๐‘‡ ๐‘’ ๐‘ง
โˆ’๐‘‡ ๐‘’ ๐‘ฅ
โˆ’๐‘‡ ๐‘’ ๐‘ฆ
๐‘‡
๐‘‘๐‘š = ๐œŒ๐‘‘๐‘‰
a) b)
Figure 4- a) Cauchy tetrahedron formed by slicing a parallelepiped along an arbitrary plane define by the
normal vector | ๐‘› |. b) Infinitesimal triangular portion of a generic 2D body.
๐‘‘๐›ค
๐‘‘๐‘ฅ
๐‘‘๐‘ฆ
๐œ ๐‘ฅ๐‘ฆ
๐œ ๐‘ฆ๐‘ฅ
y
x
๐œŽ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
๐‘› ๐‘ฆ
๐‘› ๐‘ฅ
๐‘›โƒ— ๐‘‡
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
21
Regarding the 3D general case:
โ€ข By basic analytical geometry it is possible to derive the following relations between the
infinitesimal quantities [31]:
{
๐‘‘๐ด ๐‘ฅ = ๐‘‘๐ด ๐‘› ๐‘ฅ
๐‘‘๐ด ๐‘ฆ = ๐‘‘๐ด ๐‘› ๐‘ฆ
๐‘‘๐ด ๐‘ง = ๐‘‘๐ด ๐‘› ๐‘ง
โ‡’
{
๐‘› ๐‘ฅ =
๐‘‘๐ด ๐‘ฅ
๐‘‘๐ด
๐‘› ๐‘ฆ =
๐‘‘๐ด ๐‘ฆ
๐‘‘๐ด
๐‘› ๐‘ง =
๐‘‘๐ด ๐‘ง
๐‘‘๐ด
( 3.17 )
โ€ข Verifying the Static Equilibrium condition comes:
{
โˆ‘ ๐น๐‘ฅ = 0
โˆ‘ ๐น๐‘ฆ = 0
โˆ‘ ๐น๐‘ง = 0
โ‡’ {
โˆ’๐œŽ๐‘ฅ๐‘ฅ ๐‘‘๐ด ๐‘ฅ โˆ’ ๐œ ๐‘ฆ๐‘ฅ ๐‘‘๐ด ๐‘ฆ โˆ’ ๐œ ๐‘ง๐‘ฅ ๐‘‘๐ด ๐‘ง + ๐‘‡๐‘ฅ ๐‘‘๐ด = 0
โˆ’๐œ ๐‘ฅ๐‘ฆ ๐‘‘๐ด ๐‘ฅ โˆ’ ๐œŽ ๐‘ฆ๐‘ฆ ๐‘‘๐ด ๐‘ฆ โˆ’ ๐œ ๐‘ง๐‘ฆ ๐‘‘๐ด ๐‘ง + ๐‘‡๐‘ฆ ๐‘‘๐ด = 0
โˆ’๐œ ๐‘ฅ๐‘ง ๐‘‘๐ด ๐‘ฅ โˆ’ ๐œ ๐‘ฆ๐‘ง ๐‘‘๐ด ๐‘ฆ โˆ’ ๐œŽ๐‘ง๐‘ง ๐‘‘๐ด ๐‘ง + ๐‘‡๐‘ง ๐‘‘๐ด = 0
( 3.18 )
โ€ข Dividing both members of each equation by the area of the arbitrarily inclined surface ( dA ):
{
โˆ’๐œŽ๐‘ฅ๐‘ฅ
๐‘‘๐ด ๐‘ฅ
๐‘‘๐ด
โˆ’ ๐œ ๐‘ฆ๐‘ฅ
๐‘‘๐ด ๐‘ฆ
๐‘‘๐ด
โˆ’ ๐œ ๐‘ง๐‘ฅ
๐‘‘๐ด ๐‘ง
๐‘‘๐ด
+ ๐‘‡๐‘ฅ = 0
โˆ’๐œ ๐‘ฅ๐‘ฆ
๐‘‘๐ด ๐‘ฅ
๐‘‘๐ด
โˆ’ ๐œŽ ๐‘ฆ๐‘ฆ
๐‘‘๐ด ๐‘ฆ
๐‘‘๐ด
โˆ’ ๐œ ๐‘ง๐‘ฆ
๐ด ๐‘ง
๐‘‘๐ด
+ ๐‘‡๐‘ฆ = 0
โˆ’๐œ ๐‘ฅ๐‘ง
๐‘‘๐ด ๐‘ฅ
๐‘‘๐ด
โˆ’ ๐œ ๐‘ฆ๐‘ง
๐‘‘๐ด ๐‘ฆ
๐‘‘๐ด
โˆ’ ๐œŽ๐‘ง๐‘ง
๐‘‘๐ด ๐‘ง
๐‘‘๐ด
+ ๐‘‡๐‘ง = 0
( 3.19 )
โ€ข By the relations between the infinitesimals, equation ( 3.17 ), and manipulating the terms comes:
{
โˆ’๐œŽ๐‘ฅ๐‘ฅ ๐‘› ๐‘ฅ โˆ’ ๐œ ๐‘ฆ๐‘ฅ ๐‘› ๐‘ฆ โˆ’ ๐œ ๐‘ง๐‘ฅ ๐‘› ๐‘ง + ๐‘‡๐‘ฅ = 0
โˆ’๐œ ๐‘ฅ๐‘ฆ ๐‘› ๐‘ฅ โˆ’ ๐œŽ ๐‘ฆ๐‘ฆ ๐‘› ๐‘ฆ โˆ’ ๐œ ๐‘ง๐‘ฆ ๐‘› ๐‘ง + ๐‘‡๐‘ฆ = 0
โˆ’๐œ ๐‘ฅ๐‘ง ๐‘› ๐‘ฅ โˆ’ ๐œ ๐‘ฆ๐‘ง ๐‘› ๐‘ฆ โˆ’ ๐œŽ๐‘ง๐‘ง ๐‘› ๐‘ง + ๐‘‡๐‘ง = 0
โ‡’ {
๐‘‡๐‘ฅ = ๐œŽ๐‘ฅ๐‘ฅ ๐‘› ๐‘ฅ + ๐œ ๐‘ฆ๐‘ฅ ๐‘› ๐‘ฆ + ๐œ ๐‘ง๐‘ฅ ๐‘› ๐‘ง
๐‘‡๐‘ฆ = ๐œ ๐‘ฅ๐‘ฆ ๐‘› ๐‘ฅ + ๐œŽ ๐‘ฆ๐‘ฆ ๐‘› ๐‘ฆ + ๐œ ๐‘ง๐‘ฆ ๐‘› ๐‘ง
๐‘‡๐‘ง = ๐œ ๐‘ฅ๐‘ง ๐‘› ๐‘ฅ + ๐œ ๐‘ฆ๐‘ง ๐‘› ๐‘ฆ + ๐œŽ๐‘ง๐‘ง ๐‘› ๐‘ง
( 3.20 )
โ€ข In the matrix form comes:
|
๐‘‡๐‘ฅ
๐‘‡๐‘ฆ
๐‘‡๐‘ง
| = [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฆ๐‘ฅ ๐œ ๐‘ง๐‘ฅ
๐œ ๐‘ฅ๐‘ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ง๐‘ฆ
๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ง ๐œŽ๐‘ง๐‘ง
] |
๐‘› ๐‘ฅ
๐‘› ๐‘ฆ
๐‘› ๐‘ง
| = [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง
๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง
]
๐‘‡
|
๐‘› ๐‘ฅ
๐‘› ๐‘ฆ
๐‘› ๐‘ง
| ( 3.21 )
Or regarding the 2D case:
โ€ข The previous relations between the infinitesimals come:
{
๐‘‘๐ด ๐‘ฅ = ๐‘‘๐ด ๐‘› ๐‘ฅ
๐‘‘๐ด ๐‘ฆ = ๐‘‘๐ด ๐‘› ๐‘ฆ
โ‡’ {
๐‘‘๐‘ฆ๐‘‘๐‘ง = ๐‘‘๐›ค๐‘‘๐‘ง ๐‘› ๐‘ฅ
๐‘‘๐‘ฅ๐‘‘๐‘ง = ๐‘‘๐›ค๐‘‘๐‘ง ๐‘› ๐‘ฆ
โ‡’ {
๐‘‘๐‘ฅ = ๐‘‘๐›ค ๐‘› ๐‘ฅ
๐‘‘๐‘ฆ = ๐‘‘๐›ค ๐‘› ๐‘ฆ
โ‡’
{
๐‘› ๐‘ฅ =
๐‘‘๐‘ฆ
๐‘‘๐›ค
๐‘› ๐‘ฆ =
๐‘‘๐‘ฅ
๐‘‘๐›ค
( 3.22 )
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
22
โ€ข Verifying the Static Equilibrium condition comes:
{
โˆ‘ ๐น๐‘ฅ = 0
โˆ‘ ๐น๐‘ฆ = 0
โ‡’ {
โˆ’๐œŽ๐‘ฅ๐‘ฅ ๐‘‘๐‘ฆ โˆ’ ๐œ ๐‘ฆ๐‘ฅ ๐‘‘๐‘ฅ + ๐‘‡๐‘ฅ ๐‘‘๐›ค = 0
โˆ’๐œŽ ๐‘ฆ๐‘ฆ ๐‘‘๐‘ฅ โˆ’ ๐œ ๐‘ฅ๐‘ฆ ๐‘‘๐‘ฆ + ๐‘‡๐‘ฆ ๐‘‘๐›ค = 0
( 3.23 )
โ€ข Dividing both members of each equation by the length of the arbitrarily inclined surface ( dฮ“ ):
{
โˆ’๐œŽ๐‘ฅ๐‘ฅ
๐‘‘๐‘ฆ
๐‘‘๐›ค
โˆ’ ๐œ ๐‘ฆ๐‘ฅ
๐‘‘๐‘ฅ
๐‘‘๐›ค
+ ๐‘‡๐‘ฅ = 0
โˆ’๐œŽ ๐‘ฆ๐‘ฆ
๐‘‘๐‘ฅ
๐‘‘๐›ค
โˆ’ ๐œ ๐‘ฅ๐‘ฆ
๐‘‘๐‘ฆ
๐‘‘๐›ค
+ ๐‘‡๐‘ฆ = 0
( 3.24 )
โ€ข By the relations between the infinitesimals, equation ( 3.22 ), and manipulating the terms comes:
{
โˆ’๐œŽ๐‘ฅ๐‘ฅ ๐‘› ๐‘ฅ โˆ’ ๐œ ๐‘ฆ๐‘ฅ ๐‘› ๐‘ฆ + ๐‘‡๐‘ฅ = 0
โˆ’๐œŽ ๐‘ฆ๐‘ฆ ๐‘› ๐‘ฆ โˆ’ ๐œ ๐‘ฅ๐‘ฆ ๐‘› ๐‘ฅ + ๐‘‡๐‘ฆ = 0
โ‡’ {
๐‘‡๐‘ฅ = ๐œŽ ๐‘ฅ๐‘ฅ ๐‘› ๐‘ฅ + ๐œ ๐‘ฆ๐‘ฅ ๐‘› ๐‘ฆ
๐‘‡๐‘ฆ = ๐œ ๐‘ฅ๐‘ฆ ๐‘› ๐‘ฅ + ๐œŽ ๐‘ฆ๐‘ฆ ๐‘› ๐‘ฅ
( 3.25 )
โ€ข In the matrix form comes:
|
๐‘‡๐‘ฅ
๐‘‡๐‘ฆ
| = [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฆ๐‘ฅ
๐œ ๐‘ฅ๐‘ฆ ๐œŽ ๐‘ฆ๐‘ฆ
] |
๐‘› ๐‘ฅ
๐‘› ๐‘ฆ
| = [
๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ
๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ
]
๐‘‡
|
๐‘› ๐‘ฅ
๐‘› ๐‘ฆ
| ( 3.26 )
3.3 Strain Tensor
The magnitude of the strains and displacements (linear displacements or rotations) can influence
the mathematical definition of strain. The main theories applied to the continuum mechanics are [32],
[33]:
โ€ข Small Strains and small Displacements/rotations theory or infinitesimal strain theoryโ€“ used to
solve most practical engineering problems that deal with common materials like wood, steel and
other alloys;
โ€ข Small Strains and large Displacements theory โ€“ essential to model materials and structures that
can withstand large displacements without entering the plastic domain, i.e. remaining elastic;
โ€ข Finite Strains and Displacements theory โ€“ necessary to model structures and materials where
the deformed and undeformed configuration is significantly different. These arbitrarily large
strains and displacements (linear or angular) can occur in materials with the mechanical
behavior of elastomers, fluids, biological (or not) soft tissues.
For small strains and small displacements (both linear and angular) the change in the geometry
and constitutive properties of the structure, due to deformation, doesnโ€™t need to be considered after the
force is applied. In other words, physical and mechanical properties of the material e.g. density, stiffness,
etc. at each point of the infinitesimally deformed solid, can be assumed constant [29]. This definition of
strain is also designed by Cauchy strains, and it will be the strain concept used throughout the report.
The strain tensor or Cauchy strain tensor is also a second order tensor, and its 3x3 matrix is given by:
[ ๐œ€ ] = [
๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฅ๐‘ง
๐œ€ ๐‘ฆ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ง
๐œ€ ๐‘ง๐‘ฅ ๐œ€ ๐‘ง๐‘ฆ ๐œ€ ๐‘ง๐‘ง
] ( 3.27 )
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
23
The nomenclature adopted in the definition of the strains is rather different from the stress
nomenclature. In index notation, the strain term ( )๐‘–๐‘— means: when ๐‘– = ๐‘— , the term corresponds to
the extension along the ๐‘–-direction; when ๐‘– โ‰  ๐‘— , the term of the strain matrix corresponds to the rotation
about the ij plane. Regarding its algebraic value, as schematized in Figure 5, the positive sign will be
ascribed when the angle between the two faces of the conceptual parallelogram is reduced, and the
negative sign when the angle increases.
The geometric definition of strains is demonstrated and detailed in [30], [1]. The linear strain
(also designated by longitudinal strain, linear deformation, extension, etc.) is quantified by the on-
diagonal matrix components ๐œ€ ๐‘ฅ๐‘ฅ , ๐œ€ ๐‘ฆ๐‘ฆ , ๐œ€ ๐‘ง๐‘ง . The remaining non-diagonal terms correspond to the
angular strain (also designated by shear strain, angular deformation, distortion, etc.). The relation of
each term of the strain tensor, with the displacement field is given by [1]:
๐œ€ ๐‘ฅ๐‘ฅ =
๐œ•๐‘ข
๐œ•๐‘ฅ
; ๐œ€ ๐‘ฆ๐‘ฆ =
๐œ•๐‘ฃ
๐œ•๐‘ฆ
; ๐œ€ ๐‘ง๐‘ง =
๐œ•๐‘ค
๐œ•๐‘ง
( 3.28 )
๐œ€ ๐‘ฅ๐‘ฆ = ๐œ€ ๐‘ฆ๐‘ฅ =
1
2
(
๐œ•๐‘ข
๐œ•๐‘ฆ
+
๐œ•๐‘ฃ
๐œ•๐‘ฅ
) ; ๐œ€ ๐‘ฆ๐‘ง = ๐œ€ ๐‘ง๐‘ฆ =
1
2
(
๐œ•๐‘ฃ
๐œ•๐‘ง
+
๐œ•๐‘ค
๐œ•๐‘ฆ
) ; ๐œ€ ๐‘ฅ๐‘ง = ๐œ€ ๐‘ง๐‘ฅ =
1
2
(
๐œ•๐‘ข
๐œ•๐‘ง
+
๐œ•๐‘ค
๐œ•๐‘ฅ
) ( 3.29 )
The geometric relation between strain and displacements can also be written in matrix form as:
| ๐œ€ | =
|
|
|
๐œ€ ๐‘ฅ๐‘ฅ
๐œ€ ๐‘ฆ๐‘ฆ
๐œ€ ๐‘ง๐‘ง
๐œ€ ๐‘ฅ๐‘ฆ
๐œ€ ๐‘ฆ๐‘ง
๐œ€ ๐‘ฅ๐‘ง
|
|
|
=
[
๐œ•
๐œ•๐‘ฅ
0 0
0
๐œ•
๐œ•๐‘ฆ
0
0 0
๐œ•
๐œ•๐‘ง
1
2
๐œ•
๐œ•๐‘ฆ
1
2
๐œ•
๐œ•๐‘ฅ
0
0
1
2
๐œ•
๐œ•๐‘ง
1
2
๐œ•
๐œ•๐‘ฆ
1
2
๐œ•
๐œ•๐‘ง
0
1
2
๐œ•
๐œ•๐‘ฅ ]
|
๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ง)
๐‘ฃ( ๐‘ฅ, ๐‘ฆ, ๐‘ง)
๐‘ค( ๐‘ฅ, ๐‘ฆ, ๐‘ง)
| ( 3.30 )
Other main contrast regarding the stress tensor and strain tensor, is the difference between
tensorial and engineering strain for angular distortion. The angular distortion can be quantified in terms
of engineering shear strain (also called global strain), or tensorial shear strain. The engineering shear
strain can be considered as the total rotation of the 2D cartesian element subjected to shear stresses or
the total change of the original angle formed by the undeformed element; whereas the tensorial shear
strain can be understood as the average of the two displacements or the amount that each edge rotates
in average. This difference is illustrated in Figure 5, and the two are related by the following vector
equation [30]:
|
|
|
๐›พ๐‘ฅ๐‘ฆ
๐›พ๐‘ฆ๐‘ฅ
๐›พ๐‘ฆ๐‘ง
๐›พ๐‘ง๐‘ฆ
๐›พ๐‘ฅ๐‘ง
๐›พ๐‘ง๐‘ฅ
|
|
|
=
|
|
|
2๐œ€ ๐‘ฅ๐‘ฆ
2๐œ€ ๐‘ฆ๐‘ฅ
2๐œ€ ๐‘ฆ๐‘ง
2๐œ€ ๐‘ง๐‘ฆ
2๐œ€ ๐‘ฅ๐‘ง
2๐œ€ ๐‘ง๐‘ฅ
|
|
|
( 3.31 )
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
24
Their importance arises from the convenience of replacing the general symmetry of the stiffness
matrix (after continuous simplifications), as it will be explored in the next subchapter (see Page 26). In
the matrix form, the previous relations can be written as:
[ ๐œ€ ] = [
๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฅ๐‘ง
๐œ€ ๐‘ฆ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ง
๐œ€ ๐‘ง๐‘ฅ ๐œ€ ๐‘ง๐‘ฆ ๐œ€ ๐‘ง๐‘ง
] =
1
2
[
2๐œ€ ๐‘ฅ๐‘ฅ ๐›พ๐‘ฅ๐‘ฆ ๐›พ๐‘ฅ๐‘ง
๐›พ๐‘ฆ๐‘ฅ 2๐œ€ ๐‘ฆ๐‘ฆ ๐›พ๐‘ฆ๐‘ง
๐›พ๐‘ง๐‘ฅ ๐›พ๐‘ง๐‘ฆ 2๐œ€ ๐‘ง๐‘ง
] ( 3.32 )
The properties of a tensor wonโ€™t be remembered in this report [29]; however, it is always worth
notice that the following matrix is not a tensor!!
[
๐œ€ ๐‘ฅ๐‘ฅ ๐›พ๐‘ฅ๐‘ฆ ๐›พ๐‘ฅ๐‘ง
๐›พ๐‘ฆ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐›พ๐‘ฆ๐‘ง
๐›พ๐‘ง๐‘ฅ ๐›พ๐‘ง๐‘ฆ ๐œ€ ๐‘ง๐‘ง
] ( 3.33 )
The symmetry property for the strain tensor matrix is derived meticulously in [30]. By the
displacement field geometric definition and neglecting the second order terms (for small strains and
displacements, both linear and angular), it is possible to verify the strain tensor symmetry. The symmetry
relations relating the shear distortion come:
๐›พ๐‘ฆ๐‘ง = ๐›พ๐‘ง๐‘ฆ
๐›พ๐‘ฅ๐‘ง = ๐›พ๐‘ง๐‘ฅ
๐›พ๐‘ฅ๐‘ฆ = ๐›พ๐‘ฆ๐‘ฅ
( 3.34 )
From equation ( 3.27 ), ( 3.32 ) and ( 3.34 ) it is possible to finally write the strain tensor in
tensorial strains or engineering strains as:
[ ๐œ€ ] = [
๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฅ๐‘ง
๐œ€ ๐‘ฆ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ง
๐œ€ ๐‘ง๐‘ฅ ๐œ€ ๐‘ง๐‘ฆ ๐œ€ ๐‘ง๐‘ง
] = [
๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฅ๐‘ง
๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ง
๐œ€ ๐‘ฅ๐‘ง ๐œ€ ๐‘ฆ๐‘ง ๐œ€ ๐‘ง๐‘ง
] = [
๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฅ๐‘ง
โ€ฆ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ง
โ€ฆ โ€ฆ ๐œ€ ๐‘ง๐‘ง
] ( 3.35 )
[ ๐œ€ ] =
1
2
[
2๐œ€ ๐‘ฅ๐‘ฅ ๐›พ๐‘ฅ๐‘ฆ ๐›พ๐‘ฅ๐‘ง
๐›พ๐‘ฆ๐‘ฅ 2๐œ€ ๐‘ฆ๐‘ฆ ๐›พ๐‘ฆ๐‘ง
๐›พ๐‘ง๐‘ฅ ๐›พ๐‘ง๐‘ฆ 2๐œ€ ๐‘ง๐‘ง
] =
1
2
[
2๐œ€ ๐‘ฅ๐‘ฅ ๐›พ๐‘ฅ๐‘ฆ ๐›พ๐‘ฅ๐‘ง
๐›พ๐‘ฅ๐‘ฆ 2๐œ€ ๐‘ฆ๐‘ฆ ๐›พ๐‘ฆ๐‘ง
๐›พ๐‘ฅ๐‘ง ๐›พ๐‘ฆ๐‘ง 2๐œ€ ๐‘ง๐‘ง
] =
1
2
[
2๐œ€ ๐‘ฅ๐‘ฅ ๐›พ๐‘ฅ๐‘ฆ ๐›พ๐‘ฅ๐‘ง
โ€ฆ 2๐œ€ ๐‘ฆ๐‘ฆ ๐›พ๐‘ฆ๐‘ง
โ€ฆ โ€ฆ 2๐œ€ ๐‘ง๐‘ง
] ( 3.36 )
Figure 5- Nomenclature adopted for the shear stress definition, for the distortion of the differential Cartesian
element.
๐‘ฆ ๐œ ๐‘ฅ๐‘ฆ
๐œ ๐‘ฅ๐‘ฆ
๐œ•๐‘ข
๐œ•๐‘ฆ
๐‘ฅ
๐œ•๐‘ฃ
๐œ•๐‘ฅ
๐‘ฆ
๐‘ฅ
๐›พ =
๐œ•๐‘ข
๐œ•๐‘ฆ
+
๐œ•๐‘ฃ
๐œ•๐‘ฅ
๐›พ/2
๐‘ฆ
๐‘ฅ
๐›พ =
๐œ•๐‘ข
๐œ•๐‘ฆ
+
๐œ•๐‘ฃ
๐œ•๐‘ฅ๐›พ/2
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
25
3.4 Generalized Hookeโ€™s Law
3.4.1 Theoretical Background
Cauchy Elastic Materials or Simple Elastic Materials are materials for which the stress at a given
point is just function of the instantaneous strain. In other words, the stresses donโ€™t depend of the strain
path, strain history, strain rate, and the time taken to achieve a given deformation field [34]. Cauchy
materials theoretical definition also implies:
โ€ข Homogeneous materials โ€“ the constitutive properties are independent of the point of analysis,
i.e. the terms of the stiffness matrix are not point functions;
โ€ข Temperature effect is ignored โ€“ even if there are thermal strains and/or residual stresses, the
effect of the temperature change in the properties of the material is neglected.
Assuming the previous hypothesis, the stress second order tensor is related by a second order-
valued function with the strain second order tensor as follows:
[ ๐œŽ ] = ๐‘“ ( [ ๐œ€ ] ) ( 3.37 )
Considering that the stresses are a linear and homogeneous combination or function of the
strains, the contribution factors are in fact the elastic coefficients that characterize the mechanical
behavior of the material, i.e. are a property of the material. Historically the British engineer Robert
Hooke was the first to study this linear relation between the stress and strain [1]. Thatโ€™s why the
generalize relationship of anisotropic materials - for spatial or triaxial stresses and strains - is called
Generalize Hookeโ€™s Law. Itโ€™s a constitutive model for infinitesimal deformation of a linear elastic
material, in which the relation between stress and strains is model by a 4th
order tensor that linearly maps
between second-order tensors [33].
The elasticity tensor will result in a 9x9 elastic coefficient matrix. Hookeโ€™s law can be presented:
in terms of a stiffness tensor or matrix ([ ๐ถ ]), putting in evidence the stress; or in terms of compliance
tensor or matrix ([ ๐‘† ]), in which the response function linking strain to the deforming stress is the
compliance tensor of the material. The matrix form of Hookeโ€™s Law can be written as:
| ๐œŽ | = [ ๐ถ ] | ๐œ€ | ( 3.38 )
| ๐œ€ | = [ ๐‘† ] | ๐œŽ | ( 3.39 )
Or explicitly as:
|
|
|
๐œŽ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
๐œŽ๐‘ง๐‘ง
๐œ ๐‘ฆ๐‘ง
๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฅ๐‘ฆ
๐œ ๐‘ง๐‘ฆ
๐œ ๐‘ง๐‘ฅ
๐œ ๐‘ฆ๐‘ฅ
|
|
|
=
[
๐ถ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ ๐ถ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ ๐ถ ๐‘ฅ๐‘ฅ ๐‘ง๐‘ง ๐ถ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ง ๐ถ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ง ๐ถ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฆ ๐ถ ๐‘ฅ๐‘ฅ ๐‘ง๐‘ฆ ๐ถ ๐‘ฅ๐‘ฅ ๐‘ง๐‘ฅ ๐ถ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฅ
๐ถ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐ถ๐‘ง๐‘ง ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐ถ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐ถ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐ถ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐ถ๐‘ง๐‘ฆ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐ถ๐‘ง๐‘ฅ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐ถ ๐‘ฆ๐‘ฅ ๐‘ฅ๐‘ฅ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐ถ ๐‘ฆ๐‘ฅ ๐‘ฆ๐‘ฅ ]
|
|
|
๐œ€ ๐‘ฅ๐‘ฅ
๐œ€ ๐‘ฆ๐‘ฆ
๐œ€ ๐‘ง๐‘ง
๐œ€ ๐‘ฆ๐‘ง
๐œ€ ๐‘ฅ๐‘ง
๐œ€ ๐‘ฅ๐‘ฆ
๐œ€ ๐‘ง๐‘ฆ
๐œ€ ๐‘ง๐‘ฅ
๐œ€ ๐‘ฆ๐‘ฅ
|
|
|
( 3.40 )
|
|
|
๐œ€ ๐‘ฅ๐‘ฅ
๐œ€ ๐‘ฆ๐‘ฆ
๐œ€ ๐‘ง๐‘ง
๐œ€ ๐‘ฆ๐‘ง
๐œ€ ๐‘ฅ๐‘ง
๐œ€ ๐‘ฅ๐‘ฆ
๐œ€ ๐‘ง๐‘ฆ
๐œ€ ๐‘ง๐‘ฅ
๐œ€ ๐‘ฆ๐‘ฅ
|
|
|
=
[
๐‘† ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ ๐‘† ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ ๐‘† ๐‘ฅ๐‘ฅ ๐‘ง๐‘ง ๐‘† ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ง ๐‘† ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ง ๐‘† ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฆ ๐‘† ๐‘ฅ๐‘ฅ ๐‘ง๐‘ฆ ๐‘† ๐‘ฅ๐‘ฅ ๐‘ง๐‘ฅ ๐‘† ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฅ
๐‘† ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐‘†๐‘ง๐‘ง ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐‘† ๐‘ฆ๐‘ง ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐‘† ๐‘ฅ๐‘ง ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐‘† ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐‘†๐‘ง๐‘ฆ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐‘†๐‘ง๐‘ฅ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ
๐‘† ๐‘ฆ๐‘ฅ ๐‘ฅ๐‘ฅ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘† ๐‘ฆ๐‘ฅ ๐‘ฆ๐‘ฅ ]
|
|
|
๐œŽ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
๐œŽ๐‘ง๐‘ง
๐œ ๐‘ฆ๐‘ง
๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฅ๐‘ฆ
๐œ ๐‘ง๐‘ฆ
๐œ ๐‘ง๐‘ฅ
๐œ ๐‘ฆ๐‘ฅ
|
|
|
( 3.41 )
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
26
The main root of the indexical notation is very similar for the coefficients of both stiffness and
compliance matrixes. However, its meaning is exactly the opposite:
โ€ข The generic stiffness coefficient ๐ถ ๐‘–๐‘—, corresponds to the stress component acting on the i-
direction due to a strain imposed in j-direction, while constraining to zero the strains in the
remaining directions;
โ€ข Whereas the generic compliance coefficient ๐‘† ๐‘–๐‘—, corresponds to the strain component about the
๐‘–-direction due to a stress applied in the ๐‘—-direction, while keeping null the remaining stresses.
Without making any further assumption, to apply the Generalized Hookeโ€™s Law it would be
necessary to define 81 elastic terms to compute the coefficient matrix (whether in its Stiffness or
Compliance form). From the stress symmetry and strain symmetry relations (reciprocity relations),
detailed in subchapter 3.2 and 3.3 respectively, it is possible to further simplify this matrix to a more
treatable form, as schematized in the following schematic equation:
|
|
|
( ) ๐‘ฅ๐‘ฅ
( ) ๐‘ฆ๐‘ฆ
( ) ๐‘ง๐‘ง
( ) ๐‘ฆ๐‘ง
( ) ๐‘ฅ๐‘ง
( ) ๐‘ฅ๐‘ฆ
โˆ’
โˆ’
โˆ’
|
|
|
=
[
๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ง๐‘ง ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ง ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ง ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฆ โˆ’ โˆ’ โˆ’
๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ง๐‘ง ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฆ๐‘ง ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ง ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฆ โˆ’ โˆ’ โˆ’
๐œ‘๐‘ง๐‘ง ๐‘ฅ๐‘ฅ ๐œ‘๐‘ง๐‘ง ๐‘ฆ๐‘ฆ ๐œ‘๐‘ง๐‘ง ๐‘ง๐‘ง ๐œ‘๐‘ง๐‘ง ๐‘ฆ๐‘ง ๐œ‘๐‘ง๐‘ง ๐‘ฅ๐‘ง ๐œ‘๐‘ง๐‘ง ๐‘ฅ๐‘ฆ โˆ’ โˆ’ โˆ’
๐œ‘ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฆ๐‘ง ๐‘ง๐‘ง ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฆ๐‘ง ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ง ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ฆ โˆ’ โˆ’ โˆ’
๐œ‘ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ง ๐‘ง๐‘ง ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฆ๐‘ง ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ง ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ฆ โˆ’ โˆ’ โˆ’
๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ง๐‘ง ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฆ๐‘ง ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ง ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ฆ โˆ’ โˆ’ โˆ’
โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’
โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’
โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ ]
|
|
|
( ) ๐‘ฅ๐‘ฅ
( ) ๐‘ฆ๐‘ฆ
