SlideShare a Scribd company logo
1 of 155
Download to read offline
!
I
!!!
" " #$
%
!
!!
II
!
"
# $#
%
&
&
&
&
'
'
'
'
%%%%%%%%%%%%%%%%%%%%%%%%
%%%
++++++++++++
! "
# $ % &
'
(
) * +
, $ " * - *
...............////////////...............
...............
...............////////////
!"# $
%"& ' '
(((((((((((((
) "
*
$
&
"
+
,
-%"
,
- .
(
(
(
(
(
(
III
! " # $ " % &
' " " ( ) *
#
+
"
', ! - . $
/ 0 1
' $ 2 2 1
# ( *
+
3 4 " /
". "45/ ' 6 7 1
/ 8 3
+
* 3 9$ "% * "
$8 3 * -
:
Hydropower
;
:
Wind Energy
;
"<&
:
Solar
;
= >?
+
@ 0 " A* ? *
3 * 2 "< /
"4 *
. 1 # "
# B'
?
"% * " <C
D82$" 0
"
1E 8 0 F G 0
(%
"
& #
H * " / I 0"A / "
:
J * " % K *
;
"
6
+
"L "4 * 7 ? 1
M 2
$8 3 *
"% * "
1 /8 $ 3 ' 6 * #
" A* ? * " L
- $
#
#
3< ( " *
+
"A / " < H 3/ $8 3 * "L G 0 " % K 0( $
6
6 " H 3/ - / $
+
J A4< 4" H . $
3 N A 2$ * ? * / 0 E $ ?3 ?I 1
+
? 1
1
#. $ 3
. $
? 1" &F4$ <C
<
+
3 3 * ? 1
. / " A
AA O 7 1
< ? 01" ?
+
1
" % K
17
P
5
P
2011
IV
Kurdistan Regional Government Iraq
Ministry of Electricity
V
VI
Energy History and Forecast
!
" # $ % " & ' % "
("
)
*"
+"&,
-
+"&,
Fossil
' . / " .
!
0
' 1 ' 2 3 1 ' (3
4
5 6 '. % " ! 7
8 / " & '&3 "9' 8
)
& : ' " &% ! ;*
)
/<9 $
)
'
-
A
4
VII
(
=" 5 6 ' 9
-
&
4
!
% " !
)
!
Why we need Renewable Energy?
;
;
;
;
0
0
0
0
> ? @ : $ : % " ., A * '
B 8
8 /
)
Renewable and alternative energy supplies would help to diversity the country s energy portfolio
while offering fewer adverse environmental impacts.
;
;
;
;
0
0
0
0
C " D' $ED A * '
'
." % "
)
@ 7
' 3 @ ' 7 7&3 7 F D G ."
H &
)
Renewable energy would help in providing for our future energy needs and take advantage of
abundant, naturally occurring sources of energy. These sources include water, sun, wind
geothermal, heat, and biomass.
; I"
; I"
; I"
; I"
0
0
0
0
%
' % " .$ 6 6 ' 8 A "
: /& JD D
-
$E DK @
L 39 @ /&
4
)
However, effectively harnessing and implementing these renewable resources will require careful
planning and improved technology.
%
%
%
%
;
;
;
;
0
0
0
0
; ' " 3 . ' E, & ' 7 '
)
There is no surplus power; Additional demand would put pressure on more power generation.
'
-
B
4
VIII
!" ! # $"
Global Concerns
;
;
;
;
0
0
0
0
. @ D 1 @ M '.8( % "
F
5 6 ; %
)
'N 8 A M ;
. @
% " ., $ 9 ' %
+"&,
-
+"&,
Fossil
' . / " .
!
0
3 1 ' (3
' 1 ' 2
4
A @ D 7
)
Renewable energy resources hold great promise for meeting the energy and
development needs of countries throughout the world. This promise is
particularly strong for developing countries where many areas have not yet
committed to fossil fuel dominance.
;
;
;
;
0
0
0
0
'L" OD ED % "
)
Reliability, never ending aspect.
; I"
; I"
; I"
; I"
0
0
0
0
$ 9&@ 8 % "
& : '
)
Climate change & carbon emission.
; %
; %
; %
; %
0
0
0
0
; 3 5 6 ' 9 ' . / @& P " ED
' % "
-
4
& . (" ? D
)
Based on known oil reserves and the worldwide consumption rate, most
estimates suggest this reserve has only 50 more years of production left.
; %
; %
; %
; %
0
0
0
0
8 / Q D& ' 8 % " ' <
)
Most alternative energy sources have little polluting side Effects. Clearly,
environmental polluting is unavoidable so informed decisions must be made.
IX
% &
'(
$# )
*
( ! *
+
, -.
%
/
0/
/
B9&R D !
B&$
9 &C "
@
1
B
" ;
B
("
S
B
B=
T<.
(
.8 6
B
& B
"
%
S
B
<
)
S
B .$ B
A
("
.
S
" .,
B
7
B
7&3
@
S
6
@
B
B
& .
5
S
B
B
:
8 6
"
%
+
#
S
B
%
U
A
@
A $ V
9
A $
)
;
(
1
@
K
S(
(
E D
"
@
S
< &
B
"
%
B
1
B
$ N &
B
+
F
S E
B
$
E
B
"
%
B
D
A @ SD
)
B=
&3
B & !
"
S <
6 $
< .$ 3
("
$
W
"
%
B
B
B&3
"
%
B
! D
X "<
8 /
D
A $
)
6
5
S
.
8(
B
X
1 Y
"
5
S
6
5
S$
S
.
5
.
S$
3
S (
)
S D
;
:
S# " &
6
5
S / S
X ."
7 ?
U 9&@
"
%
B
S +
#
X "< &
8 /
$ N
B
B =< & +.
D $ ("
W
B&
S
F (
A
)
B
S$
(
&
G
&
V "
H ?
U 9&@
"
%
B
B&
U .@. D
8 /
.$
B
S ".
S D
8 /
:
Z
S [
S D
8 /
$
B&
3
B (
D
B<9
+
@
+
=<
$ ("
B
U .@. D &
8 /
S . %
X "
3 P " D&3