( ) ๐‘ง๐‘ง
( ) ๐‘ฆ๐‘ง
( ) ๐‘ฅ๐‘ง
( ) ๐‘ฅ๐‘ฆ
โˆ’
โˆ’
โˆ’
|
|
|
( 3.42 )
In order to simplify equation ( 3.42 ), it is not possible to directly eliminate all unnecessary
terms. Thus, in order that equation ( 3.42 ) preserves its meaning, the reciprocity property from both
stresses and strains implies the addition of the term 2 (due to the equal in value missing terms that were
eliminated).
|
|
( ) ๐‘ฅ๐‘ฅ
( ) ๐‘ฆ๐‘ฆ
( ) ๐‘ง๐‘ง
( ) ๐‘ฆ๐‘ง
( ) ๐‘ฅ๐‘ง
( ) ๐‘ฅ๐‘ฆ
|
|
=
[
๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ง๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฆ
๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ง๐‘ง ๐Ÿ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฆ๐‘ง ๐Ÿ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ง ๐Ÿ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฆ
๐œ‘๐‘ง๐‘ง ๐‘ฅ๐‘ฅ ๐œ‘๐‘ง๐‘ง ๐‘ฆ๐‘ฆ ๐œ‘๐‘ง๐‘ง ๐‘ง๐‘ง ๐Ÿ๐œ‘๐‘ง๐‘ง ๐‘ฆ๐‘ง ๐Ÿ๐œ‘๐‘ง๐‘ง ๐‘ฅ๐‘ง ๐Ÿ๐œ‘๐‘ง๐‘ง ๐‘ฅ๐‘ฆ
๐œ‘ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฆ๐‘ง ๐‘ง๐‘ง ๐Ÿ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฆ๐‘ง ๐Ÿ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ง ๐Ÿ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ฆ
๐œ‘ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ง ๐‘ง๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฆ๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ฆ
๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ง๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฆ๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ฆ ]
|
|
( ) ๐‘ฅ๐‘ฅ
( ) ๐‘ฆ๐‘ฆ
( ) ๐‘ง๐‘ง
( ) ๐‘ฆ๐‘ง
( ) ๐‘ฅ๐‘ง
( ) ๐‘ฅ๐‘ฆ
|
|
( 3.43 )
After simplification of the 4th
order coefficientsโ€™ tensor, the matrix lost its symmetry. The
importance of the engineering strains can now be fully understood. Instead of using the tensorial strains,
if the engineering strains were used, the symmetry of the matrix is restored, as detailed in [35].
Applying any energetic theorem e.g. Virtual Work Theorem, Minimum Potential Energy,
Maxwell-Betti Theorem, etc. [36], it is possible to prove that the matrix from the 4th
order tensor that
relates stress and strains in an elastic and loaded rigid body is symmetric. However, a different approach
was taken. In order to prove the symmetry of the elastic coefficient matrix, the concept of strain energy
density function is introduced. Conservative materials or Green Materials or Hyper-elastic materials are
a special case of Cauchy elastic materials (or simple elastic material), Figure 6 b). For this type of
materials, the stress-strain relation derives from a strain energy density function [37]:
โ€ข Conservative materials possess a strain energy density function or energy potential, and this
energy potential is given by,
๐œŽ๐‘Ÿ๐‘  =
๐œ•๐‘ˆ๐‘Ÿ๐‘ 
๐œ•๐œ€ ๐‘Ÿ๐‘ 
( 3.44 )
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
27
โ€ข Assuming linear stresses and strains,
| ๐œŽ | = [ ๐ถ ] | ๐œ€ | โ‡’ ๐œŽ๐‘–๐‘— = ๐ถ๐‘–๐‘— ๐‘˜๐‘™ โˆ™ ๐œ€ ๐‘˜๐‘™ ( 3.45 )
โ€ข The elastic energy is finally given by,
๐ถ๐‘–๐‘— ๐‘˜๐‘™ โˆ™ ๐œ€ ๐‘Ÿ๐‘  =
๐œ•๐‘ˆ๐‘Ÿ๐‘ 
๐œ•๐œ€ ๐‘Ÿ๐‘ 
; ๐‘Ÿ๐‘  = ๐‘˜๐‘™ ( 3.46 )
โ€ข Differentiating the previous equation to respect to ๐œ€ ๐‘˜๐‘™ or ๐œ€๐‘–๐‘— we get,
๐ถ๐‘–๐‘— ๐‘˜๐‘™ =
๐œ•2
๐‘ˆ๐‘–๐‘—
๐œ•๐œ€๐‘–๐‘— ๐œ•๐œ€ ๐‘˜๐‘™
๐ถ๐‘˜๐‘™ ๐‘–๐‘— =
๐œ•2
๐‘ˆ๐‘–๐‘—
๐œ•๐œ€ ๐‘˜๐‘™ ๐œ•๐œ€๐‘–๐‘—
( 3.47 )
โ€ข Which finally ends up in the symmetry relation:
๐ถ๐‘–๐‘— ๐‘˜๐‘™ =
๐œ•2
๐‘ˆ๐‘–๐‘—
๐œ•๐œ€๐‘–๐‘— ๐œ•๐œ€ ๐‘˜๐‘™
=
๐œ•2
๐‘ˆ๐‘–๐‘—
๐œ•๐œ€ ๐‘˜๐‘™ ๐œ•๐œ€๐‘–๐‘—
= ๐ถ๐‘˜๐‘™ ๐‘–๐‘— โ‡’ ๐ถ๐‘–๐‘— ๐‘˜๐‘™ = ๐ถ๐‘˜๐‘™ ๐‘–๐‘— ( 3.48 )
The vast majority of engineering materials are conservative, as a result, the symmetry of the
stiffness and compliance matrices is verified for most of common engineering problems. After all
previous simplifications summarized in Table 2, the Generalized Hookeโ€™s Law for a conservative
anisotropic material is a 6x6 elastic matrix, and now only involves the knowledge of 21 unknown elastic
terms or parameters (only 21 stiffness components are actually independent in Hooke's law), and it can
be written in the form bellow3
:
|
|
|
๐œŽ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
๐œŽ๐‘ง๐‘ง
๐œ ๐‘ฆ๐‘ง
๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฅ๐‘ฆ
|
|
|
=
[
๐ถ11 ๐ถ12 ๐ถ13 ๐ถ14 ๐ถ15 ๐ถ16
โ€ฆ ๐ถ22 ๐ถ23 ๐ถ24 ๐ถ25 ๐ถ26
โ€ฆ โ€ฆ ๐ถ33 ๐ถ34 ๐ถ35 ๐ถ36
โ€ฆ โ€ฆ โ€ฆ ๐ถ44 ๐ถ45 ๐ถ46
โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐ถ55 ๐ถ56
โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐ถ66 ]
|
|
|
๐œ€ ๐‘ฅ๐‘ฅ
๐œ€ ๐‘ฆ๐‘ฆ
๐œ€ ๐‘ง๐‘ง
๐›พ๐‘ฆ๐‘ง
๐›พ๐‘ฅ๐‘ง
๐›พ๐‘ฅ๐‘ฆ
|
|
|
( 3.49 )
Table 2- Summary of all simplifications made to the general stiffness matrix.
Property No. Dependent terms Original Number of terms 81 = 9 x 9
Stress Reciprocity 18 + 9*
After Reciprocity Reduction 36 = 6 x 6
Strain Reciprocity 18 + 9*
Symmetry of the
Stiffness matrix
15
After Matrix Symmetry
Reduction 21 =
6 โˆ™ (6 + 1)
2
* 9 terms are automatically and simultaneously eliminated by the reciprocity property of both stresses and
strains
3
Stiffness Matrix written in Voigt notation, after eliminating the need for the stress and strain tensor matrix. See
next page to further clarifications
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
28
Voigt notation or Voigt form is a way to represent a symmetric tensor by reducing its order [38].
Voigt notation is commonly used in the study of composites, since it allows to: (i) reduce the second
order tensors (from the Stresses and Strains) to 6x1 vectors, and (ii) the 9x9 material stiffness matrix to
a 6x6 matrix. A fairly simple mnemonic to remember the codification of the indices in Voigt form is
illustrated in Figure 6. The previously mentioned mechanical quantities are then given by:
| ๐œŽ | =
|
|
|
๐œŽ๐‘ฅ๐‘ฅ
๐œŽ ๐‘ฆ๐‘ฆ
๐œŽ๐‘ง๐‘ง
๐œ ๐‘ฆ๐‘ง
๐œ ๐‘ฅ๐‘ง
๐œ ๐‘ฅ๐‘ฆ
|
|
|
=
|
|
|
๐œŽ11
๐œŽ22
๐œŽ33
๐œ23
๐œ13
๐œ12
|
|
|
=
|
|
|
๐œŽ1
๐œŽ2
๐œŽ3
๐œŽ4
๐œŽ5
๐œŽ6
|
|
|
( 3.50 )
| ๐œ€ | =
|
|
|
๐œ€ ๐‘ฅ๐‘ฅ
๐œ€ ๐‘ฆ๐‘ฆ
๐œ€ ๐‘ง๐‘ง
๐›พ๐‘ฆ๐‘ง
๐›พ๐‘ฅ๐‘ง
๐›พ๐‘ฅ๐‘ฆ
|
|
|
=
|
|
|
๐œ€11
๐œ€22
๐œ€33
๐›พ23
๐›พ13
๐›พ12
|
|
|
=
|
|
|
๐œ€1
๐œ€2
๐œ€3
๐œ€4
๐œ€5
๐œ€6
|
|
|
( 3.51 )
[ ๐ถ ] =
[
๐ถ11 ๐ถ12 ๐ถ13 ๐ถ14 ๐ถ15 ๐ถ16
๐ถ21 ๐ถ22 ๐ถ23 ๐ถ24 ๐ถ25 ๐ถ26
๐ถ31 ๐ถ32 ๐ถ33 ๐ถ34 ๐ถ35 ๐ถ36
๐ถ41 ๐ถ42 ๐ถ43 ๐ถ44 ๐ถ45 ๐ถ46
๐ถ51 ๐ถ52 ๐ถ53 ๐ถ53 ๐ถ55 ๐ถ56
๐ถ61 ๐ถ62 ๐ถ63 ๐ถ64 ๐ถ65 ๐ถ66 ]
=
[
๐ถ11 ๐ถ12 ๐ถ13 ๐ถ14 ๐ถ15 ๐ถ16
โ€ฆ ๐ถ22 ๐ถ23 ๐ถ24 ๐ถ25 ๐ถ26
โ€ฆ โ€ฆ ๐ถ33 ๐ถ34 ๐ถ35 ๐ถ36
โ€ฆ โ€ฆ โ€ฆ ๐ถ44 ๐ถ45 ๐ถ46
โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐ถ55 ๐ถ56
โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐ถ66 ]
( 3.52 )
[ ๐‘† ] =
[
๐‘†11 ๐‘†12 ๐‘†13 ๐‘†14 ๐‘†15 ๐‘†16
๐‘†21 ๐‘†22 ๐‘†23 ๐‘†24 ๐‘†25 ๐‘†26
๐‘†31 ๐‘†32 ๐‘†33 ๐‘†34 ๐‘†35 ๐‘†36
๐‘†41 ๐‘†42 ๐‘†43 ๐‘†44 ๐‘†45 ๐‘†46
๐‘†51 ๐‘†52 ๐‘†53 ๐‘†53 ๐‘†55 ๐‘†56
๐‘†61 ๐‘†62 ๐‘†63 ๐‘†64 ๐‘†65 ๐‘†66 ]
=
[
๐‘†11 ๐‘†12 ๐‘†13 ๐‘†14 ๐‘†15 ๐‘†16
โ€ฆ ๐‘†22 ๐‘†23 ๐‘†24 ๐‘†25 ๐‘†26
โ€ฆ โ€ฆ ๐‘†33 ๐‘†34 ๐‘†35 ๐‘†36
โ€ฆ โ€ฆ โ€ฆ ๐‘†44 ๐‘†45 ๐‘†46
โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘†55 ๐‘†56
โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘†66 ]
( 3.53 )
[ ] = [
( ) ๐‘ฅ๐‘ฅ ( ) ๐‘ฅ๐‘ฆ ( ) ๐‘ฅ๐‘ง
( ) ๐‘ฆ๐‘ฅ ( ) ๐‘ฆ๐‘ฆ ( ) ๐‘ฆ๐‘ง
( ) ๐‘ง๐‘ฅ ( ) ๐‘ง๐‘ฆ ( ) ๐‘ง๐‘ง
]
Figure 6- a) Schematic representation of the algorithm used to
codify Voigt notation in a second order tensor. b) Illustration
of the relation between Elastic and Hyperelastic materials for
small strains condition.
๐œ€
๐œŽa) b)
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
29
3.5 Transformation Matrix
3.5.1 General Definition
The transformation matrix allows to change the stress, the strain, or even the
stiffness/compliance tensor from one coordinate system to another generically transformed coordinate
system. In its completely general form, the transformation matrix is given by:
[ ๐‘‡ ] =
[
cos( ๐›ผ ๐‘ฅโ€ฒ ๐‘ฅ) cos(๐›ผ ๐‘ฅโ€ฒ ๐‘ฆ) cos( ๐›ผ ๐‘ฅโ€ฒ ๐‘ง)
cos(๐›ผ ๐‘ฆโ€ฒ ๐‘ฅ) cos(๐›ผ ๐‘ฆโ€ฒ ๐‘ฆ) cos(๐›ผ ๐‘ฆโ€ฒ ๐‘ง)
cos( ๐›ผ ๐‘งโ€ฒ ๐‘ฅ) cos(๐›ผ ๐‘งโ€ฒ ๐‘ฆ) cos( ๐›ผ ๐‘งโ€ฒ ๐‘ง) ]
( 3.54 )
The mathematical meaning of the angles of
the transformation matrix, equation ( 3.54 ), is
illustrated in Figure 7 for the particular case of the
transformed ๐‘ฅโ€™-axis. Using a similar principle, the
remaining rotation angles could also be drawn.
Usually, the direction cosines from equation ( 3.54 ), are hard to compute individually. So, the
transformation matrix can also be determined by the combination of three simpler transformations, each
one in respect to only one axis. The most used combination is designated as Euler Angles (or x-
convention) and is determined by [5]:
[๐‘‡] = [ โˆ’
cos( ๐œ“) sin( ๐œ“) 0
sin( ๐œ“) cos( ๐œ“) 0
0 0 1
]
๐‘ง
[
1 0 0
0 cos( ๐œƒ) sin( ๐œƒ)
0 โˆ’sin( ๐œƒ) cos( ๐œƒ)
]
๐‘ฅ
[ โˆ’
cos( ๐œ‘) sin( ๐œ‘) 0
sin( ๐œ‘) cos( ๐œ‘) 0
0 0 1
]
๐‘ง
( 3.55 )
The physical meaning of the three rotation angles is given in Figure 8 and Figure 9. Since the
matrix multiplication operation isnโ€™t commutative, the order of rotation matters, Counter-clockwise
rotation was considered as a positive rotation for all angles.
๐‘ง
๐‘ฅ
๐‘ฆ
๐‘ฅโ€ฒ
๐›ผ ๐‘ฅโ€ฒ ๐‘ฅ
๐›ผ ๐‘ฅโ€ฒ ๐‘ฆ
๐›ผ ๐‘ฅโ€ฒ ๐‘ง
Figure 7- Illustration of the angles between the
transformed ๐‘ฅโ€™-axis and the original cartesian coordinate
system.
Figure 8- Illustration of the individual rotations of the Euler angles. Image adapted from [5].
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
30
Since this report is essentially dedicated to plane elasticity, for the 2D case, the only possible
transformation consists in a rotation around the z-axis, and the transformation matrix s given by:
[ ๐‘‡ ] = [ โˆ’
cos( ๐œ“) sin( ๐œ“) 0
sin( ๐œ“) cos( ๐œ“) 0
0 0 1
]
๐‘ง
( 3.56 )
Orthotropic material behavior will be considered further in the report, see chapter 4, Thus, it is
necessary to apply the transformation matrix to the stress and strain tensor as follows [35]:
[ ๐œŽโ€ฒ ] = [ ๐‘‡ ] [ ๐œŽ ] [ ๐‘‡ ] ๐‘‡
( 3.57 )
[ ๐œ€โ€ฒ ] = [ ๐‘‡ ] [ ๐œ€ ] [ ๐‘‡ ] ๐‘‡ ( 3.58 )
3.5.2 Modified Transformation Matrix
The previous transformation matrix [ ๐‘‡ ] changes the coordinate system of second order tensors.
However, it was shown in the previous subchapter that due to the several symmetries the stress and
strain can be related using the simplified Voigt notation. Matrix [ ๐‘‡ ] can be adapted precisely to be
applied directly to the coordinate transformation of both the stress and strain in Voigt notation. However,
in the case of the stress-strain value function matrix, i.e. for the stiffness or compliance tensor, the
approach is different. The transformation matrix is computed from the knowledge of the transformation
matrices for the stresses and strains, and the stress-strain relation.
The several simplifications detailed in [29], consist of a procedure merely algebraic that relies
on matrix manipulation. After computing the matrix product from equations ( 3.57 ) and ( 3.58 ), the
resulting terms are organized in a vector form following Voigt notation. It is important to notice that for
the shear strains, rather than Tensorial strains, Engineering strains were used. Thus, the ยฝ term must
affect the strain second order tensor in order to maintain the tensor properties. The final output consists
of three transformation matrices namely: [ ๐‘‡ โˆ— ], [ ๐‘‡ โˆ—โˆ— ], [ ๐‘‡ โˆ—โˆ—โˆ— ], and [ ๐‘‡ โˆ—โˆ—โˆ—โˆ— ] for the stress vector, strain
๐œ“
๐‘ฅโ€ฒ
๐‘ฆโ€ฒ
๐‘ฆ
๐‘ฅ
๐œ“
๐œƒ
๐‘ฆโ€ฒโ€ฒ
๐‘งโ€ฒ
๐‘ง
๐‘ฆ
๐œƒ
Figure 9- Definition of the nomenclature
used to define the coordinates
transformation matrix. The ๐œƒ, ๐œ‘, and ๐œ“,
represent the rotation angle about the z, x
and y axis respectively.
๐œ‘
๐‘ฅโ€ฒโ€ฒ
๐‘ฆโ€ฒโ€ฒโ€ฒ
๐‘ฆโ€ฒโ€ฒ
๐‘ฅโ€ฒโ€ฒ
๐œ‘
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
31
vector, stiffness matrix, and compliance matrix respectively. The procedure followed to compute the
previous different transformation matrices was overall the same. However, each second tensor has each
on particularities. The only exception was the transformation matrix for the Stiffness/Compliance matrix
that required a different approach as already stated.
For the Transformation Matrix of the Stress Vector, [ ๐‘ป โˆ— ]
[ ๐œŽโ€ฒ ] = [ ๐‘‡ ] [ ๐œŽ ] [ ๐‘‡ ] ๐‘‡
( 3.59 )
[
๐œŽ11
โ€ฒ
๐œ12
โ€ฒ
๐œ 13
โ€ฒ
๐œ21
โ€ฒ
๐œŽ22
โ€ฒ
๐œ 23
โ€ฒ
๐œ31
โ€ฒ
๐œ32
โ€ฒ
๐œŽ33
โ€ฒ
] =
[
cos( ๐œ“) sin( ๐œ“) 0
โˆ’ sin( ๐œ“) cos( ๐œ“) 0
0 0 1
] [
๐œŽ11 ๐œ12 ๐œ13
๐œŽ21 ๐œŽ22 ๐œ23
๐œ 31 ๐œ32 ๐œŽ33
] [
cos( ๐œ“) sin( ๐œ“) 0
โˆ’ sin( ๐œ“) cos( ๐œ“) 0
0 0 1
]
๐‘‡
( 3.60 )
โ€ข Considering only the right side of the matrix, and manipulating it, comes:
[
cos( ๐œ“) sin( ๐œ“) 0
โˆ’ sin( ๐œ“) cos( ๐œ“) 0
0 0 1
] [
๐œŽ11 ๐œ12 ๐œ13
๐œŽ21 ๐œŽ22 ๐œ23
๐œ 31 ๐œ32 ๐œŽ33
] [
cos( ๐œ“) โˆ’ sin( ๐œ“) 0
sin( ๐œ“) cos( ๐œ“) 0
0 0 1
]
( 3.61 )
[
cos( ๐œ“) ( cos( ๐œ“) ๐œŽ11 + sin( ๐œ“) ๐œ 21 ) + sin( ๐œ“) ( cos( ๐œ“) ๐œ12 + sin( ๐œ“) ๐œŽ22 ) โ‹ฏ
cos( ๐œ“) (โˆ’ sin( ๐œ“) ๐œŽ11 + cos( ๐œ“) ๐œ21 ) + sin( ๐œ“) ( โˆ’ sin( ๐œ“) ๐œ 12 + cos( ๐œ“) ๐œŽ22 ) โ‹ฏ
cos( ๐œ“) ( ๐œ 31 ) + sin( ๐œ“) ( ๐œ32 ) โ‹ฏ
โ‹ฏ โˆ’ sin( ๐œ“) ( cos( ๐œ“) ๐œŽ11 + sin( ๐œ“) ๐œ 21 ) + cos( ๐œ“) ( cos( ๐œ“) ๐œ12 + sin( ๐œ“) ๐œŽ22 ) โ‹ฏ
โ‹ฏ โˆ’ sin( ๐œ“) (โˆ’ sin( ๐œ“) ๐œŽ11 + cos( ๐œ“) ๐œ 21) + cos( ๐œ“) (โˆ’ sin( ๐œ“) ๐œ 12 + cos( ๐œ“) ๐œŽ22) โ‹ฏ
โ‹ฏ โˆ’ sin( ๐œ“) ( ๐œ 31 ) + cos( ๐œ“) ( ๐œ32 ) โ‹ฏ
โ‹ฏ cos( ๐œ“) ๐œ13 + sin( ๐œ“) ๐œ23
โ‹ฏ โˆ’ sin( ๐œ“) ๐œ 13 + cos( ๐œ“) ๐œ23
โ‹ฏ ๐œŽ33
]
( 3.62 )
[
cos2( ๐œ“) ๐œŽ11 + cos( ๐œ“) sin( ๐œ“) ๐œ21 + sin( ๐œ“) cos( ๐œ“) ๐œ12 + sin2( ๐œ“) ๐œŽ22 โ‹ฏ
โˆ’ cos( ๐œ“) sin( ๐œ“) ๐œŽ11 + cos2( ๐œ“) ๐œ 21 โˆ’ sin2( ๐œ“) ๐œ12 + sin( ๐œ“) cos( ๐œ“) ๐œŽ22 โ‹ฏ
cos( ๐œ“) ๐œ 31 + sin( ๐œ“) ๐œ 32 โ‹ฏ
โ‹ฏ โˆ’ sin( ๐œ“) cos( ๐œ“) ๐œŽ11 โˆ’ sin2( ๐œ“) ๐œ21 + cos2( ๐œ“) ๐œ12 + cos( ๐œ“) sin( ๐œ“) ๐œŽ22 โ‹ฏ
โ‹ฏ sin2( ๐œ“) ๐œŽ11 โˆ’ sin( ๐œ“) cos( ๐œ“) ๐œ21 โˆ’ cos( ๐œ“) sin( ๐œ“) ๐œ12 + cos2( ๐œ“) ๐œŽ22 โ‹ฏ
โ‹ฏ โˆ’ sin( ๐œ“) ๐œ 31 + cos( ๐œ“) ๐œ32 โ‹ฏ
โ‹ฏ cos( ๐œ“) ๐œ13 + sin( ๐œ“) ๐œ23
โ‹ฏ โˆ’ sin( ๐œ“) ๐œ13 + cos( ๐œ“) ๐œ23
โ‹ฏ ๐œŽ33
]
( 3.63 )
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
32
โ€ข Considering the stress symmetry (eliminating the symmetric indexes not used and only working
the terms used) and organizing the trigonometric terms in a matrix compatible with the stress
vector in Voigt notation comes:
[
๐ˆ ๐Ÿ๐Ÿ
โ€ฒ
๐‰ ๐Ÿ๐Ÿ
โ€ฒ
๐‰ ๐Ÿ๐Ÿ‘
โ€ฒ
๐œ 21
โ€ฒ
๐ˆ ๐Ÿ๐Ÿ
โ€ฒ
๐‰ ๐Ÿ๐Ÿ‘
โ€ฒ
๐œ 31
โ€ฒ
๐œ32
โ€ฒ
๐ˆ ๐Ÿ‘๐Ÿ‘
โ€ฒ
] = [
cos2( ๐œ“) ๐ˆ ๐Ÿ๐Ÿ + 2 sin( ๐œ“) cos( ๐œ“) ๐‰ ๐Ÿ๐Ÿ + sin2( ๐œ“) ๐ˆ ๐Ÿ๐Ÿ โ‹ฏ
โ‹ฏ
๐‘ ๐‘ฆ๐‘š๐‘š โ‹ฏ
โ‹ฏ โˆ’ sin( ๐œ“) cos( ๐œ“) ๐ˆ ๐Ÿ๐Ÿ + (cos2( ๐œ“) โˆ’ sin2( ๐œ“)) ๐‰ ๐Ÿ๐Ÿ + + cos( ๐œ“) sin( ๐œ“) ๐ˆ ๐Ÿ๐Ÿ โ‹ฏ
โ‹ฏ sin2( ๐œ“) ๐ˆ ๐Ÿ๐Ÿ โˆ’ 2 sin( ๐œ“) cos( ๐œ“) ๐‰ ๐Ÿ๐Ÿ + cos2( ๐œ“) ๐ˆ ๐Ÿ๐Ÿ โ‹ฏ
โ‹ฏ โ‹ฏ
โ‹ฏ cos( ๐œ“) ๐‰ ๐Ÿ๐Ÿ‘ + sin( ๐œ“) ๐‰ ๐Ÿ๐Ÿ‘
โ‹ฏ โˆ’ sin( ๐œ“) ๐‰ ๐Ÿ๐Ÿ‘ + cos( ๐œ“) ๐‰ ๐Ÿ๐Ÿ‘
โ‹ฏ ๐ˆ ๐Ÿ‘๐Ÿ‘
]
( 3.64 )
|
|
|
๐ˆโ€ฒ
๐Ÿ
๐ˆโ€ฒ
๐Ÿ
๐ˆโ€ฒ
๐Ÿ‘
๐ˆโ€ฒ
๐Ÿ’
๐ˆโ€ฒ
๐Ÿ“
๐ˆโ€ฒ
๐Ÿ”
|
|
|
= โ‹ฏ
|
|
|
๐œŽ1
๐œŽ2
๐œŽ3
๐œŽ4
๐œŽ5
๐œŽ6
|
|
|
[
cos2( ๐œ“) sin2( ๐œ“) 0 0 0 2 sin( ๐œ“) cos( ๐œ“)
sin2( ๐œ“) cos2( ๐œ“) 0 0 0 โˆ’2 sin( ๐œ“) cos( ๐œ“)
0 0 1 0 0 0
0 0 0 cos( ๐œ“) โˆ’ sin( ๐œ“) 0
0 0 0 sin( ๐œ“) cos( ๐œ“) 0
โˆ’ sin( ๐œ“) cos( ๐œ“) sin( ๐œ“) cos( ๐œ“) 0 0 0 cos2( ๐œ“) โˆ’ sin2( ๐œ“) ]
( 3.65 )
โ€ข Finally, equation ( 3.57 ) can be written using the modified transformation matrix [35] and
making explicit the computational formula for the off-axes modified transformation matrix
comes respectively:
| ๐œŽโ€ฒ | = [ ๐‘‡ โˆ— ] | ๐œŽ | ( 3.66 )
[ ๐‘‡ โˆ— ] =
[
cos2
(๐œ“) sin2( ๐œ“) 0 0 0 2 sin( ๐œ“) cos( ๐œ“)
sin2( ๐œ“) cos2
(๐œ“) 0 0 0 โˆ’2 sin( ๐œ“) cos( ๐œ“)
0 0 1 0 0 0
0 0 0 cos( ๐œ“) โˆ’ sin( ๐œ“) 0
0 0 0 sin( ๐œ“) cos( ๐œ“) 0
โˆ’ sin( ๐œ“) cos( ๐œ“) sin( ๐œ“) cos( ๐œ“) 0 0 0 cos2
(๐œ“) โˆ’ sin2( ๐œ“) ]
( 3.67 )
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
33
For the Transformation Matrix of the Strain Vector, [ ๐‘ป โˆ—โˆ— ]
[ ๐œ€โ€ฒ ] = [ ๐‘‡ ] [ ๐œ€ ] [ ๐‘‡ ] ๐‘‡
( 3.68 )
1
2
[
2๐œ€11
โ€ฒ
๐›พ12
โ€ฒ
๐›พ13
โ€ฒ
๐›พ21
โ€ฒ
2๐œ€22
โ€ฒ
๐›พ23
โ€ฒ
๐›พ31
โ€ฒ
๐›พ32
โ€ฒ
2๐œ€33
โ€ฒ
] =
[
cos( ๐œ“) sin( ๐œ“) 0
โˆ’ sin( ๐œ“) cos( ๐œ“) 0
0 0 1
]
1
2
[
2๐œ€11 ๐›พ12 ๐›พ13
๐›พ21 2๐œ€22 ๐›พ23
๐›พ31 ๐›พ32 2๐œ€33
] [
cos( ๐œ“) sin( ๐œ“) 0
โˆ’ sin( ๐œ“) cos( ๐œ“) 0
0 0 1
]
๐‘‡
( 3.69 )
[
2๐œ€11
โ€ฒ
๐›พ12
โ€ฒ
๐›พ13
โ€ฒ
๐›พ21
โ€ฒ
2๐œ€22
โ€ฒ
๐›พ23
โ€ฒ
๐›พ31
โ€ฒ
๐›พ32
โ€ฒ
2๐œ€33
โ€ฒ
] =
[
cos( ๐œ“) sin( ๐œ“) 0
โˆ’ sin( ๐œ“) cos( ๐œ“) 0
0 0 1
] [
2๐œ€ 11 ๐›พ12 ๐›พ13
๐›พ21 2๐œ€ 22 ๐›พ23
๐›พ31 ๐›พ32 2๐œ€ 33
] [
cos( ๐œ“) โˆ’ sin( ๐œ“) 0
sin( ๐œ“) cos( ๐œ“) 0
0 0 1
]
( 3.70 )
โ€ข Considering only the right side of the matrix, and manipulating it, comes:
[
cos( ๐œ“) ( 2 cos( ๐œ“) ๐œ€11 + sin( ๐œ“) ๐›พ21 ) + sin( ๐œ“) ( cos( ๐œ“) ๐›พ12 + 2 sin( ๐œ“) ๐œ€22 ) โ‹ฏ
cos( ๐œ“) (โˆ’2 sin( ๐œ“) ๐œ€11 + cos( ๐œ“) ๐›พ21 ) + sin( ๐œ“) ( โˆ’ sin( ๐œ“) ๐›พ12 + 2 cos( ๐œ“) ๐œ€22 ) โ‹ฏ
cos( ๐œ“) ( ๐›พ31 ) + sin( ๐œ“) ( ๐›พ32 ) โ‹ฏ
โ‹ฏ โˆ’ sin(๐œ“) ( 2 cos(๐œ“) ๐œ€11 + sin(๐œ“) ๐›พ21 ) + cos(๐œ“) ( cos(๐œ“) ๐›พ12 + 2 sin(๐œ“) ๐œ€22 ) โ‹ฏ
โ‹ฏ โˆ’ sin(๐œ“) (โˆ’2 sin(๐œ“) ๐œ€11 + cos(๐œ“) ๐›พ21) + cos(๐œ“) (โˆ’ sin(๐œ“) ๐›พ12 + 2 cos(๐œ“) ๐œ€22) โ‹ฏ
โ‹ฏ โˆ’ sin(๐œ“) ( ๐›พ31 ) + cos(๐œ“) ( ๐›พ32 ) โ‹ฏ
โ‹ฏ cos( ๐œ“) ๐›พ13 + sin( ๐œ“) ๐›พ23
โ‹ฏ โˆ’ sin( ๐œ“) ๐›พ13 + cos( ๐œ“) ๐›พ23
โ‹ฏ 2 ๐œ€33
]
( 3.71 )
[
2 cos2( ๐œ“) ๐œ€11 + cos( ๐œ“) sin( ๐œ“) ๐›พ21 + sin( ๐œ“) cos( ๐œ“) ๐›พ12 + 2 sin2( ๐œ“) ๐œ€22 โ‹ฏ
โˆ’2 cos( ๐œ“) sin( ๐œ“) ๐œ€ 11 + cos2( ๐œ“) ๐›พ21 โˆ’ sin2( ๐œ“) ๐›พ12 +2 sin( ๐œ“) cos( ๐œ“) ๐œ€22 โ‹ฏ
cos( ๐œ“) ๐›พ31 + sin( ๐œ“) ๐›พ32 โ‹ฏ
โ‹ฏ โˆ’2 sin( ๐œ“) cos( ๐œ“) ๐œ€11 โˆ’ sin2( ๐œ“) ๐›พ21 + cos2( ๐œ“) ๐›พ12 + 2 cos( ๐œ“) sin( ๐œ“) ๐œ€ 22 โ‹ฏ
โ‹ฏ 2 sin2( ๐œ“) ๐œ€ 11 โˆ’ sin( ๐œ“) cos( ๐œ“) ๐›พ21 โˆ’ cos( ๐œ“) sin( ๐œ“) ๐›พ12 + 2 cos2( ๐œ“) ๐œ€22 โ‹ฏ
โ‹ฏ โˆ’ sin( ๐œ“) ๐›พ31 + cos( ๐œ“) ๐›พ32 โ‹ฏ
โ‹ฏ cos( ๐œ“) ๐›พ13 + sin( ๐œ“) ๐›พ23
โ‹ฏ โˆ’ sin( ๐œ“) ๐›พ13 + cos( ๐œ“) ๐›พ23
โ‹ฏ 2 ๐œ€ 33
]
( 3.72 )
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
34
โ€ข Considering the stress symmetry (eliminating the symmetric indexes not used and only working
the terms used) and organizing the trigonometric terms in a matrix compatible with the strain
vector in Voigt notation comes:
[
๐Ÿ๐œบ ๐Ÿ๐Ÿ
โ€ฒ
๐œธ ๐Ÿ๐Ÿ
โ€ฒ
๐œธ ๐Ÿ๐Ÿ‘
โ€ฒ
๐›พ21
โ€ฒ
๐Ÿ๐œบ ๐Ÿ๐Ÿ
โ€ฒ
๐œธ ๐Ÿ๐Ÿ‘
โ€ฒ
๐›พ31
โ€ฒ
๐›พ32
โ€ฒ
๐Ÿ๐œบ ๐Ÿ‘๐Ÿ‘
โ€ฒ
] = [
2 cos2( ๐œ“) ๐œบ ๐Ÿ๐Ÿ + 2 sin( ๐œ“) cos( ๐œ“) ๐œธ ๐Ÿ๐Ÿ + 2 sin2( ๐œ“) ๐œบ ๐Ÿ๐Ÿ โ‹ฏ
โ‹ฏ
๐‘ ๐‘ฆ๐‘š๐‘š โ‹ฏ
โ‹ฏ โˆ’2 sin( ๐œ“) cos( ๐œ“) ๐œบ ๐Ÿ๐Ÿ + (cos2( ๐œ“) โˆ’ sin2( ๐œ“)) ๐œธ ๐Ÿ๐Ÿ + +2 cos( ๐œ“) sin( ๐œ“) ๐œบ ๐Ÿ๐Ÿ โ‹ฏ
โ‹ฏ 2 sin2( ๐œ“) ๐œบ ๐Ÿ๐Ÿ โˆ’ 2 sin( ๐œ“) cos( ๐œ“) ๐œธ ๐Ÿ๐Ÿ + 2 cos2( ๐œ“) ๐œบ ๐Ÿ๐Ÿ โ‹ฏ
โ‹ฏ โ‹ฏ
โ‹ฏ cos( ๐œ“) ๐œธ ๐Ÿ๐Ÿ‘ + sin( ๐œ“) ๐œธ ๐Ÿ๐Ÿ‘
โ‹ฏ โˆ’ sin( ๐œ“) ๐œธ ๐Ÿ๐Ÿ‘ + cos( ๐œ“) ๐œธ ๐Ÿ๐Ÿ‘
โ‹ฏ 2 ๐œบ ๐Ÿ‘๐Ÿ‘
]
( 3.73 )
โ€ข On the contrary to what was observed for the stress tensor4
, the strain tensor (left side of equation
( 3.69 )), was changed during manipulation of the expression. Thus, it is necessary to affect the
linear strains with the coefficient ยฝ in order to get the strain vector in Voigt notation, coming:
|
|
|
๐Ÿ๐œบโ€ฒ ๐Ÿ๐Ÿ/๐Ÿ
๐Ÿ๐œบโ€ฒ ๐Ÿ๐Ÿ/๐Ÿ
๐Ÿ๐œบโ€ฒ ๐Ÿ‘๐Ÿ‘/๐Ÿ
๐œธโ€ฒ ๐Ÿ๐Ÿ‘
๐œธโ€ฒ ๐Ÿ๐Ÿ‘
๐œธโ€ฒ ๐Ÿ๐Ÿ
|
|
|
=
|
|
|
๐œบโ€ฒ ๐Ÿ
๐œบโ€ฒ ๐Ÿ
๐œบโ€ฒ ๐Ÿ‘
๐œบโ€ฒ ๐Ÿ’
๐œบโ€ฒ ๐Ÿ“
๐œบโ€ฒ ๐Ÿ”
|
|
|
= โ‹ฏ
|
|
|
๐œ€1
๐œ€2
๐œ€3
๐œ€4
๐œ€5
๐œ€6
|
|
|
[
cos2( ๐œ“) sin2( ๐œ“) 0 0 0 sin( ๐œ“) cos( ๐œ“)
sin2( ๐œ“) cos2( ๐œ“) 0 0 0 โˆ’ sin( ๐œ“) cos( ๐œ“)
0 0 1 0 0 0
0 0 0 cos( ๐œ“) โˆ’ sin( ๐œ“) 0
0 0 0 sin( ๐œ“) cos( ๐œ“) 0
โˆ’2 sin( ๐œ“) cos( ๐œ“) 2 sin( ๐œ“) cos( ๐œ“) 0 0 0 cos2( ๐œ“) โˆ’ sin2( ๐œ“) ]
( 3.74 )
Other approach, suggested and detailed in [39], could be followed to compute the transformation
matrix of the Strain vector. Compared with the previous approach, this one is more mathematically
elegant and convenient in terms of calculation effort, while the previous can be considered as the โ€œbrute
forceโ€ version of it.
โ€ข As already stated in the previous footnote, if Tensorial Strains were used, the transformation
matrix of the strain vector would be exactly the same as for the stress vector. First letโ€™s
remember the definition of the Engineering Strain vector | ๐œ€ | from equation ( 3.51 ), and let the
Tensorial Strain vector | ๐œ€ ๐‘‡๐‘’๐‘›๐‘ ๐‘œ๐‘Ÿ๐‘–๐‘Ž๐‘™ | be defined as:
4
It should be noticed that Engineering Strains were used in the Strain Tensor. If Tensorial Strains were used, which
would be equivalent to the Stress Tensor, the transformation matrix for the strains vector would be equal to the
transformation matrix for the stress vector.
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
35
| ๐œ€ | =
|
|
|
๐œ€11
๐œ€22
๐œ€33
๐›พ23
๐›พ13
๐›พ12
|
|
|
=
|
|
|
๐œ€1
๐œ€2
๐œ€3
๐œ€4
๐œ€5
๐œ€6
|
|
|
( 3.75 )
| ๐œ€ ๐‘‡๐‘’๐‘›๐‘ ๐‘œ๐‘Ÿ๐‘–๐‘Ž๐‘™ | =
|
|
|
๐œ€11
๐œ€22
๐œ€33
๐œ€23
๐œ€13
๐œ€12
|
|
|
( 3.76 )
โ€ข In a general different coordinate system, the two vectors would be redefined, and from the
premise stated in the footnote, itโ€™s possible to use directly the stress transformation matrix, made
explicit in equation ( 3.67 ), as follows.
| ๐œ€ | =
|
|
|
๐œ€โ€ฒ11
๐œ€โ€ฒ22
๐œ€โ€ฒ33
๐›พโ€ฒ23
๐›พโ€ฒ13
๐›พโ€ฒ12
|
|
|
=
|
|
|
๐œ€โ€ฒ1
๐œ€โ€ฒ2
๐œ€โ€ฒ3
๐œ€โ€ฒ4
๐œ€โ€ฒ5
๐œ€โ€ฒ6
|
|
|
( 3.77 )
| ๐œ€ ๐‘‡๐‘’๐‘›๐‘ ๐‘œ๐‘Ÿ๐‘–๐‘Ž๐‘™ | =
|
|
|
๐œ€โ€ฒ11
๐œ€โ€ฒ22
๐œ€โ€ฒ33
๐œ€โ€ฒ23
๐œ€โ€ฒ13
๐œ€โ€ฒ12
|
|
|
( 3.78 )
| ๐œ€โ€ฒ ๐‘‡๐‘’๐‘›๐‘ ๐‘œ๐‘Ÿ๐‘–๐‘Ž๐‘™ | = [ ๐‘‡ โˆ— ]| ๐œ€ ๐‘‡๐‘’๐‘›๐‘ ๐‘œ๐‘Ÿ๐‘–๐‘Ž๐‘™ | ( 3.79 )
โ€ข The two strain vectors can be related by the following two expressions as:
| ๐œ€ | = [ ๐‘… ] | ๐œ€ ๐‘‡๐‘’๐‘›๐‘ ๐‘œ๐‘Ÿ๐‘–๐‘Ž๐‘™ | ( 3.80 )
| ๐œ€ ๐‘‡๐‘’๐‘›๐‘ ๐‘œ๐‘Ÿ๐‘–๐‘Ž๐‘™ | = [ ๐‘… ]โˆ’1 | ๐œ€ | ( 3.81 )
โ€ข And the connection matrix is given by:
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
36
[ ๐‘… ] =
[
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2 ]
( 3.82 )
โ€ข It is possible to observe that the relation defined in equation ( 3.80 ) is independent of the
coordinate system used, coming simply:
| ๐œ€โ€ฒ | = [ ๐‘… ] | ๐œ€โ€ฒ ๐‘‡๐‘’๐‘›๐‘ ๐‘œ๐‘Ÿ๐‘–๐‘Ž๐‘™ | ( 3.83 )
โ€ข Introducing the equation ( 3.79 ), in the previous equation ( 3.83 ) comes:
| ๐œ€โ€ฒ | = [ ๐‘… ] [ ๐‘‡ โˆ— ] | ๐œ€ ๐‘‡๐‘’๐‘›๐‘ ๐‘œ๐‘Ÿ๐‘–๐‘Ž๐‘™ | ( 3.84 )
โ€ข And equation ( 3.81 ) in the previous equation ( 3.84 ), comes:
| ๐œ€โ€ฒ | = [ ๐‘… ] [ ๐‘‡โˆ— ] [ ๐‘… ] โˆ’1 | ๐œ€ | ( 3.85 )
โ€ข The Transformation matrix for the strain vector in Engineering Strain vector is given directly
from the previous equation ( 3.85 ), by:
[ ๐‘‡ โˆ—โˆ— ] = [ ๐‘… ] [ ๐‘‡ โˆ— ] [ ๐‘… ] โˆ’1 ( 3.86 )
[
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2 ]
โˆ™
[
cos2(๐œ“) sin2(๐œ“) 0 0 0 2 sin(๐œ“) cos(๐œ“)
sin2(๐œ“) cos2(๐œ“) 0 0 0 โˆ’2 sin(๐œ“) cos(๐œ“)
0 0 1 0 0 0
0 0 0 cos(๐œ“) โˆ’ sin(๐œ“) 0
0 0 0 sin(๐œ“) cos(๐œ“) 0
โˆ’ sin(๐œ“) cos(๐œ“) sin(๐œ“) cos(๐œ“) 0 0 0 cos2(๐œ“) โˆ’ sin2(๐œ“) ]
โˆ™
[
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2 ]
โˆ’1
( 3.87 )
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
37
[
cos2(๐œ“) sin2(๐œ“) 0 0 0 2 sin(๐œ“) cos(๐œ“)
sin2(๐œ“) cos2(๐œ“) 0 0 0 โˆ’2 sin(๐œ“) cos(๐œ“)
0 0 1 0 0 0
0 0 0 ๐Ÿ cos(๐œ“) โˆ’๐Ÿ sin(๐œ“) 0
0 0 0 ๐Ÿ sin(๐œ“) ๐Ÿ cos(๐œ“) 0
โˆ’๐Ÿ sin(๐œ“) cos(๐œ“) ๐Ÿ sin(๐œ“) cos(๐œ“) 0 0 0 ๐Ÿ(cos2(๐œ“) โˆ’ sin2(๐œ“))]
[
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1/2 0 0
0 0 0 0 1/2 0
0 0 0 0 0 1/2 ]
( 3.88 )
[
cos2(๐œ“) sin2(๐œ“) 0 0 0 sin(๐œ“) cos(๐œ“)
sin2(๐œ“) cos2(๐œ“) 0 0 0 โˆ’ sin(๐œ“) cos(๐œ“)
0 0 1 0 0 0
0 0 0 cos(๐œ“) โˆ’ sin(๐œ“) 0
0 0 0 sin(๐œ“) cos(๐œ“) 0
โˆ’2 sin(๐œ“) cos(๐œ“) 2 sin(๐œ“) cos(๐œ“) 0 0 0 cos2(๐œ“) โˆ’ sin2(๐œ“) ]
( 3.89 )
Due to the similarities of equation ( 3.89 ) and equation ( 3.67 ) it is tempting to related both
equations. This exercise is easily done by manipulating the right side of equation ( 3.67 ).
โ€ข First transposing it:
[ ๐‘‡ โˆ— ] ๐‘‡ ( 3.90 )
[
cos2( ๐œ“) sin2( ๐œ“) 0 0 0 2 sin( ๐œ“) cos( ๐œ“)
sin2( ๐œ“) cos2( ๐œ“) 0 0 0 โˆ’2 sin( ๐œ“) cos( ๐œ“)
0 0 1 0 0 0
0 0 0 cos( ๐œ“) โˆ’ sin( ๐œ“) 0
0 0 0 sin( ๐œ“) cos( ๐œ“) 0
โˆ’ sin( ๐œ“) cos( ๐œ“) sin( ๐œ“) cos( ๐œ“) 0 0 0 cos2( ๐œ“) โˆ’ sin2( ๐œ“) ]
๐‘‡
( 3.91 )
[
cos2
(๐œ“) sin2( ๐œ“) 0 0 0 โˆ’ sin( ๐œ“) cos( ๐œ“)
sin2( ๐œ“) cos2
(๐œ“) 0 0 0 sin( ๐œ“) cos( ๐œ“)
0 0 1 0 0 0
0 0 0 cos( ๐œ“) sin( ๐œ“) 0
0 0 0 โˆ’ sin( ๐œ“) cos( ๐œ“) 0
2 sin( ๐œ“) cos( ๐œ“) โˆ’2 sin( ๐œ“) cos( ๐œ“) 0 0 0 cos2
(๐œ“) โˆ’ sin2( ๐œ“) ]
( 3.92 )
โ€ข And then inverting it:
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
38
( [ ๐‘‡ โˆ— ] ๐‘‡ ) โˆ’1 ( 3.93 )
[
cos2( ๐œ“) sin2( ๐œ“) 0 0 0 โˆ’sin( ๐œ“) cos( ๐œ“)
sin2( ๐œ“) cos2( ๐œ“) 0 0 0 sin( ๐œ“) cos( ๐œ“)
0 0 1 0 0 0
0 0 0 cos( ๐œ“) sin( ๐œ“) 0
0 0 0 โˆ’ sin( ๐œ“) cos( ๐œ“) 0
2 sin( ๐œ“) cos( ๐œ“) โˆ’2 sin( ๐œ“) cos( ๐œ“) 0 0 0 cos2( ๐œ“) โˆ’ sin2( ๐œ“) ]
โˆ’1
( 3.94 )
[
cos2( ๐œ“) sin2( ๐œ“) 0 0 0 sin( ๐œ“) cos( ๐œ“)
sin2( ๐œ“) cos2( ๐œ“) 0 0 0 โˆ’ sin( ๐œ“) cos( ๐œ“)
0 0 1 0 0 0
0 0 0 cos( ๐œ“) โˆ’ sin( ๐œ“) 0
0 0 0 sin( ๐œ“) cos( ๐œ“) 0
โˆ’2 sin( ๐œ“) cos( ๐œ“) 2 sin( ๐œ“) cos( ๐œ“) 0 0 0 cos2( ๐œ“) โˆ’ sin2( ๐œ“) ]
( 3.95 )
When comparing equation ( 3.89 ) with the previous equation ( 3.95 ) and according to the
matrix properties [31], it is proved the following relation:
[ ๐‘‡ โˆ—โˆ— ] = [ ๐‘… ] [ ๐‘‡ โˆ— ] [ ๐‘… ] โˆ’1
= ( [ ๐‘‡ โˆ— ] ๐‘‡ )โˆ’1 ( 3.96 )
[ ๐‘‡ โˆ—โˆ— ] = [ ๐‘… ] [ ๐‘‡ โˆ— ] [ ๐‘… ] โˆ’1
= ( [ ๐‘‡ โˆ— ]โˆ’1 ) ๐‘‡ ( 3.97 )
[ ๐‘‡ โˆ—โˆ— ] = [ ๐‘… ] [ ๐‘‡ โˆ— ] [ ๐‘… ] โˆ’1
= [ ๐‘‡ โˆ— ]โˆ’๐‘‡ ( 3.98 )
Finally, equation ( 3.58 ) can be written using the modified transformation matrix [35] and
making explicit the computational formula for the off-axes modified transformation matrix
comes respectively:
| ๐œ€โ€ฒ | = [ ๐‘‡ โˆ—โˆ— ] | ๐œ€ | ( 3.99 )
[ ๐‘‡โˆ—โˆ— ] =
[
cos2
(๐œ“) sin2( ๐œ“) 0 0 0 sin( ๐œ“) cos( ๐œ“)
sin2( ๐œ“) cos2
(๐œ“) 0 0 0 โˆ’ sin( ๐œ“) cos( ๐œ“)
0 0 1 0 0 0
0 0 0 cos( ๐œ“) โˆ’ sin( ๐œ“) 0
0 0 0 sin( ๐œ“) cos( ๐œ“) 0
โˆ’2 sin( ๐œ“) cos( ๐œ“) 2 sin( ๐œ“) cos( ๐œ“) 0 0 0 cos2
(๐œ“) โˆ’ sin2( ๐œ“) ]
( 3.100 )
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
39
For the Transformation Matrix of the Stiffness Matrix [ ๐‘ป โˆ—โˆ—โˆ— ]
โ€ข In order to compute the transformation matrix for the Stiffness Matrix, it will be used the
previous results already achieved for the stress and strain coordinates transformation, and
summarized in equations ( 3.67 ) and ( 3.100 ) respectively. From the simple stress-strain
relation in the original coordinate system comes:
| ๐œŽ | = [ ๐ถ ] | ๐œ€ | ( 3.101 )
Manipulating both sides in order to get the transformation of the stress vector in the left side,
but without changing the mathematical equality, comes
[ ๐‘‡โˆ—] | ๐œŽ | = [ ๐‘‡โˆ— ] [ ๐ถ ] | ๐œ€ | ( 3.102 )
Introducing a mathematical artifice operation โ€“ equivalent to the Identity matrix that do not
change the mathematical equality โ€“ in order to virtually get the transformed strain vector in the
right side, comes
[ ๐‘‡โˆ— ] | ๐œŽ | = [ ๐‘‡โˆ— ] [ ๐ถ ] [ ๐‘‡โˆ—โˆ— ]โˆ’1 [ ๐‘‡โˆ—โˆ— ] | ๐œ€ | ( 3.103 )
Introducing equation ( 3.66 ) and equation ( 3.99 ) in the previous equation ( 3.103 ), comes:
| ๐œŽโ€ฒ | = [ ๐‘‡โˆ— ] [ ๐ถ ] [ ๐‘‡โˆ—โˆ— ]โˆ’1 | ๐œ€โ€ฒ | ( 3.104 )
Introducing equation ( 3.98 ) in the previous equation ( 3.104 ), comes:
| ๐œŽโ€ฒ | = [ ๐‘‡โˆ— ] [ ๐ถ ] ( [ ๐‘‡โˆ— ]โˆ’๐‘‡ )โˆ’1 | ๐œ€โ€ฒ | ( 3.105 )
| ๐œŽโ€ฒ | = [ ๐‘‡โˆ— ] [ ๐ถ ] [ ๐‘‡โˆ— ] ๐‘‡ | ๐œ€โ€ฒ | ( 3.106 )
From the previous equation ( 3.106 ), it is possible to observe that the Transformed Stiffness
Matrix must be equal to:
[ ๐ถโ€ฒ ] = [ ๐‘‡โˆ— ] [ ๐ถ ] [ ๐‘‡โˆ—โˆ— ]โˆ’1 ( 3.107 )
[ ๐ถโ€ฒ ] = [ ๐‘‡โˆ— ] [ ๐ถ ] [ ๐‘‡โˆ— ] ๐‘‡ ( 3.108 )
โ€ข A similar theoretical exercise could have been done for the compliance matrix as summarized
below:
| ๐œ€ | = [ ๐‘† ] | ๐œŽ | ( 3.109 )
[ ๐‘‡ โˆ—โˆ—] | ๐œ€ | = [ ๐‘‡ โˆ—โˆ— ] [ ๐ถ ] | ๐œŽ | ( 3.110 )
[ ๐‘‡ โˆ—โˆ—] | ๐œ€ | = [ ๐‘‡ โˆ—โˆ— ] [ ๐‘† ] [ ๐‘‡ โˆ— ]โˆ’1 [ ๐‘‡ โˆ— ] | ๐œŽ | ( 3.111 )
| ๐œ€โ€ฒ | = [ ๐‘‡ โˆ—โˆ— ] [ ๐‘† ] [ ๐‘‡ โˆ— ]โˆ’1 | ๐œŽโ€ฒ | ( 3.112 )
[ ๐‘†โ€ฒ] = [ ๐‘‡ โˆ—โˆ— ] [ ๐‘† ] [ ๐‘‡ โˆ— ]โˆ’1 ( 3.113 )
[ ๐‘†โ€ฒ] = [ ๐‘‡ โˆ— ]โˆ’๐‘‡ [ ๐‘† ] [ ๐‘‡ โˆ— ]โˆ’1 ( 3.114 )
Manipulating the previous equation ( 3.114 ), comes:
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
40
[ ๐‘†โ€ฒ] = [ ๐‘‡ โˆ— ]โˆ’๐‘‡ [ ๐‘† ] [ ๐‘‡ โˆ— ]โˆ’1
( 3.115 )
([ ๐‘†โ€ฒ])โˆ’1
= ([ ๐‘‡ โˆ— ]โˆ’๐‘‡ [ ๐‘† ] [ ๐‘‡ โˆ— ]โˆ’1)โˆ’1 ( 3.116 )
[ ๐ถโ€ฒ ] = ([ ๐‘‡ โˆ— ]โˆ’1)โˆ’1 [ ๐‘† ]โˆ’1 ([ ๐‘‡ โˆ— ]โˆ’๐‘‡)โˆ’1 ( 3.117 )
[ ๐ถโ€ฒ ] = [ ๐‘‡ โˆ— ] [ ๐ถ ] [ ๐‘‡ โˆ— ] ๐‘‡ ( 3.118 )
Comparing equations ( 3.118 ) and ( 3.108 ), it is possible to observe that:
[ ๐‘‡โˆ—โˆ—โˆ— ] = [๐‘‡โˆ—โˆ—โˆ—โˆ—]โˆ’1 ( 3.119 )
โ€ข For the sake of brevity and notation simplification, the following abbreviations will be made:
๐‘ = cos( ๐œ“) ; ๐‘2
= cos2( ๐œ“) ( 3.120 )
๐‘  = sin( ๐œ“) ; ๐‘ 2
= sin2( ๐œ“) ( 3.121 )
๐‘ ๐‘ = sin( ๐œ“) cos( ๐œ“) ( 3.122 )
The demonstration of the transformation matrix of the Stiffness matrix for the generic 3D case
is was done in the next pages throughout equation ( 3.125 ), ( 3.126 ), and ( 3.127 ). The final
transformation matrix is given in equation ( 3.128). The constitutive equation for the stress-strain
relation in the global coordinates is finally given by:
| ๐œŽโ€ฒ | = [ ๐ถโ€ฒ] | ๐œ€โ€ฒ | ( 3.123 )
A final comment should be done, regarding the misguiding meaning of the transformation
matrix in technical literature of different fields (e.g. Solid Mechanics, Computer Engineering, Web
Design, etc.).
โ€ข In solid mechanics and in the context of this report, the transformation matrix assumes that the
mathematical entities are static, while the coordinate system is changed, i.e. passive
transformation. In other words, the transformation matrix always refers to a matrix acting upon
a coordinate system, hence the designation of passive transformation;
โ€ข Whereas this designation is also misused (without proper specification or a callout note) to refer
to the geometric transformation matrices of vectors and matrices (e.g. rotation, stretching,
squeezing, shearing, reflection, etc.). The geometric transformation matrices, usually designated
also as transformation matrices, change the entities while the coordinate system remains the
same, hence the designation of active transformation.
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
41
Computing equation ( 3.108 ) comes:
[ ๐ถโ€ฒ ] = [ ๐‘‡โˆ— ] [ ๐ถ ] [ ๐‘‡โˆ— ] ๐‘‡ ( 3.124 )
[
๐ถ11 ๐ถ12 ๐ถ13 ๐ถ14 ๐ถ15 ๐ถ16
๐ถ21 ๐ถ22 ๐ถ23 ๐ถ24 ๐ถ25 ๐ถ26
๐ถ31 ๐ถ32 ๐ถ33 ๐ถ34 ๐ถ35 ๐ถ36
๐ถ41 ๐ถ42 ๐ถ43 ๐ถ44 ๐ถ45 ๐ถ46
๐ถ51 ๐ถ52 ๐ถ53 ๐ถ54 ๐ถ55 ๐ถ56
๐ถ61 ๐ถ62 ๐ถ63 ๐ถ64 ๐ถ65 ๐ถ66 ]
=
[
๐‘2
๐‘ 2
0 0 0 2๐‘ ๐‘
๐‘ 2
๐‘2
0 0 0 โˆ’2๐‘ ๐‘
0 0 1 0 0 0
0 0 0 ๐‘ โˆ’๐‘  0
0 0 0 ๐‘  ๐‘ 0
โˆ’๐‘ ๐‘ ๐‘ ๐‘ 0 0 0 ๐‘2
โˆ’ ๐‘ 2 ] [
๐ถ11 ๐ถ12 ๐ถ13 ๐ถ14 ๐ถ15 ๐ถ16
๐ถ21 ๐ถ22 ๐ถ23 ๐ถ24 ๐ถ25 ๐ถ26
๐ถ31 ๐ถ32 ๐ถ33 ๐ถ34 ๐ถ35 ๐ถ36
๐ถ41 ๐ถ42 ๐ถ43 ๐ถ44 ๐ถ45 ๐ถ46
๐ถ51 ๐ถ52 ๐ถ53 ๐ถ54 ๐ถ55 ๐ถ56
๐ถ61 ๐ถ62 ๐ถ63 ๐ถ64 ๐ถ65 ๐ถ66 ] [
๐‘2
๐‘ 2
0 0 0 โˆ’๐‘ ๐‘
๐‘ 2
๐‘2
0 0 0 ๐‘ ๐‘
0 0 1 0 0 0
0 0 0 ๐‘ ๐‘  0
0 0 0 โˆ’๐‘  ๐‘ 0
2๐‘ ๐‘ โˆ’2๐‘ ๐‘ 0 0 0 ๐‘2
โˆ’ ๐‘ 2 ]
( 3.125 )
[
๐‘2
๐ถ11 + ๐‘ 2
๐ถ21 + 2๐‘ ๐‘ ๐ถ61 ๐‘2
๐ถ12 + ๐‘ 2
๐ถ22 + 2๐‘ ๐‘ ๐ถ62
๐‘ 2
๐ถ11 + ๐‘2
๐ถ21 โˆ’ 2๐‘ ๐‘ ๐ถ61 ๐‘ 2
๐ถ12 + ๐‘2
๐ถ22 โˆ’ 2๐‘ ๐‘ ๐ถ62
๐ถ31 ๐ถ32
๐‘ ๐ถ41 โˆ’ ๐‘  ๐ถ51 ๐‘ ๐ถ42 โˆ’ ๐‘  ๐ถ52
๐‘  ๐ถ41 + ๐‘ ๐ถ51 ๐‘  ๐ถ42 + ๐‘ ๐ถ52
โˆ’๐‘ ๐‘ ๐ถ11 + ๐‘ ๐‘ ๐ถ21 + ( ๐‘2
โˆ’ ๐‘ 2) ๐ถ61 โˆ’๐‘ ๐‘ ๐ถ12 + ๐‘ ๐‘ ๐ถ22 + ( ๐‘2
โˆ’ ๐‘ 2) ๐ถ62
๐‘2
๐ถ13 + ๐‘ 2
๐ถ23 + 2๐‘ ๐‘ ๐ถ63 ๐‘2
๐ถ14 + ๐‘ 2
๐ถ24 + 2๐‘ ๐‘ ๐ถ64 โ‹ฏ
๐‘ 2
๐ถ13 + ๐‘2
๐ถ23 โˆ’ 2๐‘ ๐‘ ๐ถ63 ๐‘ 2
๐ถ14 + ๐‘2
๐ถ24 โˆ’ 2๐‘ ๐‘ ๐ถ64 โ‹ฏ
๐ถ33 ๐ถ34 โ‹ฏ
๐‘ ๐ถ43 โˆ’ ๐‘  ๐ถ53 ๐‘ ๐ถ44 โˆ’ ๐‘  ๐ถ54 โ‹ฏ
๐‘  ๐ถ43 + ๐‘ ๐ถ53 ๐‘  ๐ถ44 + ๐‘ ๐ถ54 โ‹ฏ
โˆ’๐‘ ๐‘ ๐ถ13 + ๐‘ ๐‘ ๐ถ23 + ( ๐‘2
โˆ’ ๐‘ 2) ๐ถ63 โˆ’๐‘ ๐‘ ๐ถ14 + ๐‘ ๐‘ ๐ถ24 + ( ๐‘2
โˆ’ ๐‘ 2) ๐ถ64 โ‹ฏ
โ‹ฏ ๐‘2
๐ถ15 + ๐‘ 2
๐ถ25 + 2๐‘ ๐‘ ๐ถ65 ๐‘2
๐ถ16 + ๐‘ 2
๐ถ26 + 2๐‘ ๐‘ ๐ถ66
โ‹ฏ ๐‘ 2
๐ถ15 + ๐‘2
๐ถ25 โˆ’ 2๐‘ ๐‘ ๐ถ65 ๐‘ 2
๐ถ16 + ๐‘2
๐ถ26 โˆ’ 2๐‘ ๐‘ ๐ถ66
โ‹ฏ ๐ถ35 ๐ถ36
โ‹ฏ ๐‘ ๐ถ45 โˆ’ ๐‘  ๐ถ55 ๐‘ ๐ถ46 โˆ’ ๐‘  ๐ถ56
โ‹ฏ ๐‘  ๐ถ45 + ๐‘ ๐ถ55 ๐‘  ๐ถ46 + ๐‘ ๐ถ56
โ‹ฏ โˆ’๐‘ ๐‘ ๐ถ15 + ๐‘ ๐‘ ๐ถ25 + ( ๐‘2
โˆ’ ๐‘ 2) ๐ถ65 โˆ’๐‘ ๐‘ ๐ถ16 + ๐‘ ๐‘ ๐ถ26 + ( ๐‘2
โˆ’ ๐‘ 2) ๐ถ66]
โˆ™
[
๐‘2
๐‘ 2
0 0 0 โˆ’๐‘ ๐‘
๐‘ 2
๐‘2
0 0 0 ๐‘ ๐‘
0 0 1 0 0 0
0 0 0 ๐‘ ๐‘  0
0 0 0 โˆ’๐‘  ๐‘ 0
2๐‘ ๐‘ โˆ’2๐‘ ๐‘ 0 0 0 ๐‘2
โˆ’ ๐‘ 2 ]
( 3.126 )
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
42
[
๐‘2( ๐‘2
๐ถ11 + ๐‘ 2
๐ถ21 + 2๐‘ ๐‘ ๐ถ61) + ๐‘ 2( ๐‘2
๐ถ12 + ๐‘ 2
๐ถ22 + 2๐‘ ๐‘ ๐ถ62) + 2๐‘ ๐‘ ( ๐‘2
๐ถ16 + ๐‘ 2
๐ถ26 + 2๐‘ ๐‘ ๐ถ66) โ‹ฏ
๐‘2( ๐‘ 2
๐ถ11 + ๐‘2
๐ถ21 โˆ’ 2๐‘ ๐‘ ๐ถ61) + ๐‘ 2( ๐‘ 2
๐ถ12 + ๐‘2
๐ถ22 โˆ’ 2๐‘ ๐‘ ๐ถ62) + 2๐‘ ๐‘ ( ๐‘ 2
๐ถ16 + ๐‘2
๐ถ26 โˆ’ 2๐‘ ๐‘ ๐ถ66) โ‹ฏ
๐‘2( ๐ถ31) + ๐‘ 2( ๐ถ32) + 2๐‘ ๐‘ ( ๐ถ36) โ‹ฏ
๐‘2( ๐‘ ๐ถ41 โˆ’ ๐‘  ๐ถ51) + ๐‘ 2( ๐‘ ๐ถ42 โˆ’ ๐‘  ๐ถ52) + 2๐‘ ๐‘ ( ๐‘ ๐ถ46 โˆ’ ๐‘  ๐ถ56) โ‹ฏ
๐‘2( ๐‘  ๐ถ41 + ๐‘ ๐ถ51) + ๐‘ 2( ๐‘  ๐ถ42 + ๐‘ ๐ถ52) + 2๐‘ ๐‘ ( ๐‘  ๐ถ46 + ๐‘ ๐ถ56) โ‹ฏ
๐‘2(โˆ’๐‘ ๐‘ ๐ถ11 + ๐‘ ๐‘ ๐ถ21 + ( ๐‘2
โˆ’ ๐‘ 2) ๐ถ61) + ๐‘ 2(โˆ’๐‘ ๐‘ ๐ถ12 + ๐‘ ๐‘ ๐ถ22 + ( ๐‘2
โˆ’ ๐‘ 2) ๐ถ62) + 2๐‘ ๐‘ (โˆ’๐‘ ๐‘ ๐ถ16 + ๐‘ ๐‘ ๐ถ26 + ( ๐‘2
โˆ’ ๐‘ 2) ๐ถ66) โ‹ฏ
โ‹ฏ ๐‘ 2( ๐‘2
๐ถ11 + ๐‘ 2
๐ถ21 + 2๐‘ ๐‘ ๐ถ61) + ๐‘2( ๐‘2
๐ถ12 + ๐‘ 2
๐ถ22 + 2๐‘ ๐‘ ๐ถ62) โˆ’ 2๐‘ ๐‘ ( ๐‘2
๐ถ14 + ๐‘ 2
๐ถ24 + 2๐‘ ๐‘ ๐ถ66) โ‹ฏ
โ‹ฏ ๐‘ 2( ๐‘ 2
๐ถ11 + ๐‘2
๐ถ21 โˆ’ 2๐‘ ๐‘ ๐ถ61) + ๐‘2( ๐‘ 2
๐ถ12 + ๐‘2
๐ถ22 โˆ’ 2๐‘ ๐‘ ๐ถ62) โˆ’ 2๐‘ ๐‘ ( ๐‘ 2
๐ถ14 + ๐‘2
๐ถ24 โˆ’ 2๐‘ ๐‘ ๐ถ66) โ‹ฏ
โ‹ฏ ๐‘ 2( ๐ถ31) + ๐‘2( ๐ถ32) โˆ’ 2๐‘ ๐‘ ( ๐ถ36) โ‹ฏ
โ‹ฏ ๐‘ 2( ๐‘ ๐ถ41 โˆ’ ๐‘  ๐ถ51) + ๐‘2( ๐‘ ๐ถ42 โˆ’ ๐‘  ๐ถ52) โˆ’ 2๐‘ ๐‘ ( ๐‘ ๐ถ46 โˆ’ ๐‘  ๐ถ56) โ‹ฏ
โ‹ฏ ๐‘ 2( ๐‘  ๐ถ41 + ๐‘ ๐ถ51) + ๐‘2( ๐‘  ๐ถ42 + ๐‘ ๐ถ52) โˆ’ 2๐‘ ๐‘ ( ๐‘  ๐ถ46 + ๐‘ ๐ถ56) โ‹ฏ
โ‹ฏ ๐‘ 2(โˆ’๐‘ ๐‘ ๐ถ11 + ๐‘ ๐‘ ๐ถ21 + ( ๐‘2
โˆ’ ๐‘ 2) ๐ถ61) + ๐‘2(โˆ’๐‘ ๐‘ ๐ถ12 + ๐‘ ๐‘ ๐ถ22 + ( ๐‘2
โˆ’ ๐‘ 2) ๐ถ62) โˆ’ 2๐‘ ๐‘ (โˆ’๐‘ ๐‘ ๐ถ16 + ๐‘ ๐‘ ๐ถ26 + ( ๐‘2
โˆ’ ๐‘ 2) ๐ถ66) โ‹ฏ
โ‹ฏ ๐‘2
๐ถ13 + ๐‘ 2
๐ถ23 + 2๐‘ ๐‘ ๐ถ63 โ‹ฏ
โ‹ฏ ๐‘ 2
๐ถ13 + ๐‘2
๐ถ23 โˆ’ 2๐‘ ๐‘ ๐ถ63 โ‹ฏ
โ‹ฏ ๐ถ33 โ‹ฏ
โ‹ฏ ๐‘ ๐ถ43 โˆ’ ๐‘  ๐ถ53 โ‹ฏ
โ‹ฏ ๐‘  ๐ถ43 + ๐‘ ๐ถ53 โ‹ฏ
โ‹ฏ โˆ’๐‘ ๐‘ ๐ถ13 + ๐‘ ๐‘ ๐ถ23 + ( ๐‘2
โˆ’ ๐‘ 2) ๐ถ63 โ‹ฏ
โ‹ฏ ๐‘ ( ๐‘2
๐ถ14 + ๐‘ 2
๐ถ24 + 2๐‘ ๐‘ ๐ถ64) โˆ’ ๐‘  ( ๐‘2
๐ถ15 + ๐‘ 2
๐ถ25 + 2๐‘ ๐‘ ๐ถ65) โ‹ฏ
โ‹ฏ ๐‘ ( ๐‘ 2
๐ถ14 + ๐‘2
๐ถ24 โˆ’ 2๐‘ ๐‘ ๐ถ64) โˆ’ ๐‘  ( ๐‘ 2
๐ถ15 + ๐‘2
๐ถ25 โˆ’ 2๐‘ ๐‘ ๐ถ65) โ‹ฏ
โ‹ฏ ๐‘ ( ๐ถ34) โˆ’ ๐‘  ( ๐ถ35) โ‹ฏ
โ‹ฏ ๐‘ ( ๐‘ ๐ถ54 โˆ’ ๐‘  ๐ถ64) โˆ’ ๐‘  ( ๐‘ ๐ถ55 โˆ’ ๐‘  ๐ถ65) โ‹ฏ
โ‹ฏ ๐‘ ( ๐‘  ๐ถ54 + ๐‘ ๐ถ64) โˆ’ ๐‘  ( ๐‘  ๐ถ55 + ๐‘ ๐ถ65) โ‹ฏ
โ‹ฏ ๐‘ (โˆ’๐‘ ๐‘ ๐ถ14 + ๐‘ ๐‘ ๐ถ24 + ( ๐‘2
โˆ’ ๐‘ 2) ๐ถ64) โˆ’ ๐‘  (โˆ’๐‘ ๐‘ ๐ถ15 + ๐‘ ๐‘ ๐ถ25 + ( ๐‘2
โˆ’ ๐‘ 2) ๐ถ65) โ‹ฏ
( 3.127 )
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
43
โ‹ฏ ๐‘  ( ๐‘2
๐ถ14 + ๐‘ 2
๐ถ24 + 2๐‘ ๐‘ ๐ถ64) + ๐‘ ( ๐‘2
๐ถ15 + ๐‘ 2
๐ถ25 + 2๐‘ ๐‘ ๐ถ65)
โ‹ฏ ๐‘  ( ๐‘ 2
๐ถ14 + ๐‘2
๐ถ24 โˆ’ 2๐‘ ๐‘ ๐ถ64) + ๐‘ ( ๐‘ 2
๐ถ15 + ๐‘2
๐ถ25 โˆ’ 2๐‘ ๐‘ ๐ถ65)
โ‹ฏ ๐‘  ( ๐ถ34) + ๐‘ ( ๐ถ35)
โ‹ฏ ๐‘  ( ๐‘ ๐ถ44 โˆ’ ๐‘  ๐ถ54) + ๐‘ ( ๐‘ ๐ถ45 โˆ’ ๐‘  ๐ถ55)
โ‹ฏ ๐‘  ( ๐‘  ๐ถ44 + ๐‘ ๐ถ54) + ๐‘ ( ๐‘  ๐ถ45 + ๐‘ ๐ถ55)
โ‹ฏ ๐‘  (โˆ’๐‘ ๐‘ ๐ถ14 + ๐‘ ๐‘ ๐ถ24 + ( ๐‘2
โˆ’ ๐‘ 2) ๐ถ64) + ๐‘ (โˆ’๐‘ ๐‘ ๐ถ15 + ๐‘ ๐‘ ๐ถ25 + ( ๐‘2
โˆ’ ๐‘ 2) ๐ถ65)]
โ‹ฏ โˆ’๐‘ ๐‘( ๐‘2
๐ถ11 + ๐‘ 2
๐ถ21 + 2๐‘ ๐‘ ๐ถ61) + ๐‘ ๐‘ ( ๐‘2
๐ถ12 + ๐‘ 2
๐ถ22 + 2๐‘ ๐‘ ๐ถ62) + ( ๐‘2
โˆ’ ๐‘ 2)( ๐‘2
๐ถ16 + ๐‘ 2
๐ถ26 + 2๐‘ ๐‘ ๐ถ66) โ‹ฏ
โ‹ฏ โˆ’๐‘ ๐‘( ๐‘ 2
๐ถ11 + ๐‘2
๐ถ21 โˆ’ 2๐‘ ๐‘ ๐ถ61) + ๐‘ ๐‘( ๐‘ 2
๐ถ12 + ๐‘2
๐ถ22 โˆ’ 2๐‘ ๐‘ ๐ถ62) + ( ๐‘2
โˆ’ ๐‘ 2)( ๐‘ 2
๐ถ16 + ๐‘2
๐ถ26 โˆ’ 2๐‘ ๐‘ ๐ถ66) โ‹ฏ
โ‹ฏ โˆ’๐‘ ๐‘( ๐ถ31) + ๐‘ ๐‘( ๐ถ32) + ( ๐‘2
โˆ’ ๐‘ 2)( ๐ถ36) โ‹ฏ
โ‹ฏ โˆ’๐‘ ๐‘( ๐‘ ๐ถ41 โˆ’ ๐‘  ๐ถ51) + ๐‘ ๐‘( ๐‘ ๐ถ42 โˆ’ ๐‘  ๐ถ52) + ( ๐‘2
โˆ’ ๐‘ 2)( ๐‘ ๐ถ46 โˆ’ ๐‘  ๐ถ56) โ‹ฏ
โ‹ฏ โˆ’๐‘ ๐‘( ๐‘  ๐ถ41 + ๐‘ ๐ถ51) + ๐‘ ๐‘( ๐‘  ๐ถ42 + ๐‘ ๐ถ52) + ( ๐‘2
โˆ’ ๐‘ 2)( ๐‘  ๐ถ46 + ๐‘ ๐ถ56) โ‹ฏ
โ‹ฏ โˆ’๐‘ ๐‘(โˆ’๐‘ ๐‘ ๐ถ11 + ๐‘ ๐‘ ๐ถ21 + ( ๐‘2
โˆ’ ๐‘ 2) ๐ถ61) + ๐‘ ๐‘(โˆ’๐‘ ๐‘ ๐ถ12 + ๐‘ ๐‘ ๐ถ22 + ( ๐‘2
โˆ’ ๐‘ 2) ๐ถ62) + ( ๐‘2
โˆ’ ๐‘ 2)(โˆ’๐‘ ๐‘ ๐ถ16 + ๐‘ ๐‘ ๐ถ26 + ( ๐‘2
โˆ’ ๐‘ 2) ๐ถ66) โ‹ฏ
Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems
44
|
|
|
|
|
|
|
| ๐ถฬ…11
๐ถฬ…22
๐ถฬ…33
๐ถฬ…44
๐ถฬ…55
๐ถฬ…66
๐ถฬ…12
๐ถฬ…13
๐ถฬ…14
๐ถฬ…15
๐ถฬ…16
๐ถฬ…23
๐ถฬ…24
๐ถฬ…25
๐ถฬ…26
๐ถฬ…34
๐ถฬ…35
๐ถฬ…36
๐ถฬ…45
๐ถฬ…46
๐ถฬ…56
|
|
|
|
|
|
|
|
=
[
11 22 33 44 55 66 12
11 ๐‘4
๐‘ 4
0 0 0 4๐‘ 2
๐‘2
2๐‘ 2
๐‘2
โ‹ฏ
22 ๐‘ 4
๐‘4
0 0 0 4๐‘ 2
๐‘2
2๐‘ 2
๐‘2
โ‹ฏ
33 0 0 1 0 0 0 0
44 0 0 0 ๐‘2
๐‘ 2
0 0 โ‹ฏ
55 0 0 0 ๐‘ 2
๐‘2
0 0 โ‹ฏ
66 ๐‘ 2
๐‘2
๐‘ 2
๐‘2
0 0 0 ( ๐‘2
โˆ’ ๐‘ 2)2
โˆ’2๐‘ 2
๐‘2
โ‹ฏ
12 ๐‘ 2
๐‘2
๐‘ 2
๐‘2
0 0 0 โˆ’4๐‘ 2
๐‘2
๐‘4
+ ๐‘ 4
โ‹ฏ
13 0 0 0 0 0 0 0 โ‹ฏ
14 0 0 0 0 0 0 0 โ‹ฏ
15 0 0 0 0 0 0 0 โ‹ฏ
16 โˆ’๐‘ ๐‘3
๐‘ 3
๐‘ 0 0 0 2๐‘ ๐‘(๐‘2
โˆ’ ๐‘ 2
) ๐‘ ๐‘3
โˆ’ ๐‘ 3
๐‘ โ‹ฏ
23 0 0 0 0 0 0 0 โ‹ฏ
24 0 0 0 0 0 0 0 โ‹ฏ
25 0 0 0 0 0 0 0 โ‹ฏ
26 โˆ’๐‘ 3
๐‘ ๐‘ ๐‘3
0 0 0 โˆ’2๐‘ ๐‘( ๐‘2
โˆ’ ๐‘ 2) ๐‘ 3
๐‘ โˆ’ ๐‘ ๐‘3
โ‹ฏ
34 0 0 0 0 0 0 0 โ‹ฏ
35 0 0 0 0 0 0 0 โ‹ฏ
36 0 0 0 0 0 0 0 โ‹ฏ
45 0 0 0 ๐‘ ๐‘ โˆ’๐‘ ๐‘ 0 0 โ‹ฏ
46 0 0 0 0 0 0 0 โ‹ฏ
56 0 0 0 0 0 0 0 โ‹ฏ
13 14 15 16 23
โ‹ฏ 11 2๐‘ ๐‘3
0 0 4๐‘ ๐‘3
2๐‘ 3
๐‘ 11 โ‹ฏ
โ‹ฏ 22 0 0 0 โˆ’4๐‘ 3
๐‘ 0 22 โ‹ฏ
โ‹ฏ 33 0 0 0 0 0 33 โ‹ฏ
โ‹ฏ 44 0 0 0 0 0 44 โ‹ฏ
โ‹ฏ 55 0 0 0 0 0 55 โ‹ฏ
โ‹ฏ 66 0 0 0 โˆ’2๐‘ ๐‘( ๐‘2
โˆ’ ๐‘ 2) 0 66 โ‹ฏ
โ‹ฏ 12 0 0 0 2๐‘ 3
๐‘ + 2๐‘ ๐‘3
0 12 โ‹ฏ
โ‹ฏ 13 ๐‘2
0 0 0 ๐‘ 2
13 โ‹ฏ
โ‹ฏ 14 ๐‘ ๐‘3
๐‘3
0 0 ๐‘ 3
14 โ‹ฏ
โ‹ฏ 15 ๐‘3
๐‘ ๐‘2
0 0 ๐‘ 2
๐‘ 15 โ‹ฏ
โ‹ฏ 16 0 0 0 ๐‘2( ๐‘2
โˆ’ ๐‘ 2) โˆ’ 2๐‘ 2
๐‘2
0 16 โ‹ฏ
โ‹ฏ 23 ๐‘ 2
0 0 0 ๐‘2
23 โ‹ฏ
โ‹ฏ 24 0 ๐‘ 2
๐‘ ๐‘ 3
0 0 24 โ‹ฏ
โ‹ฏ 25 0 ๐‘ 3
๐‘ 2
๐‘ 0 0 25 โ‹ฏ
โ‹ฏ 26 0 0 0 2๐‘ 2
๐‘2
+ ๐‘ 2( ๐‘2
โˆ’ ๐‘ 2) 0 26 โ‹ฏ
โ‹ฏ 34 0 0 0 0 0 34 โ‹ฏ
โ‹ฏ 35 0 0 0 0 0 35 โ‹ฏ
โ‹ฏ 36 โˆ’๐‘ ๐‘ 0 0 0 ๐‘ ๐‘ 36 โ‹ฏ
โ‹ฏ 45 0 0 0 0 0 45 โ‹ฏ
โ‹ฏ 46 0 โˆ’๐‘ ๐‘2
๐‘ 2
๐‘ 0 0 46 โ‹ฏ
โ‹ฏ 56 0 โˆ’๐‘ 2
๐‘ โˆ’๐‘ ๐‘2
0 0 56 โ‹ฏ
( 3.128)
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach
Composite systems - Trace approach