.
@
D ;
D :
.$ A
" .
%
B
S +
#
B
9&8 SD
)
S /
B
8 ;&
S [
&
!
B
$]
S
6
5
S
A
@
$
$ ("
=< & +
D
1 9
D ;
" :
& .$
<
"
%
B
S
)
'
-
C
4
X
( /
# 1 2 3
!
; DG "
$ %
.$ & '
0
; '
; '
; '
; '
0
0
0
0
% !
F $
'=
.$ . < " " "
" ! ^
; & A ( ER(D : ; &
)
; '
; '
; '
; '
0
0
0
0
' + K $ $ % ;
-
8( & 3
4
.$
. F(3
.$
( &3 ' . D
&3 ' 8 D 8( & : & 7
A @9
)
' 9
A '&$ (
'
_
"
.` G D ; . a
)
' 9 JD
&
39 @
;
.
E
JD "
)
. ! $ %
S [
D
S
8 /
& 6 $ 6 "
' 1 3 & " 6 3
)
' 8 b &9
.% "
' M & &,
"9 & <
8 ; Y " '
A c +
C / @ < ' 6 " <^ ' ." ' @
)
$(
A !
)
d
d
d
d
M +
"
17
d
5
d
2011
! ! "#! $ %
& '( ) * + , - ' . % / ) !
0 %
$ ! "#! $ % - - ! 1 2 !
3
' ! + ! $ ' ! 4 '". 5! 4 & ' 6
7 ! ! ' ! % 1 "#!' %
"! & 2 4 ! "#! $ %
8, & 9- '". : ) % !
2
* ; <
: ! $ = % "#!' %> '. 4 + "#! $ %
"#
:
3
5!$ ) " , & 9
" , 8 "# !' %* " , +
9 5 4 , :, % :! $ ! "? , ) ,
3
. ", '1 6 ! 9
", ) , 5!$ ) "#
& &
3
"! + ) , 7!$
"! + ) , 7!$
"! + ) , 7!$
"! + ) , 7!$
@
@
@
@
.1
.1
.1
.1
"
"
"
"
A
A
A
A
B
B
B
B
+ !
+ !
+ !
+ !
@
@
@
@
& <, C
@
',
: !' 1 ' ? , *
@
D
E ',
D
6
@
'81
F
"1 :! , G
333
$"
3
D
',
H?
D
6
@
1
F
5!
F
I,
F
* H! 4
3
D
J
D
6
@
K "? , J
(Natural Gas)
3
+
+
+
+
@
@
@
@
B
K
3
+ L,
+ L,
+ L,
+ L,
@
@
@
@
& 'M!' ) ,
& 'M!' ) ,
& 'M!' ) ,
& 'M!' ) ,
newable Energy
Re
@
@
@
@
.1
.1
.1
.1
"
"
"
"
A
A
A
A
B
B
B
B
+ & 'M!' ) ,
4 ) L8
5
3
+ ')
+ ')
+ ')
+ ')
@
@
@
@
) ,
L- L- ' ')
@
& + ) , 5!$ ) + N 4 +8
O
*
: " , P :.% !' ! % ' * %5!G ! * %& 5!
9
3
"# , * ! %+
A
2 1
A B
The Lunar Solar Power
B
" )
3
" <
% "! >P , 9 2"#! & ",
A
"1
B
? 5! &%
3
'1 ! P , "! 1 . '. % 5 4 Q , $8 * " <%+
,
! $ ) $? , ! ! ' ? ( % P
:! 2! R $ '. % 4
3
! !S!' 8 ' 4 ! 2 ' ! %6 - + ! *
C
,
A
9- C #! 2
B
&' ! ' 2 ! R !T! Q ,' ?
A
D
B
8, ! ! .
G,
3
".1
A
B
& '1 O ' ? + R &. %& S! +
@
? )
? )
S!
U
M
H , C
A
'81
D
coal
D
J N G%
B
"! 4
!'? & V , ",'4 ! , 1
$8G% J &$ 8 "! 4
& 8
<, C
&! S!
4
U
<'
D
+
! ! +V ? ) N 4 1
4 ' . %
3
% $!
! C 4'- &! "! 4 V
&
& - 1 +V
3
', &! ; !
& ? %
&! ? % "! 4 & 4 ? ' . % V
3
! ! 4
Geothermal
$!V'W &! ! 4 4 !'?
3
Wind
(X 5 , ' W ! 4 !'?
$8, ! &
3
& 'M!'
A
D
Renewable
Energy
B
4 S!
U
1 .
Solar
0.01
! G O) - "8Y C 9 J W 4 1
3
.1
"
A
B
- S! 9
& '1 O ' ? + R &. %& 'M!' 9
@
? )
& 'M!' ? )
S!
U
! & 5! V
% $!
>
> )>$ <
#! >=!
! > 8G,'> , >H!
333
$"
& ? % ', &! ; !
! > # C> 8" > #
333
$"
! 4
Geothermal
1.42
'? !
Wind
$ 8 > >&X8 >6 X
333
$"
& 'M!'
A
D
Renewable
Energy
B
4 S!
U
.
1
Solar
0.04
! > )>& !
333
$"
Z ".1
A
1
B
Z ".1
A
2
B
$ 9-
, . %
Y
R N
& < , C ? M ?
A
& <, C
Fossil
! "!
! ',
'
6
@
1 5! '81
5 J
B
F
L ! '4 [4
. '  & 'M!'
4
F
')
M
- +
1 ]
! &!
F
5?O '
F
N 4
& <, C
$ ', & ! 4
3
& 'M!'
2 ! ' 0 %
3
& 'M!'
Y 2
, % '
L ! $ !
3
^^^^^
!O
!O
!O
!O
_ 2
_ 2
_ 2
_ 2
1 $81 & 'M!'
1 $81 & 'M!'
1 $81 & 'M!'
1 $81 & 'M!'
:
:
:
:
@
@
@
@
3
&! )
A
: 2"#! ",') , 2!
3B
3
8
- + 4 ' ', & * . % ') &'(
3
'`
@
! 5 4 ', &a $ & 2"#!
F
: :#!' % "#!' %
F
'"
' ! ' ?
5! 2 78
3
"#!' %N , L, : ! ! &') &'(8
$ ! "!
: .1 ) !
G? 4 ' ',
3
'` &!
@
1 . 5 4 ',
C ! "#!' %
! &
3
') &'(8
4 ' ',
5! +V O &" ,
( %
* 1 . ')
" ?
3
& 'M!' $ &
! 1 6 %
+
3
- ]
& 7! J
M
* + 4 0 %
3
X"
&!
!
+
3
: ! 2 & + 6 % 4 : '
6
" C & ! " ? , ,
! ', ) , 2! & , ,
5
3
& 'M!'
: ! ! & + ! :! '
F
: &X "#!' % 7
3
! '
* R ', ! :#!' %
? , 2! ', 1 & V 4
: & +
3
+ & 'M!' '`
) ,
& '1
!
A
B
@
+ L,
+ L,
+ L,
+ L,
@
@
@
@
& 'M!' ) ,
& 'M!' ) ,
& 'M!' ) ,
& 'M!' ) ,
Renewable Energy
@
@
@
@
' ) ,
& 4 ) + + & 'M!
@
3
A
Hydro Energy
3B
3
1
A
Solar Energy
3B
3
A
Wind Energy
3B
3
1 K! 4
A
Geothermal
3B
3
. &. 8
A
b $c
A B
Energy
Tidal
3B
3
& ! 1
A
Biofuels
3B
3
& ! ",
A
Biomass
3B
3
& % ?
A
Energy
Wave
B
33
+ "! 9 ! ! $"
3
!
A
B
)
A
B
1
& ! ",
! ' ,
1 K! 4
+
'M!'
$ 9-
8,
%58.23
%17.08
%6.83
%0.72
%5.12
%0.42
%2.17
%1.21
%4.58
%3.42
%0.05
%0.16
, ' $
G
'M!' % & ' 2! 5!
&
$ 9- # ,
F
'1 ! ".1 + +V
: ?
. %
- '(
F
& 'M!'
d. % ! '
4 6 & ! '
< , C
$
Fossil
!
A
$ < , C
Fossil
',
!
6 '
@
1
8
'
!
5
1
J
5
B
3
! ".1 +
!
! ! '
1 &'
& 'M!'
$ <, C
F
: . & 'M!' e W ' R & 8
3
(cent/kWh)
$ ? '
A
Wind Energy
3B
'
$ !
%
N.
A
1
B
F
8
'-
A
&
B
A
Hydro Energy
B
& ! f % ?
.
& ! " ,
A
Biomass
3B
' ? :.4
1
A
Solar Energy
3B
& !'? :.4
& <, C
& ".4
!
"
#
$
%
&
'
) , "#1 4 ! ?'4 > ! $ ' ! &9- ! "#!' %
4
% &! 1 8 &9- 4 ! , . % V $? % + > +
28
< ! 9 > ) ! _ " ) ,
A
B
'
!O W 2 . %
3
28
< , $ e & ! !S!' g ", ! ? V + 2 ,
A
B
", & 9 G O) G C ! ' ? ! ) , +
3
'".! 4 $? !S!'
+ ! ) , 6 : '
R &9- "#!' % 4 ?
3
! !S!' + & 7 % 4
!S!' N , ! ' ? h ! & 9- ! .1 >& ' $?
,
& ? '
A
B
& , ", , :!
3
5 4 78 $ ! 4 & ? ! !S!'
U
:? ! $! ' ! +
8, &9- : 9
M $
9
!
3
Z ".1
A
3
B
A
? "#!
B
: 8 ! g ", 2 ! ", ? $ ?
A@
e
: c , ! !S!' +
A
- 1 + ! ) ,
B
", f ! ! >
' M. %& - :!
3B
?
A
5#%' - 6
B
! ! !
A
B
2"#!
2"#!
! & ' % !
A
B
$ + ! ' %* > 4
A
B
> $ %&! % $! V, + ! !
! 1 , & 8 7 8
A
B
'"#1
:,
3
A
B
$ , % $ 9- ".4 ! ' ? :! ) , 7 !
' 1 1
3
. % &$ , ? 4 $! 8, $ ) +
! ! > ' ! 1 ! 1
"! ', ! 1 ! ' % ! % ! ! "! > ' 4 ) , ,
: :, ! ', 2!
3
:,
:!
' . %i % N, :#
3
, ! 1 ' %
A
ground
B
! ! ".1 + ,
"! '1
3
(Mile per hour)
(
mph
)
*+$ , - . /
D
" ', N
D
",
:! N ",
D
R :, :1 V 4 >:! ' :, ) '
D
"! 6', V >: &! 4 8
'- :1 V 4
D
: 8
'- & ' '( j > J %
D
! & ' '( "1
"
D
: R k ) :! ",'4 8
< 2 & 8
'- & 4 j
3
$ )
A
B
". +V > ! 1 Z 1 $ , ? 4 $! 8, $ ) +
4 # !
3
N 4
!
A
B
> . % +V >:! RV
"#!' % ". ! >6 X > I# > X8 ! , > V $ ) 9 .? N
! ? 4 ! & V
:! M. %R >:! $ , . %
8,
UA
B
>:! 4 # ! : +V >R &9- "#! $ %
:! 8 e ' 8
3
', % "# , 9
5 4
A
B
> 2 4 &", '
> ! , * 9 ' & ! ? &", ' $ ! $
% ", 8, + $ % % ')
3
Z ".1
A
4
B
^^^^^^^^^
I, , ! ) , '
+
&", ' X! !
3
".4
&", ' X!
'
:! 9 + '1 ! 2! 7 ! :!
*
' &, , ) ' 1 . [, 6 ! 2! $
@
3
:, , l! 8
< .
'`
:#!' % + 6 ?
:.! 4
3
!O
' + N $ C W m ' n
*
? 2 - .! , ?
:, '
N $ C W m '1
3
2
3
, !
<, C $ '
A
H! 4 >* > ! 4 > 1
3B
+
 % ! & :, l8 &! 4 !  & "! - 5! ' ',
4 ! 7! "! - $ ) &", ' > 4
& H!
3
- H! 4
:#!' %6 2"#! +
&
3
! ".1 6
3
9 2"#!
4
H!
&
/01
-
MW
& - $
/
23 *
2
29
H! 4
?
X <
, 2"#!
H! 4
?
') 2"#!
H! 4
')
g 2"#!
H! 4
g
'W ') 2"#!
H! 4
'W ')
N ( ) 2"#!
4
H!
N ( )
X
<
,
! 2"#!
H! 4
!
2
H! 4
?
2"#!
H! 4
?
2
29
H! 4
?
2"#!
10
H! 4
6
203
".1
Z
A
B
3
3
'M!' 2!
A
f . % > ! 1 > 8
'- > 1 .
A
% $!
B
! 4
A
Geothermal
BB
8 . % 78 ' &", ' "#
2
$ $ !
& 2"#!
&a $
3
$ + $
$ & :, ! ",
A
! $<
4
3B
% $! 9 2"#!
2"#!
'
A
MW
B
', -
& 2 -
&
o
% $!
X <
,
A
&
B
&a $
o
% $!
X <
,
A
&a $
B
! ') C & $ ", $ + V, '
$
3
, !
! . :, + 2
! $!
A
1 . % $!
B
: 9 +
>
% R $ 2 4 ! R T% " ,
1 . % $! 2! 9
A
B
> * 2 ! $ , ! J W
"#!' % !
!O
&", ' X! 2 !
:! 2 )
I" , i % "#!' %
R ! 2 ! !O , ! & %
3
2 ! !O , "# !S!' , ! ')
!
%
" ? p : K - M- 8W , ' "#
:! q 1 2 ! * ' 6 - 1 &", '
3
Z ".1
A
6
B
4
5, 6 &
" 7 -8 !
9
! + $ )
4 f ', +V > ' & ? %
'
> & 9
f ', ) M! ' ,
: ! 4
f ! 8 M. %
! 1 >
!
A
r
)
B
A
<
r
S
B
2M8 + 7! R :#!' %> G
A
B
! $? N 4 > " ! '# & 4 % M. %
A
B
RV
4 & ! 1 4 % 8
<
4 % ' > ' , - - " ,
$ '
3333
$"
3
!
A
B
?
4
*
:
&
;
9
H '". ' 8 > ! ! 5 4 78
A
#
B
i %
N ,
'- &! ', ",'4 >s , 'M !
A
B
% ' 4
& ' %N
3
8
'- &
A
B
% '".
A
& 1 ", ' V
B
$ ' n ,
> & 28
< !
!
A
B
!
A
B
t
3
& )
:, & M! O'1 "# ,
!
3
! 5!G +V
4
4 $ "# uC & V &v 1 ! , + >
A
?
B
:! 4 f 8
3
!
A
B
!
A
B
t
3
w 4 ? :, & M! O'1 "# , & , C
3
!
A
B
Persia Panemones common Pumping water
!
A
B
4
&<
;
9
3
O'1 & $ '1 ' ! T Z N,
3
3
8,
!
!
@
% :! ? ! ! ,
6 !
V
$ 8
"!
X8
3
!
A
B
5!G
?
4
"!
? 5!G
,
5!G
?
'",'
7 <
!
5!G
?
6 4
!
A
B
!
A
B
!
A
B
3
8,
!
@
? C * - + R
A
US Pumping water
B
3
!
A
B
+
! O'1 8
'- ! 4
Z ,
!
A
B
3
8,
!
@
: , 6 & $ ? + 2"#! + ! & #! ;
3
6 ?
2"#!
+
$ , 4 ' :,
%8
<
4
'
3
- ! +
A
D.C
B
'
3
3
8,
!
@
+ ? , +
3
8
'- 4 +V
A
B
X 2 "! 4 >
O N %
A
Paul-La Cour
B
8,
? 6 !
Y ,
A
As Kov
3B
3B
3B
3B
!
A
B
!
A
B
8, " % ! ' ?
% 4 X8
(Jacobs, Windlader)
7 & '
'
3kW
& :,
3
%& ", X8 ! ?
C " , &! "84 81 & !O
: ! 7 ! ') &9- ' ! + ! & ') & &", ' *
?' 6 "
R & .
3
! 2 + &? %
I $
& ! $ !
@
!
A
B
!
A
B
!
A
B
!
A
B
!
A
B
!
A
B
!
A
B
!
A
B
•
"# i %N,
& ! ' ? + & . %
3
M
@
0 O -
, $
- )
- <'
:!
3
!
A
B
!
A
B
•
. % "# i %N,
& ! ' ? + &
3
!
A
B
!
A
B
$ , Z % & 2 4 ! ! +
$ , Z % & 2 4 ! ! +
$ , Z % & 2 4 ! ! +
$ , Z % & 2 4 ! ! +
', 1 '
', 1 '
', 1 '
', 1 '
!
9 - '
&
(Generations)
8,
!$ 8 ' 4 $!
3
+ 1 '( ! 1
!
A
B
!
A
B
=
- $
D
! , 9
g, x
3
D
, 9 % 7 !
"! !
!
' ?
A
4
F
<
?
F
& W
B
3
=
>$ ? 5.
@
>$ *A -
)
posphere
Tro
(
•
U
: !$ % g, x
3
•
! * '
3
•
! $ '", ! ",'4
3
•
4 <
% 'M
$ !
3
•
4 <
% l
y
D
;
F
4 <
% l
y
D
;
3
@
-B$
>$
)
Stratosphere
(
•
l
A
4 <
%
y
;
B
3
•
R $ ) $ . !SX8 " 4 <
%
3
•
! $ %' ! !
F
8e - 8 & g, % z 4
3
@
>$A3 &
)
Mesosphere
(
•
l
A
4 <
%
y
D
;
B
3
•
$ %' ! !
3
@
>$ & $
)
Thermosphere
(
•
l
3
•
4 <
%
D
5_<
3
A
5_<
y
;
{
B
@
>$A3
)
Exosphere
(
& 2 & .
!
A
B
=
- 7 *
>$ ?
•
- G!
Nitrogen
U
•
p#
Oxygen
U
•
& 4
Argon
U
•
CO2
U
S!
:! 4
•
S!
:! 4
^^
CO2
, 4 <
% 4 $ x M! 5, % , 9 %
@
•
CO2
$ .
", "! 4 & ' ' % ?
3
•
R 6 < & ') S! % ?
3
=
o
! ' - ' ? L,
;
4
A
X8
B
F
<
?
A
&
B
F
E
A
z ,
B
3
o
4 e & * , 4
8n L ,
G. %
& ' + 4 ,
3
o
- * ) G, L?
3
o
6 ! 4 $ )
Methane
Nitrous oxide
! , %+ :! 4 $
3
$ " , % 4 e R 4 , & ' + 4
>
4 & !
:! + e
>
2 ! z 4 R 4 ",'4 +V
3
" C i
!
A
B
+ 4 6',
) ,
^
8
'-
: :,
", % -
! 4 <
% &
! ! ! + 6
3
•
6 :! , g, x
A
4 f % ? 4 ! !
>
!
>
1 1'",
3B
•
4 1 4 f % ?
8
'- :!
3
•
', e
i
: :,
3
•
, ', ' ? ! " *
3
•
! ', ' ? - L,
@
',
3
& X! !
3
& ! 1 4
3
".4 ',
".4 ',
".4 ',
".4 ',
-
4 <
%
&'
$ # - '"# 8
<
' : , "
4 f % ? 8
<
9- # , ',
z 4 ?
!
2
& ! 1
!
A
B
!
A
B
'? ',
A
Zonal and Meridional
B
3
!
EI Nino
R ! ,
@
!
A
B
!
A
B
& ! 4
@
•
& '"# (X '"# ) g, % '1 ? ', '? 5!
:
3
•
$ x M!
"! !
R , ", - 8, 4 !
3
•
: :, 1 $ . 4 :! , ! ' ?
3
!
A
B
!
A
B
A
Geostrophic current
B
@
==
==
==
==
@
Katabatic
(
Katabasis or catabasis
)
&
AC
!
R '1 , !
>
:! 4 $8 &", % !
2! ! '1 '1 !
3
!
A
B
!
A
B
@
Anabatic
$ ! :! , ! !
>
4 K8
'-
3
!
2
!
! 1 :, !
$ !
@
!
A
B
!
A
B
& $ , C 5.
•
,
2! !
:
3
•
!
, ! 2! 5!G?
3
!
A
B
!
A
B
!
, '`
g, ! 1
,
!
A
B
!
A
B
!
"
& ' 1
> ! &! 2!
! &! 2! & ' 1
3
# $ %
"
/? ,
>
' . N $ > $1 ? &'
3
!
A
B
!
A
B
"#!' %& ! 2!
+
:
3
&
&
&
&
&
&
&
'
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
^^^^^^^^^
1 & 'M!' + - ,
A
sun
B
: !
A
2-
1 K! 4
A
Geothermal
B
>
. 8
. &
A
b $c
A B
Energy
Tidal
3BB
6 !
S
A
1.74 x 1017
watts of power (per hour)
B
R '
1
A
sun
B
:! 4
3
S!
U
U
: ! 4
3
! ) , 4 - !
! )
:! 4
3
@
, 1 . ? ') > ! 8
'- 28
!'? - .C 4 <
% $ j8
'1 " > ! ' ? ,
!'?
3
> e , 8'- "! - .C 4 <
%
: ! 2 # ! 1 1
3
+ e ,
> ' + 4 1 . > Z !
, , +V > . , ! > " $ ? ! ) R ! W
> 8
'- &! > ! ) ' + > "! 4 2 - :! ! 1
A
B
, %
: !
3
! ' 1 1 ", 2!
! 1
A
B
:.4 , ' *
!
! 1 ! 6 > G ! - ! +
A
B
+V > $ !
' !V'W 4 >: )
' ! e * ! 'M + >5!| & ' : ?
&' &$ .}
A
B
"! $!
3
% , 7!
" '1
! O'1 8
'-
3
!
A
B
! !
:! 4
$ N1 L, , ! O'1 8
'-
@
D
)
A
density
A B
ρ
ρ
ρ
ρ
3B
D
DD
D
O'1
A
rotor area
A B
Area = π
π
π
π r2
3B
D
! 1
A
wind speed
B
3
Power in the Wind (W/m2) = 1/2 x air density x swept rotor area x (wind speed)3
Density = P/(RxT) Area = π
π
π
π r2
Instantaneous Speed
P - pressure (Pa) (not mean speed)
R - specific gas constant (287 J/kgK)
T - air temperature (K)
kg/m3
m2
m/s
====================+++++++++===================
)
A
Air density
B
@
<
, <
%
.
A
1.225 kg per cubic meter
B
A
ρ
ρ
ρ
ρ=1.225 kg/m3
B
>
+V
)
!
R
L? ' !
3
! $ '! %
! ",
3
•
) ' ! R !
3
Wind energy increases proportionally with air density
•
7? ? ! ) $ ? ?
3
Humid climates have greater air density than dry climates
•
", 6 ! ) ",
3
Lower elevations have greater air density than higher elevations
•
S! & ! 1 ? )
A
6%
B
& ! 1 6 G
3
Wind energy in Denver about 6% less than at sea level
$
2
P - pressure (Pa) &", %
Density (ρ) )
)
)
) =
(R - specific gas constant (287 J/kgK) x T 4 <
%- air temperature (K) )
ρ A V3
1
ρ α
T
&", % ' !
R ! )
3
! $ '! %
! ",
3
8
'-
A
B
.
3333333333
@
1
Energy (E) = x M x V2
2
E
@
8
'- "!
A
B
A
J
B
3
M
@
. "!
A
B
!
! 8
'- >
A
Kg
3B
V
@
"!
! 1
A
B
A
m/s
3B
! 1 4
A
B
A
V
B
! ' ! >5! 4
? : > 4
.
33333333
5! 2
@
1
Power (P) = x M x V2
……………..2
2
P
@
4 ! ' "!
A
W
B
M
@
"!
A
B
! ! ! 8
'- !
A
Kg/s
B
D
A
B
:! ' > ! ! ! 8
'- > !
'1 .
A
B
V'- ? "! i ! > "! $
@
dm dV
= m = ρ
ρ
ρ
ρ x V = ρ
ρ
ρ
ρ x V x A ……………..3
dt dt
ρ
ρ
ρ
ρ
@
@
@
@
! 8
'- ! ! ) "!
A
kg/m3
3B
A
@
I $ % V'- > ! 8 ' "!
:
A
m2
B
3
. 4
A
B
.
A
B
4 ! ' >& Z K- ".
5! 4 + e ,
@
1
Power (P) = x ρ
ρ
ρ
ρ x M x V ……………..
2
D
! 1 & 4 5!G ! > $ p , ! 1 >7! 4 ! '
A
B
4 ! ' >
' :! ' $ ! 4 ! +V >:! 4 - M",
A
B
' ! ! 8
'- ! ') >:! 2 $ ', ! '
: I ! 8
A
! 1
A
B
!
g, !
B
' ' 8 >
7! , n
9 :! ' "C 4 + >: R ".
A
U
U
U
U
B
. :! ' > 4 ! ", ' >:! 2
A
B
"! $
@
1
Power (P) = 0.59 x x ρ
ρ
ρ
ρ x M x V ……………..
2
O'1
A
Blade swept area
-
otor area
R
A B
2
r
π
π
π
π
=
Area
@B
R !
& % O'1 ' !
>
:, C 8 '? & %
3
Wind energy increases proportionally with swept area of the blades
Blades are shaped like airplane wings.
& 8 ' !
S!
A
10%
B
1 ",
S!
A
21%
B
R !
3
10% increase in swept diameter translates into 21% greater swept area
5! S!
"? 4 %
A
+
B
& - ' ' e *
A
+
3B
Longest blades up to 413 feet in diameter.
Resulting in 600 foot total height.
- ! ! 6
R <
A
600kW
B
"#!' %
O'1
A
rotor diameter
B
:
>
O'1 - +
+
"#!' %
3
'
O'1
2!
! 1 ",
' +
3
7 !'? "#!' % !
:, 5! !SM8
N, S!
O'1
:!
! 1
H
r
: )
3
!
A
B
! " # "
$ #
! 1
A
wind speed
B
@
' !
! 1
S!
A
10%
B
S! 1 ",
A
30%
B
R !
3
10% increase in wind speed translates into 30% more electricity
:! . 6
3333333
Power in the Wind (W/m2) = 1/2 x air density x swept rotor area x (wind speed)3
P = 1/2* ρ*A* V3
Wind energy increases with the cube of the wind speed
N 4 :! 4 ", ! $ '! % '
- L,
1
V3
3
3
3
3
)
)
)
)
'
'
'
'
^
! $ '! % 8
'-
1 - N 4 ! ",
V2
3
3
3
3
1
Energy (E) = x M x V2
2
^
",
:! %$ !
N 4 ! ", ! $ '! %
1 -
V2
3
3
3
3
{
! 1 4 '`
A
B
>: - :? 4 ! ' >:!
! 1 ' > ", ? ( %
A
B
! ' 'M , ! 1 ", 2!
4
3
)
(2X the wind speed translates into 8X the electricit
!
A
B
A
Height
@B
N 4 R !
3
(Wind energy increases with height to the 1/7 power)
U A
B
!
N 4 R
' !
$
3
(2X the height translates into 10.4% more electricity)
rr
S 4
A
Low Turbulent
3B
!
A
B
) " & & .
e '4 !'? SM8 & !
3333
Characteristic of good wind
power site:
1
Power (P) = x ρ x A x V3
2
!
' '
A
4 !
B
5! !
@
A good wind power site should have the following characteristics:
3
!'?
A
! 1
V,
A
B
!
:
3B
A
High annual wind speed
B
3
!
! 4
3
A
High wind tower
B
3
: 4 O'1 C
3
Longest blades in diameter
3
: &, ! )
>
: & ! ! :! 4 &!
3
(An open plain or an open shore type)
3
& C ! ?
: $ )
3
: &$ .} 5! +
3
(A mountain gap)
3
: ", :1 ! 4 , :! $ N
>
: 4 ! S
3
! 4 !'? +
G? : !
3
(The top of smooth
>
well rounded hill with gentle slopes lying on a flat plain or located on an island in lake or sea)
3
& ! 2! :, "#!' %
) : l
3
! $ ( ) *
! $ ( ) *
! $ ( ) *
! $ ( ) *
(
+ ! !( , , * ( - !
(
+ ! !( , , * ( - !
(
+ ! !( , , * ( - !
(
+ ! !( , , * ( - !
!
A
B
:1
",'4
'Xm
! +
+
+
+
(!
% $ ! . $ *
( /
-
"
? 4 & N 4 & %
! - <
%
& % O'1
& &
3
5
!
A
B
0
1 (
! 2 - ! 2 -
Lift & Drag Forces
3
! 2 -
4
Lift Force
"5
! "!
8
'- ", , '",
3
"#!' % +
:
3
The Lift Force is perpendicular to the
direction of motion. We want to make this
force BIG.
2 -
1 (
!
4
Drag Force
"5
"!
!
M!
8
'- ", N 4
3
"#!' % +
+
+
+
+
:
3
is parallel to the direction
Drag Force
The
of motion. We want to make this force small.
59.6
80
+
, "# Y ! I ", ! ! !
'
2 ! C , 2
3
This picture shows a Vestas V-80 2.0-MW
wind turbine superimposed on a Boeing 747
JUMBO JET
!
A
B
!
A
B
= low
= medium
<10 degrees
= High
Stall!!
!
A
B
(!
&
C M# ! %
R
3
Airfoil Nomenclature: Wind turbines use the same aerodynamic principals as aircraft.
+++++++++++++++++++++++=======================++++++++++++++++++++++
3 Airfoil in stall 0
(
+ (! *. 6 !
7
& % " - : :, 7 N ", !
3
Stall arises due to separation of flow from airfoil
D
N ", !
e
2! ' +
&$ ? 4 1 ' !
3
Stall results in decreasing lift coefficient with increasing angle of attack
D
N ", !
: , )
& % ',
3
Stall behavior complicated due to blade rotation
!
A
B
!
A
B
Stall
Blade rotation
Pitch Control vs. Stall Control . 6 8 9
*:;
7
!< % $
8
4
Pitch
"5
" ~ 1 6 ! ! 1 6 ! ' ? 5! ', & %
>
? ", %
+ : 6 ! O'1
3
•
8 9
*:;
4
Pitch Control
5
"
: 2! : ! ', 6 ! ' ? & %
: ! 1 7 *
3
– Blades rotate out of the wind when wind speed becomes too great
•
9
*:;
. 6
4
Stall Control
"5
4
& %
4 6 ! ? 4
*
!
R $ %:, N ",
: ! 1 7
3
". 6 ! ? 4 :! ', ] % !
N 4 !
3
– Blades are at a fixed pitch that starts to stall when wind speed is too great
– Pitch can be adjusted for particular location’s wind regime
•
. 6 9
*:; < ,
4
Stall Control
Active
"5
+ 4
: . ! O) ( %
& %
: ! 2 6 ! ? 4
!
! 1 R N ",
3
– Many larger turbines today have active pitch control that turns the blades
towards stall when wind speeds are too great
!
A
B
!
8
4
Pitch
5
8 $
%+
8", ! ".
3 Rotor Solidity 0
< = ! 6 + 9
*
!
O'1 ".4 & % + - , S! ! "
3
Solidity is the ratio of total rotor plan form area to total swept area>
Solidity = 3a/A
O'1 "!$ 8,
! 1
3
Low solidity (0.10) = high speed, low torque
O'1 "!$ 8,
! 1
+
4
3
High solidity (>0.80) = low speed, high torque
!
A
B
!
A
B
Solidity = 3a/A
A
a
!
A
B
3 Tip Speed Ratio 0
? !
( =
!
S! ! "
% O'1
! 1
S! ' !
! 1
+
& '1 ! 2! " )
A
Erosion Effects
B
A
Noise
B
5! :,
A
Vibrations
3B
!
A
B
,
@ ! ( - !
4
How Does a Wind Turbine Work
5
:
Inside the wind turbine
!
A
B
&
&
&
& ( = !
! 6 A B
4
Anemometer
"5
' %
8G "! '4 ! + R ! 1
A
controller
3B
Measures the wind speed and transmits wind speed data to the controller.
(!
4
Blades
"5
! %L, &! &
3
" :! %$ $ %
! O'1 '
3
Most turbines have either two or three blades.
Wind blowing over the blades causes the blades to "lift" and rotate.
C
4
Brake
"5
:#!' %
7! #!
: ", $! &! ! &!
3
A disc brake, which can be applied mechanically, electrically, or hydraulically to stop the rotor
in emergencies.
!
A
B
D $
4
Gear box
"5
4
! 1 "C ? + ! 1 "C ? &' R :, $ '! %
F
O'1
R ! j W 6 ! N'1
j W 6 ! N'1
3
#!' % ! ! 1 +
"
"! - ?
+
3
, 'W . '( 0 4 $ )
7 ! 6
?
F
1 ", & :, 7! "! - & $8 & ! $ &! ?
:#!' % + ! 1 R
R 0 4
3
Gears connect the low-speed shaft to the high-speed shaft and increase the
rotational speeds from about 30 to 60 rotations per minute (rpm) to about 1000 to
1800 rpm, the rotational speed required by most generators to produce electricity.
The gear box is a costly (and heavy) part of the wind turbine and engineers are
exploring "direct-drive" generators that operate at lower rotational speeds and
don't need gear boxes.
!
A
B
9
*:;
4
Controller
"5
! 1 7 R $ % N G ?
&'
+
r
)
+
r
)
! 1 7 : ",
+
r
: )
3
! 1
+
r
$ ? " ') R )
! 1
3
Controller:
The controller starts up the machine at wind speeds of about 12 to 19 km (8 to 16 miles) per
hour (mph) and shuts off the machine at about 88 km/h (55mph)
Turbines do not operate at wind speeds above about 88 (km/h) because they might be damaged
by the high winds.
!
A
B
&
&
&
&
& ! - ) -!
! 6 ! /
4
Generator
"5
:! + 4 ! "! - +
3
Usually an off-the-shelf induction generator that produces 60-cycle AC electricity.
( = 6 %
&
&
&
&
&
&
&
!
4
High-speed shaft
"5
+
C ?
"
1
'1 "! -
"
3
A
Drives the generator.
3B
)2&
&
&
&
&
&
& ( = 6 %
4
Low-speed shaft
"5
?
C
"
1
+
" '1
O'1
j W 6 ! N'1
3
The rotor turns the low-speed shaft at about 30 to 60 rotations per minute.
!
A
B
E F
4
Nacelle
"5
0 4 6 ! :! , H •
F
?
1 "C
F
+ 1 "C ?
F
"! -
F
8G
!
3
" . , "% < & 4 $ & 8
<• 7!$
3
The nacelle sits atop the tower and contains the gear box, low- and high-speed shafts,
generator, controller, and brake. Some nacelles are large enough for a helicopter to land on.
!< % $
8
4
Pitch
"5
" ~ 1 6 ! ! 1 6 ! ' ? 5! ', & %
F
? ", %
: + 6 ! O'1
+ : &!
3