More Related Content

Similar to Composite systems - Trace approach

Names_BJ_T_2016
Names_BJ_T_2016Names_BJ_T_2016
Names_BJ_T_2016
Ben Names
ย 
Thesis_JR
Thesis_JRThesis_JR
Thesis_JR
Jeremy Rolph
ย 
Analysis of Ferrocement and Textile Reinforced Concrete for Shell Structures
Analysis of Ferrocement and Textile Reinforced Concrete for Shell StructuresAnalysis of Ferrocement and Textile Reinforced Concrete for Shell Structures
Analysis of Ferrocement and Textile Reinforced Concrete for Shell Structures
Mile Bezbradica
ย 
11001259 Dissertation
11001259 Dissertation11001259 Dissertation
11001259 Dissertation
Kudzai Mutasa
ย 
Quantum Variables in Finance and Neuroscience Lecture Slides
Quantum Variables in Finance and Neuroscience Lecture SlidesQuantum Variables in Finance and Neuroscience Lecture Slides
Quantum Variables in Finance and Neuroscience Lecture Slides
Lester Ingber
ย 
Erdogan Madenci, Erkan Oterkus (auth.) - Peridynamic Theory and Its Applicati...
Erdogan Madenci, Erkan Oterkus (auth.) - Peridynamic Theory and Its Applicati...Erdogan Madenci, Erkan Oterkus (auth.) - Peridynamic Theory and Its Applicati...
Erdogan Madenci, Erkan Oterkus (auth.) - Peridynamic Theory and Its Applicati...
AnshYadav538885
ย 
MSc_thesis_OlegZero
MSc_thesis_OlegZeroMSc_thesis_OlegZero
MSc_thesis_OlegZero
Oleg ลปero
ย 
Abaqusfracture mechanics
Abaqusfracture mechanicsAbaqusfracture mechanics
Abaqusfracture mechanics
imransuces
ย 
LChen_diss_Pitt_FVDBM
LChen_diss_Pitt_FVDBMLChen_diss_Pitt_FVDBM
LChen_diss_Pitt_FVDBM
Leitao Chen
ย 
Graphene - complex oxide ceramic nanocomposites
Graphene - complex  oxide ceramic nanocompositesGraphene - complex  oxide ceramic nanocomposites
Graphene - complex oxide ceramic nanocomposites
Yu Chen
ย 

Similar to Composite systems - Trace approach (20)

Names_BJ_T_2016
Names_BJ_T_2016Names_BJ_T_2016
Names_BJ_T_2016
ย 
Thesis_JR
Thesis_JRThesis_JR
Thesis_JR
ย 
11 019-maldonado-jesus-bericht
11 019-maldonado-jesus-bericht11 019-maldonado-jesus-bericht
11 019-maldonado-jesus-bericht
ย 
Analysis of Ferrocement and Textile Reinforced Concrete for Shell Structures
Analysis of Ferrocement and Textile Reinforced Concrete for Shell StructuresAnalysis of Ferrocement and Textile Reinforced Concrete for Shell Structures
Analysis of Ferrocement and Textile Reinforced Concrete for Shell Structures
ย 
Master Thesis
Master Thesis Master Thesis
Master Thesis
ย 
11001259 Dissertation
11001259 Dissertation11001259 Dissertation
11001259 Dissertation
ย 
A Graph Theoretic Approach To Matrix Functions And Quantum Dynamics (PhD Thesis)
A Graph Theoretic Approach To Matrix Functions And Quantum Dynamics (PhD Thesis)A Graph Theoretic Approach To Matrix Functions And Quantum Dynamics (PhD Thesis)
A Graph Theoretic Approach To Matrix Functions And Quantum Dynamics (PhD Thesis)
ย 
Quantum Variables in Finance and Neuroscience Lecture Slides
Quantum Variables in Finance and Neuroscience Lecture SlidesQuantum Variables in Finance and Neuroscience Lecture Slides
Quantum Variables in Finance and Neuroscience Lecture Slides
ย 
Erdogan Madenci, Erkan Oterkus (auth.) - Peridynamic Theory and Its Applicati...
Erdogan Madenci, Erkan Oterkus (auth.) - Peridynamic Theory and Its Applicati...Erdogan Madenci, Erkan Oterkus (auth.) - Peridynamic Theory and Its Applicati...
Erdogan Madenci, Erkan Oterkus (auth.) - Peridynamic Theory and Its Applicati...
ย 
Permeability measurement of unknown fiber material
Permeability measurement of unknown fiber materialPermeability measurement of unknown fiber material
Permeability measurement of unknown fiber material
ย 
Barret templates
Barret templatesBarret templates
Barret templates
ย 
MSc_thesis_OlegZero
MSc_thesis_OlegZeroMSc_thesis_OlegZero
MSc_thesis_OlegZero
ย 
Abaqusfracture mechanics
Abaqusfracture mechanicsAbaqusfracture mechanics
Abaqusfracture mechanics
ย 
Thesis lebanon
Thesis lebanonThesis lebanon
Thesis lebanon
ย 
LChen_diss_Pitt_FVDBM
LChen_diss_Pitt_FVDBMLChen_diss_Pitt_FVDBM
LChen_diss_Pitt_FVDBM
ย 
final_report_template
final_report_templatefinal_report_template
final_report_template
ย 
Graphene - complex oxide ceramic nanocomposites
Graphene - complex  oxide ceramic nanocompositesGraphene - complex  oxide ceramic nanocomposites
Graphene - complex oxide ceramic nanocomposites
ย 
20120112-Dissertation7-2
20120112-Dissertation7-220120112-Dissertation7-2
20120112-Dissertation7-2
ย 
Thesis
ThesisThesis
Thesis
ย 
Airline Fleet Assignment And Schedule Design Integrated Models And Algorithms
Airline Fleet Assignment And Schedule Design  Integrated Models And AlgorithmsAirline Fleet Assignment And Schedule Design  Integrated Models And Algorithms
Airline Fleet Assignment And Schedule Design Integrated Models And Algorithms
ย 

More from Filipe Giesteira

Fatigue and fracture mechanics _ fadiga e mecรขnica da fractura
Fatigue and fracture mechanics _ fadiga e mecรขnica da fracturaFatigue and fracture mechanics _ fadiga e mecรขnica da fractura
Fatigue and fracture mechanics _ fadiga e mecรขnica da fractura
Filipe Giesteira
ย 

More from Filipe Giesteira (20)

My Resume
My ResumeMy Resume
My Resume
ย 
Fatigue and fracture mechanics _ fadiga e mecรขnica da fractura
Fatigue and fracture mechanics _ fadiga e mecรขnica da fracturaFatigue and fracture mechanics _ fadiga e mecรขnica da fractura
Fatigue and fracture mechanics _ fadiga e mecรขnica da fractura
ย 
Composite Systems - Trace Approach _ PPT Presentation
Composite Systems - Trace Approach _ PPT PresentationComposite Systems - Trace Approach _ PPT Presentation
Composite Systems - Trace Approach _ PPT Presentation
ย 
Isoparametric bilinear quadrilateral element _ ppt presentation
Isoparametric bilinear quadrilateral element _ ppt presentationIsoparametric bilinear quadrilateral element _ ppt presentation
Isoparametric bilinear quadrilateral element _ ppt presentation
ย 
Mechanical speed reducer Design Report _ Motoredutor de Engrenagens cilรญndric...
Mechanical speed reducer Design Report _ Motoredutor de Engrenagens cilรญndric...Mechanical speed reducer Design Report _ Motoredutor de Engrenagens cilรญndric...
Mechanical speed reducer Design Report _ Motoredutor de Engrenagens cilรญndric...
ย 
Involute gear interference _ Interferรชncia em rodas dentadas cilรญndricas
Involute gear interference _ Interferรชncia em rodas dentadas cilรญndricasInvolute gear interference _ Interferรชncia em rodas dentadas cilรญndricas
Involute gear interference _ Interferรชncia em rodas dentadas cilรญndricas
ย 
Relation between contact ratio and interference _ Relaรงรฃo entre razรฃo de Cond...
Relation between contact ratio and interference _ Relaรงรฃo entre razรฃo de Cond...Relation between contact ratio and interference _ Relaรงรฃo entre razรฃo de Cond...
Relation between contact ratio and interference _ Relaรงรฃo entre razรฃo de Cond...
ย 
Tribology Design - Equation Summary _ Tribologia
Tribology Design - Equation Summary _ TribologiaTribology Design - Equation Summary _ Tribologia
Tribology Design - Equation Summary _ Tribologia
ย 
Fatigue design - Equation Summary _ Dimensionamento ร  Fadiga
Fatigue design - Equation Summary _ Dimensionamento ร  FadigaFatigue design - Equation Summary _ Dimensionamento ร  Fadiga
Fatigue design - Equation Summary _ Dimensionamento ร  Fadiga
ย 
Screw design - Equation summary _ Dimensionamento de Parafusos
Screw design - Equation summary _ Dimensionamento de ParafusosScrew design - Equation summary _ Dimensionamento de Parafusos
Screw design - Equation summary _ Dimensionamento de Parafusos
ย 
Mechanical vibration - equation summary
Mechanical vibration - equation summaryMechanical vibration - equation summary
Mechanical vibration - equation summary
ย 
Mechanical vibration mec iii
Mechanical vibration mec iiiMechanical vibration mec iii
Mechanical vibration mec iii
ย 
Photo-realistic Rendered Images of 3D CAD Model
Photo-realistic Rendered Images of 3D CAD ModelPhoto-realistic Rendered Images of 3D CAD Model
Photo-realistic Rendered Images of 3D CAD Model
ย 
Shaft - specification drawing
Shaft - specification drawingShaft - specification drawing
Shaft - specification drawing
ย 
Mechanical speed reducer - 3D Exploded View (SolidWorks)
Mechanical speed reducer - 3D Exploded View (SolidWorks)Mechanical speed reducer - 3D Exploded View (SolidWorks)
Mechanical speed reducer - 3D Exploded View (SolidWorks)
ย 
Mechanical speed reducer assembly drawing
Mechanical speed reducer assembly drawingMechanical speed reducer assembly drawing
Mechanical speed reducer assembly drawing
ย 
Prediction of joint strength and effect of the surface treatment on the singl...
Prediction of joint strength and effect of the surface treatment on the singl...Prediction of joint strength and effect of the surface treatment on the singl...
Prediction of joint strength and effect of the surface treatment on the singl...
ย 
Processos de Fundiรงรฃo do Titรขnio e suas Ligas
Processos de Fundiรงรฃo do Titรขnio e suas LigasProcessos de Fundiรงรฃo do Titรขnio e suas Ligas
Processos de Fundiรงรฃo do Titรขnio e suas Ligas
ย 
Incremental sheet Forming (ISF)
Incremental sheet  Forming (ISF)Incremental sheet  Forming (ISF)
Incremental sheet Forming (ISF)
ย 
Tรชmpera Bainรญtica do Aรงo G15 Special
Tรชmpera Bainรญtica do Aรงo G15 SpecialTรชmpera Bainรญtica do Aรงo G15 Special
Tรชmpera Bainรญtica do Aรงo G15 Special
ย 

Recently uploaded

scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
HenryBriggs2
ย 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
Kamal Acharya
ย 
Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptx
hublikarsn
ย 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
pritamlangde
ย 

Recently uploaded (20)

Max. shear stress theory-Maximum Shear Stress Theory โ€‹ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory โ€‹  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory โ€‹  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory โ€‹ Maximum Distortional ...
ย 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
ย 
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
ย 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
ย 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
ย 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
ย 
Augmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxAugmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptx
ย 
Memory Interfacing of 8086 with DMA 8257
Memory Interfacing of 8086 with DMA 8257Memory Interfacing of 8086 with DMA 8257
Memory Interfacing of 8086 with DMA 8257
ย 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata Model
ย 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
ย 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
ย 
๐Ÿ‘‰ Yavatmal Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class Call Girl S...
๐Ÿ‘‰ Yavatmal Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class Call Girl S...๐Ÿ‘‰ Yavatmal Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class Call Girl S...
๐Ÿ‘‰ Yavatmal Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class Call Girl S...
ย 
Post office management system project ..pdf
Post office management system project ..pdfPost office management system project ..pdf
Post office management system project ..pdf
ย 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
ย 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptx
ย 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
ย 
Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptx
ย 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
ย 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
ย 
Computer Graphics Introduction To Curves
Computer Graphics Introduction To CurvesComputer Graphics Introduction To Curves
Computer Graphics Introduction To Curves
ย 

Composite systems - Trace approach

  • 1. Study of Invariant-based Method for Accelerating Aerospace Composite Test Certification Filipe Amorim Gonรงalves Giesteira Supervisors: Albertino Josรฉ Castanho Arteiro Antรณnio Torres Marques Composite Systems (SC) โ€“ EM0115 Integrated Master in Mechanical Engineering April, 2019
  • 3. iii Abstract The present report was developed within the scope of the Composite Systems course, lectured at the Faculty of Engineering of the University of Porto (FEUP). In the first chapters a solid and concise overview of the theory of elasticity is made. Its correct understanding is essential to grasp the theory and the rationale behind trace method. One of the main goals of this report, is to fill some theoretical gap often observed in the technical literature. Thus, several extensive and theoretical demonstration are detailed throughout the first chapters. Based on the basic fundamental concepts of 2D elasticity, the lamina governing equations were compiled and summarized in a single chapter, coherent and of simple notation. Which allows the experienced reader to jump in the demonstrations and use this report also as search tool. Classical Laminated Plate Theory (CLPT) is assumed perfectly assimilated in most of the research material regarding Trace Invariant-approach. Keeping that in mind, it was dedicated a specific introductory chapter detailing the laminate governing equations. Carrying on the theoretical character of this report, it is first presented the complete background of Trace and their mathematical and physical applications, from the Ply to the Laminate concept. Finally, the Matlabยฎ code implementing the automatic computation process of the in-plane stiffness properties of a given laminate is presented. The tool only requires the Ply longitudinal modulus as the unique input. Keywords 2D Elasticity, Generalized Hookโ€™s Law, Plane Elasticity, Plane Stress, Plane Strain, Ply, Laminate, Laminae, Classical Laminated Plate Theory, Master Ply Concept, Trace, Invariant-base Method, Aerospace, Aeronautics, Composite Testing, Composite Design
  • 5. v Contents Contents .............................................................................................................................................v List of Acronyms ............................................................................................................................... vii List of Figures .................................................................................................................................... ix List of Tables ..................................................................................................................................... xi 1 Introduction..................................................................................................................................13 1.1 Context of the Report ....................................................................................................................13 1.2 Report Structure............................................................................................................................13 1.3 Basic Mathematical Nomenclature.................................................................................................14 2 Trace - Aerospace Industry ..........................................................................................................15 2.1 Composites in Aerospace Industry.................................................................................................15 2.2 Composite Certification and Testing in Aerospace Industry.............................................................16 3 Theory of Linear Elasticity for Continuum Medium ........................................................................17 3.1 Introduction...................................................................................................................................17 3.2 Stress Tensor ...............................................................................................................................17 3.3 Strain Tensor................................................................................................................................22 3.4 Generalized Hookeโ€™s Law..............................................................................................................25 3.4.1 Theoretical Background...............................................................................................25 3.5 Transformation Matrix ...................................................................................................................29 3.5.1 General Definition........................................................................................................29 3.5.2 Modified Transformation Matrix....................................................................................30 3.6 2D Linear Elasticity .......................................................................................................................46 3.6.1 Types of Plane Linear Elastic Problems........................................................................46 3.6.2 Dynamic Equilibrium....................................................................................................47 3.6.3 2D Hookeโ€™s Law โ€“ Isotropic Material Behavior..............................................................48 3.6.4 Strain-Displacement Fields Relation.............................................................................52 3.6.5 Eliminating Stress and Strain in the z direction .............................................................52 3.7 Review of the Governing Equations for 2D Elasticity ......................................................................54 3.7.1 Displacement Field......................................................................................................54 3.7.2 Strain Field..................................................................................................................54 3.7.3 2D Hookeโ€™s Law โ€“ Isotropic Material Behavior..............................................................55 3.7.4 2D Hookeโ€™s Law โ€“ Orthotropic Material Behavior ..........................................................55 3.7.5 Total Stress-Strain Relation (Extra) ..............................................................................57 3.7.6 Dynamic Equilibrium....................................................................................................58 4 Orthotropic Lamina Constitutive Equations ...................................................................................59 4.1 Theory Background.......................................................................................................................59 4.2 Nomenclature Modification โ€“ Composites Specifications ................................................................59 4.3 Equations Summary......................................................................................................................60 5 Classical Laminated Plate Theory ................................................................................................64 5.1 Plate Definition and Modeling ........................................................................................................64 5.2 Kirchhoff Assumptions...................................................................................................................65 5.3 Plate Kinematics and Governing Equations....................................................................................66 5.4 Kirchhoff vS Reissner Plate Theory................................................................................................69 5.5 Laminate Definition, Classification and Designation........................................................................71 5.6 Laminate Kinematics and Governing Equations .............................................................................75 5.6.1 Generalized Loads or Load Resultants.........................................................................75 5.6.2 Hygrothermal Behavior ................................................................................................79 5.6.3 Generalized Strains and Stress Field ...........................................................................79 6 Invariant-based Approach - The Master Ply Concept....................................................................81 6.1 Theoretical Background.................................................................................................................81
  • 6. vi 6.2 Master Ply Concept.......................................................................................................................84 6.2.1 Engineering Elastic Parameters...................................................................................84 6.2.2 Plane Stress Stiffness Coefficients...............................................................................84 6.2.3 Trace-Normalized Factors ...........................................................................................86 6.2.4 Master Ply Stiffness Properties ....................................................................................92 6.3 Master Laminate Concept .............................................................................................................93 6.4 Trace Approach โ€“ UD Coupons Testing and Ply Stiffness Matrix....................................................95 6.5 Trace Approach โ€“ Laminate Testing and In-plane Stiffness Matrix................................................ 100 7 Conclusions and Future Work ....................................................................................................103 References.....................................................................................................................................105
  • 7. vii List of Acronyms 1D โ€“ One Dimension/Dimensional 2D โ€“ Two Dimension/Dimensional 3D โ€“ Three Dimension/Dimensional CAD โ€“ Computer Aided Design CAE โ€“ Computer Aided Engineering CFRP โ€“ Carbon Fiber Reinforced Polymers CLPT โ€“ Classical Laminated Plate Theory CSM โ€“ Chopped Strand Mat FEA โ€“ Finite Element Analysis FEM โ€“ Finite Element Method FEUP โ€“ Faculty of Engineering of University of Porto FRP โ€“ Fiber Reinforced Polymers GFRP โ€“ Glass Fiber Reinforced Polymers UD โ€“ Unidirectional List of Acronyms
  • 9. ix List of Figures Figure 1- Illustration of the main goals aimed with this introductory chapter. ....................................15 Figure 2- a) Composite structure of A380 [9]. b) Composite materials used in Boeing 787 body [11]. .........................................................................................................................................................15 Figure 3- Definition of the nomenclature adopted for shear stresses acting on the differential volume element [1]........................................................................................................................................18 Figure 4- a) Cauchy tetrahedron formed by slicing a parallelepiped along an arbitrary plane define by the normal vector ๐‘› . b) Infinitesimal triangular portion of a generic 2D body...................................20 Figure 5- Nomenclature adopted for the shear stress definition, for the distortion of the differential Cartesian element..............................................................................................................................24 Figure 6- a) Schematic representation of the algorithm used to codify Voigt notation in a second order tensor. b) Illustration of the relation between Elastic and Hyperelastic materials for small strains condition...........................................................................................................................................28 Figure 7- Illustration of the angles between the transformed ๐‘ฅโ€™-axis and the original cartesian coordinate system. .............................................................................................................................................29 Figure 8- Illustration of the individual rotations of the Euler angles. Image adapted from [5]. ............29 Figure 9- Definition of the nomenclature used to define the coordinates transformation matrix. The ๐œƒ, ๐œ‘, and ๐œ“, represent the rotation angle about the z, x and y axis respectively. .....................................30 Figure 10- a) Plane Stress schematic geometry. b) Plane Strain schematic geometry..........................46 Figure 11- Illustration of different fiber reinforcement architectures: a) Chopped Strand Mat (CSM) [4]; b) Woven fabric [10]; c) Knitted fabric [12]; and d) Ply stacking [13]................................................59 Figure 12- Schematic representation of the Orthotropic axes in a UD ply...........................................59 Figure 13- Schematic representation of the transformation of the Coordinate system. The blank square indicates that the transformation relations are not bounded to a particular transformation direction โˆ—, e.g. off-axis โ€“ principal axis or principal axis โ€“ off-axis rotation. .............................................................60 Figure 14- Plate geometric definition along with the sign convention adopted for the displacements, rotations, distributed and point loads and distributed and point momentums. Highlight of the middle plane geometric reference [2]. ...........................................................................................................64 Figure 15- In-plane and out-of-plane displacement field in a thin plate [2].........................................66 Figure 16- Illustration of design capabilities using composite laminates, pointing out the two extreme cases of mechanical behavior: a) Unidirectional laminate and b) Quasi-isotropic laminate [3]............71 Figure 17- Geometry and orientation of the fiber in a: a) Angle-ply and b) Cross-ply laminated panel under transverse loading [8]. Two laminates with the exact same manufacturing orientation but with different loading orientation. .............................................................................................................72 Figure 18- Representation of the two typical references used to define the beginning of the layup direction, a) a callout line specifically introduced with this purpose; and b) the tool surface [6]. ........73 Figure 19- Schematic definition of the Clockwise warp direction, the sign convention adopted for the (+) and (-) directions [6]....................................................................................................................73 Figure 20- Schematic illustration of the typical strain and stress fields shape, observed in composite laminates when CLPT is applied. ......................................................................................................75 Figure 21- Schematic representation of the construction process of Table 6 and Table 7. ...................89 Figure 22- Schematic representation of the construction process of Table 1 and Table 2 from [7]. .....94 Figure 23- Schematic illustration of the experimental process use to determine the: a) longitudinal and b) transverse elastic properties by Uniaxial Tensile Test of FRP coupons. .........................................95
  • 10. x Figure 24- Indirect measurement of Shear Modulus (๐บ12), elastic property of FRP, by Off-axis Tensile Test. .................................................................................................................................................95 Figure 25- Schematic illustration of the +-45ยบ Tensile Shear Test method to determine the shear modulus............................................................................................................................................96
  • 11. xi List of Tables Table 1- Summary of the most important and distinct mathematical nomenclature used throughout the report................................................................................................................................................14 Table 2- Summary of all simplifications made to the general stiffness matrix. ...................................27 Table 3- Examples of laminate stacking sequence notations and their description. .............................74 Table 4- Example of categories of laminates regarding the previous classifications............................74 Table 5- Summary of the mechanical quantities used to describe the mechanical behavior of thin plates. .........................................................................................................................................................77 Table 6- Carbon Fiber/Epoxy composite coupons properties: engineering constants, plane stress stiffness components and Trace [20]..................................................................................................87 Table 7- Carbon Fiber/Epoxy composite coupons trace and normalized properties: trace-normalized engineering constants, and trace-normalized plane stress stiffness components [20]..........................88 Table 8- Additional statistics regarding the contribution of the plane stress stiffness coefficients for the Trace. ...............................................................................................................................................90 Table 9- Basic statistics regarding the longitudinal stiffness coefficient for different orientations of analysis.............................................................................................................................................91 Table 10- Master Ply mechanical and stiffness properties [20]...........................................................92 Table 11- Simple numerical exercise to illustrate the independence between the Trace-normalized engineering and stiffness coefficients [20].........................................................................................92
  • 13. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 13 1 Introduction 1.1 Context of the Report This report was developed within the Composite System course, lectured in the Integrated Master in Mechanical Engineering โ€“ Specialty Structural Engineering and Machine Design, at Faculty of Engineering of University of Porto (FEUP). The first (but not necessarily major) goal of this report is divided in: (i) understand and produce a review type work, of the theory and applications of the master ply concept; and (ii) develop an algorithm or script, based in MATLABยฎ programming language, capable of computing the in-plane stiffness properties of a given laminate. However, the author was slightly beyond this task and also sought to demonstrate the background behind some important concepts of the Elasticity Theory and the Classical Laminated Plate Theory (CLPT). 1.2 Report Structure The present report is divided in 8 main chapters, being the last two chapters dedicated to the conclusions and future work, and literature references respectively. Chapter 2 presents itself as an introductory chapter. Which aims to justifies the particularly important use and interest of the invariant- based concept, in the aeronautics and aerospace industry. Even though the Master Ply concept had not been detailed at this moment, its advantages and basic usage ideas are detailed. Chapter 3 is essentially theoretical, and can be seen as an extra topic, which was exported and condensed from several classic elasticity theory literature references. However, it was completely reformulated in order to focus only on the demonstration and explanation of the concepts fundamental to chapter 4 and necessary to really understand the Master Ply or Trace Concept. Thus, this chapter can be omitted if a more practical reading is desired, without risks of misunderstanding the next chapters. However, it is important to notice that some subchapters such as subchapter 3.4 and 3.5 have theoretical derivations not found in a single textbook or article (at least to the best of the authorโ€™s knowledge). They resulted from research of several technical and theoretical literature, and from mathematical work from the author. Thus, even if the reader only intends to use this report as a catalogue tool, it is very interesting to explore subchapter 3.4 and 3.5 (even in a superficial way) and check that several typically used formulae are indeed derived from considerations not completely explained and defined. For example, the transformation matrices were derived for a generic transformation, from one axis to another. It wasnโ€™t assumed any kind of preference (as common practice in the majority of textbooks) related to the transformation, e.g. from the off-axis to the principal axis of the orthotropic lamina, or vice-versa. In chapter 4, a brief and concise summary of the formulae that govern the linear elastic behavior of lamina is done. With the concepts fresh and clear in the readerโ€™s mind from the previous chapter, the lamina governing equations are detailed. Chapter 5 exposes the hypothesis and assumptions necessary to formulate the Classical Laminate Plate Theory. The governing equation of thin laminates will be derived and a brief comment regarding thick laminates will also be done. The Trace or Master Ply concept is finally explored in chapter 6, backed up in the basic and more theoretical concepts explored in the previous chapters. Its theoretical background, definition and applications are some of the topics approached in this chapter. In chapter 7, the main conclusions and future works are drawn.
  • 14. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 14 1.3 Basic Mathematical Nomenclature In order to ease the understanding of the (sometimes heavy) mathematical treatment, the author slightly drifted away from the nomenclature usually seen in technical classic literature regarding, Theory of elasticity, FEM and Composites Laminates [3], [14], [15], [16], [17], [18], [19], [20], [21]. The nomenclature used was similar to the one adopted in the Kinematics and Dynamics course, lectured at FEUP, and considered by the author as more intuitive. Thus, in order to avoid misunderstandings, Table 1 details the most relevant nomenclature adopted. This only concerns generic nomenclature; each variable and symbol will be defined whenever necessary and convenient. Table 1- Summary of the most important and distinct mathematical nomenclature used throughout the report. | | Column Vector | | ๐‘‡ Row Vector [ ] Matrix of any general dimension, with the exception of a column vector [ ๐พ ] Stiffness matrix whose terms are structure/element properties (depending on the geometry and material) [ ๐ถ ] Stiffness tensor (or matrix) whose terms are material properties [ ๐‘† ] Compliance tensor (or matrix) whose terms are material properties [ ๐‘„ ] Plane Stress reduced Stiffness Matrix