Blades are turned, or pitched, out of the wind to control the rotor speed and keep the rotor
from turning in winds that are too high or too low to produce electricity.
!
A
B
=
&
&
&
&
<
! :!
4
Rotor
"5
& %
:! & % % N 4
O'1
4
4
4
4
Rotor
>5
>5
>5
>5
The blades and the hub together are called the rotor.
&
&
&
&
&
&
!
4
Tower
"5
&
5! :,
! ' <",
F
&! :!
? <",
3
! ! 1
N 4 R
F
: ! * ! :, : ! ' :
3
Towers are made from tubular steel (shown here), concrete, or steel lattice. Because wind
speed increases with height, taller towers enable turbines to capture more energy and generate
more electricity>
!
A
B
Hub
!
A
B
&
&
&
&
&
& 6 (
!B
4
Wind direction
"5
! 4
3
!$ +€
O $
3
This is an "upwind" turbine, so-called because it operates facing into the wind. Other
turbines are designed to run "downwind," facing away from the wind.
1 !
&
&
&
&
&
&
4
Wind vane
"5
' %
! ",
! N 4 $ '! %
: ! '#
6 !
N 4 : e '4
3
Measures wind direction and communicate with the yaw drive to orient the turbine properly
with respect to the wind.
!
A
B
! ! !
&
&
&
4
Yaw drive
"5
!
", %
!
N 4
4 %
N 4
",
3
Upwind turbines face into the wind; the yaw drive is used to keep the rotor facing into the
wind as the wind direction changes. Downwind turbines don't require a yaw drive; the wind
blows the rotor downwind.
!
! ! !
&
&
&
4
Yaw motor
"5
! ', " .1 '
O'1
A
Powers the yaw drive
3B
!
A
B
3 Active and Passive Yaw ' < , ' < , &
&
& 0
+ !
@
! ',
!
6O)
A
Active Yaw
B
$ + 4 + - , +
& '( 7!$
!
6O)
A
Active Yaw
B
R ! ' ? + i :!
@
Active Yaw (all medium & large turbines produced today, & some small turbines from Europe)
D
", :! 2 O'1 N1 + 8G N 2 , H • , " X
3
Anemometer on nacelle tells controller which way to point rotor into the wind
D
! ',
!
A
Yaw drive
B
81 : ! ', 4
", O'1
:
3
Yaw drive turns gears to point rotor into wind
+
@
! ',
!
6O)
A
Passive Yaw
B
& '(
"! 4
R ! ' ? + i
@
Passive Yaw (Most small turbines)
D
O'1 , 9
3
Wind forces alone direct rotor
D
O'1 ! .!
R ",
3
:!
3
Tail vanes , Downwind turbines.
!
A
B
!
A
B
0
( - ! *
= !
<
4
Rotor
5
&
&
&
&
&
&
/
&
&
&
&
&
&
&
&
&
&
&
!
3
Turbines can be categorized into two overarching classes based on the orientation
of the rotor
Vertical Axis
Horizontal Axis
'", ' ?
! , ' ?
!
A
B
0
/ +
&
&
&
&
&
&
&
&
&
% !
&
&
&
&
&
&
&
&
&
6 !
3
(
Vertical Axis Turbines
)
^^^^^^^^^
A
Advantages
@B
r
O'1 : 1 2! ! ? 4 '
3
(Omnidirectional - Accepts wind from any angle)
r
? R 8n * , :! - + 9 %
3
(Components can be mounted at ground level)
rr
) ,
$ 1 #
3
(Ease of service)
•
rr
.
3
(Lighter weight towers)
r
:#!' % :, "#!' % !
3
(Can theoretically use less materials to capture the same amount of wind)
A
Disadvantages
@B
r
* ! ! Z O'1 ? ".4 ! ' ?
3
(Rotors generally near ground where wind poorer)
r
W ) .
3
(Centrifugal force stresses blades)
r
1 % ",')
3
(Poor self-starting capabilities)
r
O'1 , ? ! ", &! :.I8% "#!' %
A
rotor
3B
(Requires support at top of turbine rotor)
r
"! 2 P 2 - ! ! O'1 "C ? "#!' %
3
(Requires entire rotor to be removed to replace bearings)
r
! K X"m 2 - ! K * ".4 ! ' ?
3
(Overall poor performance and reliability)
r
! ' , . ! 4
3
(Have never been commercially successful)
!
A
B
3 Types of Wind Power ‚
! /
( - !
! , ' ?
A
Horizontal Axis Wind Power
@B
' ?
'",
A
'Xm
B
A
Vertical Axis Wind Power
@B
!
A
B
!
A
B
) G
"
* ! /
H
4
Looping
"5
D
+ !
A
+ !
B
: :,
3
D
! ! ! !
'",
A
' m
B
' ? ) :! 4 + !'?
3
D
! !
! ! '` %
F
3
S! 4 ! ",') !
A
BU
! 1 7
+
r
: R m ,
3
D
:! + '( 2"#! ! ! - +
3
D
P %' -
8,
RV 1 P . % ' ' ' ,
3
!
A
B
A
Energy ball
@B
r
+
! ! -
4
-
P %'
A
Looping
B
%
A
Energy ball
B
N
".4 !'?
!
5
3
r
! ! - +
%
A
Energy ball
B
", $!', ! I
3
r
",')
3
r
) %* ? ! ! 6
:! 7 %
"! ', $!
3
+ ')
! ' ?
$ ! :! !
3
!
A
B
) I
"
) &
&
&
&
&
&
&
&
&
& : B
4
Aerocam
"5
r
! ! - +
+
A
Aerocam
B
! I
:,
",
3
r
: ,
+
! ! -
+
A
Aerocam
B
5!
& %
R $
$ , ! W
3
r
! S! % ! ' . % ! ! -
! , ! ' ? & } ! 5
: ) <
! , !
3
r
+
! ! -
?
N '". ' 6 R M!
F
') !
'(
3
r
: + O'1
3
!
A
B
!
A
B
!!
"#
$
$
%
&$
$
'
(
Helix Wind
)
r
- +
( I'
!
A
Helix Wind
B
! 1 ! !
3
r
! ", ' R ' ! ! '` g ,
3
r
"! -
: 8
'- * ! R N ! 8
'-
3
r
- +
( I'
!
A
Helix Wind
B
) :! +
3
r
: ! 4 6'( ! W : + ! * ! '", ' ? 8
'-
3
G? i . ƒ O ) ? &", ? ) * - +
3
r
% ) & E %
6 .1 $ ! $ 8 O ,
3
!
A
B
!
A
B
* +
+
, -
(
Magenn air rotor
)
r
- +
4 O'1
A
Magenn air rotor
B
! !
! ' ? : , ! ! '`
! $
3
r
L < J
R ', . :! $ 2
A
B
+
! " ,') ! !
UA
B
R !
3
& ! ",') 5 ! ! + - , $
4
A
U
BU
3
r
"! -
- ) G '( : ! + 2 $ )
3
!
A
B
!
A
B
!
J
K B
A
Sky Serpent
@B
r
- "#
F
! ,
A
+ #<, „
B
? 4
:, % L8 ' +
3
r
4 '( ! ! $
! ! '
! & ,
3
+8
O
A
„
+ #<,
B
%:C ? 6 ! , $ )
:,
' '( '( W $ )
R ! ",') ! 4 6
3
r
6 ! O'1
R ! + - , ",') R $
3
r
8,
R M! : ! : , 4 ' ? :! $ , %
!
$
3
!
A
B
.
! 6 ! /
!
&
&
&
A
Flying Electrical Generator
@B
r
' ! C "! -
A
Flying Electrical Generator
B
' ?
4 O'1
A
Magenn air
rotor
B
+
') ? * -
!
1
!
3
- + +V
A
B
+
"
3
r
:, 6 ! ' ? ! !
: 9 :, ! :! 5! 1
3
r
! .
A
B
lu
3
r
'(
! +
: ,
R <
3
m ,
3
r
!
!
O'1 ')
A
B
5. 6 ! $ mW , , ! ' ?
3
:! N
:! :, f 4 W '
3
!
A
B
( ! * ( - !
Off-shore Wind power
Sea
!
Till
'".
c
Sandstone
Ice Cone
)'W
Casing
? %
5!
Grout
!
A
B
D -
, 5 C-
(
Onshore
)
(
Offshore
)
Cost comparison Onshore and Offshore
!
A
B
".1
A
B
4
(! ' ( - !
Number of Blades – One
9
D
A
O'1
B
:! ! "! '# % "#!' %
3
Rotor must move more rapidly to capture same amount of wind.
{
0 4
3
Gearbox ratio reduced
{
% ( %7 .
P , :!G,
3
Added weight of counterbalance negates some benefits of lighter design
{
! 1
$ !
:!
3
Higher speed means more noise, visual, and wildlife impacts
D
& , %
:!G, , O'1 ?
3
Blades easier to install because entire rotor can be assembled on ground
D
S!
A
BU
G
! % - 6 : :,
3
Captures 10% less energy than two blade design
D
! * ! '
3
Ultimately provide no cost savings
!
A
B
Number of Blades – Two ( - !
(!
6 % 1 ?
6 !
! %
3
Advantages & disadvantages similar to one blade.
6 % 1 ?
6 !
! %
3
Need teetering hub and or shock absorbers because of gyroscopic imbalances
S!
A
BU
% , - 6 : :, G
!
3
Capture 5% less energy than three blade designs
!
A
B
0
( - !
(!
Number of Blades – Three
3
r
2 ,
A
# V
B
! $ %
3
r
1 O'1
3
r
:! ",'4 '(
3
r
! '- !
3
r
3
r
:! $ 8 G
3
!
A
B
0
! L
-!
Sizes and Applications
3
+ !
@
6'( -
A
Small
B
'
A
Small (≤10 kW)
B
:!
' 1
A
Homes
B
N '".
A
Farms
B
8G 7 !'?
: 5!
A
Remote Application
3B
+
@
$ + -
A
Intermediate
B
'
A
10-250 kW
B
:!
$ '4
A
Village Power
B
N "# ,
A
Hybrid Systems
B
' *
A
Distributed Power
3B
+ ! L,
@
4 -
A
Large
B
'
A
660 kW - 2+MW
B
28
< :!
A
Central
Station Wind Farms
B
' *
A
Distributed Power
B
N "# ,
A
Community Wind
B
3
300 kW
Turbine
10 kW
Turbine
Large:
Small:
!
A
B
!
A
B
!
A
B
Wind Power Advantages
+ 2"#!
%
3
', R :#!' %
:
3
Produces no waste or greenhouse gases
r
0 % " M R 7! J -
A
No air pollution
3B
r
-
" M R 7! J
* + 4
A
No greenhouse gasses
3B
r
' - R 0 %
A
Does not pollute water with mercury
3B
r
R :#!' %
A
No water needed for operations
3B
A
Economic Development
B
' ? 4
3
r
! ? 4 & ' & C
& . ƒ O ) : !
3
Expanding Wind Power development brings jobs to rural communities
r
V ? % '
A
Increased tax revenue
3B
r
! V $ ! $ ', "? C
3
Purchase of goods & services
) ,
@
) ,
! X".
! - 1 L
! & "#!' %
F
] ', '
& + , ! ! 2!
3
)
' 8 N '". ", :! !
]
& :, 6 ! 2!
3
The land beneath can usually still be used for farming.
& ) ? ! 2!
A
Isolate area
B
3
A good method of supplying energy to remote areas.
1 f
! + ' $ 9- $ #
R !
3
&
&
&
&
&
&
&
&
&
&
&
&
Disadvantage of wind energy
r
".4 ! ' ?
)
3
! 7! $ ) ! - ! K +
3
(Low energy density, The wind is not always predictable - some days have no wind.)
r
"# ,
A
B
$ . ! 4
3
(Wind energy conversion system are noisy in operation)
r
. ".4 ! ' ?
!
) ! S
3
(The overall weight of wind power system is relatively higher)
r
"#!' % !
3
* ! 1 i !'? 5!G?
! 'M 4 & '(
3
(Large areas are required for installation /operation of wind energy system. Suitable areas for wind
farms are often near the coast, where land is expensive)
r
* :! + + ! S!
%
& 4 ! , . % ) & 4 ? "#! $
R
3
(Only in KW and a few MW range , it does not meet the energy needs of large cities and industry)
r
) $ 8 "?' ! 2!
& ) ! R M!
3
Bird Migration:
Through design the wind farm we must be sure that this site is not cross the bird migration lines
according to the GEF recommendation and the ornithological study for bird migration should be
conducted
r
!'? 5 & ) ! Y ) , ! 2! & 8 M,
& Y !
3
Shadow effect:
The blade’s shadow effect for the human eye should be effect with a bad level so the wind farm
may far from the human area as enough if any.
5'-
5'-
5'-
5'-
", % . " $ ! $ + % ", '
3
!
A
B
&
&
&
&
&
&
&
& ! (
M (
M H
) , ! Y ! O) $ 8 ! K ! Z + !'? '
P '
>
2 ! 1 7
D
:!G# $! 4 P )
& - ' :1
3
! K [ 7 !'? ]
3
! 4 7! ? 4 ') ! ! 6
HM#!
4 ? 4 ')
: &V * ", + HM#!
3
!
A
B
Environmental Impacts
Area Daylight Night
Residence area 45 DB 35 DB
Residence &
Industrial area
55 DB 45 DB
DB: Decibel P ' % !
= : !( (
!! * &
&
&
&
&
&
&
& ! ! !
% ',
C , 2!
:, & 1
, R
! 6 ! C 4 :! ? ?
& 1 C
". % "! "
%
C !'?
, 4 : &
:! $
3
"#!' % !
:
& 1 C
3
!
A
B
&
&
&
& / N $
Wind Energy
.
coal
petroleum
natural gas
nuclear
hydro
other renewables
wind
Wind could generate 6% of nation s
electricity by 2020.
S!
8, $ 9-
U
R !
3
Wind currently produces less than 1% of
the nation s power.
S!
"# $ 9-
U
3
Wind
Other renewables
' Z'
'81
Coal
Nuclear
"? , 4
Natural
Gas
Hydro
Petroleum
R ',
Wind
Other renewables
' Z'
'81
Coal
Nuclear
"? , 4
Natural
Gas
Hydro
Petroleum
R ',
!
A
59
B
!
A
B
!
A
B
@
# C ! $ X8 "! 6 X
@
% ', 1 'M 4 , . % V
A
B
:! +
! N G% 7 < 'M 4
> O
$ 9- , . % 4 V ! '(
+ 5 ! % 8W , # C ! $ X8 "! 6 X V 6 ! > ! !
1 & 8 + - , ' > % 2!
%
A
B
I "# >5
% ", $ '! %
A
B
') >&$ ? 4 :! > , !
+
% 2!
A
B
2 ! ", % '? 5! ?
3
US Wind Energy Capacity
0
2000
4000
6000
8000
10000
MW
2000 2001 2002 2003 2004 2005
!
A
B
!
A
B
@
& %
$ % % :! 7 W $ , & %
F
)
I 5! 4 '
& %
A
, & % …!O & M " ', % 4 > ?'%'#"
B
&$ &#8
$! % $ % % 7 W $ , $ !
A
B
'( >
<
& !
A
O & <
3B
:! '" W $ , + ! i !
A
B
6 ! ! >:! 9 + R 2
& <
5 $ ', & 1
3
.! > + ! 2! 5!GC , 5!G , *
: & 7! R ' > . 2 !
3
! ! ! ') ! 4 & % V , ! ?
R $8
3
@
"!
', : ", 2"#! :.%G "! 8G% 'M 4
&
! N G%7 < ' ! N 4
, . % V > O
+ & N
> & ', Q , M 2"#! :.%G
A
& & 4
B
! 6 ,
„ M '< # >: m V 8G% ",' %G V $ ! 2! "!
$ :.I8%
A
&
B
$ & " , 2! "! ! €
5!
A
B
V "#!' %R $8 > V a & i
#!' % "! > + $ V ',
8, "
!
U
1 "#!' %
"# ! S! $ > & i 1 R 2"#! 2!
U
>:
* & & 4 "! ! 6 ,
@
"! , . %
"#!' %&
!
5 :, "! !' 2"#! ' 8, > ! $ % <
3
!
A
B
@
1 . 9 '" ? > - 1 '( ,
A
B
O >$ ! 2! $ ! † X n '" N ‡ ˆ ?
8, ! > >:! 4 1 ) , ', R ! ",
& - 1 > M. %
T% ! >R ! $ V 1
1 . 2! 9
A
B
+ X n 8% ! >
, ') > ! 2 ! , >: ! '( - 1 ) 4> ! % -
?
' $ , ? 4 * >: 5! $ 9- :!
& ) ' ? V " ,'1 ! $! V, M! > "! 4 V . %
" : ! ,
3
) , 7 , ? 4 ' . % 5 * ", &! ?
> ! 1 - 1 2 ! ' 0 % ') > ! 2 ! ' 0 % , & ! 2! 5!G & !
? 4 G? i ! ' ' 5! 1 2 ! 7
+ 2! 5!G? & ') % >R
9 " ! !'? '! > 2 ! ' 0 % > 9
1 .
3
' ? 1 . "# ,
! . 1 % >& , : & 4
>& V $ 8 , "#!' %i ' n R >: ' . % '
"! $ ? e ! 2! - +
3
!
A
B
5! n 4 " ,
5! n 4 " ,
5! n 4 " ,
5! n 4 " ,
A
Bhrain Trade Center
@B
! ! 6
!
U
U
R !
3
!
A
B
V
! & ! ".1 + 6 R 2 ! &! + ' $ 9-
Countries with the most Installed Wind Capacity (MW)
RV
! ' 2 ! !T!
9.149
11.603
16.618
25.170
X8
18.415
20.622
22.247
23.903
I#
10.028
11.615
15.145
16.740
)
1.260
2.604
6.050
12.210
$
4.430
6.270
8.000
9.587
"
8
1.718
2.123
2.726
3.736
# C
757
1.567
2.454
3.404
$‰"c <
Xc
UK
1.332
1.963
2.389
3.288
6 X
3.136
3.140
3.129
3.160
NJ' %
1.022
1.716
2.150
2.862
683
1.459
1.856
2.369
$ 8
1.219
1.560
1.747
2.225
& !
1.061
1.394
1.538
1.880
8 '",'
708
817
824
1.494
$!',
510
572
788
1.067
$
496
745
805
1.245
Austria
819
965
982
995
& !
573
746
871
990
$ 8%
83
153
276
472
'
20
51
146
333
=!
267
314
333
428
Belgium
167
193
287
384
Š
&'!
H!
$ !'
'? !
! 2'
7 )
$ < C
morocco
! 2
7 #
&
! ",
Rest of Europe
Rest of Americas
Rest of Asia
Rest of Africa&
Middle East
Rest of Oceania
World total (MW)
Z ".1
A
7
B
!
A
B
0
! &
&
&
&
&
&
&
&
& B ! &
&
&
&
* &
&
&
&
&
&
&
&
&
&
& O
3
3 Costs of a Wind Turbine 0
! 1 1 ", !$ '! % 9
A
B
!'? ! > !
! !
"#!' %
3
2"#! h '(
A
cost
B
! ! ') > ! ! 1 $ '! %
! >: ' , ? W >R ! '( !
-
& % - &
R ! & 1
3
& % +V + ! !
: 6'( % 7 ! : ! 1 : 4
3
! . %
$. 1 :!
&
: +
3
An extra meter of tower will cost roughly 1,500 USD.
-
A
600 kW
B
g<
A
O
B
: ) $
3
(A typical 600 kW turbine costs about $450,000.)
'(
.
A
O
B
: ) $
3
( Installation costs are typically $125,000.)
'(
".4
A
-
{
'(
.
B
4
A
O
B
( Therefore, the total costs will be about $575,000.)
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{
'( 1
! ! & ! 4 -
A
R < 6 ! O
3B
(The average price for large, modern wind farms is around $1,000 per kilowatt electrical power
installed. )
& !
! !
%i :! 5
A
R m ,
B
F
&! R N,
A
&", ' 8,
3B
( Modern wind turbines are designed to work for some 120,000 hours of operation throughout their
design lifetime of 20 years. ( 13.7 years non-stop))
'(
# )
8,
F
S! !
A
&!
B
, g<
3
(Maintenance costs are about 1.5-2.0 percent of the original cost, per year.)
!
A
B
/ .
0 1
.
* 2
/ .
0
Manufacturing Market Share
I
I
; "# Y
Vestas
&
Enercon
P
& !
NEG
Micon
# 4
Gamesa
-
GE
;
Bonus
0 !
Nordex
$!
Made
I!
Repower
Ecotecnia
Z ".1
A
8
B
!
A
B
!
A
B
E & -8 !
+
!
A
B
!
A
B
!
A
B
!
A
B
4
1
.
*
Process of building Wind Power
9
!
A
B
!
A
B
!
A
B
!
A
B
!
"#
!
$
!
" # $%&
# $%& ' (
"
(ENERGI TEAM AG)
) *+"
!( , # -(
&
) !
.
/
0
" ! )
.
/
( %
* + 1 2 3 % !
( 4 !
) !
.
/
5
6
(#
7
#8
7
9& !
" :
#% 5
)3 %
"!(; !
(IRIDIUM 9522B)
<
:
%,
.
121
/
:
%,
.
122
/
%&
'
.
Anemometer
=/
No. Name Height(m) Boom direction (deg) Note
1 Top (V_1) 50 +/- 90 from MWD -
2 backup (V_2) 30 +/- 45 from MWD -
3 Ref_1 (V_3) 10 +/- 45 from MWD -
<
#%& # +
.
Anemometer
/
4 ( !! > & + (#? # &
<
<
@
@
2 ;# A#@
@
@
@#%& # +
.
Anemometer
/
@
@ @
@ @
@ @
@ @
@(#? @
@1 @
@ !
# ? ! *5 B C%
<
<
#2 (#? # ?(
.
Digital Signal
/
& !& 4 (# !
<
<
@ @ @ % @ &@
(@
D; @! ?
@ E @
2 1 @ !
F @
1 !
4 6 !G
<
3:(#
! *5 B C%
<
<
4@
# 6 @ H @ , @ @ (@ 4@ !F&#:% @ + ! 2
<
4@ ! @
2 @I
;#
1 ! 2 & J ( (
<
:
%,
.
123
/
K?
%,
.
/
@
@
K@
@ #@
@
2
@
@#%& # +
.
Anemometer
/
&@
@ @
@ @
@(#? @
@
# &@
@
(@
@
E @
@
>
@
@ @
@ L@
@ #
4@
@
# (@
@ @
@ @
@ @
@ @
@4@
@(: !F
.
@
@
?
/
@
@4@
@
# !
.
4? !
M
?
M
!(
/
.
/
:# !
<
@
+ (@! @:# +FN
&@
@ 4@
@
# @
@ :# @
@ @
@ L@
@ #
@
@
#5 ; @
@ + @
@ @
@4@
@
# ! @
@ @
@
+
<
@
@!
@
@#%& # +
.
Anemometer
/
&@ 1 @ ! ! @ + + + ( ! O# + ; > 4# #2 L #
I
;#
<
!(; >
#%& # +
.
Anemometer
/
=
# & J &
L
@ 2 # 4# !4 ! (3
.
4E @
2
/
@ @
2
? ! !( P#* > Q L# * & # !
.
wear
/
3 (#*
&
4@
# !4@ !
H !
.
, ,
/
1 !4 !
@# !F ! %
M
&@ @ 3 L@ # ! @ F @
L > % !( 4 ! : 2
<
:
%,
.
124
/
:
%,
.
125
/
K?
%,
.
/
.
Wind direction Transmitter - Wind Vane
=/
No. Name Height(m) Boom direction (deg) Note
1 Top (dir) 50 +/- 90 from MWD -
R
@
@
@
@
@ + #
.
Wind Vane
/
# &
+
4 ( !! > & +
<
R
# ?(
+
& !& 4 (# !
<
R
1 @ ! (@
D; @! ? @ @ @ % @ &@
F @ @ E @
2
!G 1 !
4 6 $
4# 9&8
<
! *5 B C% 3:(#
<
R
! 2
!!%
.
F&#:% +
M
S# : +
M
P# T
/
4@
# 6 @ H @ , @ ( 4 !
<
( 4 ! 2 I
;#
1 ! 2 & J (
<
K #2
@
@
@
@
@ + #
.
Wind Vane
/
# &
@ +
(@
E @
> &@ @
@
@ @
@ L@
@ #
4@
@
# (@
@ @
@ @
@ @
@ @
@4@
@(: !F
.
@
@
?
/
@
@4@
@
# !
.
4? !
M
?
M
!(
/
.
/
:# !
<
@
+ (@! @:# +FN
@
#5 ; @ + @ @4@
# ! @ +& 4# :# L #
<
@!
@ + @
#
@
@
@
@
@
.
Wind Vane
/
4# #2 L #
1 @ ! ! @ + + + ( ! O# + ; >
I
;# &
<
K?
%,
.
/
:
%,
.
126
/
!(; >
@
@
@
@
@ + #
.
Wind Vane
/
=
L# & J &
K@
# !!%
@ @
2 @ @
# @4@
# !4@ !
.
4E @
2
/
@
2
& # !
*
M
L # ! F
(*
8
#I % !
<
:
%,
.
127
/
.
Humidity/- Temperature sensors
=/
No. Name Height(m) Boom direction (deg) Note
1 Temp. /Hum. 9 0 from north -
; L:#
; 6 K# ( B 6 ! #2
.
UV
/
M
(:# #2
!
! !
% 8 W2
4 # !
.
! @
#5 #5 #2
% @ @
8 W@
2
# ! @ @ 4@ # !
;#
/
<
4 ! (E > &
! L #
4 ( !
4# P#: 2
@4# !
: @
&?
&? ;K#
<
@! @
+&@ @# P@
2 L@ # FN 4#> P# L:# #O +P#
#: ? *
<
K?
%,
.
/
:
%,
.
128
/
:
%,
.
129
/
.
Pyramometer sensor
=/
No. Name Height(m) Boom direction (deg) Note
1 Pyrano. 9 180 from north -
L:# F +
&? ;K# X& 2 # &
#
.
4000 W/m2
/
K@
# @
.
U@
Y
/
% 8
.
-40ºC / 80ºC
/
1 !
M
L #
#2
4 (: ! & +
M
@ % ! K#%
.
@
%
/
4# 9
<
4# ! (? 3 FN 4# ! &? ;K# X& 2 # 4# % Z +
<
:
%,
.
130
/
K?
%,
.
/
:
%,
.
131
/
:
%,
.
132
/
!
.
Air pressure sensor- barometer
=/
No. Name Height(m) Boom direction (deg) Note
1 pressure Cabinet No direction necessary -
# & L:# F +
& ! &? L & !
<
"# $# % %
.
Lighting rod
=/
No. Name Height(m) Boom direction (deg) Note
1 Lighting rod top 0 from MWD -
F +
(#%+
&
1 @ ! @ ! @
2 @
@ 5 @
; @ !
@4@
# 6 @ @ 5 @
(E K# #
<
K?
%,
.
/
:
%,
.
133
/
K?
%,
.
/
:
%,
.
134
/
& " ' ( "
.
Data logger
=/
No. Name Height(m) Boom direction (deg) Note
1 Data logger 4 m No direction necessary -
%& & (#%+F +
4 ! :2 #
4 ( !9[> (D; %
<
! %&
@
*5 B C%6@ @1 @ !
! @
% B C% @
<
@ #$%& @ @ @ @
35
1 &@ (#@ @ @
@
@
@
@
@
@
@
@
@
.
Serial port
/
4 ( ! 2 2 & ! : ? ! !
!
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
: 
M
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
% @
@
@
@
@
@
@
@
@
@ 8
.
-40ºC / +85ºC
/
1 @ !
M
L@ # B C% @
M
A#@
.
GSM
/
@
] L@
@
@
#% @
@
@ S @
@
@#+ #@
@
@
2 @
@
@ @
@
@ 3 @
@
@ ! @
@
@
.
E-mail / Text Messages
/
M
@
@
@ & #% @
@
@
.
1000KB
</
K?
%,
.
/
:
%,
.
135
/
)'
*
.
Satellite system
=/
P#
4 [
F&!&%
.
Satellite modem
/
4 [
:# +
.
Satellite antenna
/
<
4 [
F&!&%
.
Satellite modem
/
1
2 3
:
%,
.
136
/
4 [
:# +
.
Satellite antenna
/
& F&!&% &?
F&!&%
:
%,
.
137
/
:
%,
.
138
/
& F&!&% &?
.
PSTN
/
&E
<
4# :#+ & F&!&% &?
.
Internet
</
%, :
.
139
/
%, :
.
140
/
* +
,
.
Solar Panel
=/
No. Name Height(m) Boom direction (deg) Note
1 Panel 6.5 m S/180 -
F @
@
+
[&@
@ *@
@
@
@
:# F @
@ &@
@
&@
@ &@
@
? @
@ @
@
@
@ (#%+ !(;# @
@ @
@ %
4 ! 5
-
%, :
.
141
/
K?
%,
.
/
. '
% ! /
0
=
^K ( &? #
@! B@ + 5 @ @ L@ # @& 3 L@ @ &@ @ ( %
: @
2 @
1 ; 4 !4L # " 2& _
B 6 (#%+ ! >
3 !Q % +&
=
<
`3#5 2& 3
.
Fixed angle
</
0 ! P#5
! ! : 9 4 ( !4 ! >
<
& 3
?
:#
.
Rolling sphere
</
! ! : 9 1 !4 ! > 1 ! 5 N ? &
%, :
.
142
/
%, :
.
143
/
%, :
.
144
/
1 " 2 ( 0 " , 0 0 2 '
F
=
*
8#
.
Serial port
/
! #$%&
&
.
Data Logger
/
4 C !
<
F !
=
!
& &5 !(
.
COM4
/
M
(#? ! a *
%, :
.
145
/
%, :
.
146
/
3 !
4
" 0% "
-
-
-
-
%, :
.
147
/
3 5
4
0%" '
0
COM4
-
-
-
-
%, :
.
148
/
F b:#
=
4 (; ! !& ! &5 % !4L # & ! !( 4 c #
<<<<
F 2 2
=
& ! !( 4
<<<<
%, :
.
149
/
%, :
.
150
/
!( !
@! : @ !&@ 1 @
; ,
5 @
% + +&
@
@
@#;# @
@
@ @
@
@
(@
@
@ L@
@
@> @
@
@
+
!& 4#
$
% / 0
%, :
.
151
/
%, :
.
152
/
@
@
+ 4@
@(; 4#L@
@ 4@
@
#
( ! !F 5
()
*
Process of building Wind measuring mast
!(; !
" +" (;#
d
"
#8 > &
=270° N
M.W.D
!(; !
" ) !" +
d
"
mast direction=90° N
=270° N
M.W.D
%, :
.
153
/
%, :
.
154
/
e
Stay
! "
Stay
# $
%
#&
Stay
# $
e
e
'
( ) *
data logger
#
+ ,
%, :
.
155
/
%, :
.
156
/
'
solar panel
#
! " ! -. + ,
'
$ $ -$ ./ . 0 # 1 ! "
2- 34 + -&
5
+6 #
! -. 6 6
humidity
6 6
%, :
.
157
/
%, :
.
158
/
'
1 ! "
v3
#
$ $ -$ ./ .
$ 6
'
1 ! "
v2
#
$ $ -$ ./ .
6
$
%, :
.
159
/
%, :
.
160
/
'
1 ! "
v1
# 0 #
6 7 -. 8 " # + ,
. 79
$ 6
'
) +1 ! "
'
%, :
.
161
/
%, :
.
162
/
'
& /: / 6) +
; 6 < $=
! "
/
6 <
>
; ? 6 < / + @
$ A - # B C ? 3 )
3 A ,
(IRIDIUM 9522B)
/ , :%
#./+
D # E
6 , + + )
? 6 <
%, :
.
163
/
%, :
.
164
/
V % :
M
( 4 ( !
.
B #
<
( %
/
%, :
.
165
/
Wind measuring mast installation
!
"#
!
$
WIND ENERGY DETAILED FEASIBILITY STUDY FOR ERBIL, DOHUK AND
SULAYMANIA GOVERNORATES
Contract no. KRG – MOE / WFS – 01 / 2008
1
.:
No
(
Location
U
(#
Arbil
Region
B 2
F 5
R
,