  • 15. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 15 2 Trace - Aerospace Industry 2.1 Composites in Aerospace Industry The aim of this introductory chapter is to highlight the relation between the aerospace industry and Trace - the invariant-based method applied to Fiber Reinforced Polymers (FRP), and presented throughout chapter 6. Three important questions, illustrated in Figure 1, will be โ€œansweredโ€ in this chapter. As first detailed by [20], trace is a novel invariant-based approach to describe the stiffness and strength of Carbon Fiber Reinforced Polymers (CFRP). Several authors [20], [7], [22], [23], [24], [25] already proposed and detailed strength-related applications of trace, and sizing and scaling methods using this invariant-based approach. However, this report will only deal with the characterization of the in-plane stiffness for plane stress by the Trace material property concept. Which forces the author to leave the Trace-characterization of composite strength issues for future works. FRP offer significant advantages over current conventional engineering materials in the aerospace and aeronautic industry. Among other properties, at least their high fatigue and corrosion resistance, and the capability of properties tailoring and material design optimization should be highlighted. These superior properties promote relevant improvements such as reduced inspection and maintenance costs, and increased passenger comfort level. In the particular case of CFRP, attractive specific mechanical properties such as: high strength-to-weight ratio, high modulus-to-weight ratio leading to a lower weight (and consequently higher fuel efficiency and lower emissions), have propelled their increasing used in the aircraft industry [20], [26]. Hence, CFRP have been widely used to manufacture different structural components such as aileron, flaps, landing-gear doors and other structural parts. As illustrated in Figure 1 a)-b), these high-performance composite materials clearly rule the aerospace composite material application spectrum. As it will be detailed further in chapter 6, the Master Ply concept is only applicable with high accuracy for composite systems based on carbon and aramid fibers. Satisfactory results were achieved for GFRP but with lower accuracy when compared to CFRP [20], [7]. This could be considered as a particular high limitation or drawback from this method. However, as already mentioned, the bigger โ€œpieceโ€ of FRP used in aerospace industry corresponds precisely to carbon fiber based composite systems, ensuring that Trace perfectly โ€œfitsโ€ for the aerospace industry. Figure 2- a) Composite structure of A380 [9]. b) Composite materials used in Boeing 787 body [11]. Trace Applicability to CFRP types? FRP in the Aerospace Indutry? Trace & Aerospace What is Trace? Composite testing in the Aerospace Industry? Revolution of CFRP Testing by Trace Figure 1- Illustration of the main goals aimed with this introductory chapter.
  • 16. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 16 2.2 Composite Certification and Testing in Aerospace Industry The procedure followed so far in this chapter was a top-down approach, starting with the higher- level concerns. It was already proved the adequacy of Trace to aerospace industry. However, what are the real advantages of Trace, and why is it used for? In order to clarify these questions, first is necessary to establish some considerations regarding composite testing. It is mandatory to test FRP in order to support design, quality management, and certification programs. Characterizing the specific properties of composites through experimental testing is critical to ensure their compliance with the client, industry, national, and international standard requirements and specifications. When compared to polymeric materials (at some degree) and metals, it is quite difficult and complex to measure material properties (stiffness and strength) of composites due to fiber orientation. In other words, FRP systems do not exhibit isotropic behavior, demonstrating diverse material properties and failure modes in different directions. The complexity of composite systems testing is illustrated by the availability of the wide range of standards and test procedures. There are over 150 standards available that outline and detail the experimental testing of FRP. In addition to national and international standards from institutions such as DIN, EN, ISO or ASTM, there are aircraft industry-specific standards designed by major companies such as Boeing, Airbus and even NASA [26], [27]. Composite materials testing complexity is not only based on the stringency of the testing procedures, but also in the number of necessary tests to fully characterize the material system. In one hand, flexural and compressive properties must be tested independently since it is not possible to predict them based on tensile properties (off-plane behavior). On the other hand, in order to be able to completely characterize the shear properties in different directions, there are many different techniques available for measuring shear properties (e.g. lap shear test, V-notch shear test, ยฑ45ยฐ in-plane shear test, short beam shear test, etc.) [26], [27]. Due to the critical safety concerns and demanding service conditions of the aeronautics industry, material testing goes beyond the โ€œbasicโ€ mechanical properties (i.e. the three normal stresses which are characterized in the nine-component stress tensor). Non-ambient conditions such as extreme temperature and humidity/moisture (hygroscopic behavior) need to be considered along with fatigue tests, which are critical for aerospace structural applications. Shifting from the mechanical design of composite materials to the development of tough durable systems, the study of โ€œeffects of defectsโ€ emerged. Compression-after-impact (CAI) testing evaluates the tolerance of a composite material to damage (e.g. structural damage caused by a bird strike or due to contact with other foreign objects during flight or maintenance). In other words, evaluates the structural integrity after impact or damage tolerance behavior. More specific tests such as open-hole compression (e.g. open-hole and filled-hole tensile), and end-loading compression and shear tests ought also to be performed. The relation between FRP testing and the aerospace industry was already described in the previous two paragraphs. Finally, it must be highlighted where and how Trace influences these complex FRP tests. At this point of the report, it can be said and unanimously accepted that the simplification of CFRP unit testing implies cost and time reduction of the overall product testing in the aerospace industry. This is precisely the main advantage of Trace, to simplify composite testing by reduction of the number of necessary tests to fully characterize FRP. In chapter 6, how Trace reduces the number of necessary tests is explained in detail.
  • 17. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 17 3 Theory of Linear Elasticity for Continuum Medium 3.1 Introduction The linear elastic theory tries to model the mechanical behavior of continuum linear elastic solids. And until the current century as proven its potential in a variety of engineering problems. However, its usability lies on the capacity of assuming proper simplifications [28] In this chapter, the basic constitutive equations for 2D linear elasticity will be derived. The equations here demonstrated, are fundamental and will be directly used for the derivation of the ply constitutive equations. Thus, this chapter can be considered as a literature review section. And, if the reader already masters the basic concepts of linear elasticity, it can skip directly to chapter 4. The approach followed is similar to the one typically carried in solid mechanics or strength of materials classic literature. Basic concepts (valid for generic 3D anisotropic behavior) are progressively simplified and particularized aiming the physical or engineering application in hands, in this case, the 2D orthotropic problem constitutive equations. The major difference might be the depth of study. The starting point was the formulation of the stress and strain tensor in their generic form (considering already the linear elastic assumptions). After deriving the two second order tensors, and underlining their assumptions, the relation between the two was considered. Videlicet, the generalized Hookeโ€™s Law was stated and explored. Supported in concepts previously discussed, and some referred within the last subchapter, the Generalized Hookeโ€™s Law will be continuously simplified until reaching the most often used and refined formula in 2D linear elasticity. The equations of motion will first be presented within the stress tensor definition subchapter. However, later it will be dedicated a specific section for 2D dynamic equilibrium. Due to the importance of the referential transformation matrix in the study of ply mechanical behavior, a specific subchapter will also be dedicated to it. 3.2 Stress Tensor In terms of continuum mechanics, anisotropic materials are materials that have different mechanical properties depending on the direction of measurement. Concerning the mechanical behavior, only the stiffness moduli and limit elastic stress parameters will be relevant. Concerning others fields of interest, the anisotropy concept can be generalized, and we end up with anisotropy throughout the solid relating to: thermal conductivity, magnetic permeability, refraction index, etc. [29]. From the solid mechanics of homogeneous materials1 [29], the tension matrix is a second order tensor with 3x3 dimension. This second order Cartesian tensor is also called the Cauchy Stress Tensor and has the form [30]: [ ๐œŽ ] = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง ] ( 3.1 ) The nomenclature adopted in the definition of the stresses, is illustrated in Figure 3. In index notation, the stress ( )๐‘–๐‘— corresponds to the stress component acting in the j-direction, on a surface or plane normal to i-direction. In other words, the first subscript refers to the plane in which the stress acts; and the second subscript the direction about which the stress acts. Regarding the algebraic value, the positive sign will be left for tension stresses and the negative for compression stresses. 1 Homogeneous materials are materials in which the mechanical properties of any given point are equal to the specific properties of the solid. In other words, macroscopically, the specific properties are independent of the point of analysis [29].
  • 18. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 18 The previous tensor shown in equation ( 3.1 ) has 9 terms; however, it can be shown that only 6 of them are independent. The stress matrix is symmetric to its main diagonal, and the symmetry conditions or relations are also called the reciprocity property of the stress tensor. The symmetry relations can be derived by the following principles or Cauchy Equations of Motion [1]: โ€ข According to the principle of conservation of linear momentum, if the continuum body is in static equilibrium it can be demonstrated that the components of the Cauchy stress tensor in every material point in the body satisfies the linear equilibrium equation (equation of motion for null acceleration)2 . [ ๐œŽ ] โˆ‡ + | ๐‘“ | = | ๐‘Ž | = | 0 | โ‡’ ( 3.2 ) [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง ] [ ๐œ• ๐œ•๐‘ฅ ๐œ• ๐œ•๐‘ฆ ๐œ• ๐œ•๐‘ฅ ] ๐œŒ๐‘‘๐‘‰ + | ๐‘“๐‘ฅ ๐‘“๐‘ฆ ๐‘“๐‘ง | ๐œŒ๐‘‘๐‘‰ = | ๐‘Ž ๐‘ฅ ๐‘Ž ๐‘ฆ ๐‘Ž ๐‘ง | ๐œŒ๐‘‘๐‘‰ = | 0 0 0 | ( 3.3 ) Or making explicit each component of the vector equation comes: ( ๐œ•๐œŽ๐‘ฅ๐‘ฅ ๐œ•๐‘ฅ + ๐œ•๐œ ๐‘ฅ๐‘ฆ ๐œ•๐‘ฆ + ๐œ•๐œ ๐‘ฅ๐‘ง ๐œ•๐‘ง ) + ๐‘“๐‘ฅ = ๐œŒ โˆ™ ๐‘Ž ๐‘ฅ = ๐œŒ โˆ™ ๐œ•2 ๐œ•๐‘ก2 ๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ง) = 0 ( 3.4 ) ( ๐œ•๐œ ๐‘ฆ๐‘ฅ ๐œ•๐‘ฅ + ๐œ•๐œŽ ๐‘ฆ๐‘ฆ ๐œ•๐‘ฆ + ๐œ•๐œ ๐‘ฆ๐‘ง ๐œ•๐‘ง ) + ๐‘“๐‘ฆ = ๐œŒ โˆ™ ๐‘Ž ๐‘ฆ = ๐œŒ โˆ™ ๐œ•2 ๐œ•๐‘ก2 ๐‘ฃ(๐‘ฅ, ๐‘ฆ, ๐‘ง) = 0 ( 3.5 ) ( ๐œ•๐œ ๐‘ง๐‘ฅ ๐œ•๐‘ฅ + ๐œ•๐œ ๐‘ง๐‘ฆ ๐œ•๐‘ฆ + ๐œ•๐œŽ๐‘ง๐‘ง ๐œ•๐‘ง ) + ๐‘“๐‘ง = ๐œŒ โˆ™ ๐‘Ž ๐‘ง = ๐œŒ โˆ™ ๐œ•2 ๐œ•๐‘ก2 ๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ง) = 0 ( 3.6 ) ๐‘Ž Total acceleration = local acceleration + convective acceleration ๐‘“๐‘ฅ, ๐‘“๐‘ฆ, ๐‘“๐‘ง Volume forces acting on the x, y, and z direction respectively ๐‘‘๐‘‰ Differential of Volume, ๐‘‘๐‘‰ = ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง 2 The Cauchy Equation for the Conservation of Linear Momentum will be important in the formulation of the finite element. ๐œ ๐‘ฆ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐‘ฆ ๐‘ฅ๐œ ๐‘ฆ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ฅ๐‘ง ๐‘ง ๐‘ฅ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ง๐‘ฆ ๐œ ๐‘ฆ๐‘ง ๐‘ง ๐‘ฆ๐œ ๐‘ง๐‘ฆ ๐œ ๐‘ฆ๐‘ง Figure 3- Definition of the nomenclature adopted for shear stresses acting on the differential volume element [1].
  • 19. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 19 โ€ข According to the analogous principle regarding the conservation of angular momentum, the angular equilibrium requires that the summation of moments with respect to an arbitrary axis is null. Analytically it can be written: [(๐œ ๐‘ฆ๐‘ง + ๐œ•๐œ ๐‘ฆ๐‘ง ๐œ•๐‘ฆ ๐‘‘๐‘ฆ 2 ) + (๐œ ๐‘ฆ๐‘ง โˆ’ ๐œ•๐œ ๐‘ฆ๐‘ง ๐œ•๐‘ฆ ๐‘‘๐‘ฆ 2 ) โˆ’ (๐œ ๐‘ง๐‘ฆ + ๐œ•๐œ ๐‘ง๐‘ฆ ๐œ•๐‘ง ๐‘‘๐‘ง 2 ) โˆ’ (๐œ ๐‘ง๐‘ฆ โˆ’ ๐œ•๐œ ๐‘ง๐‘ฆ ๐œ•๐‘ง ๐‘‘๐‘ง 2 )] ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง 2 = 0 ( 3.7 ) [โˆ’ (๐œ ๐‘ฅ๐‘ง + ๐œ•๐œ ๐‘ฅ๐‘ง ๐œ•๐‘ฅ ๐‘‘๐‘ฅ 2 ) โˆ’ (๐œ ๐‘ฅ๐‘ง โˆ’ ๐œ•๐œ ๐‘ฅ๐‘ง ๐œ•๐‘ฅ ๐‘‘๐‘ฅ 2 ) + (๐œ ๐‘ง๐‘ฅ + ๐œ•๐œ ๐‘ง๐‘ฅ ๐œ•๐‘ง ๐‘‘๐‘ง 2 ) + (๐œ ๐‘ง๐‘ฅ โˆ’ ๐œ•๐œ ๐‘ง๐‘ฅ ๐œ•๐‘ง ๐‘‘๐‘ง 2 )] ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง 2 = 0 ( 3.8 ) [(๐œ ๐‘ฅ๐‘ฆ + ๐œ•๐œ ๐‘ฅ๐‘ฆ ๐œ•๐‘ฅ ๐‘‘๐‘ฅ 2 ) + (๐œ ๐‘ฅ๐‘ฆ โˆ’ ๐œ•๐œ ๐‘ฅ๐‘ฆ ๐œ•๐‘ฅ ๐‘‘๐‘ฅ 2 ) โˆ’ (๐œ ๐‘ฆ๐‘ฅ + ๐œ•๐œ ๐‘ฆ๐‘ฅ ๐œ•๐‘ฆ ๐‘‘๐‘ฆ 2 ) โˆ’ (๐œ ๐‘ฆ๐‘ฅ โˆ’ ๐œ•๐œ ๐‘ฆ๐‘ฅ ๐œ•๐‘ฆ ๐‘‘๐‘ฆ 2 )] ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง 2 = 0 ( 3.9 ) The vector equilibrium equation will degenerate in the symmetry relations. They can now be easily obtained by just solving the three angular momentum equilibrium equations. The final relations are: ๐œ ๐‘ฆ๐‘ง = ๐œ ๐‘ง๐‘ฆ ๐œ ๐‘ฅ๐‘ง = ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ = ๐œ ๐‘ฆ๐‘ฅ ( 3.10 ) From equation ( 3.1 ) and ( 3.10 ) we can finally write: [ ๐œŽ ] = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง ] = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฅ๐‘ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ง ๐œŽ๐‘ง๐‘ง ] = [ ๐œŽ ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง โ€ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง โ€ฆ โ€ฆ ๐œŽ๐‘ง๐‘ง ] ( 3.11 ) As indexed in the definition of second order tensor, equation ( 3.1 ) encloses the cartesian components for a surface perpendicular to each one of the cartesian coordinate axis, as detailed in the following equation: [ ๐œŽ ] = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง ] = [ | ๐‘‡ ๐‘’ ๐‘ฅ | ๐‘‡ | ๐‘‡ ๐‘’ ๐‘ฆ | ๐‘‡ | ๐‘‡ ๐‘’ ๐‘ง | ๐‘‡ ] ( 3.12 ) Where: | ๐‘‡ ๐‘’ ๐‘ฅ | Stress vector acting on plane normal to x-direction | ๐‘‡ ๐‘’ ๐‘ฆ | Stress vector acting on plane normal to y-direction | ๐‘‡ ๐‘’ ๐‘ง | Stress vector acting on plane normal to z-direction In a similar manner, the Cauchy Equation [1], allows to compute the resulting stress vector, perpendicular to any arbitrary plane, acting on a generic point of coordinates (x,y,z). The Cauchy relation
  • 20. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 20 can be given in two matrix forms, a condensed and a more explicit form. The two are respectively given by: | ๐‘‡ | = [ ๐œŽ ] ๐‘‡ | ๐‘› | โ‡’ | ๐‘‡ | = [ | ๐‘‡ ๐‘’ ๐‘ฅ | ๐‘‡ | ๐‘‡ ๐‘’ ๐‘ฆ | ๐‘‡ | ๐‘‡ ๐‘’ ๐‘ง | ๐‘‡ ] ๐‘‡ | ๐‘› | ( 3.13 ) | ๐‘‡๐‘ฅ ๐‘‡๐‘ฆ ๐‘‡๐‘ง | = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง ] ๐‘‡ | ๐‘› ๐‘ฅ ๐‘› ๐‘ฆ ๐‘› ๐‘ง | = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฆ๐‘ฅ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฅ๐‘ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ง๐‘ฆ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ง ๐œŽ๐‘ง๐‘ง ] | ๐‘› ๐‘ฅ ๐‘› ๐‘ฆ ๐‘› ๐‘ง | ( 3.14 ) Where: | ๐‘› | Vector of the direction cosines perpendicular to an arbitrary plane [ ๐œŽ ] Stress tensor matrix | ๐‘‡ | Stress vector acting on a plane with normal unit vector | ๐‘›| Or considering the symmetry stated in the final equation ( 3.11 ), by the properties of the transposition operation of a matrix it results: [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง ] ๐‘‡ = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง โ€ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง โ€ฆ โ€ฆ ๐œŽ๐‘ง๐‘ง ] ๐‘‡ = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง โ€ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง โ€ฆ โ€ฆ ๐œŽ๐‘ง๐‘ง ] ( 3.15 ) | ๐‘‡๐‘ฅ ๐‘‡๐‘ฆ ๐‘‡๐‘ง | = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง ] ๐‘‡ | ๐‘› ๐‘ฅ ๐‘› ๐‘ฆ ๐‘› ๐‘ง | = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง โ€ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง โ€ฆ โ€ฆ ๐œŽ๐‘ง๐‘ง ] | ๐‘› ๐‘ฅ ๐‘› ๐‘ฆ ๐‘› ๐‘ง | ( 3.16 ) The Cauchy equation can be usually demonstrated by writing the static equilibrium equations: (i) for an infinitesimal interior tetrahedron element of a linear elastic body - in the case of 3D general case; (ii) or for an infinitesimal triangle - in the case of 2D particular case. Figure 4 illustrates both cases. z x y๐‘‘๐ด ๐‘ฆ ๐‘‘๐ด ๐‘ฅ ๐‘‘๐ด ๐‘ง โˆ’๐‘‡ ๐‘’ ๐‘ง โˆ’๐‘‡ ๐‘’ ๐‘ฅ โˆ’๐‘‡ ๐‘’ ๐‘ฆ ๐‘‡ ๐‘‘๐‘š = ๐œŒ๐‘‘๐‘‰ a) b) Figure 4- a) Cauchy tetrahedron formed by slicing a parallelepiped along an arbitrary plane define by the normal vector | ๐‘› |. b) Infinitesimal triangular portion of a generic 2D body. ๐‘‘๐›ค ๐‘‘๐‘ฅ ๐‘‘๐‘ฆ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฆ๐‘ฅ y x ๐œŽ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐‘› ๐‘ฆ ๐‘› ๐‘ฅ ๐‘›โƒ— ๐‘‡
  • 21. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 21 Regarding the 3D general case: โ€ข By basic analytical geometry it is possible to derive the following relations between the infinitesimal quantities [31]: { ๐‘‘๐ด ๐‘ฅ = ๐‘‘๐ด ๐‘› ๐‘ฅ ๐‘‘๐ด ๐‘ฆ = ๐‘‘๐ด ๐‘› ๐‘ฆ ๐‘‘๐ด ๐‘ง = ๐‘‘๐ด ๐‘› ๐‘ง โ‡’ { ๐‘› ๐‘ฅ = ๐‘‘๐ด ๐‘ฅ ๐‘‘๐ด ๐‘› ๐‘ฆ = ๐‘‘๐ด ๐‘ฆ ๐‘‘๐ด ๐‘› ๐‘ง = ๐‘‘๐ด ๐‘ง ๐‘‘๐ด ( 3.17 ) โ€ข Verifying the Static Equilibrium condition comes: { โˆ‘ ๐น๐‘ฅ = 0 โˆ‘ ๐น๐‘ฆ = 0 โˆ‘ ๐น๐‘ง = 0 โ‡’ { โˆ’๐œŽ๐‘ฅ๐‘ฅ ๐‘‘๐ด ๐‘ฅ โˆ’ ๐œ ๐‘ฆ๐‘ฅ ๐‘‘๐ด ๐‘ฆ โˆ’ ๐œ ๐‘ง๐‘ฅ ๐‘‘๐ด ๐‘ง + ๐‘‡๐‘ฅ ๐‘‘๐ด = 0 โˆ’๐œ ๐‘ฅ๐‘ฆ ๐‘‘๐ด ๐‘ฅ โˆ’ ๐œŽ ๐‘ฆ๐‘ฆ ๐‘‘๐ด ๐‘ฆ โˆ’ ๐œ ๐‘ง๐‘ฆ ๐‘‘๐ด ๐‘ง + ๐‘‡๐‘ฆ ๐‘‘๐ด = 0 โˆ’๐œ ๐‘ฅ๐‘ง ๐‘‘๐ด ๐‘ฅ โˆ’ ๐œ ๐‘ฆ๐‘ง ๐‘‘๐ด ๐‘ฆ โˆ’ ๐œŽ๐‘ง๐‘ง ๐‘‘๐ด ๐‘ง + ๐‘‡๐‘ง ๐‘‘๐ด = 0 ( 3.18 ) โ€ข Dividing both members of each equation by the area of the arbitrarily inclined surface ( dA ): { โˆ’๐œŽ๐‘ฅ๐‘ฅ ๐‘‘๐ด ๐‘ฅ ๐‘‘๐ด โˆ’ ๐œ ๐‘ฆ๐‘ฅ ๐‘‘๐ด ๐‘ฆ ๐‘‘๐ด โˆ’ ๐œ ๐‘ง๐‘ฅ ๐‘‘๐ด ๐‘ง ๐‘‘๐ด + ๐‘‡๐‘ฅ = 0 โˆ’๐œ ๐‘ฅ๐‘ฆ ๐‘‘๐ด ๐‘ฅ ๐‘‘๐ด โˆ’ ๐œŽ ๐‘ฆ๐‘ฆ ๐‘‘๐ด ๐‘ฆ ๐‘‘๐ด โˆ’ ๐œ ๐‘ง๐‘ฆ ๐ด ๐‘ง ๐‘‘๐ด + ๐‘‡๐‘ฆ = 0 โˆ’๐œ ๐‘ฅ๐‘ง ๐‘‘๐ด ๐‘ฅ ๐‘‘๐ด โˆ’ ๐œ ๐‘ฆ๐‘ง ๐‘‘๐ด ๐‘ฆ ๐‘‘๐ด โˆ’ ๐œŽ๐‘ง๐‘ง ๐‘‘๐ด ๐‘ง ๐‘‘๐ด + ๐‘‡๐‘ง = 0 ( 3.19 ) โ€ข By the relations between the infinitesimals, equation ( 3.17 ), and manipulating the terms comes: { โˆ’๐œŽ๐‘ฅ๐‘ฅ ๐‘› ๐‘ฅ โˆ’ ๐œ ๐‘ฆ๐‘ฅ ๐‘› ๐‘ฆ โˆ’ ๐œ ๐‘ง๐‘ฅ ๐‘› ๐‘ง + ๐‘‡๐‘ฅ = 0 โˆ’๐œ ๐‘ฅ๐‘ฆ ๐‘› ๐‘ฅ โˆ’ ๐œŽ ๐‘ฆ๐‘ฆ ๐‘› ๐‘ฆ โˆ’ ๐œ ๐‘ง๐‘ฆ ๐‘› ๐‘ง + ๐‘‡๐‘ฆ = 0 โˆ’๐œ ๐‘ฅ๐‘ง ๐‘› ๐‘ฅ โˆ’ ๐œ ๐‘ฆ๐‘ง ๐‘› ๐‘ฆ โˆ’ ๐œŽ๐‘ง๐‘ง ๐‘› ๐‘ง + ๐‘‡๐‘ง = 0 โ‡’ { ๐‘‡๐‘ฅ = ๐œŽ๐‘ฅ๐‘ฅ ๐‘› ๐‘ฅ + ๐œ ๐‘ฆ๐‘ฅ ๐‘› ๐‘ฆ + ๐œ ๐‘ง๐‘ฅ ๐‘› ๐‘ง ๐‘‡๐‘ฆ = ๐œ ๐‘ฅ๐‘ฆ ๐‘› ๐‘ฅ + ๐œŽ ๐‘ฆ๐‘ฆ ๐‘› ๐‘ฆ + ๐œ ๐‘ง๐‘ฆ ๐‘› ๐‘ง ๐‘‡๐‘ง = ๐œ ๐‘ฅ๐‘ง ๐‘› ๐‘ฅ + ๐œ ๐‘ฆ๐‘ง ๐‘› ๐‘ฆ + ๐œŽ๐‘ง๐‘ง ๐‘› ๐‘ง ( 3.20 ) โ€ข In the matrix form comes: | ๐‘‡๐‘ฅ ๐‘‡๐‘ฆ ๐‘‡๐‘ง | = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฆ๐‘ฅ ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ง๐‘ฆ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ง ๐œŽ๐‘ง๐‘ง ] | ๐‘› ๐‘ฅ ๐‘› ๐‘ฆ ๐‘› ๐‘ง | = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œ ๐‘ฆ๐‘ง ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ง๐‘ฆ ๐œŽ๐‘ง๐‘ง ] ๐‘‡ | ๐‘› ๐‘ฅ ๐‘› ๐‘ฆ ๐‘› ๐‘ง | ( 3.21 ) Or regarding the 2D case: โ€ข The previous relations between the infinitesimals come: { ๐‘‘๐ด ๐‘ฅ = ๐‘‘๐ด ๐‘› ๐‘ฅ ๐‘‘๐ด ๐‘ฆ = ๐‘‘๐ด ๐‘› ๐‘ฆ โ‡’ { ๐‘‘๐‘ฆ๐‘‘๐‘ง = ๐‘‘๐›ค๐‘‘๐‘ง ๐‘› ๐‘ฅ ๐‘‘๐‘ฅ๐‘‘๐‘ง = ๐‘‘๐›ค๐‘‘๐‘ง ๐‘› ๐‘ฆ โ‡’ { ๐‘‘๐‘ฅ = ๐‘‘๐›ค ๐‘› ๐‘ฅ ๐‘‘๐‘ฆ = ๐‘‘๐›ค ๐‘› ๐‘ฆ โ‡’ { ๐‘› ๐‘ฅ = ๐‘‘๐‘ฆ ๐‘‘๐›ค ๐‘› ๐‘ฆ = ๐‘‘๐‘ฅ ๐‘‘๐›ค ( 3.22 )
  • 22. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 22 โ€ข Verifying the Static Equilibrium condition comes: { โˆ‘ ๐น๐‘ฅ = 0 โˆ‘ ๐น๐‘ฆ = 0 โ‡’ { โˆ’๐œŽ๐‘ฅ๐‘ฅ ๐‘‘๐‘ฆ โˆ’ ๐œ ๐‘ฆ๐‘ฅ ๐‘‘๐‘ฅ + ๐‘‡๐‘ฅ ๐‘‘๐›ค = 0 โˆ’๐œŽ ๐‘ฆ๐‘ฆ ๐‘‘๐‘ฅ โˆ’ ๐œ ๐‘ฅ๐‘ฆ ๐‘‘๐‘ฆ + ๐‘‡๐‘ฆ ๐‘‘๐›ค = 0 ( 3.23 ) โ€ข Dividing both members of each equation by the length of the arbitrarily inclined surface ( dฮ“ ): { โˆ’๐œŽ๐‘ฅ๐‘ฅ ๐‘‘๐‘ฆ ๐‘‘๐›ค โˆ’ ๐œ ๐‘ฆ๐‘ฅ ๐‘‘๐‘ฅ ๐‘‘๐›ค + ๐‘‡๐‘ฅ = 0 โˆ’๐œŽ ๐‘ฆ๐‘ฆ ๐‘‘๐‘ฅ ๐‘‘๐›ค โˆ’ ๐œ ๐‘ฅ๐‘ฆ ๐‘‘๐‘ฆ ๐‘‘๐›ค + ๐‘‡๐‘ฆ = 0 ( 3.24 ) โ€ข By the relations between the infinitesimals, equation ( 3.22 ), and manipulating the terms comes: { โˆ’๐œŽ๐‘ฅ๐‘ฅ ๐‘› ๐‘ฅ โˆ’ ๐œ ๐‘ฆ๐‘ฅ ๐‘› ๐‘ฆ + ๐‘‡๐‘ฅ = 0 โˆ’๐œŽ ๐‘ฆ๐‘ฆ ๐‘› ๐‘ฆ โˆ’ ๐œ ๐‘ฅ๐‘ฆ ๐‘› ๐‘ฅ + ๐‘‡๐‘ฆ = 0 โ‡’ { ๐‘‡๐‘ฅ = ๐œŽ ๐‘ฅ๐‘ฅ ๐‘› ๐‘ฅ + ๐œ ๐‘ฆ๐‘ฅ ๐‘› ๐‘ฆ ๐‘‡๐‘ฆ = ๐œ ๐‘ฅ๐‘ฆ ๐‘› ๐‘ฅ + ๐œŽ ๐‘ฆ๐‘ฆ ๐‘› ๐‘ฅ ( 3.25 ) โ€ข In the matrix form comes: | ๐‘‡๐‘ฅ ๐‘‡๐‘ฆ | = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฆ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œŽ ๐‘ฆ๐‘ฆ ] | ๐‘› ๐‘ฅ ๐‘› ๐‘ฆ | = [ ๐œŽ๐‘ฅ๐‘ฅ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฆ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ] ๐‘‡ | ๐‘› ๐‘ฅ ๐‘› ๐‘ฆ | ( 3.26 ) 3.3 Strain Tensor The magnitude of the strains and displacements (linear displacements or rotations) can influence the mathematical definition of strain. The main theories applied to the continuum mechanics are [32], [33]: โ€ข Small Strains and small Displacements/rotations theory or infinitesimal strain theoryโ€“ used to solve most practical engineering problems that deal with common materials like wood, steel and other alloys; โ€ข Small Strains and large Displacements theory โ€“ essential to model materials and structures that can withstand large displacements without entering the plastic domain, i.e. remaining elastic; โ€ข Finite Strains and Displacements theory โ€“ necessary to model structures and materials where the deformed and undeformed configuration is significantly different. These arbitrarily large strains and displacements (linear or angular) can occur in materials with the mechanical behavior of elastomers, fluids, biological (or not) soft tissues. For small strains and small displacements (both linear and angular) the change in the geometry and constitutive properties of the structure, due to deformation, doesnโ€™t need to be considered after the force is applied. In other words, physical and mechanical properties of the material e.g. density, stiffness, etc. at each point of the infinitesimally deformed solid, can be assumed constant [29]. This definition of strain is also designed by Cauchy strains, and it will be the strain concept used throughout the report. The strain tensor or Cauchy strain tensor is also a second order tensor, and its 3x3 matrix is given by: [ ๐œ€ ] = [ ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฅ๐‘ง ๐œ€ ๐‘ฆ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ง ๐œ€ ๐‘ง๐‘ฅ ๐œ€ ๐‘ง๐‘ฆ ๐œ€ ๐‘ง๐‘ง ] ( 3.27 )
  • 23. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 23 The nomenclature adopted in the definition of the strains is rather different from the stress nomenclature. In index notation, the strain term ( )๐‘–๐‘— means: when ๐‘– = ๐‘— , the term corresponds to the extension along the ๐‘–-direction; when ๐‘– โ‰  ๐‘— , the term of the strain matrix corresponds to the rotation about the ij plane. Regarding its algebraic value, as schematized in Figure 5, the positive sign will be ascribed when the angle between the two faces of the conceptual parallelogram is reduced, and the negative sign when the angle increases. The geometric definition of strains is demonstrated and detailed in [30], [1]. The linear strain (also designated by longitudinal strain, linear deformation, extension, etc.) is quantified by the on- diagonal matrix components ๐œ€ ๐‘ฅ๐‘ฅ , ๐œ€ ๐‘ฆ๐‘ฆ , ๐œ€ ๐‘ง๐‘ง . The remaining non-diagonal terms correspond to the angular strain (also designated by shear strain, angular deformation, distortion, etc.). The relation of each term of the strain tensor, with the displacement field is given by [1]: ๐œ€ ๐‘ฅ๐‘ฅ = ๐œ•๐‘ข ๐œ•๐‘ฅ ; ๐œ€ ๐‘ฆ๐‘ฆ = ๐œ•๐‘ฃ ๐œ•๐‘ฆ ; ๐œ€ ๐‘ง๐‘ง = ๐œ•๐‘ค ๐œ•๐‘ง ( 3.28 ) ๐œ€ ๐‘ฅ๐‘ฆ = ๐œ€ ๐‘ฆ๐‘ฅ = 1 2 ( ๐œ•๐‘ข ๐œ•๐‘ฆ + ๐œ•๐‘ฃ ๐œ•๐‘ฅ ) ; ๐œ€ ๐‘ฆ๐‘ง = ๐œ€ ๐‘ง๐‘ฆ = 1 2 ( ๐œ•๐‘ฃ ๐œ•๐‘ง + ๐œ•๐‘ค ๐œ•๐‘ฆ ) ; ๐œ€ ๐‘ฅ๐‘ง = ๐œ€ ๐‘ง๐‘ฅ = 1 2 ( ๐œ•๐‘ข ๐œ•๐‘ง + ๐œ•๐‘ค ๐œ•๐‘ฅ ) ( 3.29 ) The geometric relation between strain and displacements can also be written in matrix form as: | ๐œ€ | = | | | ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ง๐‘ง ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ง ๐œ€ ๐‘ฅ๐‘ง | | | = [ ๐œ• ๐œ•๐‘ฅ 0 0 0 ๐œ• ๐œ•๐‘ฆ 0 0 0 ๐œ• ๐œ•๐‘ง 1 2 ๐œ• ๐œ•๐‘ฆ 1 2 ๐œ• ๐œ•๐‘ฅ 0 0 1 2 ๐œ• ๐œ•๐‘ง 1 2 ๐œ• ๐œ•๐‘ฆ 1 2 ๐œ• ๐œ•๐‘ง 0 1 2 ๐œ• ๐œ•๐‘ฅ ] | ๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ง) ๐‘ฃ( ๐‘ฅ, ๐‘ฆ, ๐‘ง) ๐‘ค( ๐‘ฅ, ๐‘ฆ, ๐‘ง) | ( 3.30 ) Other main contrast regarding the stress tensor and strain tensor, is the difference between tensorial and engineering strain for angular distortion. The angular distortion can be quantified in terms of engineering shear strain (also called global strain), or tensorial shear strain. The engineering shear strain can be considered as the total rotation of the 2D cartesian element subjected to shear stresses or the total change of the original angle formed by the undeformed element; whereas the tensorial shear strain can be understood as the average of the two displacements or the amount that each edge rotates in average. This difference is illustrated in Figure 5, and the two are related by the following vector equation [30]: | | | ๐›พ๐‘ฅ๐‘ฆ ๐›พ๐‘ฆ๐‘ฅ ๐›พ๐‘ฆ๐‘ง ๐›พ๐‘ง๐‘ฆ ๐›พ๐‘ฅ๐‘ง ๐›พ๐‘ง๐‘ฅ | | | = | | | 2๐œ€ ๐‘ฅ๐‘ฆ 2๐œ€ ๐‘ฆ๐‘ฅ 2๐œ€ ๐‘ฆ๐‘ง 2๐œ€ ๐‘ง๐‘ฆ 2๐œ€ ๐‘ฅ๐‘ง 2๐œ€ ๐‘ง๐‘ฅ | | | ( 3.31 )