1 ?
1st Mast; Tarjan -Khabat
Position name
!
R
R
:
Friday, 12. February 2010
Date of
installing:
: 2 E( 5 &
Geographic coordinates
(determined by GPS-device; WGS 84; hddd°mm'ss.s")
)8
#
ss.s"
mm'
hddd°
)
33,8''
07'
36°
N
Latitude
"a !
07,2''
44'
43°
E
Longitude
: 2 + (;#
Main wind direction at this place:
285° North
(rough estimate by satellite; only necessary for boom-direction)
& 5 +
G
Mast direction while assembling:
90° North
(belongs to the existend countryside)
276 m
! + : 2
Height of location above sea level
%, :
.
166
/
K?
%,
.
/
2
.:
No
(
Location
U
(#
Arbil
Region
B 2
F ! 5
R
; , 5

(f
2nd Mast; Jazhnikan-Bahrka
Position name
!
R
R
g 2 !
Monday, 15. February 2010
Date of
installing:
: 2 E( 5 &
Geographic coordinates
(determined by GPS-device; WGS 84; hddd°mm'ss.s")
)8
#
ss.s"
mm'
hddd°
)
23,5''
21'
36°
N
Latitude
"a !
20,2''
57'
043°
E
Longitude
: 2 + (;#
Main wind direction at this place:
75° North
(rough estimate by satellite; only necessary for boom-direction)
G & 5 +
Mast direction while assembling:
255° North
(belongs to the existend countryside)
430 m
! + : 2
Height of location above sea level
K?
%,
.
/
%, :
.
167
/
3
.:
No
(
Location
U
(#
Arbil
Region
B 2
F W 5
R


B hTi
3rd Mast; KANI KAWAN HANARA
Position name
!
R
R
g 2 >
Wednesday, 17. February 2010
Date of
installing:
: 2 E( 5 &
Geographic coordinates
(determined by GPS-device; WGS 84; hddd°mm'ss.s")
)8
#
ss.s"
mm'
hddd°
)
21,3''
15'
36°
N
Latitude
"a !
12,0''
16'
044°
E
Longitude
: 2 + (;#
Main wind direction at this place:
75° North
(rough estimate by satellite; only necessary for boom-direction)
G & 5 +
Mast direction while assembling:
300° North
(belongs to the existend countryside)
891 m
! + : 2
Height of location above sea level
K?
%,
.
/
%, :
.
168
/
4
.:
No
(
Location
U
(#
Arbil
Region
B 2
F > 5
R

(
4th Mast; Barazan-Harir
Position name
!
R
R
g 2 9
Sunday, 21. February 2010
Date of
installing:
: 2 E( 5 &
Geographic coordinates
(determined by GPS-device; WGS 84; hddd°mm'ss.s")
)8
#
ss.s"
mm'
hddd°
)
17,9''
34'
36°
N
Latitude
"a !
00,6''
18'
044°
E
Longitude
: 2 + (;#
Main wind direction at this place:
75° North
(rough estimate by satellite; only necessary for boom-direction)
G & 5 +
Mast direction while assembling:
290° North
(belongs to the existend countryside)
605 m
! + : 2
Height of location above sea level
%, :
.
169
/
K?
%,
.
/
5
.:
No
(
Location
U
(#
Arbil
Region
B 2
F b:# 5
R
W %

&
5th Mast; Mazne-Soran
Position name
!
R
R
g 2 >
Wednesday, 24. February 2010
Date of
installing:
: 2 E( 5 &
Geographic coordinates
(determined by GPS-device; WGS 84; hddd°mm'ss.s")
)8
#
ss.s"
mm'
hddd°
)
6,1''
43'
36°
N
Latitude
"a !
53,16''
28'
044°
E
Longitude
: 2 + (;#
Main wind direction at this place:
75° North
(rough estimate by satellite; only necessary for boom-direction)
G & 5 +
Mast direction while assembling:
255° North
(belongs to the existend countryside)
677 m
+ : 2
!
Height of location above sea level
K?
%,
.
/
%, :
.
170
/
6
:
.
o
N
(
$
Location
U
9& !
Dohuk
Region
B 2
F 2 2 5
R

&?
6th Mast; Barzor-Zakho
Position name
!
R
R
g 2 >
Wednesday, 3. March 2010
Date of
installing:
: 2 E( 5 &
Geographic coordinates
(determined by GPS-device; WGS 84; hddd°mm'ss.s")
)8
#
ss.s"
mm'
hddd°
)
18,3''
11'
37°
N
Latitude
"a !
42,8''
41'
042°
E
Longitude
: 2 + (;#
Main wind direction at this place:
60° North
(rough estimate by satellite; only necessary for boom-direction)
G & 5 +
Mast direction while assembling:
40° North
(belongs to the existend countryside)
509 m
! + : 2
Height of location above sea level
%, :
.
171
/
K?
%,
.
/
7
:
.
o
N
(
$
Location
U
9& !
Dohuk
Region
B 2
F f 5
R
& ;b:#+

S#
7th Mast; Enjkasor-Batel
Position name
!
R
R
g 2 ]:#
Thursday, 4. March 2010
Date of
installing:
: 2 E( 5 &
Geographic coordinates
(determined by GPS-device; WGS 84; hddd°mm'ss.s")
)8
#
ss.s"
mm'
hddd°
)
37,7''
03'
37°
N
Latitude
"a !
07,7''
26'
042°
E
Longitude
: 2 + (;#
Main wind direction at this place:
60° North
(rough estimate by satellite; only necessary for boom-direction)
G & 5 +
Mast direction while assembling:
320° North
(belongs to the existend countryside)
509 m
! + : 2
Height of location above sea
level
%, :
.
172
/
K?
%,
.
/
8
:
.
o
N
(
$
Location
U
9& !
Dohuk
Region
B 2
F 2 5
R
E

&?
8th Mast; Batufa-Zakho
Position name
!
R
R
g 2
Saturday, 6. March 2010
Date of
installing:
2 E( 5 &
:
Geographic coordinates
(determined by GPS-device; WGS 84; hddd°mm'ss.s")
)8
#
ss.s"
mm'
hddd°
)
35,9''
10'
37°
N
Latitude
"a !
25,7''
01'
043°
E
Longitude
: 2 + (;#
Main wind direction at this place:
60° North
(rough estimate by satellite; only necessary for boom-direction)
G & 5 +
Mast direction while assembling:
230° North
(belongs to the existend countryside)
947 m
! + : 2
Height of location above sea
level
%, :
.
173
/
K?
%,
.
/
9
:
.
o
N
(
$
Location
U
9& !
Dohuk
Region
B 2
F & 5
R
j5&

c #3 %
9th Mast; Hojava-Mangesh
Position name
!
R
R
g 2 !
Monday, 8. March 2010
Date of
installing:
: 2 E( 5 &
Geographic coordinates
(determined by GPS-device; WGS 84; hddd°mm'ss.s")
)8
#
ss.s"
mm'
hddd°
)
27,4''
00'
37°
N
Latitude
"a !
13,3''
02'
043°
E
Longitude
: 2 + (;#
Main wind direction at this place:
60° North
(rough estimate by satellite; only necessary for boom-direction)
G & 5 +
Mast direction while assembling:
250° North
(belongs to the existend countryside)
933 m
! + : 2
Height of location above sea
level
K?
%,
.
/
%, :
.
174
/
10
:
.
o
N
(
$
Location
U
9& !
Dohuk
Region
B 2
5
F !
$

S#Z
10th Mast; Kani spi-Semmel
Position name
!
R
R
g 2 >
Wednesday, 10. March 2010
Date of
installing:
: 2 E( 5 &
Geographic coordinates
(determined by GPS-device; WGS 84; hddd°mm'ss.s")
)8
#
ss.s"
mm'
hddd°
)
20,0''
53'
36°
N
Latitude
"a !
54,2''
50'
042°
E
Longitude
: 2 + (;#
Main wind direction at this place:
60° North
(rough estimate by satellite; only necessary for boom-direction)
G & 5 +
Mast direction while assembling:
225° North
(belongs to the existend countryside)
304 m
! + : 2
Height of location above sea
level
%, :
.
175
/
K?
%,
.
/
11
:
.
o
N
(
"#
Location
U
#8
Sulaymanyah
Region
B 2
6 5
k %

% O% >
11th Mast; Ban maqan-Chamchamal
Position name
!
R
R
g 2 9
Sunday, 14. March 2010
Date of
installing:
: 2 E( 5 &
Geographic coordinates
(determined by GPS-device; WGS 84; hddd°mm'ss.s")
)8
#
ss.s"
mm'
hddd°
)
11,6''
31'
35°
N
Latitude
"a !
25,5''
47'
044°
E
Longitude
+ (;#
: 2
Main wind direction at this place:
270° North
(rough estimate by satellite; only necessary for boom-direction)
G & 5 +
Mast direction while assembling:
90° North
(belongs to the existend countryside)
887 m
: 2
! +
Height of location above sea level
K?
%,
.
/
%, :
.
176
/
12
:
.
o
N
(
"#
Location
U
#8
Sulaymanyah
Region
B 2
5
6 !
& 2

!
12th Mast; Shabaki kon-Dukan
Position name
!
R
R
W
g 2
Tuesday, 16. March 2010
Date of
installing:
: 2 E( 5 &
Geographic coordinates
(determined by GPS-device; WGS 84; hddd°mm'ss.s")
)8
#
ss.s"
mm'
hddd°
)
13,2''
57'
35°
N
Latitude
"a !
32,4''
56'
044°
E
Longitude
: 2 + (;#
Main wind direction at this place:
270° North
(rough estimate by satellite; only necessary for boom-direction)
5 +
G &
Mast direction while assembling:
90° North
(belongs to the existend countryside)
602 m
! + : 2
Height of location above sea level
K?
%,
.
/
%, :
.
177
/
13
:
.
o
N
(
"#
Location
U
#8
Sulaymanyah
Region
B 2
5
6 #
# +

k >
13th Mast; Aliawa-Chwar Qurna
Position name
!
R
R
]:#
g 2
Thursday, 18. March 2010
Date of
installing:
: 2 E( 5 &
Geographic coordinates
(determined by GPS-device; WGS 84; hddd°mm'ss.s")
)8
#
ss.s"
mm'
hddd°
)
36,1''
11'
36°
N
Latitude
"a !
27,5''
48'
044°
E
Longitude
: 2 + (;#
Main wind direction at this place:
270° North
(rough estimate by satellite; only necessary for boom-direction)
G & 5 +
Mast direction while assembling:
90° North
(belongs to the existend countryside)
535 m
! + : 2
Height of location above sea level
K?
%,
.
/
%, :
.
178
/
14
:
.
o
N
(
"#
Location
U
#8
Sulaymanyah
Region
B 2
5
! >
& [

[
14th Mast; Kalari kon-Kalar
Position name
!
R
R
g 2
Saturday, 20. March 2010
Date of
installing:
: 2 E( 5 &
Geographic coordinates
(determined by GPS-device; WGS 84; hddd°mm'ss.s")
)8
#
ss.s"
mm'
hddd°
)
17,5''
39'
34°
N
Latitude
"a !
7,6''
18'
045°
E
Longitude
: 2 + (;#
Main wind direction at this place:
270° North
(rough estimate by satellite; only necessary for boom-direction)
G & 5 +
Mast direction while assembling:
90° North
(belongs to the existend countryside)
254 m
! + : 2
Height of location above sea level
K?
%,
.
/
%, :
.
179
/
15
:
.
o
N
(
"#
Location
U
#8
Sulaymanyah
Region
B 2
5
6
l#% !(

m!i #
15th Mast; Kalari kon-Kalar
Position name
!
R
R
g 2 !
Monday, 22. March 2010
Date of
installing:
: 2 E( 5 &
Geographic coordinates
(determined by GPS-device; WGS 84; hddd°mm'ss.s")
)8
#
ss.s"
mm'
hddd°
)
46,1''
19'
35°
N
Latitude
"a !
43,9''
51'
045°
E
Longitude
: 2 + (;#
Main wind direction at this place:
270° North
(rough estimate by satellite; only necessary for boom-direction)
G & 5 +
Mast direction while assembling:
90° North
(belongs to the existend countryside)
509 m
! + : 2
Height of location above sea level
K?
%,
.
/
%, :
.
80
1
/
! "
"
#
$ % &' ( ) * + $ , ) -
+.
+ %
(Fossil)
(Renewable)
/ 0 +12 , " 3+$ ,
)
&
* 4 ( "
"5 *
3 0 )
*
" 6+( - (
7
)
5 8 9 &
: ) ;
<+ 5 =+& )1
>
?
-
-
-
-
>
>
>
>
6+( - ( "
, +61
* <+ ( ) * <+
" 4 & ()
*
+
++ * 3 @ <+ (
)
<+
A
- *
- *
- *
- *
>
>
>
>
, * - ! <+ 3 8 36@ B* " 6+( - ( 3 0
C +
&' ") ( ) *
A
-
-
-
-
>
>
>
>
0 +
D * )
"
8 +
& +6
6
) * 3 0
A
)
* E ; -
*
D+ ) )
* " $
"
F & & ) + " ; " ( F D2 " $*
#
: !
3 0 8 / )
* < D
A
" .
5 )
* E ;- -
( " @B
" $ " 3 ( D+ B
< *
& ) "
G % * )
* B ( " ) & ) " )
@B -
&
!
) !
)
5 ! F & " * " ) ! F H &
)I+ " D
7 F)
* * 5
$ " ) F ) 3 ( )
6+ H 5 < * " 3+
D
' "@B5)* " 6 ) 36@ 6 )
&
F B
* & )
* & ()
*
<+ *
A
-
& +
"J3 I 0 + K ( " & ) "
% * )
* ( 8& ! (
F * )
* * " "
A
5 ) )
*
B ( & )
K ( " & )
*
" )
)
% -
) + * L * D+
" 3+$ +
0 +
*
* &)
) - $ J3 I! + 5
)
& F D *
)& +
8 D )
* ))
5 !
8 M
A
( L+ ) *
( L+ ) *
( L+ ) *
( L+ ) *
>
>
>
>
N
)
O * * "
#
"
I6+&
1+
< *5+! *
"
A
-
" I
3 0 )
* )
- ( ( ) * 4 ( B5 5 & )
< 6+( *
A
@
3 0 "
)&
MW
#
& " $
* " 3+$
*
P
B (
4+.
*
#
O *
P
B (
4+.
*
O
#
Q I
@
5
#
< * ) * 4 ( " 6+( - ( 6 65 )
5 ")* @B
< *
< * $ +$ " ; * " B ( " @B
A
* " @B
! " 5
6+( - ( " )& < *)
*
#
" * " 3 5 @B ( " F) 3+
" < * * -: R " D
#
" )
* &
#
&) ) S+ &
J! + "* * + ))
<
Run-Of-River
#
" 5 )
++ T+& 3+ " 3 36@
A
* 4 ( & D2 " 36@ & ) G , & )
5
, @B * & - )* " ) 5
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
/
#
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
1
U
U
U
U
U
U
U
U
U
U
U
U
U
V A
W
U U 6+X U
( U YLU5 )
* U 0U + U* 4 U
( Z$ U RU
+& ")
5
#
U " " U U* U F)5U U)
5 &G
" U* U)
* U <U 3
4 U
( " U 6+( U * D$ U U )U U 6+ IU
+ & U
()
* 'U U U "
" " U
3 5 U U " 6+X U
( 7 F D & B *
U
#
RU
+& $ U U !
<+ (
"
36@
< J3 ,
8 U U
36@ [U
+& U ( " $ 36@ C + D
F U
U * U
U !/U
U  U
U U
U
6& DIU
U
+ " U
U U
U ! ( U
U
(
U
U* 4 U
U
(
U
U)
B <+ * * " ) )5 " + &' (
+ *
A
U
U U
U " U
U8& U
U
! * U
U U
U U
U
6+( - U
U
(
1 U
U
( " U
U ( ")
5 U
U U
U
+ D+ U
U U
U*
0U
U
+ & <+ U
U U
U &
)& U
U
<U
UJ3 U
U " U
U* U
U )
U
U U
U U
U  U
U 8 /3 U
U
!
* * U
U
* " ")* $ " )* [ &
U* 4 U
( & U D2 G <0 + " $* * )
* ")
" 6
@
181
#
] B !) " + = ^ ! @B5 !
+
U
: ! 6 U U* IU
+ <U * U)* U ) )
H4
" " & )
* K (
A
)* $ " )* @B5
U U " U U U
6+( - U
(
4 U
( U !H U (
*
(* 4+. + (
#
* I+ < * 
#
U : ! 6 _6+
U
!H U (
U U U - F & " + " ( 6 - + ) " *
U
$ U
J3+U
$ U "
- U ( U
( 6 U - U U " U
6+( - U
( & U
% * U
6+ ) + ) - 8& ! * < *
" " & ()
* *  + <+ * "* @B5
* 4 (
A
^ ! & (
@B5
U )* U
$ " U)* "
U U U
6+( - U
(
U "
U
4 U
( & U D2 0U
+
0U
U + U
U*
U
U @B 1; U
U
<U
U
+
U
U
6+( - U
U
( U
U
"
U
U
& U
U " U
U) " U
U
3 5 U
U U
U
" U
U) " + U
U U
U U
U
1 - $ U
U
U
U
#
8U
U
, U
U @B5 - U
U
U
U
6 & IU
U + U
U
" U
U "@
U
$ - U 6+( U ) U ++&' ( &) ) & " +61
* " 0 +  +& D2 F ( <+ & DI+
U
U
U + U
U
U D+ : U
U
U U
U
U 3 5
A
8U
U
U * U
U
U
36@ " 6U
U
U U
U
U &' U
U
U
+&' ( )U
U
U : U
U
U
U
U
U
' + * +& +
&
A
`
sarbast_engineer@yahoo.com
!
"
& <+ ( ) & ) (
< D ) <I! 6+1D+
< D
0 ) " * )
*
)
*
6+()
5a )
* ) 0 ) " % *
" * < D
-* 0 ) F'
<+ )
A
!
"
6+1D+ * * + < D ) L+
" " 3+$ &
< 3
A
#$
!
"
6+1D+ (
"5 =+& ) +
< D I!
& < D + " B "@)
J&
< 6+X
8 * + ) - $
A
`
com
.
yahoo
@
engineer
_
sarbast
:
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
Kg SKE
Kcal
KJ
KWH
Unit
1
KWh
1
KJ
1
Kcal
1 Kg
SKE
SKE
#
8 * " 1 " +
A
103
Kilo
K
106
Mega
M
109
Giga
G
1012
Tera
T
1015
Petra
P
1018
Exa
E
Q I
@
6
#
A)) http://en.wikipedia.org/wiki/Wind_power
B)) http://guidedtour.windpower.org
! " # $ %" & '
(! ) *
+
,
%
- +*
%
. % % % / (
0"
" $
1 ) " # ) 2
3%.
# ""
+4
5
6
"$(7 " " 7- 7 "
8
%
9/
%
: ;
" %" ! < 2( = > ? @ '
A 9' #
B 7 7 3%C
D
! "
#
Contain B5
NO. Subject Page 5 G F @
Directed to II II DI+
2 Thanks III III )
H+ ] 2
3 Preface IV IV " &
#
* 3
4 KRG U
U
U
U Logo V V " !
* 4 ( & D2 4
5 About R.E – Editor VI-X VI-X [+= *
-
* 5
6 Introduction 1 1 U
U
U
U
U I+ 6
Renewable Energy 3 3 U
U
U
U
U
U
U
U
U U
U
U
U U
U
U
Kurdistan and Obstacle for generation
and source of energy.
U
U
U
U
U
U
U
U
U* U
U
U
U
U
U
U
U
U
U
6+( - ( " I+
" U
U
U
U
U U
U
U
U
U
U "
A
Wind History U
U
U
U
U
U
U
U
U
U
U
U
U
U " 6+( " L+
) X
+$ &'
Cost
23 23
" R+& )+
"
" 6+( - (
Atmospheric 24 24 6 , " & X
D+
Roughness 31 31 " ( " 5
Obstacle of wind 33 33 3 5
Suitable location for wind 33 33 : ! 6
"
Definition of wind 34 34 U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U U
U
U
U
U
U
U U
U
U
U
U
U
U 6+
Lift & Drag Forces 42 42 I+ )
5"H+( * "H+(
Airfoil in stall 44 44 ) ) ^ " * *
Pitch Control vs. Stall Control 45 45 ^ c+ 1
B/
Rotor Solidity 46 46 G " 5 +1
Tip Speed Ratio 47 47 )+ " L 5
How Does a Wind Turbine Work 48 48 F * ) ( 6+ 5 &
Turbines can be categorized into
two overarching classes based on
the orientation of the rotor
58 58
" & + ) ( 6+ 5 & * D6+
" G
Rotor
#
U
U
U
U
U
U
U
U
U
U
U
$ * U
U
U
U
U
U
Types of Wind Power 60 60 ) ( 6+ 5 & $
Off-shore Wind power 68 68 6+ 5 &
)
* * ) (
Cost comparison Onshore and
Offshore 69 69
") ( 6+ 5 & )+ " R+& " ) +$
D
Onshore
#
*
Offshore
#
Number of Blades – One 70 70 ) ") ( 6+ 5 &
Number of Blades – Two 71 71 5 &
) * ") ( 6+
Number of Blades – Three 72 72 ) ") ( 6+ 5 &
Sizes and Applications 73 73 6+( ;
Wind Power Advantages 74 74 U
U
U
U
U
U
U
U
U " U
U
U
U * U
U
U
U
U
U
Disadvantage of wind energy 75 75 U
U
U
U
U
U
U
U " U
U
U
U
Sound & Noise from Wind
Turbines
76 76
U
U
U
U
U
U
U
U 6+ & " )
@ )
@ d *
Effect of Wind Turbines on Radar
77 77
" )
*)
5 U
U
U
U
U
U
U
U 6+ & " 3
B5%
Wind energy and Renewable
energy in the world 78 78
" X
+$ &' 3 !
%Costs of a Wind Turbine
85 85
" 5 U
U
U
U U
U
U
U
U
U
U
U
U
U
U " R+&
" U
U
U
U
U
U
U
U
U
Manufacturing Market Share
86 86
& * D * $
) ( 6+ 5
D $
Process of building Wind Power 89 89 6 ) ( 6+ 5 & )
*
Installation Mast of measurement of
wind in Kurdistan Region 91 91
U
U
U
U
U
U
U
U
U
$ -
U
U
U
U
U
U
U
U
U
*
Z )
* )
*
)* $ Q )* $
U
U
U
U
U
U
U
U
U
U Q
!H
V
+ U
U
U
U
(
e
4+.
U
U
U
U
e
U
U
U
U
U
(*
W
Equipments of mast 93 93 Q )* $ Q )* $ +
Reading and download data from data
logger to the PC 109 109
! &)
* " &)
* " 6
) )
*
& +=
Process of building Wind measuring
mast 114 114 $ )
*
6 " &)
* )+
WIND ENERGY DETAILED
FEASIBILITY STUDY FOR ERBIL,
DOHUK AND SULAYMANIA
GOVERNORATES
Contract no. KRG – MOE / WFS – 01 /
2008
$
U
U
U
U
U
U
U
U
U
U Q )* $ Q )*
!H
V
+ (
(* 4+.
W
43 Conclusion 136 136 -:
A 43
44 Suggestion 139 139 +6I+
. 44
45 Symbols and scales of energy 139 139 X
+$ + + 4+(
A 45
References & Sources 140 140 A
Contain 141 141 < 5+
A
48 Brief history about editor: 143 143 *
)D 5 *
: 48
:
! " !
! " !
! " !
! " !
#$%
#$%
#$%
#$%
&&
&&
&&
&&
!
!
!
!
' ()
' ()
' ()
' ()
&&
&&
&&
&&
! " !
! " !
! " !
! " !
*
*
*
*
–
+ !
+ !
+ !
+ !
, "-" ./
, "-" ./
, "-" ./
, "-" ./
E-mail Address: sarbast_engineer@yahoo.com
sarbastara@gmail.com
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
-)
I+ )fD 5-
)
* +
>
##
* U
U
U ) ) +
4+. g
" L+
?
?
#
#
U
U
U
U
U* a !" 6+$ * D+ X
+$ 6+= )
* Q +
?
?
##
$ Z ) * Q 1
D
?
h)+i
(JICA Alumni Association – IRAQ (JAAI))
& 1 * + 3 ( ( 0 )
@
D $
#
(JICA-Japan International cooperation Agency)
" L+
?
?
*)E " " !
&' & %
A
" .
" *
j * 4 ( " ) =+
A
&
Kurdistan Regional Government-Iraq
Ministry of Electricity
General Directorate of Electricity of Suleimany
Directorate of Technical
Hydropower & Renewable Energy
Renewable
Energy
Wind Energy
Prepared & Designed by:
Engineer: Sarbast F. Muhammed

More Related Content

Similar to وزە نوێبوەکان (وزەی با)

Optimisation tnc1
Optimisation tnc1Optimisation tnc1
Optimisation tnc1bdsea89
 
Arduino the Object Way.pdf
Arduino the Object Way.pdfArduino the Object Way.pdf
Arduino the Object Way.pdfkayuncha
 
Using Social Media to Enhance Civic Participation: Executive Summary and Guid...
Using Social Media to Enhance Civic Participation: Executive Summary and Guid...Using Social Media to Enhance Civic Participation: Executive Summary and Guid...
Using Social Media to Enhance Civic Participation: Executive Summary and Guid...Yasmin Fodil
 
Direitos Fundamentais na Prestação da Segurança Pública
Direitos Fundamentais na Prestação da Segurança PúblicaDireitos Fundamentais na Prestação da Segurança Pública
Direitos Fundamentais na Prestação da Segurança PúblicaAllan Almeida de Araújo
 
DIREITOS FUNDAMENTAIS NA PRESTAÇÃO SEGURANÇA PÚBLICA
	DIREITOS FUNDAMENTAIS NA PRESTAÇÃO SEGURANÇA PÚBLICA	DIREITOS FUNDAMENTAIS NA PRESTAÇÃO SEGURANÇA PÚBLICA
DIREITOS FUNDAMENTAIS NA PRESTAÇÃO SEGURANÇA PÚBLICAAllan Almeida de Araújo
 
Seminario Eugenio Molini -Eutokia- El arte de pensar decidir y trabajar junto...
Seminario Eugenio Molini -Eutokia- El arte de pensar decidir y trabajar junto...Seminario Eugenio Molini -Eutokia- El arte de pensar decidir y trabajar junto...
Seminario Eugenio Molini -Eutokia- El arte de pensar decidir y trabajar junto...eutokia
 
HABITAT : les grands courants de création de l'habitat
HABITAT : les grands courants de création de l'habitatHABITAT : les grands courants de création de l'habitat
HABITAT : les grands courants de création de l'habitatAltice Media Publicité
 
What Is Social Media
What Is Social MediaWhat Is Social Media
What Is Social MediaHAL
 
Biblical_Archaeology_Second_Edition_An_I.pdf
Biblical_Archaeology_Second_Edition_An_I.pdfBiblical_Archaeology_Second_Edition_An_I.pdf
Biblical_Archaeology_Second_Edition_An_I.pdfjostos
 
Interview with Ryan Kalil and Dwayne Jarrett
Interview with Ryan Kalil and Dwayne Jarrett Interview with Ryan Kalil and Dwayne Jarrett
Interview with Ryan Kalil and Dwayne Jarrett Natalie Hills
 
06_Algebre_final.pdf
06_Algebre_final.pdf06_Algebre_final.pdf
06_Algebre_final.pdfTaher51
 
MAP TERM PAPER - MOTOROLA 68040
MAP TERM PAPER - MOTOROLA 68040MAP TERM PAPER - MOTOROLA 68040
MAP TERM PAPER - MOTOROLA 68040Poojan Jhaveri
 
Report of the Export Group on the methodology for the people below the povert...
Report of the Export Group on the methodology for the people below the povert...Report of the Export Group on the methodology for the people below the povert...
Report of the Export Group on the methodology for the people below the povert...People's Archive of Rural India
 

Similar to وزە نوێبوەکان (وزەی با) (20)

Optimisation tnc1
Optimisation tnc1Optimisation tnc1
Optimisation tnc1
 
Arduino the Object Way.pdf
Arduino the Object Way.pdfArduino the Object Way.pdf
Arduino the Object Way.pdf
 
Informe skoool
Informe skooolInforme skoool
Informe skoool
 
Using Social Media to Enhance Civic Participation: Executive Summary and Guid...
Using Social Media to Enhance Civic Participation: Executive Summary and Guid...Using Social Media to Enhance Civic Participation: Executive Summary and Guid...
Using Social Media to Enhance Civic Participation: Executive Summary and Guid...
 
Direitos Fundamentais na Prestação da Segurança Pública
Direitos Fundamentais na Prestação da Segurança PúblicaDireitos Fundamentais na Prestação da Segurança Pública
Direitos Fundamentais na Prestação da Segurança Pública
 
DIREITOS FUNDAMENTAIS NA PRESTAÇÃO SEGURANÇA PÚBLICA
	DIREITOS FUNDAMENTAIS NA PRESTAÇÃO SEGURANÇA PÚBLICA	DIREITOS FUNDAMENTAIS NA PRESTAÇÃO SEGURANÇA PÚBLICA
DIREITOS FUNDAMENTAIS NA PRESTAÇÃO SEGURANÇA PÚBLICA
 
On off-4
On off-4On off-4
On off-4
 
Seminario Eugenio Molini -Eutokia- El arte de pensar decidir y trabajar junto...
Seminario Eugenio Molini -Eutokia- El arte de pensar decidir y trabajar junto...Seminario Eugenio Molini -Eutokia- El arte de pensar decidir y trabajar junto...
Seminario Eugenio Molini -Eutokia- El arte de pensar decidir y trabajar junto...
 
HABITAT : les grands courants de création de l'habitat
HABITAT : les grands courants de création de l'habitatHABITAT : les grands courants de création de l'habitat
HABITAT : les grands courants de création de l'habitat
 
ESWC 2009 Lightning Talks
ESWC 2009 Lightning TalksESWC 2009 Lightning Talks
ESWC 2009 Lightning Talks
 
What Is Social Media
What Is Social MediaWhat Is Social Media
What Is Social Media
 
Que es la ingenieria
Que es la ingenieriaQue es la ingenieria
Que es la ingenieria
 
Biblical_Archaeology_Second_Edition_An_I.pdf
Biblical_Archaeology_Second_Edition_An_I.pdfBiblical_Archaeology_Second_Edition_An_I.pdf
Biblical_Archaeology_Second_Edition_An_I.pdf
 
FPC Seven to Save 2009
FPC Seven to Save 2009FPC Seven to Save 2009
FPC Seven to Save 2009
 
Interview with Ryan Kalil and Dwayne Jarrett
Interview with Ryan Kalil and Dwayne Jarrett Interview with Ryan Kalil and Dwayne Jarrett
Interview with Ryan Kalil and Dwayne Jarrett
 
Panthers
Panthers Panthers
Panthers
 
Panthers
Panthers Panthers
Panthers
 
06_Algebre_final.pdf
06_Algebre_final.pdf06_Algebre_final.pdf
06_Algebre_final.pdf
 
MAP TERM PAPER - MOTOROLA 68040
MAP TERM PAPER - MOTOROLA 68040MAP TERM PAPER - MOTOROLA 68040
MAP TERM PAPER - MOTOROLA 68040
 
Report of the Export Group on the methodology for the people below the povert...
Report of the Export Group on the methodology for the people below the povert...Report of the Export Group on the methodology for the people below the povert...
Report of the Export Group on the methodology for the people below the povert...
 

More from Bahzad5

دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratory
دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratoryدليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratory
دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide LaboratoryBahzad5
 
2013 (Total Station & Civil 3D) فێرکاری
2013  (Total Station & Civil 3D) فێرکاری2013  (Total Station & Civil 3D) فێرکاری
2013 (Total Station & Civil 3D) فێرکاریBahzad5
 
Engineering field knowledge -زانیاری بواری ئەندازیاری
Engineering field knowledge -زانیاری بواری ئەندازیاریEngineering field knowledge -زانیاری بواری ئەندازیاری
Engineering field knowledge -زانیاری بواری ئەندازیاریBahzad5
 
(atmosphere correction) زانیاری دەربارەی
(atmosphere correction) زانیاری دەربارەی(atmosphere correction) زانیاری دەربارەی
(atmosphere correction) زانیاری دەربارەیBahzad5
 
(Building Permit Guidelines ) ڕێنماییەکانی مۆڵەتی بینا
(Building Permit Guidelines ) ڕێنماییەکانی مۆڵەتی بینا(Building Permit Guidelines ) ڕێنماییەکانی مۆڵەتی بینا
(Building Permit Guidelines ) ڕێنماییەکانی مۆڵەتی بیناBahzad5
 
المبادئ التوجيهية البلدية - ڕێنامەی شارەوانی (Municipal guidelines)
المبادئ التوجيهية البلدية - ڕێنامەی شارەوانی  (Municipal guidelines)المبادئ التوجيهية البلدية - ڕێنامەی شارەوانی  (Municipal guidelines)
المبادئ التوجيهية البلدية - ڕێنامەی شارەوانی (Municipal guidelines)Bahzad5
 
CONDITIONS OF CONTRACT FOR WORKS OF CIVIL ENGINEERING CONSTRUCTION
CONDITIONS OF CONTRACT  FOR WORKS OF CIVIL  ENGINEERING CONSTRUCTIONCONDITIONS OF CONTRACT  FOR WORKS OF CIVIL  ENGINEERING CONSTRUCTION
CONDITIONS OF CONTRACT FOR WORKS OF CIVIL ENGINEERING CONSTRUCTIONBahzad5
 
Lecture 1: Basics of trigonometry (surveying)
Lecture 1: Basics of trigonometry (surveying)Lecture 1: Basics of trigonometry (surveying)
Lecture 1: Basics of trigonometry (surveying)Bahzad5
 
الشروط العامة لمقاولات اعمال الهندسة المدنية
الشروط العامة لمقاولات اعمال الهندسة المدنيةالشروط العامة لمقاولات اعمال الهندسة المدنية
الشروط العامة لمقاولات اعمال الهندسة المدنيةBahzad5
 
GENERAL CONDITIONS FOR CONTRACTS OF CIVIL ENGINEERING WORKS
GENERAL CONDITIONS  FOR  CONTRACTS OF CIVIL ENGINEERING WORKS GENERAL CONDITIONS  FOR  CONTRACTS OF CIVIL ENGINEERING WORKS
GENERAL CONDITIONS FOR CONTRACTS OF CIVIL ENGINEERING WORKS Bahzad5
 
2 سەرەتاکانی دیزاین
2 سەرەتاکانی دیزاین2 سەرەتاکانی دیزاین
2 سەرەتاکانی دیزاینBahzad5
 
Soil Mechanics (Problems & solutions)
Soil Mechanics (Problems & solutions)Soil Mechanics (Problems & solutions)
Soil Mechanics (Problems & solutions)Bahzad5
 
ڕێبەری بەشە ئەندازیارییەکان
ڕێبەری بەشە ئەندازیارییەکانڕێبەری بەشە ئەندازیارییەکان
ڕێبەری بەشە ئەندازیارییەکانBahzad5
 
سەرەتاکانی دیزاین
سەرەتاکانی دیزاینسەرەتاکانی دیزاین
سەرەتاکانی دیزاینBahzad5
 
ڕێبەری بەشەئەندازیارییەكانی زانكۆی كۆیە
ڕێبەری بەشەئەندازیارییەكانی زانكۆی كۆیەڕێبەری بەشەئەندازیارییەكانی زانكۆی كۆیە
ڕێبەری بەشەئەندازیارییەكانی زانكۆی كۆیەBahzad5
 
پرۆژەی ناساندنی ئەندازیاری
پرۆژەی ناساندنی ئەندازیاریپرۆژەی ناساندنی ئەندازیاری
پرۆژەی ناساندنی ئەندازیاریBahzad5
 
بناغە و بنەپایە Footing and Foundation
بناغە و بنەپایە Footing and Foundationبناغە و بنەپایە Footing and Foundation
بناغە و بنەپایە Footing and FoundationBahzad5
 
slump test سڵەمپ تێست
slump test سڵەمپ تێستslump test سڵەمپ تێست
slump test سڵەمپ تێستBahzad5
 
Design of Storm Sewer System
Design of Storm Sewer SystemDesign of Storm Sewer System
Design of Storm Sewer SystemBahzad5
 
ڕۆنی بزوێنەر
ڕۆنی بزوێنەرڕۆنی بزوێنەر
ڕۆنی بزوێنەرBahzad5
 

More from Bahzad5 (20)

دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratory
دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratoryدليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratory
دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratory
 
2013 (Total Station & Civil 3D) فێرکاری
2013  (Total Station & Civil 3D) فێرکاری2013  (Total Station & Civil 3D) فێرکاری
2013 (Total Station & Civil 3D) فێرکاری
 
Engineering field knowledge -زانیاری بواری ئەندازیاری
Engineering field knowledge -زانیاری بواری ئەندازیاریEngineering field knowledge -زانیاری بواری ئەندازیاری
Engineering field knowledge -زانیاری بواری ئەندازیاری
 
(atmosphere correction) زانیاری دەربارەی
(atmosphere correction) زانیاری دەربارەی(atmosphere correction) زانیاری دەربارەی
(atmosphere correction) زانیاری دەربارەی
 
(Building Permit Guidelines ) ڕێنماییەکانی مۆڵەتی بینا
(Building Permit Guidelines ) ڕێنماییەکانی مۆڵەتی بینا(Building Permit Guidelines ) ڕێنماییەکانی مۆڵەتی بینا
(Building Permit Guidelines ) ڕێنماییەکانی مۆڵەتی بینا
 
المبادئ التوجيهية البلدية - ڕێنامەی شارەوانی (Municipal guidelines)
المبادئ التوجيهية البلدية - ڕێنامەی شارەوانی  (Municipal guidelines)المبادئ التوجيهية البلدية - ڕێنامەی شارەوانی  (Municipal guidelines)
المبادئ التوجيهية البلدية - ڕێنامەی شارەوانی (Municipal guidelines)
 
CONDITIONS OF CONTRACT FOR WORKS OF CIVIL ENGINEERING CONSTRUCTION
CONDITIONS OF CONTRACT  FOR WORKS OF CIVIL  ENGINEERING CONSTRUCTIONCONDITIONS OF CONTRACT  FOR WORKS OF CIVIL  ENGINEERING CONSTRUCTION
CONDITIONS OF CONTRACT FOR WORKS OF CIVIL ENGINEERING CONSTRUCTION
 
Lecture 1: Basics of trigonometry (surveying)
Lecture 1: Basics of trigonometry (surveying)Lecture 1: Basics of trigonometry (surveying)
Lecture 1: Basics of trigonometry (surveying)
 
الشروط العامة لمقاولات اعمال الهندسة المدنية
الشروط العامة لمقاولات اعمال الهندسة المدنيةالشروط العامة لمقاولات اعمال الهندسة المدنية
الشروط العامة لمقاولات اعمال الهندسة المدنية
 
GENERAL CONDITIONS FOR CONTRACTS OF CIVIL ENGINEERING WORKS
GENERAL CONDITIONS  FOR  CONTRACTS OF CIVIL ENGINEERING WORKS GENERAL CONDITIONS  FOR  CONTRACTS OF CIVIL ENGINEERING WORKS
GENERAL CONDITIONS FOR CONTRACTS OF CIVIL ENGINEERING WORKS
 
2 سەرەتاکانی دیزاین
2 سەرەتاکانی دیزاین2 سەرەتاکانی دیزاین
2 سەرەتاکانی دیزاین
 
Soil Mechanics (Problems & solutions)
Soil Mechanics (Problems & solutions)Soil Mechanics (Problems & solutions)
Soil Mechanics (Problems & solutions)
 
ڕێبەری بەشە ئەندازیارییەکان
ڕێبەری بەشە ئەندازیارییەکانڕێبەری بەشە ئەندازیارییەکان
ڕێبەری بەشە ئەندازیارییەکان
 
سەرەتاکانی دیزاین
سەرەتاکانی دیزاینسەرەتاکانی دیزاین
سەرەتاکانی دیزاین
 
ڕێبەری بەشەئەندازیارییەكانی زانكۆی كۆیە
ڕێبەری بەشەئەندازیارییەكانی زانكۆی كۆیەڕێبەری بەشەئەندازیارییەكانی زانكۆی كۆیە
ڕێبەری بەشەئەندازیارییەكانی زانكۆی كۆیە
 
پرۆژەی ناساندنی ئەندازیاری
پرۆژەی ناساندنی ئەندازیاریپرۆژەی ناساندنی ئەندازیاری
پرۆژەی ناساندنی ئەندازیاری
 
بناغە و بنەپایە Footing and Foundation
بناغە و بنەپایە Footing and Foundationبناغە و بنەپایە Footing and Foundation
بناغە و بنەپایە Footing and Foundation
 
slump test سڵەمپ تێست
slump test سڵەمپ تێستslump test سڵەمپ تێست
slump test سڵەمپ تێست
 
Design of Storm Sewer System
Design of Storm Sewer SystemDesign of Storm Sewer System
Design of Storm Sewer System
 
ڕۆنی بزوێنەر
ڕۆنی بزوێنەرڕۆنی بزوێنەر
ڕۆنی بزوێنەر
 

Recently uploaded

APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 

Recently uploaded (20)

APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 

وزە نوێبوەکان (وزەی با)