  • 24. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 24 Their importance arises from the convenience of replacing the general symmetry of the stiffness matrix (after continuous simplifications), as it will be explored in the next subchapter (see Page 26). In the matrix form, the previous relations can be written as: [ ๐œ€ ] = [ ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฅ๐‘ง ๐œ€ ๐‘ฆ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ง ๐œ€ ๐‘ง๐‘ฅ ๐œ€ ๐‘ง๐‘ฆ ๐œ€ ๐‘ง๐‘ง ] = 1 2 [ 2๐œ€ ๐‘ฅ๐‘ฅ ๐›พ๐‘ฅ๐‘ฆ ๐›พ๐‘ฅ๐‘ง ๐›พ๐‘ฆ๐‘ฅ 2๐œ€ ๐‘ฆ๐‘ฆ ๐›พ๐‘ฆ๐‘ง ๐›พ๐‘ง๐‘ฅ ๐›พ๐‘ง๐‘ฆ 2๐œ€ ๐‘ง๐‘ง ] ( 3.32 ) The properties of a tensor wonโ€™t be remembered in this report [29]; however, it is always worth notice that the following matrix is not a tensor!! [ ๐œ€ ๐‘ฅ๐‘ฅ ๐›พ๐‘ฅ๐‘ฆ ๐›พ๐‘ฅ๐‘ง ๐›พ๐‘ฆ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐›พ๐‘ฆ๐‘ง ๐›พ๐‘ง๐‘ฅ ๐›พ๐‘ง๐‘ฆ ๐œ€ ๐‘ง๐‘ง ] ( 3.33 ) The symmetry property for the strain tensor matrix is derived meticulously in [30]. By the displacement field geometric definition and neglecting the second order terms (for small strains and displacements, both linear and angular), it is possible to verify the strain tensor symmetry. The symmetry relations relating the shear distortion come: ๐›พ๐‘ฆ๐‘ง = ๐›พ๐‘ง๐‘ฆ ๐›พ๐‘ฅ๐‘ง = ๐›พ๐‘ง๐‘ฅ ๐›พ๐‘ฅ๐‘ฆ = ๐›พ๐‘ฆ๐‘ฅ ( 3.34 ) From equation ( 3.27 ), ( 3.32 ) and ( 3.34 ) it is possible to finally write the strain tensor in tensorial strains or engineering strains as: [ ๐œ€ ] = [ ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฅ๐‘ง ๐œ€ ๐‘ฆ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ง ๐œ€ ๐‘ง๐‘ฅ ๐œ€ ๐‘ง๐‘ฆ ๐œ€ ๐‘ง๐‘ง ] = [ ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฅ๐‘ง ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ง ๐œ€ ๐‘ฅ๐‘ง ๐œ€ ๐‘ฆ๐‘ง ๐œ€ ๐‘ง๐‘ง ] = [ ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ฅ๐‘ง โ€ฆ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ฆ๐‘ง โ€ฆ โ€ฆ ๐œ€ ๐‘ง๐‘ง ] ( 3.35 ) [ ๐œ€ ] = 1 2 [ 2๐œ€ ๐‘ฅ๐‘ฅ ๐›พ๐‘ฅ๐‘ฆ ๐›พ๐‘ฅ๐‘ง ๐›พ๐‘ฆ๐‘ฅ 2๐œ€ ๐‘ฆ๐‘ฆ ๐›พ๐‘ฆ๐‘ง ๐›พ๐‘ง๐‘ฅ ๐›พ๐‘ง๐‘ฆ 2๐œ€ ๐‘ง๐‘ง ] = 1 2 [ 2๐œ€ ๐‘ฅ๐‘ฅ ๐›พ๐‘ฅ๐‘ฆ ๐›พ๐‘ฅ๐‘ง ๐›พ๐‘ฅ๐‘ฆ 2๐œ€ ๐‘ฆ๐‘ฆ ๐›พ๐‘ฆ๐‘ง ๐›พ๐‘ฅ๐‘ง ๐›พ๐‘ฆ๐‘ง 2๐œ€ ๐‘ง๐‘ง ] = 1 2 [ 2๐œ€ ๐‘ฅ๐‘ฅ ๐›พ๐‘ฅ๐‘ฆ ๐›พ๐‘ฅ๐‘ง โ€ฆ 2๐œ€ ๐‘ฆ๐‘ฆ ๐›พ๐‘ฆ๐‘ง โ€ฆ โ€ฆ 2๐œ€ ๐‘ง๐‘ง ] ( 3.36 ) Figure 5- Nomenclature adopted for the shear stress definition, for the distortion of the differential Cartesian element. ๐‘ฆ ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ฅ๐‘ฆ ๐œ•๐‘ข ๐œ•๐‘ฆ ๐‘ฅ ๐œ•๐‘ฃ ๐œ•๐‘ฅ ๐‘ฆ ๐‘ฅ ๐›พ = ๐œ•๐‘ข ๐œ•๐‘ฆ + ๐œ•๐‘ฃ ๐œ•๐‘ฅ ๐›พ/2 ๐‘ฆ ๐‘ฅ ๐›พ = ๐œ•๐‘ข ๐œ•๐‘ฆ + ๐œ•๐‘ฃ ๐œ•๐‘ฅ๐›พ/2
  • 25. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 25 3.4 Generalized Hookeโ€™s Law 3.4.1 Theoretical Background Cauchy Elastic Materials or Simple Elastic Materials are materials for which the stress at a given point is just function of the instantaneous strain. In other words, the stresses donโ€™t depend of the strain path, strain history, strain rate, and the time taken to achieve a given deformation field [34]. Cauchy materials theoretical definition also implies: โ€ข Homogeneous materials โ€“ the constitutive properties are independent of the point of analysis, i.e. the terms of the stiffness matrix are not point functions; โ€ข Temperature effect is ignored โ€“ even if there are thermal strains and/or residual stresses, the effect of the temperature change in the properties of the material is neglected. Assuming the previous hypothesis, the stress second order tensor is related by a second order- valued function with the strain second order tensor as follows: [ ๐œŽ ] = ๐‘“ ( [ ๐œ€ ] ) ( 3.37 ) Considering that the stresses are a linear and homogeneous combination or function of the strains, the contribution factors are in fact the elastic coefficients that characterize the mechanical behavior of the material, i.e. are a property of the material. Historically the British engineer Robert Hooke was the first to study this linear relation between the stress and strain [1]. Thatโ€™s why the generalize relationship of anisotropic materials - for spatial or triaxial stresses and strains - is called Generalize Hookeโ€™s Law. Itโ€™s a constitutive model for infinitesimal deformation of a linear elastic material, in which the relation between stress and strains is model by a 4th order tensor that linearly maps between second-order tensors [33]. The elasticity tensor will result in a 9x9 elastic coefficient matrix. Hookeโ€™s law can be presented: in terms of a stiffness tensor or matrix ([ ๐ถ ]), putting in evidence the stress; or in terms of compliance tensor or matrix ([ ๐‘† ]), in which the response function linking strain to the deforming stress is the compliance tensor of the material. The matrix form of Hookeโ€™s Law can be written as: | ๐œŽ | = [ ๐ถ ] | ๐œ€ | ( 3.38 ) | ๐œ€ | = [ ๐‘† ] | ๐œŽ | ( 3.39 ) Or explicitly as: | | | ๐œŽ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œŽ๐‘ง๐‘ง ๐œ ๐‘ฆ๐‘ง ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ง๐‘ฆ ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ฆ๐‘ฅ | | | = [ ๐ถ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ ๐ถ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ ๐ถ ๐‘ฅ๐‘ฅ ๐‘ง๐‘ง ๐ถ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ง ๐ถ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ง ๐ถ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฆ ๐ถ ๐‘ฅ๐‘ฅ ๐‘ง๐‘ฆ ๐ถ ๐‘ฅ๐‘ฅ ๐‘ง๐‘ฅ ๐ถ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฅ ๐ถ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐ถ๐‘ง๐‘ง ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐ถ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐ถ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐ถ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐ถ๐‘ง๐‘ฆ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐ถ๐‘ง๐‘ฅ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐ถ ๐‘ฆ๐‘ฅ ๐‘ฅ๐‘ฅ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐ถ ๐‘ฆ๐‘ฅ ๐‘ฆ๐‘ฅ ] | | | ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ง๐‘ง ๐œ€ ๐‘ฆ๐‘ง ๐œ€ ๐‘ฅ๐‘ง ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ง๐‘ฆ ๐œ€ ๐‘ง๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฅ | | | ( 3.40 ) | | | ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ง๐‘ง ๐œ€ ๐‘ฆ๐‘ง ๐œ€ ๐‘ฅ๐‘ง ๐œ€ ๐‘ฅ๐‘ฆ ๐œ€ ๐‘ง๐‘ฆ ๐œ€ ๐‘ง๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฅ | | | = [ ๐‘† ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ ๐‘† ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ ๐‘† ๐‘ฅ๐‘ฅ ๐‘ง๐‘ง ๐‘† ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ง ๐‘† ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ง ๐‘† ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฆ ๐‘† ๐‘ฅ๐‘ฅ ๐‘ง๐‘ฆ ๐‘† ๐‘ฅ๐‘ฅ ๐‘ง๐‘ฅ ๐‘† ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฅ ๐‘† ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐‘†๐‘ง๐‘ง ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐‘† ๐‘ฆ๐‘ง ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐‘† ๐‘ฅ๐‘ง ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐‘† ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐‘†๐‘ง๐‘ฆ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐‘†๐‘ง๐‘ฅ ๐‘ฅ๐‘ฅ โ‹ฑ โ‹ฎ ๐‘† ๐‘ฆ๐‘ฅ ๐‘ฅ๐‘ฅ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘† ๐‘ฆ๐‘ฅ ๐‘ฆ๐‘ฅ ] | | | ๐œŽ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œŽ๐‘ง๐‘ง ๐œ ๐‘ฆ๐‘ง ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฅ๐‘ฆ ๐œ ๐‘ง๐‘ฆ ๐œ ๐‘ง๐‘ฅ ๐œ ๐‘ฆ๐‘ฅ | | | ( 3.41 )
  • 26. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 26 The main root of the indexical notation is very similar for the coefficients of both stiffness and compliance matrixes. However, its meaning is exactly the opposite: โ€ข The generic stiffness coefficient ๐ถ ๐‘–๐‘—, corresponds to the stress component acting on the i- direction due to a strain imposed in j-direction, while constraining to zero the strains in the remaining directions; โ€ข Whereas the generic compliance coefficient ๐‘† ๐‘–๐‘—, corresponds to the strain component about the ๐‘–-direction due to a stress applied in the ๐‘—-direction, while keeping null the remaining stresses. Without making any further assumption, to apply the Generalized Hookeโ€™s Law it would be necessary to define 81 elastic terms to compute the coefficient matrix (whether in its Stiffness or Compliance form). From the stress symmetry and strain symmetry relations (reciprocity relations), detailed in subchapter 3.2 and 3.3 respectively, it is possible to further simplify this matrix to a more treatable form, as schematized in the following schematic equation: | | | ( ) ๐‘ฅ๐‘ฅ ( ) ๐‘ฆ๐‘ฆ ( ) ๐‘ง๐‘ง ( ) ๐‘ฆ๐‘ง ( ) ๐‘ฅ๐‘ง ( ) ๐‘ฅ๐‘ฆ โˆ’ โˆ’ โˆ’ | | | = [ ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ง๐‘ง ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ง ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ง ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฆ โˆ’ โˆ’ โˆ’ ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ง๐‘ง ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฆ๐‘ง ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ง ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฆ โˆ’ โˆ’ โˆ’ ๐œ‘๐‘ง๐‘ง ๐‘ฅ๐‘ฅ ๐œ‘๐‘ง๐‘ง ๐‘ฆ๐‘ฆ ๐œ‘๐‘ง๐‘ง ๐‘ง๐‘ง ๐œ‘๐‘ง๐‘ง ๐‘ฆ๐‘ง ๐œ‘๐‘ง๐‘ง ๐‘ฅ๐‘ง ๐œ‘๐‘ง๐‘ง ๐‘ฅ๐‘ฆ โˆ’ โˆ’ โˆ’ ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฆ๐‘ง ๐‘ง๐‘ง ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฆ๐‘ง ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ง ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ฆ โˆ’ โˆ’ โˆ’ ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ง ๐‘ง๐‘ง ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฆ๐‘ง ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ง ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ฆ โˆ’ โˆ’ โˆ’ ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ง๐‘ง ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฆ๐‘ง ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ง ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ฆ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ ] | | | ( ) ๐‘ฅ๐‘ฅ ( ) ๐‘ฆ๐‘ฆ ( ) ๐‘ง๐‘ง ( ) ๐‘ฆ๐‘ง ( ) ๐‘ฅ๐‘ง ( ) ๐‘ฅ๐‘ฆ โˆ’ โˆ’ โˆ’ | | | ( 3.42 ) In order to simplify equation ( 3.42 ), it is not possible to directly eliminate all unnecessary terms. Thus, in order that equation ( 3.42 ) preserves its meaning, the reciprocity property from both stresses and strains implies the addition of the term 2 (due to the equal in value missing terms that were eliminated). | | ( ) ๐‘ฅ๐‘ฅ ( ) ๐‘ฆ๐‘ฆ ( ) ๐‘ง๐‘ง ( ) ๐‘ฆ๐‘ง ( ) ๐‘ฅ๐‘ง ( ) ๐‘ฅ๐‘ฆ | | = [ ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ง๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฆ ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ง๐‘ง ๐Ÿ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฆ๐‘ง ๐Ÿ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ง ๐Ÿ๐œ‘ ๐‘ฆ๐‘ฆ ๐‘ฅ๐‘ฆ ๐œ‘๐‘ง๐‘ง ๐‘ฅ๐‘ฅ ๐œ‘๐‘ง๐‘ง ๐‘ฆ๐‘ฆ ๐œ‘๐‘ง๐‘ง ๐‘ง๐‘ง ๐Ÿ๐œ‘๐‘ง๐‘ง ๐‘ฆ๐‘ง ๐Ÿ๐œ‘๐‘ง๐‘ง ๐‘ฅ๐‘ง ๐Ÿ๐œ‘๐‘ง๐‘ง ๐‘ฅ๐‘ฆ ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฆ๐‘ง ๐‘ง๐‘ง ๐Ÿ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฆ๐‘ง ๐Ÿ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ง ๐Ÿ๐œ‘ ๐‘ฆ๐‘ง ๐‘ฅ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ง ๐‘ง๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฆ๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ง ๐‘ฅ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ฅ ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฆ๐‘ฆ ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ง๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฆ๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ง ๐Ÿ๐œ‘ ๐‘ฅ๐‘ฆ ๐‘ฅ๐‘ฆ ] | | ( ) ๐‘ฅ๐‘ฅ ( ) ๐‘ฆ๐‘ฆ ( ) ๐‘ง๐‘ง ( ) ๐‘ฆ๐‘ง ( ) ๐‘ฅ๐‘ง ( ) ๐‘ฅ๐‘ฆ | | ( 3.43 ) After simplification of the 4th order coefficientsโ€™ tensor, the matrix lost its symmetry. The importance of the engineering strains can now be fully understood. Instead of using the tensorial strains, if the engineering strains were used, the symmetry of the matrix is restored, as detailed in [35]. Applying any energetic theorem e.g. Virtual Work Theorem, Minimum Potential Energy, Maxwell-Betti Theorem, etc. [36], it is possible to prove that the matrix from the 4th order tensor that relates stress and strains in an elastic and loaded rigid body is symmetric. However, a different approach was taken. In order to prove the symmetry of the elastic coefficient matrix, the concept of strain energy density function is introduced. Conservative materials or Green Materials or Hyper-elastic materials are a special case of Cauchy elastic materials (or simple elastic material), Figure 6 b). For this type of materials, the stress-strain relation derives from a strain energy density function [37]: โ€ข Conservative materials possess a strain energy density function or energy potential, and this energy potential is given by, ๐œŽ๐‘Ÿ๐‘  = ๐œ•๐‘ˆ๐‘Ÿ๐‘  ๐œ•๐œ€ ๐‘Ÿ๐‘  ( 3.44 )
  • 27. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 27 โ€ข Assuming linear stresses and strains, | ๐œŽ | = [ ๐ถ ] | ๐œ€ | โ‡’ ๐œŽ๐‘–๐‘— = ๐ถ๐‘–๐‘— ๐‘˜๐‘™ โˆ™ ๐œ€ ๐‘˜๐‘™ ( 3.45 ) โ€ข The elastic energy is finally given by, ๐ถ๐‘–๐‘— ๐‘˜๐‘™ โˆ™ ๐œ€ ๐‘Ÿ๐‘  = ๐œ•๐‘ˆ๐‘Ÿ๐‘  ๐œ•๐œ€ ๐‘Ÿ๐‘  ; ๐‘Ÿ๐‘  = ๐‘˜๐‘™ ( 3.46 ) โ€ข Differentiating the previous equation to respect to ๐œ€ ๐‘˜๐‘™ or ๐œ€๐‘–๐‘— we get, ๐ถ๐‘–๐‘— ๐‘˜๐‘™ = ๐œ•2 ๐‘ˆ๐‘–๐‘— ๐œ•๐œ€๐‘–๐‘— ๐œ•๐œ€ ๐‘˜๐‘™ ๐ถ๐‘˜๐‘™ ๐‘–๐‘— = ๐œ•2 ๐‘ˆ๐‘–๐‘— ๐œ•๐œ€ ๐‘˜๐‘™ ๐œ•๐œ€๐‘–๐‘— ( 3.47 ) โ€ข Which finally ends up in the symmetry relation: ๐ถ๐‘–๐‘— ๐‘˜๐‘™ = ๐œ•2 ๐‘ˆ๐‘–๐‘— ๐œ•๐œ€๐‘–๐‘— ๐œ•๐œ€ ๐‘˜๐‘™ = ๐œ•2 ๐‘ˆ๐‘–๐‘— ๐œ•๐œ€ ๐‘˜๐‘™ ๐œ•๐œ€๐‘–๐‘— = ๐ถ๐‘˜๐‘™ ๐‘–๐‘— โ‡’ ๐ถ๐‘–๐‘— ๐‘˜๐‘™ = ๐ถ๐‘˜๐‘™ ๐‘–๐‘— ( 3.48 ) The vast majority of engineering materials are conservative, as a result, the symmetry of the stiffness and compliance matrices is verified for most of common engineering problems. After all previous simplifications summarized in Table 2, the Generalized Hookeโ€™s Law for a conservative anisotropic material is a 6x6 elastic matrix, and now only involves the knowledge of 21 unknown elastic terms or parameters (only 21 stiffness components are actually independent in Hooke's law), and it can be written in the form bellow3 : | | | ๐œŽ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œŽ๐‘ง๐‘ง ๐œ ๐‘ฆ๐‘ง ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฅ๐‘ฆ | | | = [ ๐ถ11 ๐ถ12 ๐ถ13 ๐ถ14 ๐ถ15 ๐ถ16 โ€ฆ ๐ถ22 ๐ถ23 ๐ถ24 ๐ถ25 ๐ถ26 โ€ฆ โ€ฆ ๐ถ33 ๐ถ34 ๐ถ35 ๐ถ36 โ€ฆ โ€ฆ โ€ฆ ๐ถ44 ๐ถ45 ๐ถ46 โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐ถ55 ๐ถ56 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐ถ66 ] | | | ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ง๐‘ง ๐›พ๐‘ฆ๐‘ง ๐›พ๐‘ฅ๐‘ง ๐›พ๐‘ฅ๐‘ฆ | | | ( 3.49 ) Table 2- Summary of all simplifications made to the general stiffness matrix. Property No. Dependent terms Original Number of terms 81 = 9 x 9 Stress Reciprocity 18 + 9* After Reciprocity Reduction 36 = 6 x 6 Strain Reciprocity 18 + 9* Symmetry of the Stiffness matrix 15 After Matrix Symmetry Reduction 21 = 6 โˆ™ (6 + 1) 2 * 9 terms are automatically and simultaneously eliminated by the reciprocity property of both stresses and strains 3 Stiffness Matrix written in Voigt notation, after eliminating the need for the stress and strain tensor matrix. See next page to further clarifications
  • 28. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 28 Voigt notation or Voigt form is a way to represent a symmetric tensor by reducing its order [38]. Voigt notation is commonly used in the study of composites, since it allows to: (i) reduce the second order tensors (from the Stresses and Strains) to 6x1 vectors, and (ii) the 9x9 material stiffness matrix to a 6x6 matrix. A fairly simple mnemonic to remember the codification of the indices in Voigt form is illustrated in Figure 6. The previously mentioned mechanical quantities are then given by: | ๐œŽ | = | | | ๐œŽ๐‘ฅ๐‘ฅ ๐œŽ ๐‘ฆ๐‘ฆ ๐œŽ๐‘ง๐‘ง ๐œ ๐‘ฆ๐‘ง ๐œ ๐‘ฅ๐‘ง ๐œ ๐‘ฅ๐‘ฆ | | | = | | | ๐œŽ11 ๐œŽ22 ๐œŽ33 ๐œ23 ๐œ13 ๐œ12 | | | = | | | ๐œŽ1 ๐œŽ2 ๐œŽ3 ๐œŽ4 ๐œŽ5 ๐œŽ6 | | | ( 3.50 ) | ๐œ€ | = | | | ๐œ€ ๐‘ฅ๐‘ฅ ๐œ€ ๐‘ฆ๐‘ฆ ๐œ€ ๐‘ง๐‘ง ๐›พ๐‘ฆ๐‘ง ๐›พ๐‘ฅ๐‘ง ๐›พ๐‘ฅ๐‘ฆ | | | = | | | ๐œ€11 ๐œ€22 ๐œ€33 ๐›พ23 ๐›พ13 ๐›พ12 | | | = | | | ๐œ€1 ๐œ€2 ๐œ€3 ๐œ€4 ๐œ€5 ๐œ€6 | | | ( 3.51 ) [ ๐ถ ] = [ ๐ถ11 ๐ถ12 ๐ถ13 ๐ถ14 ๐ถ15 ๐ถ16 ๐ถ21 ๐ถ22 ๐ถ23 ๐ถ24 ๐ถ25 ๐ถ26 ๐ถ31 ๐ถ32 ๐ถ33 ๐ถ34 ๐ถ35 ๐ถ36 ๐ถ41 ๐ถ42 ๐ถ43 ๐ถ44 ๐ถ45 ๐ถ46 ๐ถ51 ๐ถ52 ๐ถ53 ๐ถ53 ๐ถ55 ๐ถ56 ๐ถ61 ๐ถ62 ๐ถ63 ๐ถ64 ๐ถ65 ๐ถ66 ] = [ ๐ถ11 ๐ถ12 ๐ถ13 ๐ถ14 ๐ถ15 ๐ถ16 โ€ฆ ๐ถ22 ๐ถ23 ๐ถ24 ๐ถ25 ๐ถ26 โ€ฆ โ€ฆ ๐ถ33 ๐ถ34 ๐ถ35 ๐ถ36 โ€ฆ โ€ฆ โ€ฆ ๐ถ44 ๐ถ45 ๐ถ46 โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐ถ55 ๐ถ56 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐ถ66 ] ( 3.52 ) [ ๐‘† ] = [ ๐‘†11 ๐‘†12 ๐‘†13 ๐‘†14 ๐‘†15 ๐‘†16 ๐‘†21 ๐‘†22 ๐‘†23 ๐‘†24 ๐‘†25 ๐‘†26 ๐‘†31 ๐‘†32 ๐‘†33 ๐‘†34 ๐‘†35 ๐‘†36 ๐‘†41 ๐‘†42 ๐‘†43 ๐‘†44 ๐‘†45 ๐‘†46 ๐‘†51 ๐‘†52 ๐‘†53 ๐‘†53 ๐‘†55 ๐‘†56 ๐‘†61 ๐‘†62 ๐‘†63 ๐‘†64 ๐‘†65 ๐‘†66 ] = [ ๐‘†11 ๐‘†12 ๐‘†13 ๐‘†14 ๐‘†15 ๐‘†16 โ€ฆ ๐‘†22 ๐‘†23 ๐‘†24 ๐‘†25 ๐‘†26 โ€ฆ โ€ฆ ๐‘†33 ๐‘†34 ๐‘†35 ๐‘†36 โ€ฆ โ€ฆ โ€ฆ ๐‘†44 ๐‘†45 ๐‘†46 โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘†55 ๐‘†56 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐‘†66 ] ( 3.53 ) [ ] = [ ( ) ๐‘ฅ๐‘ฅ ( ) ๐‘ฅ๐‘ฆ ( ) ๐‘ฅ๐‘ง ( ) ๐‘ฆ๐‘ฅ ( ) ๐‘ฆ๐‘ฆ ( ) ๐‘ฆ๐‘ง ( ) ๐‘ง๐‘ฅ ( ) ๐‘ง๐‘ฆ ( ) ๐‘ง๐‘ง ] Figure 6- a) Schematic representation of the algorithm used to codify Voigt notation in a second order tensor. b) Illustration of the relation between Elastic and Hyperelastic materials for small strains condition. ๐œ€ ๐œŽa) b)
  • 29. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 29 3.5 Transformation Matrix 3.5.1 General Definition The transformation matrix allows to change the stress, the strain, or even the stiffness/compliance tensor from one coordinate system to another generically transformed coordinate system. In its completely general form, the transformation matrix is given by: [ ๐‘‡ ] = [ cos( ๐›ผ ๐‘ฅโ€ฒ ๐‘ฅ) cos(๐›ผ ๐‘ฅโ€ฒ ๐‘ฆ) cos( ๐›ผ ๐‘ฅโ€ฒ ๐‘ง) cos(๐›ผ ๐‘ฆโ€ฒ ๐‘ฅ) cos(๐›ผ ๐‘ฆโ€ฒ ๐‘ฆ) cos(๐›ผ ๐‘ฆโ€ฒ ๐‘ง) cos( ๐›ผ ๐‘งโ€ฒ ๐‘ฅ) cos(๐›ผ ๐‘งโ€ฒ ๐‘ฆ) cos( ๐›ผ ๐‘งโ€ฒ ๐‘ง) ] ( 3.54 ) The mathematical meaning of the angles of the transformation matrix, equation ( 3.54 ), is illustrated in Figure 7 for the particular case of the transformed ๐‘ฅโ€™-axis. Using a similar principle, the remaining rotation angles could also be drawn. Usually, the direction cosines from equation ( 3.54 ), are hard to compute individually. So, the transformation matrix can also be determined by the combination of three simpler transformations, each one in respect to only one axis. The most used combination is designated as Euler Angles (or x- convention) and is determined by [5]: [๐‘‡] = [ โˆ’ cos( ๐œ“) sin( ๐œ“) 0 sin( ๐œ“) cos( ๐œ“) 0 0 0 1 ] ๐‘ง [ 1 0 0 0 cos( ๐œƒ) sin( ๐œƒ) 0 โˆ’sin( ๐œƒ) cos( ๐œƒ) ] ๐‘ฅ [ โˆ’ cos( ๐œ‘) sin( ๐œ‘) 0 sin( ๐œ‘) cos( ๐œ‘) 0 0 0 1 ] ๐‘ง ( 3.55 ) The physical meaning of the three rotation angles is given in Figure 8 and Figure 9. Since the matrix multiplication operation isnโ€™t commutative, the order of rotation matters, Counter-clockwise rotation was considered as a positive rotation for all angles. ๐‘ง ๐‘ฅ ๐‘ฆ ๐‘ฅโ€ฒ ๐›ผ ๐‘ฅโ€ฒ ๐‘ฅ ๐›ผ ๐‘ฅโ€ฒ ๐‘ฆ ๐›ผ ๐‘ฅโ€ฒ ๐‘ง Figure 7- Illustration of the angles between the transformed ๐‘ฅโ€™-axis and the original cartesian coordinate system. Figure 8- Illustration of the individual rotations of the Euler angles. Image adapted from [5].
  • 30. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 30 Since this report is essentially dedicated to plane elasticity, for the 2D case, the only possible transformation consists in a rotation around the z-axis, and the transformation matrix s given by: [ ๐‘‡ ] = [ โˆ’ cos( ๐œ“) sin( ๐œ“) 0 sin( ๐œ“) cos( ๐œ“) 0 0 0 1 ] ๐‘ง ( 3.56 ) Orthotropic material behavior will be considered further in the report, see chapter 4, Thus, it is necessary to apply the transformation matrix to the stress and strain tensor as follows [35]: [ ๐œŽโ€ฒ ] = [ ๐‘‡ ] [ ๐œŽ ] [ ๐‘‡ ] ๐‘‡ ( 3.57 ) [ ๐œ€โ€ฒ ] = [ ๐‘‡ ] [ ๐œ€ ] [ ๐‘‡ ] ๐‘‡ ( 3.58 ) 3.5.2 Modified Transformation Matrix The previous transformation matrix [ ๐‘‡ ] changes the coordinate system of second order tensors. However, it was shown in the previous subchapter that due to the several symmetries the stress and strain can be related using the simplified Voigt notation. Matrix [ ๐‘‡ ] can be adapted precisely to be applied directly to the coordinate transformation of both the stress and strain in Voigt notation. However, in the case of the stress-strain value function matrix, i.e. for the stiffness or compliance tensor, the approach is different. The transformation matrix is computed from the knowledge of the transformation matrices for the stresses and strains, and the stress-strain relation. The several simplifications detailed in [29], consist of a procedure merely algebraic that relies on matrix manipulation. After computing the matrix product from equations ( 3.57 ) and ( 3.58 ), the resulting terms are organized in a vector form following Voigt notation. It is important to notice that for the shear strains, rather than Tensorial strains, Engineering strains were used. Thus, the ยฝ term must affect the strain second order tensor in order to maintain the tensor properties. The final output consists of three transformation matrices namely: [ ๐‘‡ โˆ— ], [ ๐‘‡ โˆ—โˆ— ], [ ๐‘‡ โˆ—โˆ—โˆ— ], and [ ๐‘‡ โˆ—โˆ—โˆ—โˆ— ] for the stress vector, strain ๐œ“ ๐‘ฅโ€ฒ ๐‘ฆโ€ฒ ๐‘ฆ ๐‘ฅ ๐œ“ ๐œƒ ๐‘ฆโ€ฒโ€ฒ ๐‘งโ€ฒ ๐‘ง ๐‘ฆ ๐œƒ Figure 9- Definition of the nomenclature used to define the coordinates transformation matrix. The ๐œƒ, ๐œ‘, and ๐œ“, represent the rotation angle about the z, x and y axis respectively. ๐œ‘ ๐‘ฅโ€ฒโ€ฒ ๐‘ฆโ€ฒโ€ฒโ€ฒ ๐‘ฆโ€ฒโ€ฒ ๐‘ฅโ€ฒโ€ฒ ๐œ‘
  • 31. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 31 vector, stiffness matrix, and compliance matrix respectively. The procedure followed to compute the previous different transformation matrices was overall the same. However, each second tensor has each on particularities. The only exception was the transformation matrix for the Stiffness/Compliance matrix that required a different approach as already stated. For the Transformation Matrix of the Stress Vector, [ ๐‘ป โˆ— ] [ ๐œŽโ€ฒ ] = [ ๐‘‡ ] [ ๐œŽ ] [ ๐‘‡ ] ๐‘‡ ( 3.59 ) [ ๐œŽ11 โ€ฒ ๐œ12 โ€ฒ ๐œ 13 โ€ฒ ๐œ21 โ€ฒ ๐œŽ22 โ€ฒ ๐œ 23 โ€ฒ ๐œ31 โ€ฒ ๐œ32 โ€ฒ ๐œŽ33 โ€ฒ ] = [ cos( ๐œ“) sin( ๐œ“) 0 โˆ’ sin( ๐œ“) cos( ๐œ“) 0 0 0 1 ] [ ๐œŽ11 ๐œ12 ๐œ13 ๐œŽ21 ๐œŽ22 ๐œ23 ๐œ 31 ๐œ32 ๐œŽ33 ] [ cos( ๐œ“) sin( ๐œ“) 0 โˆ’ sin( ๐œ“) cos( ๐œ“) 0 0 0 1 ] ๐‘‡ ( 3.60 ) โ€ข Considering only the right side of the matrix, and manipulating it, comes: [ cos( ๐œ“) sin( ๐œ“) 0 โˆ’ sin( ๐œ“) cos( ๐œ“) 0 0 0 1 ] [ ๐œŽ11 ๐œ12 ๐œ13 ๐œŽ21 ๐œŽ22 ๐œ23 ๐œ 31 ๐œ32 ๐œŽ33 ] [ cos( ๐œ“) โˆ’ sin( ๐œ“) 0 sin( ๐œ“) cos( ๐œ“) 0 0 0 1 ] ( 3.61 ) [ cos( ๐œ“) ( cos( ๐œ“) ๐œŽ11 + sin( ๐œ“) ๐œ 21 ) + sin( ๐œ“) ( cos( ๐œ“) ๐œ12 + sin( ๐œ“) ๐œŽ22 ) โ‹ฏ cos( ๐œ“) (โˆ’ sin( ๐œ“) ๐œŽ11 + cos( ๐œ“) ๐œ21 ) + sin( ๐œ“) ( โˆ’ sin( ๐œ“) ๐œ 12 + cos( ๐œ“) ๐œŽ22 ) โ‹ฏ cos( ๐œ“) ( ๐œ 31 ) + sin( ๐œ“) ( ๐œ32 ) โ‹ฏ โ‹ฏ โˆ’ sin( ๐œ“) ( cos( ๐œ“) ๐œŽ11 + sin( ๐œ“) ๐œ 21 ) + cos( ๐œ“) ( cos( ๐œ“) ๐œ12 + sin( ๐œ“) ๐œŽ22 ) โ‹ฏ โ‹ฏ โˆ’ sin( ๐œ“) (โˆ’ sin( ๐œ“) ๐œŽ11 + cos( ๐œ“) ๐œ 21) + cos( ๐œ“) (โˆ’ sin( ๐œ“) ๐œ 12 + cos( ๐œ“) ๐œŽ22) โ‹ฏ โ‹ฏ โˆ’ sin( ๐œ“) ( ๐œ 31 ) + cos( ๐œ“) ( ๐œ32 ) โ‹ฏ โ‹ฏ cos( ๐œ“) ๐œ13 + sin( ๐œ“) ๐œ23 โ‹ฏ โˆ’ sin( ๐œ“) ๐œ 13 + cos( ๐œ“) ๐œ23 โ‹ฏ ๐œŽ33 ] ( 3.62 ) [ cos2( ๐œ“) ๐œŽ11 + cos( ๐œ“) sin( ๐œ“) ๐œ21 + sin( ๐œ“) cos( ๐œ“) ๐œ12 + sin2( ๐œ“) ๐œŽ22 โ‹ฏ โˆ’ cos( ๐œ“) sin( ๐œ“) ๐œŽ11 + cos2( ๐œ“) ๐œ 21 โˆ’ sin2( ๐œ“) ๐œ12 + sin( ๐œ“) cos( ๐œ“) ๐œŽ22 โ‹ฏ cos( ๐œ“) ๐œ 31 + sin( ๐œ“) ๐œ 32 โ‹ฏ โ‹ฏ โˆ’ sin( ๐œ“) cos( ๐œ“) ๐œŽ11 โˆ’ sin2( ๐œ“) ๐œ21 + cos2( ๐œ“) ๐œ12 + cos( ๐œ“) sin( ๐œ“) ๐œŽ22 โ‹ฏ โ‹ฏ sin2( ๐œ“) ๐œŽ11 โˆ’ sin( ๐œ“) cos( ๐œ“) ๐œ21 โˆ’ cos( ๐œ“) sin( ๐œ“) ๐œ12 + cos2( ๐œ“) ๐œŽ22 โ‹ฏ โ‹ฏ โˆ’ sin( ๐œ“) ๐œ 31 + cos( ๐œ“) ๐œ32 โ‹ฏ โ‹ฏ cos( ๐œ“) ๐œ13 + sin( ๐œ“) ๐œ23 โ‹ฏ โˆ’ sin( ๐œ“) ๐œ13 + cos( ๐œ“) ๐œ23 โ‹ฏ ๐œŽ33 ] ( 3.63 )