  • 1. !
  • 2. I
  • 4. ! " # $# % & & & & ' ' ' ' %%%%%%%%%%%%%%%%%%%%%%%% %%% ++++++++++++ ! " # $ % & ' ( ) * + , $ " * - * ...............////////////............... ............... ...............//////////// !"# $ %"& ' ' ((((((((((((( ) " * $ & " + , -%" , - . ( ( ( ( ( ( III
  • 5. ! " # $ " % & ' " " ( ) * # + " ', ! - . $ / 0 1 ' $ 2 2 1 # ( * + 3 4 " / ". "45/ ' 6 7 1 / 8 3 + * 3 9$ "% * " $8 3 * - : Hydropower ; : Wind Energy ; "<& : Solar ; = >? + @ 0 " A* ? * 3 * 2 "< / "4 * . 1 # " # B' ? "% * " <C D82$" 0 " 1E 8 0 F G 0 (% " & # H * " / I 0"A / " : J * " % K * ; " 6 + "L "4 * 7 ? 1 M 2 $8 3 * "% * " 1 /8 $ 3 ' 6 * # " A* ? * " L - $ # # 3< ( " * + "A / " < H 3/ $8 3 * "L G 0 " % K 0( $ 6 6 " H 3/ - / $ + J A4< 4" H . $ 3 N A 2$ * ? * / 0 E $ ?3 ?I 1 + ? 1 1 #. $ 3 . $ ? 1" &F4$ <C < + 3 3 * ? 1 . / " A AA O 7 1 < ? 01" ? + 1 " % K 17 P 5 P 2011 IV
  • 6. Kurdistan Regional Government Iraq Ministry of Electricity V
  • 7. VI Energy History and Forecast ! " # $ % " & ' % " (" ) *" +"&, - +"&, Fossil ' . / " . ! 0 ' 1 ' 2 3 1 ' (3 4 5 6 '. % " ! 7 8 / " & '&3 "9' 8 ) & : ' " &% ! ;* ) /<9 $ ) ' - A 4
  • 8. VII ( =" 5 6 ' 9 - & 4 ! % " ! ) ! Why we need Renewable Energy? ; ; ; ; 0 0 0 0 > ? @ : $ : % " ., A * ' B 8 8 / ) Renewable and alternative energy supplies would help to diversity the country s energy portfolio while offering fewer adverse environmental impacts. ; ; ; ; 0 0 0 0 C " D' $ED A * ' ' ." % " ) @ 7 ' 3 @ ' 7 7&3 7 F D G ." H & ) Renewable energy would help in providing for our future energy needs and take advantage of abundant, naturally occurring sources of energy. These sources include water, sun, wind geothermal, heat, and biomass. ; I" ; I" ; I" ; I" 0 0 0 0 % ' % " .$ 6 6 ' 8 A " : /& JD D - $E DK @ L 39 @ /& 4 ) However, effectively harnessing and implementing these renewable resources will require careful planning and improved technology. % % % % ; ; ; ; 0 0 0 0 ; ' " 3 . ' E, & ' 7 ' ) There is no surplus power; Additional demand would put pressure on more power generation. ' - B 4
  • 9. VIII !" ! # $" Global Concerns ; ; ; ; 0 0 0 0 . @ D 1 @ M '.8( % " F 5 6 ; % ) 'N 8 A M ; . @ % " ., $ 9 ' % +"&, - +"&, Fossil ' . / " . ! 0 3 1 ' (3 ' 1 ' 2 4 A @ D 7 ) Renewable energy resources hold great promise for meeting the energy and development needs of countries throughout the world. This promise is particularly strong for developing countries where many areas have not yet committed to fossil fuel dominance. ; ; ; ; 0 0 0 0 'L" OD ED % " ) Reliability, never ending aspect. ; I" ; I" ; I" ; I" 0 0 0 0 $ 9&@ 8 % " & : ' ) Climate change & carbon emission. ; % ; % ; % ; % 0 0 0 0 ; 3 5 6 ' 9 ' . / @& P " ED ' % " - 4 & . (" ? D ) Based on known oil reserves and the worldwide consumption rate, most estimates suggest this reserve has only 50 more years of production left. ; % ; % ; % ; % 0 0 0 0 8 / Q D& ' 8 % " ' < ) Most alternative energy sources have little polluting side Effects. Clearly, environmental polluting is unavoidable so informed decisions must be made.
  • 10. IX % & '( $# ) * ( ! * + , -. % / 0/ / B9&R D ! B&$ 9 &C " @ 1 B " ; B (" S B B= T<. ( .8 6 B & B " % S B < ) S B .$ B A (" . S " ., B 7 B 7&3 @ S 6 @ B B & . 5 S B B : 8 6 " % + # S B % U A @ A $ V 9 A $ ) ; ( 1 @ K S( ( E D " @ S < & B " % B 1 B $ N & B + F S E B $ E B " % B D A @ SD ) B= &3 B & ! " S < 6 $ < .$ 3 (" $ W " % B B B&3 " % B ! D X "< 8 / D A $ ) 6 5 S . 8( B X 1 Y " 5 S 6 5 S$ S . 5 . S$ 3 S ( ) S D ; : S# " & 6 5 S / S X ." 7 ? U 9&@ " % B S + # X "< & 8 / $ N B B =< & +. D $ (" W B& S F ( A ) B S$ ( & G & V " H ? U 9&@ " % B B& U .@. D 8 / .$ B S ". S D 8 / : Z S [ S D 8 / $ B& 3 B ( D B<9 + @ + =< $ (" B U .@. D & 8 / S . % X " 3 P " D&3 . @ D ; D : .$ A " . % B S + # B 9&8 SD ) S / B 8 ;& S [ & ! B $] S 6 5 S A @ $ $ (" =< & + D 1 9 D ; " : & .$ < " % B S ) ' - C 4
  • 11. X ( / # 1 2 3 ! ; DG " $ % .$ & ' 0 ; ' ; ' ; ' ; ' 0 0 0 0 % ! F $ '= .$ . < " " " " ! ^ ; & A ( ER(D : ; & ) ; ' ; ' ; ' ; ' 0 0 0 0 ' + K $ $ % ; - 8( & 3 4 .$ . F(3 .$ ( &3 ' . D &3 ' 8 D 8( & : & 7 A @9 ) ' 9 A '&$ ( ' _ " .` G D ; . a ) ' 9 JD & 39 @ ; . E JD " ) . ! $ % S [ D S 8 / & 6 $ 6 " ' 1 3 & " 6 3 ) ' 8 b &9 .% " ' M & &, "9 & < 8 ; Y " ' A c + C / @ < ' 6 " <^ ' ." ' @ ) $( A ! ) d d d d M + " 17 d 5 d 2011
  • 12. ! ! "#! $ % & '( ) * + , - ' . % / ) ! 0 % $ ! "#! $ % - - ! 1 2 ! 3 ' ! + ! $ ' ! 4 '". 5! 4 & ' 6 7 ! ! ' ! % 1 "#!' % "! & 2 4 ! "#! $ % 8, & 9- '". : ) % ! 2 * ; < : ! $ = % "#!' %> '. 4 + "#! $ % "# : 3 5!$ ) " , & 9 " , 8 "# !' %* " , + 9 5 4 , :, % :! $ ! "? , ) , 3 . ", '1 6 ! 9 ", ) , 5!$ ) "# & & 3 "! + ) , 7!$ "! + ) , 7!$ "! + ) , 7!$ "! + ) , 7!$ @ @ @ @ .1 .1 .1 .1 " " " " A A A A B B B B + ! + ! + ! + ! @ @ @ @ & <, C @ ', : !' 1 ' ? , * @ D E ', D 6 @ '81 F "1 :! , G 333 $" 3 D ', H? D 6 @ 1 F 5! F I, F * H! 4 3 D J D 6 @ K "? , J (Natural Gas) 3 + + + + @ @ @ @ B K 3 + L, + L, + L, + L, @ @ @ @ & 'M!' ) , & 'M!' ) , & 'M!' ) , & 'M!' ) , newable Energy Re @ @ @ @ .1 .1 .1 .1 " " " " A A A A B B B B + & 'M!' ) , 4 ) L8 5 3 + ') + ') + ') + ') @ @ @ @ ) , L- L- ' ') @ & + ) , 5!$ ) + N 4 +8 O * : " , P :.% !' ! % ' * %5!G ! * %& 5! 9 3 "# , * ! %+ A 2 1 A B The Lunar Solar Power B " ) 3 " < % "! >P , 9 2"#! & ", A "1 B ? 5! &% 3 '1 ! P , "! 1 . '. % 5 4 Q , $8 * " <%+ , ! $ ) $? , ! ! ' ? ( % P :! 2! R $ '. % 4 3 ! !S!' 8 ' 4 ! 2 ' ! %6 - + ! * C , A 9- C #! 2 B &' ! ' 2 ! R !T! Q ,' ? A D B 8, ! ! . G, 3
  • 13. ".1 A B & '1 O ' ? + R &. %& S! + @ ? ) ? ) S! U M H , C A '81 D coal D J N G% B "! 4 !'? & V , ",'4 ! , 1 $8G% J &$ 8 "! 4 & 8 <, C &! S! 4 U <' D + ! ! +V ? ) N 4 1 4 ' . % 3 % $! ! C 4'- &! "! 4 V & & - 1 +V 3 ', &! ; ! & ? % &! ? % "! 4 & 4 ? ' . % V 3 ! ! 4 Geothermal $!V'W &! ! 4 4 !'? 3 Wind (X 5 , ' W ! 4 !'? $8, ! & 3 & 'M!' A D Renewable Energy B 4 S! U 1 . Solar 0.01 ! G O) - "8Y C 9 J W 4 1 3 .1 " A B - S! 9 & '1 O ' ? + R &. %& 'M!' 9 @ ? ) & 'M!' ? ) S! U ! & 5! V % $! > > )>$ < #! >=! ! > 8G,'> , >H! 333 $" & ? % ', &! ; ! ! > # C> 8" > # 333 $" ! 4 Geothermal 1.42 '? ! Wind $ 8 > >&X8 >6 X 333 $" & 'M!' A D Renewable Energy B 4 S! U . 1 Solar 0.04 ! > )>& ! 333 $" Z ".1 A 1 B Z ".1 A 2 B
  • 14. $ 9- , . % Y R N & < , C ? M ? A & <, C Fossil ! "! ! ', ' 6 @ 1 5! '81 5 J B F L ! '4 [4 . ' & 'M!' 4 F ') M - + 1 ] ! &! F 5?O ' F N 4 & <, C $ ', & ! 4 3 & 'M!' 2 ! ' 0 % 3 & 'M!' Y 2 , % ' L ! $ ! 3 ^^^^^ !O !O !O !O _ 2 _ 2 _ 2 _ 2 1 $81 & 'M!' 1 $81 & 'M!' 1 $81 & 'M!' 1 $81 & 'M!' : : : : @ @ @ @ 3 &! ) A : 2"#! ",') , 2! 3B 3 8 - + 4 ' ', & * . % ') &'( 3 '` @ ! 5 4 ', &a $ & 2"#! F : :#!' % "#!' % F '" ' ! ' ? 5! 2 78 3 "#!' %N , L, : ! ! &') &'(8 $ ! "! : .1 ) ! G? 4 ' ', 3 '` &! @ 1 . 5 4 ', C ! "#!' % ! & 3 ') &'(8 4 ' ', 5! +V O &" , ( % * 1 . ') " ? 3 & 'M!' $ & ! 1 6 % + 3 - ] & 7! J M * + 4 0 % 3 X" &! ! + 3 : ! 2 & + 6 % 4 : ' 6 " C & ! " ? , , ! ', ) , 2! & , , 5 3 & 'M!' : ! ! & + ! :! ' F : &X "#!' % 7 3 ! ' * R ', ! :#!' % ? , 2! ', 1 & V 4 : & + 3 + & 'M!' '` ) , & '1 ! A B @ + L, + L, + L, + L, @ @ @ @ & 'M!' ) , & 'M!' ) , & 'M!' ) , & 'M!' ) , Renewable Energy @ @ @ @ ' ) , & 4 ) + + & 'M! @ 3 A Hydro Energy 3B 3 1 A Solar Energy 3B 3 A Wind Energy 3B 3 1 K! 4 A Geothermal 3B 3 . &. 8 A b $c A B Energy Tidal 3B 3 & ! 1 A Biofuels 3B 3 & ! ", A Biomass 3B 3 & % ? A Energy Wave B 33 + "! 9 ! ! $" 3
  • 15. ! A B ) A B 1 & ! ", ! ' , 1 K! 4 + 'M!' $ 9- 8, %58.23 %17.08 %6.83 %0.72 %5.12 %0.42 %2.17 %1.21 %4.58 %3.42 %0.05 %0.16
  • 16. , ' $ G 'M!' % & ' 2! 5! & $ 9- # , F '1 ! ".1 + +V : ? . % - '( F & 'M!' d. % ! ' 4 6 & ! ' < , C $ Fossil ! A $ < , C Fossil ', ! 6 ' @ 1 8 ' ! 5 1 J 5 B 3 ! ".1 + ! ! ! ' 1 &' & 'M!' $ <, C F : . & 'M!' e W ' R & 8 3 (cent/kWh) $ ? ' A Wind Energy 3B ' $ ! % N. A 1 B F 8 '- A & B A Hydro Energy B & ! f % ? . & ! " , A Biomass 3B ' ? :.4 1 A Solar Energy 3B & !'? :.4 & <, C & ".4 ! " # $ % & ' ) , "#1 4 ! ?'4 > ! $ ' ! &9- ! "#!' % 4 % &! 1 8 &9- 4 ! , . % V $? % + > + 28 < ! 9 > ) ! _ " ) , A B ' !O W 2 . % 3 28 < , $ e & ! !S!' g ", ! ? V + 2 , A B ", & 9 G O) G C ! ' ? ! ) , + 3 '".! 4 $? !S!' + ! ) , 6 : ' R &9- "#!' % 4 ? 3 ! !S!' + & 7 % 4 !S!' N , ! ' ? h ! & 9- ! .1 >& ' $? , & ? ' A B & , ", , :! 3 5 4 78 $ ! 4 & ? ! !S!' U :? ! $! ' ! + 8, &9- : 9 M $ 9 ! 3 Z ".1 A 3 B
  • 17. A ? "#! B : 8 ! g ", 2 ! ", ? $ ? A@ e : c , ! !S!' + A - 1 + ! ) , B ", f ! ! > ' M. %& - :! 3B ? A 5#%' - 6 B ! ! ! A B 2"#! 2"#! ! & ' % ! A B $ + ! ' %* > 4 A B > $ %&! % $! V, + ! ! ! 1 , & 8 7 8 A B '"#1 :, 3 A B $ , % $ 9- ".4 ! ' ? :! ) , 7 ! ' 1 1 3 . % &$ , ? 4 $! 8, $ ) + ! ! > ' ! 1 ! 1 "! ', ! 1 ! ' % ! % ! ! "! > ' 4 ) , , : :, ! ', 2! 3 :, :! ' . %i % N, :# 3 , ! 1 ' % A ground B ! ! ".1 + , "! '1 3 (Mile per hour) ( mph ) *+$ , - . / D " ', N D ", :! N ", D R :, :1 V 4 >:! ' :, ) ' D "! 6', V >: &! 4 8 '- :1 V 4 D : 8 '- & ' '( j > J % D ! & ' '( "1 " D : R k ) :! ",'4 8 < 2 & 8 '- & 4 j 3 $ ) A B ". +V > ! 1 Z 1 $ , ? 4 $! 8, $ ) + 4 # ! 3 N 4 ! A B > . % +V >:! RV "#!' % ". ! >6 X > I# > X8 ! , > V $ ) 9 .? N ! ? 4 ! & V :! M. %R >:! $ , . % 8, UA B >:! 4 # ! : +V >R &9- "#! $ % :! 8 e ' 8 3 ', % "# , 9 5 4 A B > 2 4 &", ' > ! , * 9 ' & ! ? &", ' $ ! $ % ", 8, + $ % % ') 3 Z ".1 A 4 B
  • 18. ^^^^^^^^^ I, , ! ) , ' + &", ' X! ! 3 ".4 &", ' X! ' :! 9 + '1 ! 2! 7 ! :! * ' &, , ) ' 1 . [, 6 ! 2! $ @ 3 :, , l! 8 < . '` :#!' % + 6 ? :.! 4 3 !O ' + N $ C W m ' n * ? 2 - .! , ? :, ' N $ C W m '1 3 2 3 , ! <, C $ ' A H! 4 >* > ! 4 > 1 3B + % ! & :, l8 &! 4 ! & "! - 5! ' ', 4 ! 7! "! - $ ) &", ' > 4 & H! 3 - H! 4 :#!' %6 2"#! + & 3 ! ".1 6 3 9 2"#! 4 H! & /01 - MW & - $ / 23 * 2 29 H! 4 ? X < , 2"#! H! 4 ? ') 2"#! H! 4 ') g 2"#! H! 4 g 'W ') 2"#! H! 4 'W ') N ( ) 2"#! 4 H! N ( ) X < , ! 2"#! H! 4 ! 2 H! 4 ? 2"#! H! 4 ? 2 29 H! 4 ? 2"#! 10 H! 4 6 203 ".1 Z A B
  • 19. 3 3 'M!' 2! A f . % > ! 1 > 8 '- > 1 . A % $! B ! 4 A Geothermal BB 8 . % 78 ' &", ' "# 2 $ $ ! & 2"#! &a $ 3 $ + $ $ & :, ! ", A ! $< 4 3B % $! 9 2"#! 2"#! ' A MW B ', - & 2 - & o % $! X < , A & B &a $ o % $! X < , A &a $ B ! ') C & $ ", $ + V, ' $ 3 , ! ! . :, + 2 ! $! A 1 . % $! B : 9 + > % R $ 2 4 ! R T% " , 1 . % $! 2! 9 A B > * 2 ! $ , ! J W "#!' % ! !O &", ' X! 2 ! :! 2 ) I" , i % "#!' % R ! 2 ! !O , ! & % 3 2 ! !O , "# !S!' , ! ') ! % " ? p : K - M- 8W , ' "# :! q 1 2 ! * ' 6 - 1 &", ' 3 Z ".1 A 6 B
  • 20. 4 5, 6 & " 7 -8 ! 9 ! + $ ) 4 f ', +V > ' & ? % ' > & 9 f ', ) M! ' , : ! 4 f ! 8 M. % ! 1 > ! A r ) B A < r S B 2M8 + 7! R :#!' %> G A B ! $? N 4 > " ! '# & 4 % M. % A B RV 4 & ! 1 4 % 8 < 4 % ' > ' , - - " , $ ' 3333 $" 3 ! A B ?
  • 21. 4 * : & ; 9 H '". ' 8 > ! ! 5 4 78 A # B i % N , '- &! ', ",'4 >s , 'M ! A B % ' 4 & ' %N 3 8 '- & A B % '". A & 1 ", ' V B $ ' n , > & 28 < ! ! A B ! A B
  • 22. t 3 & ) :, & M! O'1 "# , ! 3 ! 5!G +V 4 4 $ "# uC & V &v 1 ! , + > A ? B :! 4 f 8 3 ! A B ! A B
  • 23. t 3 w 4 ? :, & M! O'1 "# , & , C 3 ! A B Persia Panemones common Pumping water ! A B
  • 24. 4 &< ; 9 3 O'1 & $ '1 ' ! T Z N, 3 3 8, ! ! @ % :! ? ! ! , 6 ! V $ 8 "! X8 3 ! A B 5!G ? 4 "! ? 5!G , 5!G ? '",' 7 < ! 5!G ? 6 4 ! A B
  • 26. 3 8, ! @ ? C * - + R A US Pumping water B 3 ! A B + ! O'1 8 '- ! 4 Z , ! A B
  • 27. 3 8, ! @ : , 6 & $ ? + 2"#! + ! & #! ; 3 6 ? 2"#! + $ , 4 ' :, %8 < 4 ' 3 - ! + A D.C B ' 3 3 8, ! @ + ? , + 3 8 '- 4 +V A B X 2 "! 4 > O N % A Paul-La Cour B 8, ? 6 ! Y , A As Kov 3B 3B 3B 3B ! A B ! A B
  • 28. 8, " % ! ' ? % 4 X8 (Jacobs, Windlader) 7 & ' ' 3kW & :, 3 %& ", X8 ! ? C " , &! "84 81 & !O : ! 7 ! ') &9- ' ! + ! & ') & &", ' * ?' 6 " R & . 3 ! 2 + &? % I $ & ! $ ! @ ! A B ! A B
  • 32. • "# i %N, & ! ' ? + & . % 3 M @ 0 O - , $ - ) - <' :! 3 ! A B ! A B
  • 33. • . % "# i %N, & ! ' ? + & 3 ! A B ! A B $ , Z % & 2 4 ! ! + $ , Z % & 2 4 ! ! + $ , Z % & 2 4 ! ! + $ , Z % & 2 4 ! ! + ', 1 ' ', 1 ' ', 1 ' ', 1 '
  • 34. ! 9 - ' & (Generations) 8, !$ 8 ' 4 $! 3 + 1 '( ! 1 ! A B ! A B
  • 35. = - $ D ! , 9 g, x 3 D , 9 % 7 ! "! ! ! ' ? A 4 F < ? F & W B 3 = >$ ? 5. @ >$ *A - ) posphere Tro ( • U : !$ % g, x 3 • ! * ' 3 • ! $ '", ! ",'4 3 • 4 < % 'M $ ! 3 • 4 < % l y D ; F 4 < % l y D ; 3 @ -B$ >$ ) Stratosphere ( • l A 4 < % y ; B 3 • R $ ) $ . !SX8 " 4 < % 3 • ! $ %' ! ! F 8e - 8 & g, % z 4 3 @ >$A3 & ) Mesosphere ( • l A 4 < % y D ; B 3 • $ %' ! ! 3 @ >$ & $ ) Thermosphere ( • l 3 • 4 < % D 5_< 3 A 5_< y ; { B @ >$A3 ) Exosphere ( & 2 & . ! A B
  • 36. = - 7 * >$ ? • - G! Nitrogen U • p# Oxygen U • & 4 Argon U • CO2 U S! :! 4 • S! :! 4 ^^ CO2 , 4 < % 4 $ x M! 5, % , 9 % @ • CO2 $ . ", "! 4 & ' ' % ? 3 • R 6 < & ') S! % ? 3 = o ! ' - ' ? L, ; 4 A X8 B F < ? A & B F E A z , B 3 o 4 e & * , 4 8n L , G. % & ' + 4 , 3 o - * ) G, L? 3 o 6 ! 4 $ ) Methane Nitrous oxide ! , %+ :! 4 $ 3 $ " , % 4 e R 4 , & ' + 4 > 4 & ! :! + e > 2 ! z 4 R 4 ",'4 +V 3 " C i ! A B + 4 6', ) ,
  • 37. ^ 8 '- : :, ", % - ! 4 < % & ! ! ! + 6 3 • 6 :! , g, x A 4 f % ? 4 ! ! > ! > 1 1'", 3B • 4 1 4 f % ? 8 '- :! 3 • ', e i : :, 3 • , ', ' ? ! " * 3 • ! ', ' ? - L, @ ', 3 & X! ! 3 & ! 1 4 3 ".4 ', ".4 ', ".4 ', ".4 ', - 4 < % &' $ # - '"# 8 < ' : , " 4 f % ? 8 < 9- # , ', z 4 ? ! 2 & ! 1 ! A B ! A B
  • 38. '? ', A Zonal and Meridional B 3 ! EI Nino R ! , @ ! A B ! A B
  • 39. & ! 4 @ • & '"# (X '"# ) g, % '1 ? ', '? 5! : 3 • $ x M! "! ! R , ", - 8, 4 ! 3 • : :, 1 $ . 4 :! , ! ' ? 3 ! A B ! A B
  • 40. A Geostrophic current B @ == == == == @ Katabatic ( Katabasis or catabasis ) & AC ! R '1 , ! > :! 4 $8 &", % ! 2! ! '1 '1 ! 3 ! A B ! A B
  • 41. @ Anabatic $ ! :! , ! ! > 4 K8 '- 3 ! 2 ! ! 1 :, ! $ ! @ ! A B ! A B
  • 42. & $ , C 5. • , 2! ! : 3 • ! , ! 2! 5!G? 3 ! A B ! A B
  • 43. ! , '` g, ! 1 , ! A B ! A B
  • 44. ! " & ' 1 > ! &! 2! ! &! 2! & ' 1 3 # $ % " /? , > ' . N $ > $1 ? &' 3 ! A B ! A B "#!' %& ! 2! + : 3
  • 45. & & & & & & & ' & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & ^^^^^^^^^ 1 & 'M!' + - , A sun B : ! A 2- 1 K! 4 A Geothermal B > . 8 . & A b $c A B Energy Tidal 3BB 6 ! S A 1.74 x 1017 watts of power (per hour) B R ' 1 A sun B :! 4 3 S! U U : ! 4 3 ! ) , 4 - ! ! ) :! 4 3 @ , 1 . ? ') > ! 8 '- 28 !'? - .C 4 < % $ j8 '1 " > ! ' ? , !'? 3 > e , 8'- "! - .C 4 < % : ! 2 # ! 1 1 3 + e , > ' + 4 1 . > Z ! , , +V > . , ! > " $ ? ! ) R ! W > 8 '- &! > ! ) ' + > "! 4 2 - :! ! 1 A B , % : ! 3 ! ' 1 1 ", 2! ! 1 A B :.4 , ' * ! ! 1 ! 6 > G ! - ! + A B +V > $ ! ' !V'W 4 >: ) ' ! e * ! 'M + >5!| & ' : ? &' &$ .} A B "! $! 3 % , 7! " '1 ! O'1 8 '- 3 ! A B
  • 46. ! ! :! 4 $ N1 L, , ! O'1 8 '- @ D ) A density A B ρ ρ ρ ρ 3B D DD D O'1 A rotor area A B Area = π π π π r2 3B D ! 1 A wind speed B 3 Power in the Wind (W/m2) = 1/2 x air density x swept rotor area x (wind speed)3 Density = P/(RxT) Area = π π π π r2 Instantaneous Speed P - pressure (Pa) (not mean speed) R - specific gas constant (287 J/kgK) T - air temperature (K) kg/m3 m2 m/s ====================+++++++++=================== ) A Air density B @ < , < % . A 1.225 kg per cubic meter B A ρ ρ ρ ρ=1.225 kg/m3 B > +V ) ! R L? ' ! 3 ! $ '! % ! ", 3 • ) ' ! R ! 3 Wind energy increases proportionally with air density • 7? ? ! ) $ ? ? 3 Humid climates have greater air density than dry climates • ", 6 ! ) ", 3 Lower elevations have greater air density than higher elevations • S! & ! 1 ? ) A 6% B & ! 1 6 G 3 Wind energy in Denver about 6% less than at sea level $ 2 P - pressure (Pa) &", % Density (ρ) ) ) ) ) = (R - specific gas constant (287 J/kgK) x T 4 < %- air temperature (K) ) ρ A V3
  • 47. 1 ρ α T &", % ' ! R ! ) 3 ! $ '! % ! ", 3 8 '- A B . 3333333333 @ 1 Energy (E) = x M x V2 2 E @ 8 '- "! A B A J B 3 M @ . "! A B ! ! 8 '- > A Kg 3B V @ "! ! 1 A B A m/s 3B ! 1 4 A B A V B ! ' ! >5! 4 ? : > 4 . 33333333 5! 2 @ 1 Power (P) = x M x V2 ……………..2 2 P @ 4 ! ' "! A W B M @ "! A B ! ! ! 8 '- ! A Kg/s B D A B :! ' > ! ! ! 8 '- > ! '1 . A B V'- ? "! i ! > "! $ @ dm dV = m = ρ ρ ρ ρ x V = ρ ρ ρ ρ x V x A ……………..3 dt dt ρ ρ ρ ρ @ @ @ @ ! 8 '- ! ! ) "! A kg/m3 3B A @ I $ % V'- > ! 8 ' "! : A m2 B 3 . 4 A B . A B 4 ! ' >& Z K- ". 5! 4 + e , @ 1 Power (P) = x ρ ρ ρ ρ x M x V …………….. 2
  • 48. D ! 1 & 4 5!G ! > $ p , ! 1 >7! 4 ! ' A B 4 ! ' > ' :! ' $ ! 4 ! +V >:! 4 - M", A B ' ! ! 8 '- ! ') >:! 2 $ ', ! ' : I ! 8 A ! 1 A B ! g, ! B ' ' 8 > 7! , n 9 :! ' "C 4 + >: R ". A U U U U B . :! ' > 4 ! ", ' >:! 2 A B "! $ @ 1 Power (P) = 0.59 x x ρ ρ ρ ρ x M x V …………….. 2 O'1 A Blade swept area - otor area R A B 2 r π π π π = Area @B R ! & % O'1 ' ! > :, C 8 '? & % 3 Wind energy increases proportionally with swept area of the blades Blades are shaped like airplane wings. & 8 ' ! S! A 10% B 1 ", S! A 21% B R ! 3 10% increase in swept diameter translates into 21% greater swept area 5! S! "? 4 % A + B & - ' ' e * A + 3B Longest blades up to 413 feet in diameter. Resulting in 600 foot total height. - ! ! 6 R < A 600kW B "#!' % O'1 A rotor diameter B : > O'1 - + + "#!' % 3 ' O'1 2! ! 1 ", ' + 3 7 !'? "#!' % ! :, 5! !SM8 N, S! O'1 :! ! 1 H r : ) 3 ! A B ! " # " $ #
  • 49. ! 1 A wind speed B @ ' ! ! 1 S! A 10% B S! 1 ", A 30% B R ! 3 10% increase in wind speed translates into 30% more electricity :! . 6 3333333 Power in the Wind (W/m2) = 1/2 x air density x swept rotor area x (wind speed)3 P = 1/2* ρ*A* V3 Wind energy increases with the cube of the wind speed N 4 :! 4 ", ! $ '! % ' - L, 1 V3 3 3 3 3 ) ) ) ) ' ' ' ' ^ ! $ '! % 8 '- 1 - N 4 ! ", V2 3 3 3 3 1 Energy (E) = x M x V2 2 ^ ", :! %$ ! N 4 ! ", ! $ '! % 1 - V2 3 3 3 3 { ! 1 4 '` A B >: - :? 4 ! ' >:! ! 1 ' > ", ? ( % A B ! ' 'M , ! 1 ", 2! 4 3 ) (2X the wind speed translates into 8X the electricit ! A B
  • 50. A Height @B N 4 R ! 3 (Wind energy increases with height to the 1/7 power) U A B ! N 4 R ' ! $ 3 (2X the height translates into 10.4% more electricity) rr S 4 A Low Turbulent 3B ! A B
  • 51. ) " & & . e '4 !'? SM8 & ! 3333 Characteristic of good wind power site: 1 Power (P) = x ρ x A x V3 2 ! ' ' A 4 ! B 5! ! @ A good wind power site should have the following characteristics: 3 !'? A ! 1 V, A B ! : 3B A High annual wind speed B 3 ! ! 4 3 A High wind tower B 3 : 4 O'1 C 3 Longest blades in diameter 3 : &, ! ) > : & ! ! :! 4 &! 3 (An open plain or an open shore type) 3 & C ! ? : $ ) 3 : &$ .} 5! + 3 (A mountain gap) 3 : ", :1 ! 4 , :! $ N > : 4 ! S 3 ! 4 !'? + G? : ! 3 (The top of smooth > well rounded hill with gentle slopes lying on a flat plain or located on an island in lake or sea) 3 & ! 2! :, "#!' % ) : l 3 ! $ ( ) * ! $ ( ) * ! $ ( ) * ! $ ( ) * ( + ! !( , , * ( - ! ( + ! !( , , * ( - ! ( + ! !( , , * ( - ! ( + ! !( , , * ( - ! ! A B :1 ",'4 'Xm ! + + + +
  • 52. (! % $ ! . $ * ( / - " ? 4 & N 4 & % ! - < % & % O'1 & & 3 5 ! A B
  • 53. 0 1 ( ! 2 - ! 2 - Lift & Drag Forces 3 ! 2 - 4 Lift Force "5 ! "! 8 '- ", , '", 3 "#!' % + : 3 The Lift Force is perpendicular to the direction of motion. We want to make this force BIG. 2 - 1 ( ! 4 Drag Force "5 "! ! M! 8 '- ", N 4 3 "#!' % + + + + + : 3 is parallel to the direction Drag Force The of motion. We want to make this force small. 59.6 80 + , "# Y ! I ", ! ! ! ' 2 ! C , 2 3 This picture shows a Vestas V-80 2.0-MW wind turbine superimposed on a Boeing 747 JUMBO JET ! A B ! A B = low = medium <10 degrees = High Stall!!
  • 54. ! A B
  • 55. (! & C M# ! % R 3 Airfoil Nomenclature: Wind turbines use the same aerodynamic principals as aircraft. +++++++++++++++++++++++=======================++++++++++++++++++++++ 3 Airfoil in stall 0 ( + (! *. 6 ! 7 & % " - : :, 7 N ", ! 3 Stall arises due to separation of flow from airfoil D N ", ! e 2! ' + &$ ? 4 1 ' ! 3 Stall results in decreasing lift coefficient with increasing angle of attack D N ", ! : , ) & % ', 3 Stall behavior complicated due to blade rotation ! A B ! A B Stall Blade rotation
  • 56. Pitch Control vs. Stall Control . 6 8 9 *:; 7 !< % $ 8 4 Pitch "5 " ~ 1 6 ! ! 1 6 ! ' ? 5! ', & % > ? ", % + : 6 ! O'1 3 • 8 9 *:; 4 Pitch Control 5 " : 2! : ! ', 6 ! ' ? & % : ! 1 7 * 3 – Blades rotate out of the wind when wind speed becomes too great • 9 *:; . 6 4 Stall Control "5 4 & % 4 6 ! ? 4 * ! R $ %:, N ", : ! 1 7 3 ". 6 ! ? 4 :! ', ] % ! N 4 ! 3 – Blades are at a fixed pitch that starts to stall when wind speed is too great – Pitch can be adjusted for particular location’s wind regime • . 6 9 *:; < , 4 Stall Control Active "5 + 4 : . ! O) ( % & % : ! 2 6 ! ? 4 ! ! 1 R N ", 3 – Many larger turbines today have active pitch control that turns the blades towards stall when wind speeds are too great ! A B ! 8 4 Pitch 5 8 $ %+ 8", ! ".
  • 57. 3 Rotor Solidity 0 < = ! 6 + 9 * ! O'1 ".4 & % + - , S! ! " 3 Solidity is the ratio of total rotor plan form area to total swept area> Solidity = 3a/A O'1 "!$ 8, ! 1 3 Low solidity (0.10) = high speed, low torque O'1 "!$ 8, ! 1 + 4 3 High solidity (>0.80) = low speed, high torque ! A B ! A B Solidity = 3a/A A a ! A B
  • 58. 3 Tip Speed Ratio 0 ? ! ( = ! S! ! " % O'1 ! 1 S! ' ! ! 1 + & '1 ! 2! " ) A Erosion Effects B A Noise B 5! :, A Vibrations 3B ! A B
  • 59. , @ ! ( - ! 4 How Does a Wind Turbine Work 5 : Inside the wind turbine ! A B
  • 60. & & & & ( = ! ! 6 A B 4 Anemometer "5 ' % 8G "! '4 ! + R ! 1 A controller 3B Measures the wind speed and transmits wind speed data to the controller. (! 4 Blades "5 ! %L, &! & 3 " :! %$ $ % ! O'1 ' 3 Most turbines have either two or three blades. Wind blowing over the blades causes the blades to "lift" and rotate. C 4 Brake "5 :#!' % 7! #! : ", $! &! ! &! 3 A disc brake, which can be applied mechanically, electrically, or hydraulically to stop the rotor in emergencies. ! A B
  • 61. D $ 4 Gear box "5 4 ! 1 "C ? + ! 1 "C ? &' R :, $ '! % F O'1 R ! j W 6 ! N'1 j W 6 ! N'1 3 #!' % ! ! 1 + " "! - ? + 3 , 'W . '( 0 4 $ ) 7 ! 6 ? F 1 ", & :, 7! "! - & $8 & ! $ &! ? :#!' % + ! 1 R R 0 4 3 Gears connect the low-speed shaft to the high-speed shaft and increase the rotational speeds from about 30 to 60 rotations per minute (rpm) to about 1000 to 1800 rpm, the rotational speed required by most generators to produce electricity. The gear box is a costly (and heavy) part of the wind turbine and engineers are exploring "direct-drive" generators that operate at lower rotational speeds and don't need gear boxes. ! A B
  • 62. 9 *:; 4 Controller "5 ! 1 7 R $ % N G ? &' + r ) + r ) ! 1 7 : ", + r : ) 3 ! 1 + r $ ? " ') R ) ! 1 3 Controller: The controller starts up the machine at wind speeds of about 12 to 19 km (8 to 16 miles) per hour (mph) and shuts off the machine at about 88 km/h (55mph) Turbines do not operate at wind speeds above about 88 (km/h) because they might be damaged by the high winds. ! A B
  • 63. & & & & & ! - ) -! ! 6 ! / 4 Generator "5 :! + 4 ! "! - + 3 Usually an off-the-shelf induction generator that produces 60-cycle AC electricity. ( = 6 % & & & & & & & ! 4 High-speed shaft "5 + C ? " 1 '1 "! - " 3 A Drives the generator. 3B )2& & & & & & & ( = 6 % 4 Low-speed shaft "5 ? C " 1 + " '1 O'1 j W 6 ! N'1 3 The rotor turns the low-speed shaft at about 30 to 60 rotations per minute. ! A B
  • 64. E F 4 Nacelle "5 0 4 6 ! :! , H • F ? 1 "C F + 1 "C ? F "! - F 8G ! 3 " . , "% < & 4 $ & 8 <• 7!$ 3 The nacelle sits atop the tower and contains the gear box, low- and high-speed shafts, generator, controller, and brake. Some nacelles are large enough for a helicopter to land on. !< % $ 8 4 Pitch "5 " ~ 1 6 ! ! 1 6 ! ' ? 5! ', & % F ? ", % : + 6 ! O'1 + : &! 3 Blades are turned, or pitched, out of the wind to control the rotor speed and keep the rotor from turning in winds that are too high or too low to produce electricity. ! A B
  • 65. = & & & & < ! :! 4 Rotor "5 & % :! & % % N 4 O'1 4 4 4 4 Rotor >5 >5 >5 >5 The blades and the hub together are called the rotor. & & & & & & ! 4 Tower "5 & 5! :, ! ' <", F &! :! ? <", 3 ! ! 1 N 4 R F : ! * ! :, : ! ' : 3 Towers are made from tubular steel (shown here), concrete, or steel lattice. Because wind speed increases with height, taller towers enable turbines to capture more energy and generate more electricity> ! A B Hub ! A B
  • 66. & & & & & & 6 ( !B 4 Wind direction "5 ! 4 3 !$ +€ O $ 3 This is an "upwind" turbine, so-called because it operates facing into the wind. Other turbines are designed to run "downwind," facing away from the wind. 1 ! & & & & & & 4 Wind vane "5 ' % ! ", ! N 4 $ '! % : ! '# 6 ! N 4 : e '4 3 Measures wind direction and communicate with the yaw drive to orient the turbine properly with respect to the wind. ! A B
  • 67. ! ! ! & & & 4 Yaw drive "5 ! ", % ! N 4 4 % N 4 ", 3 Upwind turbines face into the wind; the yaw drive is used to keep the rotor facing into the wind as the wind direction changes. Downwind turbines don't require a yaw drive; the wind blows the rotor downwind. ! ! ! ! & & & 4 Yaw motor "5 ! ', " .1 ' O'1 A Powers the yaw drive 3B ! A B
  • 68. 3 Active and Passive Yaw ' < , ' < , & & & 0 + ! @ ! ', ! 6O) A Active Yaw B $ + 4 + - , + & '( 7!$ ! 6O) A Active Yaw B R ! ' ? + i :! @ Active Yaw (all medium & large turbines produced today, & some small turbines from Europe) D ", :! 2 O'1 N1 + 8G N 2 , H • , " X 3 Anemometer on nacelle tells controller which way to point rotor into the wind D ! ', ! A Yaw drive B 81 : ! ', 4 ", O'1 : 3 Yaw drive turns gears to point rotor into wind + @ ! ', ! 6O) A Passive Yaw B & '( "! 4 R ! ' ? + i @ Passive Yaw (Most small turbines) D O'1 , 9 3 Wind forces alone direct rotor D O'1 ! .! R ", 3 :! 3 Tail vanes , Downwind turbines. ! A B ! A B
  • 69. 0 ( - ! * = ! < 4 Rotor 5 & & & & & & / & & & & & & & & & & & ! 3 Turbines can be categorized into two overarching classes based on the orientation of the rotor Vertical Axis Horizontal Axis '", ' ? ! , ' ? ! A B
  • 70. 0 / + & & & & & & & & & % ! & & & & & & & & & 6 ! 3 ( Vertical Axis Turbines ) ^^^^^^^^^ A Advantages @B r O'1 : 1 2! ! ? 4 ' 3 (Omnidirectional - Accepts wind from any angle) r ? R 8n * , :! - + 9 % 3 (Components can be mounted at ground level) rr ) , $ 1 # 3 (Ease of service) • rr . 3 (Lighter weight towers) r :#!' % :, "#!' % ! 3 (Can theoretically use less materials to capture the same amount of wind) A Disadvantages @B r * ! ! Z O'1 ? ".4 ! ' ? 3 (Rotors generally near ground where wind poorer) r W ) . 3 (Centrifugal force stresses blades) r 1 % ",') 3 (Poor self-starting capabilities) r O'1 , ? ! ", &! :.I8% "#!' % A rotor 3B (Requires support at top of turbine rotor) r "! 2 P 2 - ! ! O'1 "C ? "#!' % 3 (Requires entire rotor to be removed to replace bearings) r ! K X"m 2 - ! K * ".4 ! ' ? 3 (Overall poor performance and reliability) r ! ' , . ! 4 3 (Have never been commercially successful) ! A B
  • 71. 3 Types of Wind Power ‚ ! / ( - ! ! , ' ? A Horizontal Axis Wind Power @B ' ? '", A 'Xm B A Vertical Axis Wind Power @B ! A B ! A B
  • 72. ) G " * ! / H 4 Looping "5 D + ! A + ! B : :, 3 D ! ! ! ! '", A ' m B ' ? ) :! 4 + !'? 3 D ! ! ! ! '` % F 3 S! 4 ! ",') ! A BU ! 1 7 + r : R m , 3 D :! + '( 2"#! ! ! - + 3 D P %' - 8, RV 1 P . % ' ' ' , 3 ! A B
  • 73. A Energy ball @B r + ! ! - 4 - P %' A Looping B % A Energy ball B N ".4 !'? ! 5 3 r ! ! - + % A Energy ball B ", $!', ! I 3 r ",') 3 r ) %* ? ! ! 6 :! 7 % "! ', $! 3 + ') ! ' ? $ ! :! ! 3 ! A B
  • 74. ) I " ) & & & & & & & & & & : B 4 Aerocam "5 r ! ! - + + A Aerocam B ! I :, ", 3 r : , + ! ! - + A Aerocam B 5! & % R $ $ , ! W 3 r ! S! % ! ' . % ! ! - ! , ! ' ? & } ! 5 : ) < ! , ! 3 r + ! ! - ? N '". ' 6 R M! F ') ! '( 3 r : + O'1 3 ! A B ! A B
  • 75. !! "# $ $ % &$ $ ' ( Helix Wind ) r - + ( I' ! A Helix Wind B ! 1 ! ! 3 r ! ", ' R ' ! ! '` g , 3 r "! - : 8 '- * ! R N ! 8 '- 3 r - + ( I' ! A Helix Wind B ) :! + 3 r : ! 4 6'( ! W : + ! * ! '", ' ? 8 '- 3 G? i . ƒ O ) ? &", ? ) * - + 3 r % ) & E % 6 .1 $ ! $ 8 O , 3 ! A B ! A B
  • 76. * + + , - ( Magenn air rotor ) r - + 4 O'1 A Magenn air rotor B ! ! ! ' ? : , ! ! '` ! $ 3 r L < J R ', . :! $ 2 A B + ! " ,') ! ! UA B R ! 3 & ! ",') 5 ! ! + - , $ 4 A U BU 3 r "! - - ) G '( : ! + 2 $ ) 3 ! A B ! A B
  • 77. ! J K B A Sky Serpent @B r - "# F ! , A + #<, „ B ? 4 :, % L8 ' + 3 r 4 '( ! ! $ ! ! ' ! & , 3 +8 O A „ + #<, B %:C ? 6 ! , $ ) :, ' '( '( W $ ) R ! ",') ! 4 6 3 r 6 ! O'1 R ! + - , ",') R $ 3 r 8, R M! : ! : , 4 ' ? :! $ , % ! $ 3 ! A B
  • 78. . ! 6 ! / ! & & & A Flying Electrical Generator @B r ' ! C "! - A Flying Electrical Generator B ' ? 4 O'1 A Magenn air rotor B + ') ? * - ! 1 ! 3 - + +V A B + " 3 r :, 6 ! ' ? ! ! : 9 :, ! :! 5! 1 3 r ! . A B lu 3 r '( ! + : , R < 3 m , 3 r ! ! O'1 ') A B 5. 6 ! $ mW , , ! ' ? 3 :! N :! :, f 4 W ' 3 ! A B
  • 79. ( ! * ( - ! Off-shore Wind power Sea ! Till '". c Sandstone Ice Cone )'W Casing ? % 5! Grout ! A B
  • 80. D - , 5 C- ( Onshore ) ( Offshore ) Cost comparison Onshore and Offshore ! A B ".1 A B
  • 81. 4 (! ' ( - ! Number of Blades – One 9 D A O'1 B :! ! "! '# % "#!' % 3 Rotor must move more rapidly to capture same amount of wind. { 0 4 3 Gearbox ratio reduced { % ( %7 . P , :!G, 3 Added weight of counterbalance negates some benefits of lighter design { ! 1 $ ! :! 3 Higher speed means more noise, visual, and wildlife impacts D & , % :!G, , O'1 ? 3 Blades easier to install because entire rotor can be assembled on ground D S! A BU G ! % - 6 : :, 3 Captures 10% less energy than two blade design D ! * ! ' 3 Ultimately provide no cost savings ! A B
  • 82. Number of Blades – Two ( - ! (! 6 % 1 ? 6 ! ! % 3 Advantages & disadvantages similar to one blade. 6 % 1 ? 6 ! ! % 3 Need teetering hub and or shock absorbers because of gyroscopic imbalances S! A BU % , - 6 : :, G ! 3 Capture 5% less energy than three blade designs ! A B
  • 83. 0 ( - ! (! Number of Blades – Three 3 r 2 , A # V B ! $ % 3 r 1 O'1 3 r :! ",'4 '( 3 r ! '- ! 3 r 3 r :! $ 8 G 3 ! A B
  • 84. 0 ! L -! Sizes and Applications 3 + ! @ 6'( - A Small B ' A Small (≤10 kW) B :! ' 1 A Homes B N '". A Farms B 8G 7 !'? : 5! A Remote Application 3B + @ $ + - A Intermediate B ' A 10-250 kW B :! $ '4 A Village Power B N "# , A Hybrid Systems B ' * A Distributed Power 3B + ! L, @ 4 - A Large B ' A 660 kW - 2+MW B 28 < :! A Central Station Wind Farms B ' * A Distributed Power B N "# , A Community Wind B 3 300 kW Turbine 10 kW Turbine Large: Small: ! A B ! A B ! A B
  • 85. Wind Power Advantages + 2"#! % 3 ', R :#!' % : 3 Produces no waste or greenhouse gases r 0 % " M R 7! J - A No air pollution 3B r - " M R 7! J * + 4 A No greenhouse gasses 3B r ' - R 0 % A Does not pollute water with mercury 3B r R :#!' % A No water needed for operations 3B A Economic Development B ' ? 4 3 r ! ? 4 & ' & C & . ƒ O ) : ! 3 Expanding Wind Power development brings jobs to rural communities r V ? % ' A Increased tax revenue 3B r ! V $ ! $ ', "? C 3 Purchase of goods & services ) , @ ) , ! X". ! - 1 L ! & "#!' % F ] ', ' & + , ! ! 2! 3 ) ' 8 N '". ", :! ! ] & :, 6 ! 2! 3 The land beneath can usually still be used for farming. & ) ? ! 2! A Isolate area B 3 A good method of supplying energy to remote areas. 1 f ! + ' $ 9- $ # R ! 3
  • 86. & & & & & & & & & & & & Disadvantage of wind energy r ".4 ! ' ? ) 3 ! 7! $ ) ! - ! K + 3 (Low energy density, The wind is not always predictable - some days have no wind.) r "# , A B $ . ! 4 3 (Wind energy conversion system are noisy in operation) r . ".4 ! ' ? ! ) ! S 3 (The overall weight of wind power system is relatively higher) r "#!' % ! 3 * ! 1 i !'? 5!G? ! 'M 4 & '( 3 (Large areas are required for installation /operation of wind energy system. Suitable areas for wind farms are often near the coast, where land is expensive) r * :! + + ! S! % & 4 ! , . % ) & 4 ? "#! $ R 3 (Only in KW and a few MW range , it does not meet the energy needs of large cities and industry) r ) $ 8 "?' ! 2! & ) ! R M! 3 Bird Migration: Through design the wind farm we must be sure that this site is not cross the bird migration lines according to the GEF recommendation and the ornithological study for bird migration should be conducted r !'? 5 & ) ! Y ) , ! 2! & 8 M, & Y ! 3 Shadow effect: The blade’s shadow effect for the human eye should be effect with a bad level so the wind farm may far from the human area as enough if any. 5'- 5'- 5'- 5'- ", % . " $ ! $ + % ", ' 3 ! A B
  • 87. & & & & & & & & ! ( M ( M H ) , ! Y ! O) $ 8 ! K ! Z + !'? ' P ' > 2 ! 1 7 D :!G# $! 4 P ) & - ' :1 3 ! K [ 7 !'? ] 3 ! 4 7! ? 4 ') ! ! 6 HM#! 4 ? 4 ') : &V * ", + HM#! 3 ! A B Environmental Impacts Area Daylight Night Residence area 45 DB 35 DB Residence & Industrial area 55 DB 45 DB DB: Decibel P ' % !
  • 88. = : !( ( !! * & & & & & & & & ! ! ! % ', C , 2! :, & 1 , R ! 6 ! C 4 :! ? ? & 1 C ". % "! " % C !'? , 4 : & :! $ 3 "#!' % ! : & 1 C 3 ! A B
  • 89. & & & & / N $ Wind Energy . coal petroleum natural gas nuclear hydro other renewables wind Wind could generate 6% of nation s electricity by 2020. S! 8, $ 9- U R ! 3 Wind currently produces less than 1% of the nation s power. S! "# $ 9- U 3 Wind Other renewables ' Z' '81 Coal Nuclear "? , 4 Natural Gas Hydro Petroleum R ', Wind Other renewables ' Z' '81 Coal Nuclear "? , 4 Natural Gas Hydro Petroleum R ', ! A 59 B ! A B ! A B