  • 32. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 32 โ€ข Considering the stress symmetry (eliminating the symmetric indexes not used and only working the terms used) and organizing the trigonometric terms in a matrix compatible with the stress vector in Voigt notation comes: [ ๐ˆ ๐Ÿ๐Ÿ โ€ฒ ๐‰ ๐Ÿ๐Ÿ โ€ฒ ๐‰ ๐Ÿ๐Ÿ‘ โ€ฒ ๐œ 21 โ€ฒ ๐ˆ ๐Ÿ๐Ÿ โ€ฒ ๐‰ ๐Ÿ๐Ÿ‘ โ€ฒ ๐œ 31 โ€ฒ ๐œ32 โ€ฒ ๐ˆ ๐Ÿ‘๐Ÿ‘ โ€ฒ ] = [ cos2( ๐œ“) ๐ˆ ๐Ÿ๐Ÿ + 2 sin( ๐œ“) cos( ๐œ“) ๐‰ ๐Ÿ๐Ÿ + sin2( ๐œ“) ๐ˆ ๐Ÿ๐Ÿ โ‹ฏ โ‹ฏ ๐‘ ๐‘ฆ๐‘š๐‘š โ‹ฏ โ‹ฏ โˆ’ sin( ๐œ“) cos( ๐œ“) ๐ˆ ๐Ÿ๐Ÿ + (cos2( ๐œ“) โˆ’ sin2( ๐œ“)) ๐‰ ๐Ÿ๐Ÿ + + cos( ๐œ“) sin( ๐œ“) ๐ˆ ๐Ÿ๐Ÿ โ‹ฏ โ‹ฏ sin2( ๐œ“) ๐ˆ ๐Ÿ๐Ÿ โˆ’ 2 sin( ๐œ“) cos( ๐œ“) ๐‰ ๐Ÿ๐Ÿ + cos2( ๐œ“) ๐ˆ ๐Ÿ๐Ÿ โ‹ฏ โ‹ฏ โ‹ฏ โ‹ฏ cos( ๐œ“) ๐‰ ๐Ÿ๐Ÿ‘ + sin( ๐œ“) ๐‰ ๐Ÿ๐Ÿ‘ โ‹ฏ โˆ’ sin( ๐œ“) ๐‰ ๐Ÿ๐Ÿ‘ + cos( ๐œ“) ๐‰ ๐Ÿ๐Ÿ‘ โ‹ฏ ๐ˆ ๐Ÿ‘๐Ÿ‘ ] ( 3.64 ) | | | ๐ˆโ€ฒ ๐Ÿ ๐ˆโ€ฒ ๐Ÿ ๐ˆโ€ฒ ๐Ÿ‘ ๐ˆโ€ฒ ๐Ÿ’ ๐ˆโ€ฒ ๐Ÿ“ ๐ˆโ€ฒ ๐Ÿ” | | | = โ‹ฏ | | | ๐œŽ1 ๐œŽ2 ๐œŽ3 ๐œŽ4 ๐œŽ5 ๐œŽ6 | | | [ cos2( ๐œ“) sin2( ๐œ“) 0 0 0 2 sin( ๐œ“) cos( ๐œ“) sin2( ๐œ“) cos2( ๐œ“) 0 0 0 โˆ’2 sin( ๐œ“) cos( ๐œ“) 0 0 1 0 0 0 0 0 0 cos( ๐œ“) โˆ’ sin( ๐œ“) 0 0 0 0 sin( ๐œ“) cos( ๐œ“) 0 โˆ’ sin( ๐œ“) cos( ๐œ“) sin( ๐œ“) cos( ๐œ“) 0 0 0 cos2( ๐œ“) โˆ’ sin2( ๐œ“) ] ( 3.65 ) โ€ข Finally, equation ( 3.57 ) can be written using the modified transformation matrix [35] and making explicit the computational formula for the off-axes modified transformation matrix comes respectively: | ๐œŽโ€ฒ | = [ ๐‘‡ โˆ— ] | ๐œŽ | ( 3.66 ) [ ๐‘‡ โˆ— ] = [ cos2 (๐œ“) sin2( ๐œ“) 0 0 0 2 sin( ๐œ“) cos( ๐œ“) sin2( ๐œ“) cos2 (๐œ“) 0 0 0 โˆ’2 sin( ๐œ“) cos( ๐œ“) 0 0 1 0 0 0 0 0 0 cos( ๐œ“) โˆ’ sin( ๐œ“) 0 0 0 0 sin( ๐œ“) cos( ๐œ“) 0 โˆ’ sin( ๐œ“) cos( ๐œ“) sin( ๐œ“) cos( ๐œ“) 0 0 0 cos2 (๐œ“) โˆ’ sin2( ๐œ“) ] ( 3.67 )
  • 33. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 33 For the Transformation Matrix of the Strain Vector, [ ๐‘ป โˆ—โˆ— ] [ ๐œ€โ€ฒ ] = [ ๐‘‡ ] [ ๐œ€ ] [ ๐‘‡ ] ๐‘‡ ( 3.68 ) 1 2 [ 2๐œ€11 โ€ฒ ๐›พ12 โ€ฒ ๐›พ13 โ€ฒ ๐›พ21 โ€ฒ 2๐œ€22 โ€ฒ ๐›พ23 โ€ฒ ๐›พ31 โ€ฒ ๐›พ32 โ€ฒ 2๐œ€33 โ€ฒ ] = [ cos( ๐œ“) sin( ๐œ“) 0 โˆ’ sin( ๐œ“) cos( ๐œ“) 0 0 0 1 ] 1 2 [ 2๐œ€11 ๐›พ12 ๐›พ13 ๐›พ21 2๐œ€22 ๐›พ23 ๐›พ31 ๐›พ32 2๐œ€33 ] [ cos( ๐œ“) sin( ๐œ“) 0 โˆ’ sin( ๐œ“) cos( ๐œ“) 0 0 0 1 ] ๐‘‡ ( 3.69 ) [ 2๐œ€11 โ€ฒ ๐›พ12 โ€ฒ ๐›พ13 โ€ฒ ๐›พ21 โ€ฒ 2๐œ€22 โ€ฒ ๐›พ23 โ€ฒ ๐›พ31 โ€ฒ ๐›พ32 โ€ฒ 2๐œ€33 โ€ฒ ] = [ cos( ๐œ“) sin( ๐œ“) 0 โˆ’ sin( ๐œ“) cos( ๐œ“) 0 0 0 1 ] [ 2๐œ€ 11 ๐›พ12 ๐›พ13 ๐›พ21 2๐œ€ 22 ๐›พ23 ๐›พ31 ๐›พ32 2๐œ€ 33 ] [ cos( ๐œ“) โˆ’ sin( ๐œ“) 0 sin( ๐œ“) cos( ๐œ“) 0 0 0 1 ] ( 3.70 ) โ€ข Considering only the right side of the matrix, and manipulating it, comes: [ cos( ๐œ“) ( 2 cos( ๐œ“) ๐œ€11 + sin( ๐œ“) ๐›พ21 ) + sin( ๐œ“) ( cos( ๐œ“) ๐›พ12 + 2 sin( ๐œ“) ๐œ€22 ) โ‹ฏ cos( ๐œ“) (โˆ’2 sin( ๐œ“) ๐œ€11 + cos( ๐œ“) ๐›พ21 ) + sin( ๐œ“) ( โˆ’ sin( ๐œ“) ๐›พ12 + 2 cos( ๐œ“) ๐œ€22 ) โ‹ฏ cos( ๐œ“) ( ๐›พ31 ) + sin( ๐œ“) ( ๐›พ32 ) โ‹ฏ โ‹ฏ โˆ’ sin(๐œ“) ( 2 cos(๐œ“) ๐œ€11 + sin(๐œ“) ๐›พ21 ) + cos(๐œ“) ( cos(๐œ“) ๐›พ12 + 2 sin(๐œ“) ๐œ€22 ) โ‹ฏ โ‹ฏ โˆ’ sin(๐œ“) (โˆ’2 sin(๐œ“) ๐œ€11 + cos(๐œ“) ๐›พ21) + cos(๐œ“) (โˆ’ sin(๐œ“) ๐›พ12 + 2 cos(๐œ“) ๐œ€22) โ‹ฏ โ‹ฏ โˆ’ sin(๐œ“) ( ๐›พ31 ) + cos(๐œ“) ( ๐›พ32 ) โ‹ฏ โ‹ฏ cos( ๐œ“) ๐›พ13 + sin( ๐œ“) ๐›พ23 โ‹ฏ โˆ’ sin( ๐œ“) ๐›พ13 + cos( ๐œ“) ๐›พ23 โ‹ฏ 2 ๐œ€33 ] ( 3.71 ) [ 2 cos2( ๐œ“) ๐œ€11 + cos( ๐œ“) sin( ๐œ“) ๐›พ21 + sin( ๐œ“) cos( ๐œ“) ๐›พ12 + 2 sin2( ๐œ“) ๐œ€22 โ‹ฏ โˆ’2 cos( ๐œ“) sin( ๐œ“) ๐œ€ 11 + cos2( ๐œ“) ๐›พ21 โˆ’ sin2( ๐œ“) ๐›พ12 +2 sin( ๐œ“) cos( ๐œ“) ๐œ€22 โ‹ฏ cos( ๐œ“) ๐›พ31 + sin( ๐œ“) ๐›พ32 โ‹ฏ โ‹ฏ โˆ’2 sin( ๐œ“) cos( ๐œ“) ๐œ€11 โˆ’ sin2( ๐œ“) ๐›พ21 + cos2( ๐œ“) ๐›พ12 + 2 cos( ๐œ“) sin( ๐œ“) ๐œ€ 22 โ‹ฏ โ‹ฏ 2 sin2( ๐œ“) ๐œ€ 11 โˆ’ sin( ๐œ“) cos( ๐œ“) ๐›พ21 โˆ’ cos( ๐œ“) sin( ๐œ“) ๐›พ12 + 2 cos2( ๐œ“) ๐œ€22 โ‹ฏ โ‹ฏ โˆ’ sin( ๐œ“) ๐›พ31 + cos( ๐œ“) ๐›พ32 โ‹ฏ โ‹ฏ cos( ๐œ“) ๐›พ13 + sin( ๐œ“) ๐›พ23 โ‹ฏ โˆ’ sin( ๐œ“) ๐›พ13 + cos( ๐œ“) ๐›พ23 โ‹ฏ 2 ๐œ€ 33 ] ( 3.72 )
  • 34. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 34 โ€ข Considering the stress symmetry (eliminating the symmetric indexes not used and only working the terms used) and organizing the trigonometric terms in a matrix compatible with the strain vector in Voigt notation comes: [ ๐Ÿ๐œบ ๐Ÿ๐Ÿ โ€ฒ ๐œธ ๐Ÿ๐Ÿ โ€ฒ ๐œธ ๐Ÿ๐Ÿ‘ โ€ฒ ๐›พ21 โ€ฒ ๐Ÿ๐œบ ๐Ÿ๐Ÿ โ€ฒ ๐œธ ๐Ÿ๐Ÿ‘ โ€ฒ ๐›พ31 โ€ฒ ๐›พ32 โ€ฒ ๐Ÿ๐œบ ๐Ÿ‘๐Ÿ‘ โ€ฒ ] = [ 2 cos2( ๐œ“) ๐œบ ๐Ÿ๐Ÿ + 2 sin( ๐œ“) cos( ๐œ“) ๐œธ ๐Ÿ๐Ÿ + 2 sin2( ๐œ“) ๐œบ ๐Ÿ๐Ÿ โ‹ฏ โ‹ฏ ๐‘ ๐‘ฆ๐‘š๐‘š โ‹ฏ โ‹ฏ โˆ’2 sin( ๐œ“) cos( ๐œ“) ๐œบ ๐Ÿ๐Ÿ + (cos2( ๐œ“) โˆ’ sin2( ๐œ“)) ๐œธ ๐Ÿ๐Ÿ + +2 cos( ๐œ“) sin( ๐œ“) ๐œบ ๐Ÿ๐Ÿ โ‹ฏ โ‹ฏ 2 sin2( ๐œ“) ๐œบ ๐Ÿ๐Ÿ โˆ’ 2 sin( ๐œ“) cos( ๐œ“) ๐œธ ๐Ÿ๐Ÿ + 2 cos2( ๐œ“) ๐œบ ๐Ÿ๐Ÿ โ‹ฏ โ‹ฏ โ‹ฏ โ‹ฏ cos( ๐œ“) ๐œธ ๐Ÿ๐Ÿ‘ + sin( ๐œ“) ๐œธ ๐Ÿ๐Ÿ‘ โ‹ฏ โˆ’ sin( ๐œ“) ๐œธ ๐Ÿ๐Ÿ‘ + cos( ๐œ“) ๐œธ ๐Ÿ๐Ÿ‘ โ‹ฏ 2 ๐œบ ๐Ÿ‘๐Ÿ‘ ] ( 3.73 ) โ€ข On the contrary to what was observed for the stress tensor4 , the strain tensor (left side of equation ( 3.69 )), was changed during manipulation of the expression. Thus, it is necessary to affect the linear strains with the coefficient ยฝ in order to get the strain vector in Voigt notation, coming: | | | ๐Ÿ๐œบโ€ฒ ๐Ÿ๐Ÿ/๐Ÿ ๐Ÿ๐œบโ€ฒ ๐Ÿ๐Ÿ/๐Ÿ ๐Ÿ๐œบโ€ฒ ๐Ÿ‘๐Ÿ‘/๐Ÿ ๐œธโ€ฒ ๐Ÿ๐Ÿ‘ ๐œธโ€ฒ ๐Ÿ๐Ÿ‘ ๐œธโ€ฒ ๐Ÿ๐Ÿ | | | = | | | ๐œบโ€ฒ ๐Ÿ ๐œบโ€ฒ ๐Ÿ ๐œบโ€ฒ ๐Ÿ‘ ๐œบโ€ฒ ๐Ÿ’ ๐œบโ€ฒ ๐Ÿ“ ๐œบโ€ฒ ๐Ÿ” | | | = โ‹ฏ | | | ๐œ€1 ๐œ€2 ๐œ€3 ๐œ€4 ๐œ€5 ๐œ€6 | | | [ cos2( ๐œ“) sin2( ๐œ“) 0 0 0 sin( ๐œ“) cos( ๐œ“) sin2( ๐œ“) cos2( ๐œ“) 0 0 0 โˆ’ sin( ๐œ“) cos( ๐œ“) 0 0 1 0 0 0 0 0 0 cos( ๐œ“) โˆ’ sin( ๐œ“) 0 0 0 0 sin( ๐œ“) cos( ๐œ“) 0 โˆ’2 sin( ๐œ“) cos( ๐œ“) 2 sin( ๐œ“) cos( ๐œ“) 0 0 0 cos2( ๐œ“) โˆ’ sin2( ๐œ“) ] ( 3.74 ) Other approach, suggested and detailed in [39], could be followed to compute the transformation matrix of the Strain vector. Compared with the previous approach, this one is more mathematically elegant and convenient in terms of calculation effort, while the previous can be considered as the โ€œbrute forceโ€ version of it. โ€ข As already stated in the previous footnote, if Tensorial Strains were used, the transformation matrix of the strain vector would be exactly the same as for the stress vector. First letโ€™s remember the definition of the Engineering Strain vector | ๐œ€ | from equation ( 3.51 ), and let the Tensorial Strain vector | ๐œ€ ๐‘‡๐‘’๐‘›๐‘ ๐‘œ๐‘Ÿ๐‘–๐‘Ž๐‘™ | be defined as: 4 It should be noticed that Engineering Strains were used in the Strain Tensor. If Tensorial Strains were used, which would be equivalent to the Stress Tensor, the transformation matrix for the strains vector would be equal to the transformation matrix for the stress vector.
  • 35. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 35 | ๐œ€ | = | | | ๐œ€11 ๐œ€22 ๐œ€33 ๐›พ23 ๐›พ13 ๐›พ12 | | | = | | | ๐œ€1 ๐œ€2 ๐œ€3 ๐œ€4 ๐œ€5 ๐œ€6 | | | ( 3.75 ) | ๐œ€ ๐‘‡๐‘’๐‘›๐‘ ๐‘œ๐‘Ÿ๐‘–๐‘Ž๐‘™ | = | | | ๐œ€11 ๐œ€22 ๐œ€33 ๐œ€23 ๐œ€13 ๐œ€12 | | | ( 3.76 ) โ€ข In a general different coordinate system, the two vectors would be redefined, and from the premise stated in the footnote, itโ€™s possible to use directly the stress transformation matrix, made explicit in equation ( 3.67 ), as follows. | ๐œ€ | = | | | ๐œ€โ€ฒ11 ๐œ€โ€ฒ22 ๐œ€โ€ฒ33 ๐›พโ€ฒ23 ๐›พโ€ฒ13 ๐›พโ€ฒ12 | | | = | | | ๐œ€โ€ฒ1 ๐œ€โ€ฒ2 ๐œ€โ€ฒ3 ๐œ€โ€ฒ4 ๐œ€โ€ฒ5 ๐œ€โ€ฒ6 | | | ( 3.77 ) | ๐œ€ ๐‘‡๐‘’๐‘›๐‘ ๐‘œ๐‘Ÿ๐‘–๐‘Ž๐‘™ | = | | | ๐œ€โ€ฒ11 ๐œ€โ€ฒ22 ๐œ€โ€ฒ33 ๐œ€โ€ฒ23 ๐œ€โ€ฒ13 ๐œ€โ€ฒ12 | | | ( 3.78 ) | ๐œ€โ€ฒ ๐‘‡๐‘’๐‘›๐‘ ๐‘œ๐‘Ÿ๐‘–๐‘Ž๐‘™ | = [ ๐‘‡ โˆ— ]| ๐œ€ ๐‘‡๐‘’๐‘›๐‘ ๐‘œ๐‘Ÿ๐‘–๐‘Ž๐‘™ | ( 3.79 ) โ€ข The two strain vectors can be related by the following two expressions as: | ๐œ€ | = [ ๐‘… ] | ๐œ€ ๐‘‡๐‘’๐‘›๐‘ ๐‘œ๐‘Ÿ๐‘–๐‘Ž๐‘™ | ( 3.80 ) | ๐œ€ ๐‘‡๐‘’๐‘›๐‘ ๐‘œ๐‘Ÿ๐‘–๐‘Ž๐‘™ | = [ ๐‘… ]โˆ’1 | ๐œ€ | ( 3.81 ) โ€ข And the connection matrix is given by:
  • 36. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 36 [ ๐‘… ] = [ 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 2 ] ( 3.82 ) โ€ข It is possible to observe that the relation defined in equation ( 3.80 ) is independent of the coordinate system used, coming simply: | ๐œ€โ€ฒ | = [ ๐‘… ] | ๐œ€โ€ฒ ๐‘‡๐‘’๐‘›๐‘ ๐‘œ๐‘Ÿ๐‘–๐‘Ž๐‘™ | ( 3.83 ) โ€ข Introducing the equation ( 3.79 ), in the previous equation ( 3.83 ) comes: | ๐œ€โ€ฒ | = [ ๐‘… ] [ ๐‘‡ โˆ— ] | ๐œ€ ๐‘‡๐‘’๐‘›๐‘ ๐‘œ๐‘Ÿ๐‘–๐‘Ž๐‘™ | ( 3.84 ) โ€ข And equation ( 3.81 ) in the previous equation ( 3.84 ), comes: | ๐œ€โ€ฒ | = [ ๐‘… ] [ ๐‘‡โˆ— ] [ ๐‘… ] โˆ’1 | ๐œ€ | ( 3.85 ) โ€ข The Transformation matrix for the strain vector in Engineering Strain vector is given directly from the previous equation ( 3.85 ), by: [ ๐‘‡ โˆ—โˆ— ] = [ ๐‘… ] [ ๐‘‡ โˆ— ] [ ๐‘… ] โˆ’1 ( 3.86 ) [ 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 2 ] โˆ™ [ cos2(๐œ“) sin2(๐œ“) 0 0 0 2 sin(๐œ“) cos(๐œ“) sin2(๐œ“) cos2(๐œ“) 0 0 0 โˆ’2 sin(๐œ“) cos(๐œ“) 0 0 1 0 0 0 0 0 0 cos(๐œ“) โˆ’ sin(๐œ“) 0 0 0 0 sin(๐œ“) cos(๐œ“) 0 โˆ’ sin(๐œ“) cos(๐œ“) sin(๐œ“) cos(๐œ“) 0 0 0 cos2(๐œ“) โˆ’ sin2(๐œ“) ] โˆ™ [ 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 2 ] โˆ’1 ( 3.87 )
  • 37. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 37 [ cos2(๐œ“) sin2(๐œ“) 0 0 0 2 sin(๐œ“) cos(๐œ“) sin2(๐œ“) cos2(๐œ“) 0 0 0 โˆ’2 sin(๐œ“) cos(๐œ“) 0 0 1 0 0 0 0 0 0 ๐Ÿ cos(๐œ“) โˆ’๐Ÿ sin(๐œ“) 0 0 0 0 ๐Ÿ sin(๐œ“) ๐Ÿ cos(๐œ“) 0 โˆ’๐Ÿ sin(๐œ“) cos(๐œ“) ๐Ÿ sin(๐œ“) cos(๐œ“) 0 0 0 ๐Ÿ(cos2(๐œ“) โˆ’ sin2(๐œ“))] [ 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1/2 0 0 0 0 0 0 1/2 0 0 0 0 0 0 1/2 ] ( 3.88 ) [ cos2(๐œ“) sin2(๐œ“) 0 0 0 sin(๐œ“) cos(๐œ“) sin2(๐œ“) cos2(๐œ“) 0 0 0 โˆ’ sin(๐œ“) cos(๐œ“) 0 0 1 0 0 0 0 0 0 cos(๐œ“) โˆ’ sin(๐œ“) 0 0 0 0 sin(๐œ“) cos(๐œ“) 0 โˆ’2 sin(๐œ“) cos(๐œ“) 2 sin(๐œ“) cos(๐œ“) 0 0 0 cos2(๐œ“) โˆ’ sin2(๐œ“) ] ( 3.89 ) Due to the similarities of equation ( 3.89 ) and equation ( 3.67 ) it is tempting to related both equations. This exercise is easily done by manipulating the right side of equation ( 3.67 ). โ€ข First transposing it: [ ๐‘‡ โˆ— ] ๐‘‡ ( 3.90 ) [ cos2( ๐œ“) sin2( ๐œ“) 0 0 0 2 sin( ๐œ“) cos( ๐œ“) sin2( ๐œ“) cos2( ๐œ“) 0 0 0 โˆ’2 sin( ๐œ“) cos( ๐œ“) 0 0 1 0 0 0 0 0 0 cos( ๐œ“) โˆ’ sin( ๐œ“) 0 0 0 0 sin( ๐œ“) cos( ๐œ“) 0 โˆ’ sin( ๐œ“) cos( ๐œ“) sin( ๐œ“) cos( ๐œ“) 0 0 0 cos2( ๐œ“) โˆ’ sin2( ๐œ“) ] ๐‘‡ ( 3.91 ) [ cos2 (๐œ“) sin2( ๐œ“) 0 0 0 โˆ’ sin( ๐œ“) cos( ๐œ“) sin2( ๐œ“) cos2 (๐œ“) 0 0 0 sin( ๐œ“) cos( ๐œ“) 0 0 1 0 0 0 0 0 0 cos( ๐œ“) sin( ๐œ“) 0 0 0 0 โˆ’ sin( ๐œ“) cos( ๐œ“) 0 2 sin( ๐œ“) cos( ๐œ“) โˆ’2 sin( ๐œ“) cos( ๐œ“) 0 0 0 cos2 (๐œ“) โˆ’ sin2( ๐œ“) ] ( 3.92 ) โ€ข And then inverting it:
  • 38. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 38 ( [ ๐‘‡ โˆ— ] ๐‘‡ ) โˆ’1 ( 3.93 ) [ cos2( ๐œ“) sin2( ๐œ“) 0 0 0 โˆ’sin( ๐œ“) cos( ๐œ“) sin2( ๐œ“) cos2( ๐œ“) 0 0 0 sin( ๐œ“) cos( ๐œ“) 0 0 1 0 0 0 0 0 0 cos( ๐œ“) sin( ๐œ“) 0 0 0 0 โˆ’ sin( ๐œ“) cos( ๐œ“) 0 2 sin( ๐œ“) cos( ๐œ“) โˆ’2 sin( ๐œ“) cos( ๐œ“) 0 0 0 cos2( ๐œ“) โˆ’ sin2( ๐œ“) ] โˆ’1 ( 3.94 ) [ cos2( ๐œ“) sin2( ๐œ“) 0 0 0 sin( ๐œ“) cos( ๐œ“) sin2( ๐œ“) cos2( ๐œ“) 0 0 0 โˆ’ sin( ๐œ“) cos( ๐œ“) 0 0 1 0 0 0 0 0 0 cos( ๐œ“) โˆ’ sin( ๐œ“) 0 0 0 0 sin( ๐œ“) cos( ๐œ“) 0 โˆ’2 sin( ๐œ“) cos( ๐œ“) 2 sin( ๐œ“) cos( ๐œ“) 0 0 0 cos2( ๐œ“) โˆ’ sin2( ๐œ“) ] ( 3.95 ) When comparing equation ( 3.89 ) with the previous equation ( 3.95 ) and according to the matrix properties [31], it is proved the following relation: [ ๐‘‡ โˆ—โˆ— ] = [ ๐‘… ] [ ๐‘‡ โˆ— ] [ ๐‘… ] โˆ’1 = ( [ ๐‘‡ โˆ— ] ๐‘‡ )โˆ’1 ( 3.96 ) [ ๐‘‡ โˆ—โˆ— ] = [ ๐‘… ] [ ๐‘‡ โˆ— ] [ ๐‘… ] โˆ’1 = ( [ ๐‘‡ โˆ— ]โˆ’1 ) ๐‘‡ ( 3.97 ) [ ๐‘‡ โˆ—โˆ— ] = [ ๐‘… ] [ ๐‘‡ โˆ— ] [ ๐‘… ] โˆ’1 = [ ๐‘‡ โˆ— ]โˆ’๐‘‡ ( 3.98 ) Finally, equation ( 3.58 ) can be written using the modified transformation matrix [35] and making explicit the computational formula for the off-axes modified transformation matrix comes respectively: | ๐œ€โ€ฒ | = [ ๐‘‡ โˆ—โˆ— ] | ๐œ€ | ( 3.99 ) [ ๐‘‡โˆ—โˆ— ] = [ cos2 (๐œ“) sin2( ๐œ“) 0 0 0 sin( ๐œ“) cos( ๐œ“) sin2( ๐œ“) cos2 (๐œ“) 0 0 0 โˆ’ sin( ๐œ“) cos( ๐œ“) 0 0 1 0 0 0 0 0 0 cos( ๐œ“) โˆ’ sin( ๐œ“) 0 0 0 0 sin( ๐œ“) cos( ๐œ“) 0 โˆ’2 sin( ๐œ“) cos( ๐œ“) 2 sin( ๐œ“) cos( ๐œ“) 0 0 0 cos2 (๐œ“) โˆ’ sin2( ๐œ“) ] ( 3.100 )
  • 39. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 39 For the Transformation Matrix of the Stiffness Matrix [ ๐‘ป โˆ—โˆ—โˆ— ] โ€ข In order to compute the transformation matrix for the Stiffness Matrix, it will be used the previous results already achieved for the stress and strain coordinates transformation, and summarized in equations ( 3.67 ) and ( 3.100 ) respectively. From the simple stress-strain relation in the original coordinate system comes: | ๐œŽ | = [ ๐ถ ] | ๐œ€ | ( 3.101 ) Manipulating both sides in order to get the transformation of the stress vector in the left side, but without changing the mathematical equality, comes [ ๐‘‡โˆ—] | ๐œŽ | = [ ๐‘‡โˆ— ] [ ๐ถ ] | ๐œ€ | ( 3.102 ) Introducing a mathematical artifice operation โ€“ equivalent to the Identity matrix that do not change the mathematical equality โ€“ in order to virtually get the transformed strain vector in the right side, comes [ ๐‘‡โˆ— ] | ๐œŽ | = [ ๐‘‡โˆ— ] [ ๐ถ ] [ ๐‘‡โˆ—โˆ— ]โˆ’1 [ ๐‘‡โˆ—โˆ— ] | ๐œ€ | ( 3.103 ) Introducing equation ( 3.66 ) and equation ( 3.99 ) in the previous equation ( 3.103 ), comes: | ๐œŽโ€ฒ | = [ ๐‘‡โˆ— ] [ ๐ถ ] [ ๐‘‡โˆ—โˆ— ]โˆ’1 | ๐œ€โ€ฒ | ( 3.104 ) Introducing equation ( 3.98 ) in the previous equation ( 3.104 ), comes: | ๐œŽโ€ฒ | = [ ๐‘‡โˆ— ] [ ๐ถ ] ( [ ๐‘‡โˆ— ]โˆ’๐‘‡ )โˆ’1 | ๐œ€โ€ฒ | ( 3.105 ) | ๐œŽโ€ฒ | = [ ๐‘‡โˆ— ] [ ๐ถ ] [ ๐‘‡โˆ— ] ๐‘‡ | ๐œ€โ€ฒ | ( 3.106 ) From the previous equation ( 3.106 ), it is possible to observe that the Transformed Stiffness Matrix must be equal to: [ ๐ถโ€ฒ ] = [ ๐‘‡โˆ— ] [ ๐ถ ] [ ๐‘‡โˆ—โˆ— ]โˆ’1 ( 3.107 ) [ ๐ถโ€ฒ ] = [ ๐‘‡โˆ— ] [ ๐ถ ] [ ๐‘‡โˆ— ] ๐‘‡ ( 3.108 ) โ€ข A similar theoretical exercise could have been done for the compliance matrix as summarized below: | ๐œ€ | = [ ๐‘† ] | ๐œŽ | ( 3.109 ) [ ๐‘‡ โˆ—โˆ—] | ๐œ€ | = [ ๐‘‡ โˆ—โˆ— ] [ ๐ถ ] | ๐œŽ | ( 3.110 ) [ ๐‘‡ โˆ—โˆ—] | ๐œ€ | = [ ๐‘‡ โˆ—โˆ— ] [ ๐‘† ] [ ๐‘‡ โˆ— ]โˆ’1 [ ๐‘‡ โˆ— ] | ๐œŽ | ( 3.111 ) | ๐œ€โ€ฒ | = [ ๐‘‡ โˆ—โˆ— ] [ ๐‘† ] [ ๐‘‡ โˆ— ]โˆ’1 | ๐œŽโ€ฒ | ( 3.112 ) [ ๐‘†โ€ฒ] = [ ๐‘‡ โˆ—โˆ— ] [ ๐‘† ] [ ๐‘‡ โˆ— ]โˆ’1 ( 3.113 ) [ ๐‘†โ€ฒ] = [ ๐‘‡ โˆ— ]โˆ’๐‘‡ [ ๐‘† ] [ ๐‘‡ โˆ— ]โˆ’1 ( 3.114 ) Manipulating the previous equation ( 3.114 ), comes:
  • 40. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 40 [ ๐‘†โ€ฒ] = [ ๐‘‡ โˆ— ]โˆ’๐‘‡ [ ๐‘† ] [ ๐‘‡ โˆ— ]โˆ’1 ( 3.115 ) ([ ๐‘†โ€ฒ])โˆ’1 = ([ ๐‘‡ โˆ— ]โˆ’๐‘‡ [ ๐‘† ] [ ๐‘‡ โˆ— ]โˆ’1)โˆ’1 ( 3.116 ) [ ๐ถโ€ฒ ] = ([ ๐‘‡ โˆ— ]โˆ’1)โˆ’1 [ ๐‘† ]โˆ’1 ([ ๐‘‡ โˆ— ]โˆ’๐‘‡)โˆ’1 ( 3.117 ) [ ๐ถโ€ฒ ] = [ ๐‘‡ โˆ— ] [ ๐ถ ] [ ๐‘‡ โˆ— ] ๐‘‡ ( 3.118 ) Comparing equations ( 3.118 ) and ( 3.108 ), it is possible to observe that: [ ๐‘‡โˆ—โˆ—โˆ— ] = [๐‘‡โˆ—โˆ—โˆ—โˆ—]โˆ’1 ( 3.119 ) โ€ข For the sake of brevity and notation simplification, the following abbreviations will be made: ๐‘ = cos( ๐œ“) ; ๐‘2 = cos2( ๐œ“) ( 3.120 ) ๐‘  = sin( ๐œ“) ; ๐‘ 2 = sin2( ๐œ“) ( 3.121 ) ๐‘ ๐‘ = sin( ๐œ“) cos( ๐œ“) ( 3.122 ) The demonstration of the transformation matrix of the Stiffness matrix for the generic 3D case is was done in the next pages throughout equation ( 3.125 ), ( 3.126 ), and ( 3.127 ). The final transformation matrix is given in equation ( 3.128). The constitutive equation for the stress-strain relation in the global coordinates is finally given by: | ๐œŽโ€ฒ | = [ ๐ถโ€ฒ] | ๐œ€โ€ฒ | ( 3.123 ) A final comment should be done, regarding the misguiding meaning of the transformation matrix in technical literature of different fields (e.g. Solid Mechanics, Computer Engineering, Web Design, etc.). โ€ข In solid mechanics and in the context of this report, the transformation matrix assumes that the mathematical entities are static, while the coordinate system is changed, i.e. passive transformation. In other words, the transformation matrix always refers to a matrix acting upon a coordinate system, hence the designation of passive transformation; โ€ข Whereas this designation is also misused (without proper specification or a callout note) to refer to the geometric transformation matrices of vectors and matrices (e.g. rotation, stretching, squeezing, shearing, reflection, etc.). The geometric transformation matrices, usually designated also as transformation matrices, change the entities while the coordinate system remains the same, hence the designation of active transformation.
  • 41. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 41 Computing equation ( 3.108 ) comes: [ ๐ถโ€ฒ ] = [ ๐‘‡โˆ— ] [ ๐ถ ] [ ๐‘‡โˆ— ] ๐‘‡ ( 3.124 ) [ ๐ถ11 ๐ถ12 ๐ถ13 ๐ถ14 ๐ถ15 ๐ถ16 ๐ถ21 ๐ถ22 ๐ถ23 ๐ถ24 ๐ถ25 ๐ถ26 ๐ถ31 ๐ถ32 ๐ถ33 ๐ถ34 ๐ถ35 ๐ถ36 ๐ถ41 ๐ถ42 ๐ถ43 ๐ถ44 ๐ถ45 ๐ถ46 ๐ถ51 ๐ถ52 ๐ถ53 ๐ถ54 ๐ถ55 ๐ถ56 ๐ถ61 ๐ถ62 ๐ถ63 ๐ถ64 ๐ถ65 ๐ถ66 ] = [ ๐‘2 ๐‘ 2 0 0 0 2๐‘ ๐‘ ๐‘ 2 ๐‘2 0 0 0 โˆ’2๐‘ ๐‘ 0 0 1 0 0 0 0 0 0 ๐‘ โˆ’๐‘  0 0 0 0 ๐‘  ๐‘ 0 โˆ’๐‘ ๐‘ ๐‘ ๐‘ 0 0 0 ๐‘2 โˆ’ ๐‘ 2 ] [ ๐ถ11 ๐ถ12 ๐ถ13 ๐ถ14 ๐ถ15 ๐ถ16 ๐ถ21 ๐ถ22 ๐ถ23 ๐ถ24 ๐ถ25 ๐ถ26 ๐ถ31 ๐ถ32 ๐ถ33 ๐ถ34 ๐ถ35 ๐ถ36 ๐ถ41 ๐ถ42 ๐ถ43 ๐ถ44 ๐ถ45 ๐ถ46 ๐ถ51 ๐ถ52 ๐ถ53 ๐ถ54 ๐ถ55 ๐ถ56 ๐ถ61 ๐ถ62 ๐ถ63 ๐ถ64 ๐ถ65 ๐ถ66 ] [ ๐‘2 ๐‘ 2 0 0 0 โˆ’๐‘ ๐‘ ๐‘ 2 ๐‘2 0 0 0 ๐‘ ๐‘ 0 0 1 0 0 0 0 0 0 ๐‘ ๐‘  0 0 0 0 โˆ’๐‘  ๐‘ 0 2๐‘ ๐‘ โˆ’2๐‘ ๐‘ 0 0 0 ๐‘2 โˆ’ ๐‘ 2 ] ( 3.125 ) [ ๐‘2 ๐ถ11 + ๐‘ 2 ๐ถ21 + 2๐‘ ๐‘ ๐ถ61 ๐‘2 ๐ถ12 + ๐‘ 2 ๐ถ22 + 2๐‘ ๐‘ ๐ถ62 ๐‘ 2 ๐ถ11 + ๐‘2 ๐ถ21 โˆ’ 2๐‘ ๐‘ ๐ถ61 ๐‘ 2 ๐ถ12 + ๐‘2 ๐ถ22 โˆ’ 2๐‘ ๐‘ ๐ถ62 ๐ถ31 ๐ถ32 ๐‘ ๐ถ41 โˆ’ ๐‘  ๐ถ51 ๐‘ ๐ถ42 โˆ’ ๐‘  ๐ถ52 ๐‘  ๐ถ41 + ๐‘ ๐ถ51 ๐‘  ๐ถ42 + ๐‘ ๐ถ52 โˆ’๐‘ ๐‘ ๐ถ11 + ๐‘ ๐‘ ๐ถ21 + ( ๐‘2 โˆ’ ๐‘ 2) ๐ถ61 โˆ’๐‘ ๐‘ ๐ถ12 + ๐‘ ๐‘ ๐ถ22 + ( ๐‘2 โˆ’ ๐‘ 2) ๐ถ62 ๐‘2 ๐ถ13 + ๐‘ 2 ๐ถ23 + 2๐‘ ๐‘ ๐ถ63 ๐‘2 ๐ถ14 + ๐‘ 2 ๐ถ24 + 2๐‘ ๐‘ ๐ถ64 โ‹ฏ ๐‘ 2 ๐ถ13 + ๐‘2 ๐ถ23 โˆ’ 2๐‘ ๐‘ ๐ถ63 ๐‘ 2 ๐ถ14 + ๐‘2 ๐ถ24 โˆ’ 2๐‘ ๐‘ ๐ถ64 โ‹ฏ ๐ถ33 ๐ถ34 โ‹ฏ ๐‘ ๐ถ43 โˆ’ ๐‘  ๐ถ53 ๐‘ ๐ถ44 โˆ’ ๐‘  ๐ถ54 โ‹ฏ ๐‘  ๐ถ43 + ๐‘ ๐ถ53 ๐‘  ๐ถ44 + ๐‘ ๐ถ54 โ‹ฏ โˆ’๐‘ ๐‘ ๐ถ13 + ๐‘ ๐‘ ๐ถ23 + ( ๐‘2 โˆ’ ๐‘ 2) ๐ถ63 โˆ’๐‘ ๐‘ ๐ถ14 + ๐‘ ๐‘ ๐ถ24 + ( ๐‘2 โˆ’ ๐‘ 2) ๐ถ64 โ‹ฏ โ‹ฏ ๐‘2 ๐ถ15 + ๐‘ 2 ๐ถ25 + 2๐‘ ๐‘ ๐ถ65 ๐‘2 ๐ถ16 + ๐‘ 2 ๐ถ26 + 2๐‘ ๐‘ ๐ถ66 โ‹ฏ ๐‘ 2 ๐ถ15 + ๐‘2 ๐ถ25 โˆ’ 2๐‘ ๐‘ ๐ถ65 ๐‘ 2 ๐ถ16 + ๐‘2 ๐ถ26 โˆ’ 2๐‘ ๐‘ ๐ถ66 โ‹ฏ ๐ถ35 ๐ถ36 โ‹ฏ ๐‘ ๐ถ45 โˆ’ ๐‘  ๐ถ55 ๐‘ ๐ถ46 โˆ’ ๐‘  ๐ถ56 โ‹ฏ ๐‘  ๐ถ45 + ๐‘ ๐ถ55 ๐‘  ๐ถ46 + ๐‘ ๐ถ56 โ‹ฏ โˆ’๐‘ ๐‘ ๐ถ15 + ๐‘ ๐‘ ๐ถ25 + ( ๐‘2 โˆ’ ๐‘ 2) ๐ถ65 โˆ’๐‘ ๐‘ ๐ถ16 + ๐‘ ๐‘ ๐ถ26 + ( ๐‘2 โˆ’ ๐‘ 2) ๐ถ66] โˆ™ [ ๐‘2 ๐‘ 2 0 0 0 โˆ’๐‘ ๐‘ ๐‘ 2 ๐‘2 0 0 0 ๐‘ ๐‘ 0 0 1 0 0 0 0 0 0 ๐‘ ๐‘  0 0 0 0 โˆ’๐‘  ๐‘ 0 2๐‘ ๐‘ โˆ’2๐‘ ๐‘ 0 0 0 ๐‘2 โˆ’ ๐‘ 2 ] ( 3.126 )
  • 42. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 42 [ ๐‘2( ๐‘2 ๐ถ11 + ๐‘ 2 ๐ถ21 + 2๐‘ ๐‘ ๐ถ61) + ๐‘ 2( ๐‘2 ๐ถ12 + ๐‘ 2 ๐ถ22 + 2๐‘ ๐‘ ๐ถ62) + 2๐‘ ๐‘ ( ๐‘2 ๐ถ16 + ๐‘ 2 ๐ถ26 + 2๐‘ ๐‘ ๐ถ66) โ‹ฏ ๐‘2( ๐‘ 2 ๐ถ11 + ๐‘2 ๐ถ21 โˆ’ 2๐‘ ๐‘ ๐ถ61) + ๐‘ 2( ๐‘ 2 ๐ถ12 + ๐‘2 ๐ถ22 โˆ’ 2๐‘ ๐‘ ๐ถ62) + 2๐‘ ๐‘ ( ๐‘ 2 ๐ถ16 + ๐‘2 ๐ถ26 โˆ’ 2๐‘ ๐‘ ๐ถ66) โ‹ฏ ๐‘2( ๐ถ31) + ๐‘ 2( ๐ถ32) + 2๐‘ ๐‘ ( ๐ถ36) โ‹ฏ ๐‘2( ๐‘ ๐ถ41 โˆ’ ๐‘  ๐ถ51) + ๐‘ 2( ๐‘ ๐ถ42 โˆ’ ๐‘  ๐ถ52) + 2๐‘ ๐‘ ( ๐‘ ๐ถ46 โˆ’ ๐‘  ๐ถ56) โ‹ฏ ๐‘2( ๐‘  ๐ถ41 + ๐‘ ๐ถ51) + ๐‘ 2( ๐‘  ๐ถ42 + ๐‘ ๐ถ52) + 2๐‘ ๐‘ ( ๐‘  ๐ถ46 + ๐‘ ๐ถ56) โ‹ฏ ๐‘2(โˆ’๐‘ ๐‘ ๐ถ11 + ๐‘ ๐‘ ๐ถ21 + ( ๐‘2 โˆ’ ๐‘ 2) ๐ถ61) + ๐‘ 2(โˆ’๐‘ ๐‘ ๐ถ12 + ๐‘ ๐‘ ๐ถ22 + ( ๐‘2 โˆ’ ๐‘ 2) ๐ถ62) + 2๐‘ ๐‘ (โˆ’๐‘ ๐‘ ๐ถ16 + ๐‘ ๐‘ ๐ถ26 + ( ๐‘2 โˆ’ ๐‘ 2) ๐ถ66) โ‹ฏ โ‹ฏ ๐‘ 2( ๐‘2 ๐ถ11 + ๐‘ 2 ๐ถ21 + 2๐‘ ๐‘ ๐ถ61) + ๐‘2( ๐‘2 ๐ถ12 + ๐‘ 2 ๐ถ22 + 2๐‘ ๐‘ ๐ถ62) โˆ’ 2๐‘ ๐‘ ( ๐‘2 ๐ถ14 + ๐‘ 2 ๐ถ24 + 2๐‘ ๐‘ ๐ถ66) โ‹ฏ โ‹ฏ ๐‘ 2( ๐‘ 2 ๐ถ11 + ๐‘2 ๐ถ21 โˆ’ 2๐‘ ๐‘ ๐ถ61) + ๐‘2( ๐‘ 2 ๐ถ12 + ๐‘2 ๐ถ22 โˆ’ 2๐‘ ๐‘ ๐ถ62) โˆ’ 2๐‘ ๐‘ ( ๐‘ 2 ๐ถ14 + ๐‘2 ๐ถ24 โˆ’ 2๐‘ ๐‘ ๐ถ66) โ‹ฏ โ‹ฏ ๐‘ 2( ๐ถ31) + ๐‘2( ๐ถ32) โˆ’ 2๐‘ ๐‘ ( ๐ถ36) โ‹ฏ โ‹ฏ ๐‘ 2( ๐‘ ๐ถ41 โˆ’ ๐‘  ๐ถ51) + ๐‘2( ๐‘ ๐ถ42 โˆ’ ๐‘  ๐ถ52) โˆ’ 2๐‘ ๐‘ ( ๐‘ ๐ถ46 โˆ’ ๐‘  ๐ถ56) โ‹ฏ โ‹ฏ ๐‘ 2( ๐‘  ๐ถ41 + ๐‘ ๐ถ51) + ๐‘2( ๐‘  ๐ถ42 + ๐‘ ๐ถ52) โˆ’ 2๐‘ ๐‘ ( ๐‘  ๐ถ46 + ๐‘ ๐ถ56) โ‹ฏ โ‹ฏ ๐‘ 2(โˆ’๐‘ ๐‘ ๐ถ11 + ๐‘ ๐‘ ๐ถ21 + ( ๐‘2 โˆ’ ๐‘ 2) ๐ถ61) + ๐‘2(โˆ’๐‘ ๐‘ ๐ถ12 + ๐‘ ๐‘ ๐ถ22 + ( ๐‘2 โˆ’ ๐‘ 2) ๐ถ62) โˆ’ 2๐‘ ๐‘ (โˆ’๐‘ ๐‘ ๐ถ16 + ๐‘ ๐‘ ๐ถ26 + ( ๐‘2 โˆ’ ๐‘ 2) ๐ถ66) โ‹ฏ โ‹ฏ ๐‘2 ๐ถ13 + ๐‘ 2 ๐ถ23 + 2๐‘ ๐‘ ๐ถ63 โ‹ฏ โ‹ฏ ๐‘ 2 ๐ถ13 + ๐‘2 ๐ถ23 โˆ’ 2๐‘ ๐‘ ๐ถ63 โ‹ฏ โ‹ฏ ๐ถ33 โ‹ฏ โ‹ฏ ๐‘ ๐ถ43 โˆ’ ๐‘  ๐ถ53 โ‹ฏ โ‹ฏ ๐‘  ๐ถ43 + ๐‘ ๐ถ53 โ‹ฏ โ‹ฏ โˆ’๐‘ ๐‘ ๐ถ13 + ๐‘ ๐‘ ๐ถ23 + ( ๐‘2 โˆ’ ๐‘ 2) ๐ถ63 โ‹ฏ โ‹ฏ ๐‘ ( ๐‘2 ๐ถ14 + ๐‘ 2 ๐ถ24 + 2๐‘ ๐‘ ๐ถ64) โˆ’ ๐‘  ( ๐‘2 ๐ถ15 + ๐‘ 2 ๐ถ25 + 2๐‘ ๐‘ ๐ถ65) โ‹ฏ โ‹ฏ ๐‘ ( ๐‘ 2 ๐ถ14 + ๐‘2 ๐ถ24 โˆ’ 2๐‘ ๐‘ ๐ถ64) โˆ’ ๐‘  ( ๐‘ 2 ๐ถ15 + ๐‘2 ๐ถ25 โˆ’ 2๐‘ ๐‘ ๐ถ65) โ‹ฏ โ‹ฏ ๐‘ ( ๐ถ34) โˆ’ ๐‘  ( ๐ถ35) โ‹ฏ โ‹ฏ ๐‘ ( ๐‘ ๐ถ54 โˆ’ ๐‘  ๐ถ64) โˆ’ ๐‘  ( ๐‘ ๐ถ55 โˆ’ ๐‘  ๐ถ65) โ‹ฏ โ‹ฏ ๐‘ ( ๐‘  ๐ถ54 + ๐‘ ๐ถ64) โˆ’ ๐‘  ( ๐‘  ๐ถ55 + ๐‘ ๐ถ65) โ‹ฏ โ‹ฏ ๐‘ (โˆ’๐‘ ๐‘ ๐ถ14 + ๐‘ ๐‘ ๐ถ24 + ( ๐‘2 โˆ’ ๐‘ 2) ๐ถ64) โˆ’ ๐‘  (โˆ’๐‘ ๐‘ ๐ถ15 + ๐‘ ๐‘ ๐ถ25 + ( ๐‘2 โˆ’ ๐‘ 2) ๐ถ65) โ‹ฏ ( 3.127 )
  • 43. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 43 โ‹ฏ ๐‘  ( ๐‘2 ๐ถ14 + ๐‘ 2 ๐ถ24 + 2๐‘ ๐‘ ๐ถ64) + ๐‘ ( ๐‘2 ๐ถ15 + ๐‘ 2 ๐ถ25 + 2๐‘ ๐‘ ๐ถ65) โ‹ฏ ๐‘  ( ๐‘ 2 ๐ถ14 + ๐‘2 ๐ถ24 โˆ’ 2๐‘ ๐‘ ๐ถ64) + ๐‘ ( ๐‘ 2 ๐ถ15 + ๐‘2 ๐ถ25 โˆ’ 2๐‘ ๐‘ ๐ถ65) โ‹ฏ ๐‘  ( ๐ถ34) + ๐‘ ( ๐ถ35) โ‹ฏ ๐‘  ( ๐‘ ๐ถ44 โˆ’ ๐‘  ๐ถ54) + ๐‘ ( ๐‘ ๐ถ45 โˆ’ ๐‘  ๐ถ55) โ‹ฏ ๐‘  ( ๐‘  ๐ถ44 + ๐‘ ๐ถ54) + ๐‘ ( ๐‘  ๐ถ45 + ๐‘ ๐ถ55) โ‹ฏ ๐‘  (โˆ’๐‘ ๐‘ ๐ถ14 + ๐‘ ๐‘ ๐ถ24 + ( ๐‘2 โˆ’ ๐‘ 2) ๐ถ64) + ๐‘ (โˆ’๐‘ ๐‘ ๐ถ15 + ๐‘ ๐‘ ๐ถ25 + ( ๐‘2 โˆ’ ๐‘ 2) ๐ถ65)] โ‹ฏ โˆ’๐‘ ๐‘( ๐‘2 ๐ถ11 + ๐‘ 2 ๐ถ21 + 2๐‘ ๐‘ ๐ถ61) + ๐‘ ๐‘ ( ๐‘2 ๐ถ12 + ๐‘ 2 ๐ถ22 + 2๐‘ ๐‘ ๐ถ62) + ( ๐‘2 โˆ’ ๐‘ 2)( ๐‘2 ๐ถ16 + ๐‘ 2 ๐ถ26 + 2๐‘ ๐‘ ๐ถ66) โ‹ฏ โ‹ฏ โˆ’๐‘ ๐‘( ๐‘ 2 ๐ถ11 + ๐‘2 ๐ถ21 โˆ’ 2๐‘ ๐‘ ๐ถ61) + ๐‘ ๐‘( ๐‘ 2 ๐ถ12 + ๐‘2 ๐ถ22 โˆ’ 2๐‘ ๐‘ ๐ถ62) + ( ๐‘2 โˆ’ ๐‘ 2)( ๐‘ 2 ๐ถ16 + ๐‘2 ๐ถ26 โˆ’ 2๐‘ ๐‘ ๐ถ66) โ‹ฏ โ‹ฏ โˆ’๐‘ ๐‘( ๐ถ31) + ๐‘ ๐‘( ๐ถ32) + ( ๐‘2 โˆ’ ๐‘ 2)( ๐ถ36) โ‹ฏ โ‹ฏ โˆ’๐‘ ๐‘( ๐‘ ๐ถ41 โˆ’ ๐‘  ๐ถ51) + ๐‘ ๐‘( ๐‘ ๐ถ42 โˆ’ ๐‘  ๐ถ52) + ( ๐‘2 โˆ’ ๐‘ 2)( ๐‘ ๐ถ46 โˆ’ ๐‘  ๐ถ56) โ‹ฏ โ‹ฏ โˆ’๐‘ ๐‘( ๐‘  ๐ถ41 + ๐‘ ๐ถ51) + ๐‘ ๐‘( ๐‘  ๐ถ42 + ๐‘ ๐ถ52) + ( ๐‘2 โˆ’ ๐‘ 2)( ๐‘  ๐ถ46 + ๐‘ ๐ถ56) โ‹ฏ โ‹ฏ โˆ’๐‘ ๐‘(โˆ’๐‘ ๐‘ ๐ถ11 + ๐‘ ๐‘ ๐ถ21 + ( ๐‘2 โˆ’ ๐‘ 2) ๐ถ61) + ๐‘ ๐‘(โˆ’๐‘ ๐‘ ๐ถ12 + ๐‘ ๐‘ ๐ถ22 + ( ๐‘2 โˆ’ ๐‘ 2) ๐ถ62) + ( ๐‘2 โˆ’ ๐‘ 2)(โˆ’๐‘ ๐‘ ๐ถ16 + ๐‘ ๐‘ ๐ถ26 + ( ๐‘2 โˆ’ ๐‘ 2) ๐ถ66) โ‹ฏ
  • 44. Study of Invariant-based Method for Accelerating Aerospace Certification Testing of Composite Systems 44 | | | | | | | | ๐ถฬ…11 ๐ถฬ…22 ๐ถฬ…33 ๐ถฬ…44 ๐ถฬ…55 ๐ถฬ…66 ๐ถฬ…12 ๐ถฬ…13 ๐ถฬ…14 ๐ถฬ…15 ๐ถฬ…16 ๐ถฬ…23 ๐ถฬ…24 ๐ถฬ…25 ๐ถฬ…26 ๐ถฬ…34 ๐ถฬ…35 ๐ถฬ…36 ๐ถฬ…45 ๐ถฬ…46 ๐ถฬ…56 | | | | | | | | = [ 11 22 33 44 55 66 12 11 ๐‘4 ๐‘ 4 0 0 0 4๐‘ 2 ๐‘2 2๐‘ 2 ๐‘2 โ‹ฏ 22 ๐‘ 4 ๐‘4 0 0 0 4๐‘ 2 ๐‘2 2๐‘ 2 ๐‘2 โ‹ฏ 33 0 0 1 0 0 0 0 44 0 0 0 ๐‘2 ๐‘ 2 0 0 โ‹ฏ 55 0 0 0 ๐‘ 2 ๐‘2 0 0 โ‹ฏ 66 ๐‘ 2 ๐‘2 ๐‘ 2 ๐‘2 0 0 0 ( ๐‘2 โˆ’ ๐‘ 2)2 โˆ’2๐‘ 2 ๐‘2 โ‹ฏ 12 ๐‘ 2 ๐‘2 ๐‘ 2 ๐‘2 0 0 0 โˆ’4๐‘ 2 ๐‘2 ๐‘4 + ๐‘ 4 โ‹ฏ 13 0 0 0 0 0 0 0 โ‹ฏ 14 0 0 0 0 0 0 0 โ‹ฏ 15 0 0 0 0 0 0 0 โ‹ฏ 16 โˆ’๐‘ ๐‘3 ๐‘ 3 ๐‘ 0 0 0 2๐‘ ๐‘(๐‘2 โˆ’ ๐‘ 2 ) ๐‘ ๐‘3 โˆ’ ๐‘ 3 ๐‘ โ‹ฏ 23 0 0 0 0 0 0 0 โ‹ฏ 24 0 0 0 0 0 0 0 โ‹ฏ 25 0 0 0 0 0 0 0 โ‹ฏ 26 โˆ’๐‘ 3 ๐‘ ๐‘ ๐‘3 0 0 0 โˆ’2๐‘ ๐‘( ๐‘2 โˆ’ ๐‘ 2) ๐‘ 3 ๐‘ โˆ’ ๐‘ ๐‘3 โ‹ฏ 34 0 0 0 0 0 0 0 โ‹ฏ 35 0 0 0 0 0 0 0 โ‹ฏ 36 0 0 0 0 0 0 0 โ‹ฏ 45 0 0 0 ๐‘ ๐‘ โˆ’๐‘ ๐‘ 0 0 โ‹ฏ 46 0 0 0 0 0 0 0 โ‹ฏ 56 0 0 0 0 0 0 0 โ‹ฏ 13 14 15 16 23 โ‹ฏ 11 2๐‘ ๐‘3 0 0 4๐‘ ๐‘3 2๐‘ 3 ๐‘ 11 โ‹ฏ โ‹ฏ 22 0 0 0 โˆ’4๐‘ 3 ๐‘ 0 22 โ‹ฏ โ‹ฏ 33 0 0 0 0 0 33 โ‹ฏ โ‹ฏ 44 0 0 0 0 0 44 โ‹ฏ โ‹ฏ 55 0 0 0 0 0 55 โ‹ฏ โ‹ฏ 66 0 0 0 โˆ’2๐‘ ๐‘( ๐‘2 โˆ’ ๐‘ 2) 0 66 โ‹ฏ โ‹ฏ 12 0 0 0 2๐‘ 3 ๐‘ + 2๐‘ ๐‘3 0 12 โ‹ฏ โ‹ฏ 13 ๐‘2 0 0 0 ๐‘ 2 13 โ‹ฏ โ‹ฏ 14 ๐‘ ๐‘3 ๐‘3 0 0 ๐‘ 3 14 โ‹ฏ โ‹ฏ 15 ๐‘3 ๐‘ ๐‘2 0 0 ๐‘ 2 ๐‘ 15 โ‹ฏ โ‹ฏ 16 0 0 0 ๐‘2( ๐‘2 โˆ’ ๐‘ 2) โˆ’ 2๐‘ 2 ๐‘2 0 16 โ‹ฏ โ‹ฏ 23 ๐‘ 2 0 0 0 ๐‘2 23 โ‹ฏ โ‹ฏ 24 0 ๐‘ 2 ๐‘ ๐‘ 3 0 0 24 โ‹ฏ โ‹ฏ 25 0 ๐‘ 3 ๐‘ 2 ๐‘ 0 0 25 โ‹ฏ โ‹ฏ 26 0 0 0 2๐‘ 2 ๐‘2 + ๐‘ 2( ๐‘2 โˆ’ ๐‘ 2) 0 26 โ‹ฏ โ‹ฏ 34 0 0 0 0 0 34 โ‹ฏ โ‹ฏ 35 0 0 0 0 0 35 โ‹ฏ โ‹ฏ 36 โˆ’๐‘ ๐‘ 0 0 0 ๐‘ ๐‘ 36 โ‹ฏ โ‹ฏ 45 0 0 0 0 0 45 โ‹ฏ โ‹ฏ 46 0 โˆ’๐‘ ๐‘2 ๐‘ 2 ๐‘ 0 0 46 โ‹ฏ โ‹ฏ 56 0 โˆ’๐‘ 2 ๐‘ โˆ’๐‘ ๐‘2 0 0 56 โ‹ฏ ( 3.128)