  • 90. @ # C ! $ X8 "! 6 X @ % ', 1 'M 4 , . % V A B :! + ! N G% 7 < 'M 4 > O $ 9- , . % 4 V ! '( + 5 ! % 8W , # C ! $ X8 "! 6 X V 6 ! > ! ! 1 & 8 + - , ' > % 2! % A B I "# >5 % ", $ '! % A B ') >&$ ? 4 :! > , ! + % 2! A B 2 ! ", % '? 5! ? 3 US Wind Energy Capacity 0 2000 4000 6000 8000 10000 MW 2000 2001 2002 2003 2004 2005 ! A B ! A B
  • 91. @ & % $ % % :! 7 W $ , & % F ) I 5! 4 ' & % A , & % …!O & M " ', % 4 > ?'%'#" B &$ &#8 $! % $ % % 7 W $ , $ ! A B '( > < & ! A O & < 3B :! '" W $ , + ! i ! A B 6 ! ! >:! 9 + R 2 & < 5 $ ', & 1 3 .! > + ! 2! 5!GC , 5!G , * : & 7! R ' > . 2 ! 3 ! ! ! ') ! 4 & % V , ! ? R $8 3 @ "! ', : ", 2"#! :.%G "! 8G% 'M 4 & ! N G%7 < ' ! N 4 , . % V > O + & N > & ', Q , M 2"#! :.%G A & & 4 B ! 6 , „ M '< # >: m V 8G% ",' %G V $ ! 2! "! $ :.I8% A & B $ & " , 2! "! ! € 5! A B V "#!' %R $8 > V a & i #!' % "! > + $ V ', 8, " ! U 1 "#!' % "# ! S! $ > & i 1 R 2"#! 2! U >: * & & 4 "! ! 6 , @ "! , . % "#!' %& ! 5 :, "! !' 2"#! ' 8, > ! $ % < 3 ! A B
  • 92. @ 1 . 9 '" ? > - 1 '( , A B O >$ ! 2! $ ! † X n '" N ‡ ˆ ? 8, ! > >:! 4 1 ) , ', R ! ", & - 1 > M. % T% ! >R ! $ V 1 1 . 2! 9 A B + X n 8% ! > , ') > ! 2 ! , >: ! '( - 1 ) 4> ! % - ? ' $ , ? 4 * >: 5! $ 9- :! & ) ' ? V " ,'1 ! $! V, M! > "! 4 V . % " : ! , 3 ) , 7 , ? 4 ' . % 5 * ", &! ? > ! 1 - 1 2 ! ' 0 % ') > ! 2 ! ' 0 % , & ! 2! 5!G & ! ? 4 G? i ! ' ' 5! 1 2 ! 7 + 2! 5!G? & ') % >R 9 " ! !'? '! > 2 ! ' 0 % > 9 1 . 3 ' ? 1 . "# , ! . 1 % >& , : & 4 >& V $ 8 , "#!' %i ' n R >: ' . % ' "! $ ? e ! 2! - + 3 ! A B
  • 93. 5! n 4 " , 5! n 4 " , 5! n 4 " , 5! n 4 " , A Bhrain Trade Center @B ! ! 6 ! U U R ! 3 ! A B
  • 94. V ! & ! ".1 + 6 R 2 ! &! + ' $ 9- Countries with the most Installed Wind Capacity (MW) RV ! ' 2 ! !T! 9.149 11.603 16.618 25.170 X8 18.415 20.622 22.247 23.903 I# 10.028 11.615 15.145 16.740 ) 1.260 2.604 6.050 12.210 $ 4.430 6.270 8.000 9.587 " 8 1.718 2.123 2.726 3.736 # C 757 1.567 2.454 3.404 $‰"c < Xc UK 1.332 1.963 2.389 3.288 6 X 3.136 3.140 3.129 3.160 NJ' % 1.022 1.716 2.150 2.862 683 1.459 1.856 2.369 $ 8 1.219 1.560 1.747 2.225 & ! 1.061 1.394 1.538 1.880 8 '",' 708 817 824 1.494 $!', 510 572 788 1.067 $ 496 745 805 1.245 Austria 819 965 982 995 & ! 573 746 871 990 $ 8% 83 153 276 472 ' 20 51 146 333 =! 267 314 333 428 Belgium 167 193 287 384 Š &'! H! $ !' '? ! ! 2'
  • 95. 7 ) $ < C morocco ! 2 7 # & ! ", Rest of Europe Rest of Americas Rest of Asia Rest of Africa& Middle East Rest of Oceania World total (MW) Z ".1 A 7 B ! A B
  • 96. 0 ! & & & & & & & & & B ! & & & & * & & & & & & & & & & & O 3 3 Costs of a Wind Turbine 0 ! 1 1 ", !$ '! % 9 A B !'? ! > ! ! ! "#!' % 3 2"#! h '( A cost B ! ! ') > ! ! 1 $ '! % ! >: ' , ? W >R ! '( ! - & % - & R ! & 1 3 & % +V + ! ! : 6'( % 7 ! : ! 1 : 4 3 ! . % $. 1 :! & : + 3 An extra meter of tower will cost roughly 1,500 USD. - A 600 kW B g< A O B : ) $ 3 (A typical 600 kW turbine costs about $450,000.) '( . A O B : ) $ 3 ( Installation costs are typically $125,000.) '( ".4 A - { '( . B 4 A O B ( Therefore, the total costs will be about $575,000.) {{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{ {{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{ {{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{ {{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{ {{{{{{{{{{{{{{{{{{{{{{{{ {{{{{{{{{{{{{{{{{{{{{{{{ {{{{{{{{{{{{{{{{{{{{{{{{ {{{{{{{{{{{{{{{{{{{{{{{{ '( 1 ! ! & ! 4 - A R < 6 ! O 3B (The average price for large, modern wind farms is around $1,000 per kilowatt electrical power installed. ) & ! ! ! %i :! 5 A R m , B F &! R N, A &", ' 8, 3B ( Modern wind turbines are designed to work for some 120,000 hours of operation throughout their design lifetime of 20 years. ( 13.7 years non-stop)) '( # ) 8, F S! ! A &! B , g< 3 (Maintenance costs are about 1.5-2.0 percent of the original cost, per year.) ! A B
  • 97. / . 0 1 . * 2 / . 0 Manufacturing Market Share I I ; "# Y Vestas & Enercon P & ! NEG Micon # 4 Gamesa - GE ; Bonus 0 ! Nordex $! Made I! Repower Ecotecnia Z ".1 A 8 B ! A B ! A B
  • 98. E & -8 ! + ! A B ! A B
  • 100. 4 1 . * Process of building Wind Power 9 ! A B ! A B
  • 102. ! "# ! $ ! " # $%& # $%& ' ( " (ENERGI TEAM AG) ) *+" !( , # -( & ) ! . / 0 " ! ) . / ( % * + 1 2 3 % ! ( 4 ! ) ! . / 5 6 (# 7 #8 7 9& ! " : #% 5 )3 % "!(; ! (IRIDIUM 9522B) < : %, . 121 /
  • 104. %& ' . Anemometer =/ No. Name Height(m) Boom direction (deg) Note 1 Top (V_1) 50 +/- 90 from MWD - 2 backup (V_2) 30 +/- 45 from MWD - 3 Ref_1 (V_3) 10 +/- 45 from MWD - < #%& # + . Anemometer / 4 ( !! > & + (#? # & < < @ @ 2 ;# A#@ @ @ @#%& # + . Anemometer / @ @ @ @ @ @ @ @ @ @(#? @ @1 @ @ ! # ? ! *5 B C% < < #2 (#? # ?( . Digital Signal / & !& 4 (# ! < < @ @ @ % @ &@ (@ D; @! ? @ E @ 2 1 @ ! F @ 1 ! 4 6 !G < 3:(# ! *5 B C% < < 4@ # 6 @ H @ , @ @ (@ 4@ !F&#:% @ + ! 2 < 4@ ! @ 2 @I ;# 1 ! 2 & J ( ( < : %, . 123 / K? %, . /
  • 105. @ @ K@ @ #@ @ 2 @ @#%& # + . Anemometer / &@ @ @ @ @ @(#? @ @ # &@ @ (@ @ E @ @ > @ @ @ @ L@ @ # 4@ @ # (@ @ @ @ @ @ @ @ @ @4@ @(: !F . @ @ ? / @ @4@ @ # ! . 4? ! M ? M !( / . / :# ! < @ + (@! @:# +FN &@ @ 4@ @ # @ @ :# @ @ @ @ L@ @ # @ @ #5 ; @ @ + @ @ @ @4@ @ # ! @ @ @ @ + < @ @! @ @#%& # + . Anemometer / &@ 1 @ ! ! @ + + + ( ! O# + ; > 4# #2 L # I ;# < !(; > #%& # + . Anemometer / = # & J & L @ 2 # 4# !4 ! (3 . 4E @ 2 / @ @ 2 ? ! !( P#* > Q L# * & # ! . wear / 3 (#* & 4@ # !4@ ! H ! . , , / 1 !4 ! @# !F ! % M &@ @ 3 L@ # ! @ F @ L > % !( 4 ! : 2 < : %, . 124 / : %, . 125 /
  • 107. . Wind direction Transmitter - Wind Vane =/ No. Name Height(m) Boom direction (deg) Note 1 Top (dir) 50 +/- 90 from MWD - R @ @ @ @ @ + # . Wind Vane / # & + 4 ( !! > & + < R # ?( + & !& 4 (# ! < R 1 @ ! (@ D; @! ? @ @ @ % @ &@ F @ @ E @ 2 !G 1 ! 4 6 $ 4# 9&8 < ! *5 B C% 3:(# < R ! 2 !!% . F&#:% + M S# : + M P# T / 4@ # 6 @ H @ , @ ( 4 ! < ( 4 ! 2 I ;# 1 ! 2 & J ( < K #2 @ @ @ @ @ + # . Wind Vane / # & @ + (@ E @ > &@ @ @ @ @ @ L@ @ # 4@ @ # (@ @ @ @ @ @ @ @ @ @4@ @(: !F . @ @ ? / @ @4@ @ # ! . 4? ! M ? M !( / . / :# ! < @ + (@! @:# +FN @ #5 ; @ + @ @4@ # ! @ +& 4# :# L # < @! @ + @ # @ @ @ @ @ . Wind Vane / 4# #2 L # 1 @ ! ! @ + + + ( ! O# + ; > I ;# & < K? %, . / : %, . 126 /
  • 108. !(; > @ @ @ @ @ + # . Wind Vane / = L# & J & K@ # !!% @ @ 2 @ @ # @4@ # !4@ ! . 4E @ 2 / @ 2 & # ! * M L # ! F (* 8 #I % ! < : %, . 127 /
  • 109. . Humidity/- Temperature sensors =/ No. Name Height(m) Boom direction (deg) Note 1 Temp. /Hum. 9 0 from north - ; L:# ; 6 K# ( B 6 ! #2 . UV / M (:# #2 ! ! ! % 8 W2 4 # ! . ! @ #5 #5 #2 % @ @ 8 W@ 2 # ! @ @ 4@ # ! ;# / < 4 ! (E > & ! L # 4 ( ! 4# P#: 2 @4# ! : @ &? &? ;K# < @! @ +&@ @# P@ 2 L@ # FN 4#> P# L:# #O +P# #: ? * < K? %, . / : %, . 128 /
  • 111. . Pyramometer sensor =/ No. Name Height(m) Boom direction (deg) Note 1 Pyrano. 9 180 from north - L:# F + &? ;K# X& 2 # & # . 4000 W/m2 / K@ # @ . U@ Y / % 8 . -40ºC / 80ºC / 1 ! M L # #2 4 (: ! & + M @ % ! K#% . @ % / 4# 9 < 4# ! (? 3 FN 4# ! &? ;K# X& 2 # 4# % Z + < : %, . 130 / K? %, . /
  • 113. ! . Air pressure sensor- barometer =/ No. Name Height(m) Boom direction (deg) Note 1 pressure Cabinet No direction necessary - # & L:# F + & ! &? L & ! < "# $# % % . Lighting rod =/ No. Name Height(m) Boom direction (deg) Note 1 Lighting rod top 0 from MWD - F + (#%+ & 1 @ ! @ ! @ 2 @ @ 5 @ ; @ ! @4@ # 6 @ @ 5 @ (E K# # < K? %, . / : %, . 133 / K? %, . / : %, . 134 /
  • 114. & " ' ( " . Data logger =/ No. Name Height(m) Boom direction (deg) Note 1 Data logger 4 m No direction necessary - %& & (#%+F + 4 ! :2 # 4 ( !9[> (D; % < ! %& @ *5 B C%6@ @1 @ ! ! @ % B C% @ < @ #$%& @ @ @ @ 35 1 &@ (#@ @ @ @ @ @ @ @ @ @ @ @ . Serial port / 4 ( ! 2 2 & ! : ? ! ! ! @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ : M @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ % @ @ @ @ @ @ @ @ @ @ 8 . -40ºC / +85ºC / 1 @ ! M L@ # B C% @ M A#@ . GSM / @ ] L@ @ @ #% @ @ @ S @ @ @#+ #@ @ @ 2 @ @ @ @ @ @ 3 @ @ @ ! @ @ @ . E-mail / Text Messages / M @ @ @ & #% @ @ @ . 1000KB </ K? %, . / : %, . 135 /
  • 115. )' * . Satellite system =/ P# 4 [ F&!&% . Satellite modem / 4 [ :# + . Satellite antenna / < 4 [ F&!&% . Satellite modem / 1 2 3 : %, . 136 /
  • 116. 4 [ :# + . Satellite antenna / & F&!&% &? F&!&% : %, . 137 / : %, . 138 /
  • 117. & F&!&% &? . PSTN / &E < 4# :#+ & F&!&% &? . Internet </ %, : . 139 / %, : . 140 /
  • 118. * + , . Solar Panel =/ No. Name Height(m) Boom direction (deg) Note 1 Panel 6.5 m S/180 - F @ @ + [&@ @ *@ @ @ @ :# F @ @ &@ @ &@ @ &@ @ ? @ @ @ @ @ @ (#%+ !(;# @ @ @ @ % 4 ! 5 - %, : . 141 / K? %, . /
  • 119. . ' % ! / 0 = ^K ( &? # @! B@ + 5 @ @ L@ # @& 3 L@ @ &@ @ ( % : @ 2 @ 1 ; 4 !4L # " 2& _ B 6 (#%+ ! > 3 !Q % +& = < `3#5 2& 3 . Fixed angle </ 0 ! P#5 ! ! : 9 4 ( !4 ! > < & 3 ? :# . Rolling sphere </ ! ! : 9 1 !4 ! > 1 ! 5 N ? & %, : . 142 / %, : . 143 / %, : . 144 /
  • 120. 1 " 2 ( 0 " , 0 0 2 ' F = * 8# . Serial port / ! #$%& & . Data Logger / 4 C ! < F ! = ! & &5 !( . COM4 / M (#? ! a * %, : . 145 / %, : . 146 /
  • 121. 3 ! 4 " 0% " - - - - %, : . 147 /
  • 123. F b:# = 4 (; ! !& ! &5 % !4L # & ! !( 4 c # <<<< F 2 2 = & ! !( 4 <<<< %, : . 149 / %, : . 150 /
  • 124. !( ! @! : @ !&@ 1 @ ; , 5 @ % + +& @ @ @#;# @ @ @ @ @ @ (@ @ @ L@ @ @> @ @ @ + !& 4# $ % / 0 %, : . 151 / %, : . 152 / @ @ + 4@ @(; 4#L@ @ 4@ @ # ( ! !F 5
  • 125. () * Process of building Wind measuring mast !(; ! " +" (;# d " #8 > & =270° N M.W.D !(; ! " ) !" + d " mast direction=90° N =270° N M.W.D %, : . 153 / %, : . 154 /
  • 126. e Stay ! " Stay # $ % #& Stay # $ e e ' ( ) * data logger # + , %, : . 155 / %, : . 156 /
  • 127. ' solar panel # ! " ! -. + , ' $ $ -$ ./ . 0 # 1 ! " 2- 34 + -& 5 +6 # ! -. 6 6 humidity 6 6 %, : . 157 / %, : . 158 /
  • 128. ' 1 ! " v3 # $ $ -$ ./ . $ 6 ' 1 ! " v2 # $ $ -$ ./ . 6 $ %, : . 159 / %, : . 160 /
  • 129. ' 1 ! " v1 # 0 # 6 7 -. 8 " # + , . 79 $ 6 ' ) +1 ! " ' %, : . 161 / %, : . 162 /
  • 130. ' & /: / 6) + ; 6 < $= ! " / 6 < > ; ? 6 < / + @ $ A - # B C ? 3 ) 3 A , (IRIDIUM 9522B) / , :% #./+ D # E 6 , + + ) ? 6 < %, : . 163 / %, : . 164 /
  • 131. V % : M ( 4 ( ! . B # < ( % / %, : . 165 /
  • 132. Wind measuring mast installation ! "# ! $ WIND ENERGY DETAILED FEASIBILITY STUDY FOR ERBIL, DOHUK AND SULAYMANIA GOVERNORATES Contract no. KRG – MOE / WFS – 01 / 2008 1 .: No ( Location U (# Arbil Region B 2 F 5 R , 1 ? 1st Mast; Tarjan -Khabat Position name ! R R : Friday, 12. February 2010 Date of installing: : 2 E( 5 & Geographic coordinates (determined by GPS-device; WGS 84; hddd°mm'ss.s") )8 # ss.s" mm' hddd° ) 33,8'' 07' 36° N Latitude "a ! 07,2'' 44' 43° E Longitude : 2 + (;# Main wind direction at this place: 285° North (rough estimate by satellite; only necessary for boom-direction) & 5 + G Mast direction while assembling: 90° North (belongs to the existend countryside) 276 m ! + : 2 Height of location above sea level %, : . 166 / K? %, . /
  • 133. 2 .: No ( Location U (# Arbil Region B 2 F ! 5 R ; , 5 (f 2nd Mast; Jazhnikan-Bahrka Position name ! R R g 2 ! Monday, 15. February 2010 Date of installing: : 2 E( 5 & Geographic coordinates (determined by GPS-device; WGS 84; hddd°mm'ss.s") )8 # ss.s" mm' hddd° ) 23,5'' 21' 36° N Latitude "a ! 20,2'' 57' 043° E Longitude : 2 + (;# Main wind direction at this place: 75° North (rough estimate by satellite; only necessary for boom-direction) G & 5 + Mast direction while assembling: 255° North (belongs to the existend countryside) 430 m ! + : 2 Height of location above sea level K? %, . / %, : . 167 /
  • 134. 3 .: No ( Location U (# Arbil Region B 2 F W 5 R B hTi 3rd Mast; KANI KAWAN HANARA Position name ! R R g 2 > Wednesday, 17. February 2010 Date of installing: : 2 E( 5 & Geographic coordinates (determined by GPS-device; WGS 84; hddd°mm'ss.s") )8 # ss.s" mm' hddd° ) 21,3'' 15' 36° N Latitude "a ! 12,0'' 16' 044° E Longitude : 2 + (;# Main wind direction at this place: 75° North (rough estimate by satellite; only necessary for boom-direction) G & 5 + Mast direction while assembling: 300° North (belongs to the existend countryside) 891 m ! + : 2 Height of location above sea level K? %, . / %, : . 168 /
  • 135. 4 .: No ( Location U (# Arbil Region B 2 F > 5 R ( 4th Mast; Barazan-Harir Position name ! R R g 2 9 Sunday, 21. February 2010 Date of installing: : 2 E( 5 & Geographic coordinates (determined by GPS-device; WGS 84; hddd°mm'ss.s") )8 # ss.s" mm' hddd° ) 17,9'' 34' 36° N Latitude "a ! 00,6'' 18' 044° E Longitude : 2 + (;# Main wind direction at this place: 75° North (rough estimate by satellite; only necessary for boom-direction) G & 5 + Mast direction while assembling: 290° North (belongs to the existend countryside) 605 m ! + : 2 Height of location above sea level %, : . 169 / K? %, . /
  • 136. 5 .: No ( Location U (# Arbil Region B 2 F b:# 5 R W % & 5th Mast; Mazne-Soran Position name ! R R g 2 > Wednesday, 24. February 2010 Date of installing: : 2 E( 5 & Geographic coordinates (determined by GPS-device; WGS 84; hddd°mm'ss.s") )8 # ss.s" mm' hddd° ) 6,1'' 43' 36° N Latitude "a ! 53,16'' 28' 044° E Longitude : 2 + (;# Main wind direction at this place: 75° North (rough estimate by satellite; only necessary for boom-direction) G & 5 + Mast direction while assembling: 255° North (belongs to the existend countryside) 677 m + : 2 ! Height of location above sea level K? %, . / %, : . 170 /
  • 137. 6 : . o N ( $ Location U 9& ! Dohuk Region B 2 F 2 2 5 R &? 6th Mast; Barzor-Zakho Position name ! R R g 2 > Wednesday, 3. March 2010 Date of installing: : 2 E( 5 & Geographic coordinates (determined by GPS-device; WGS 84; hddd°mm'ss.s") )8 # ss.s" mm' hddd° ) 18,3'' 11' 37° N Latitude "a ! 42,8'' 41' 042° E Longitude : 2 + (;# Main wind direction at this place: 60° North (rough estimate by satellite; only necessary for boom-direction) G & 5 + Mast direction while assembling: 40° North (belongs to the existend countryside) 509 m ! + : 2 Height of location above sea level %, : . 171 / K? %, . /
  • 138. 7 : . o N ( $ Location U 9& ! Dohuk Region B 2 F f 5 R & ;b:#+ S# 7th Mast; Enjkasor-Batel Position name ! R R g 2 ]:# Thursday, 4. March 2010 Date of installing: : 2 E( 5 & Geographic coordinates (determined by GPS-device; WGS 84; hddd°mm'ss.s") )8 # ss.s" mm' hddd° ) 37,7'' 03' 37° N Latitude "a ! 07,7'' 26' 042° E Longitude : 2 + (;# Main wind direction at this place: 60° North (rough estimate by satellite; only necessary for boom-direction) G & 5 + Mast direction while assembling: 320° North (belongs to the existend countryside) 509 m ! + : 2 Height of location above sea level %, : . 172 / K? %, . /
  • 139. 8 : . o N ( $ Location U 9& ! Dohuk Region B 2 F 2 5 R E &? 8th Mast; Batufa-Zakho Position name ! R R g 2 Saturday, 6. March 2010 Date of installing: 2 E( 5 & : Geographic coordinates (determined by GPS-device; WGS 84; hddd°mm'ss.s") )8 # ss.s" mm' hddd° ) 35,9'' 10' 37° N Latitude "a ! 25,7'' 01' 043° E Longitude : 2 + (;# Main wind direction at this place: 60° North (rough estimate by satellite; only necessary for boom-direction) G & 5 + Mast direction while assembling: 230° North (belongs to the existend countryside) 947 m ! + : 2 Height of location above sea level %, : . 173 / K? %, . /
  • 140. 9 : . o N ( $ Location U 9& ! Dohuk Region B 2 F & 5 R j5& c #3 % 9th Mast; Hojava-Mangesh Position name ! R R g 2 ! Monday, 8. March 2010 Date of installing: : 2 E( 5 & Geographic coordinates (determined by GPS-device; WGS 84; hddd°mm'ss.s") )8 # ss.s" mm' hddd° ) 27,4'' 00' 37° N Latitude "a ! 13,3'' 02' 043° E Longitude : 2 + (;# Main wind direction at this place: 60° North (rough estimate by satellite; only necessary for boom-direction) G & 5 + Mast direction while assembling: 250° North (belongs to the existend countryside) 933 m ! + : 2 Height of location above sea level K? %, . / %, : . 174 /
  • 141. 10 : . o N ( $ Location U 9& ! Dohuk Region B 2 5 F ! $ S#Z 10th Mast; Kani spi-Semmel Position name ! R R g 2 > Wednesday, 10. March 2010 Date of installing: : 2 E( 5 & Geographic coordinates (determined by GPS-device; WGS 84; hddd°mm'ss.s") )8 # ss.s" mm' hddd° ) 20,0'' 53' 36° N Latitude "a ! 54,2'' 50' 042° E Longitude : 2 + (;# Main wind direction at this place: 60° North (rough estimate by satellite; only necessary for boom-direction) G & 5 + Mast direction while assembling: 225° North (belongs to the existend countryside) 304 m ! + : 2 Height of location above sea level %, : . 175 / K? %, . /
  • 142. 11 : . o N ( "# Location U #8 Sulaymanyah Region B 2 6 5 k % % O% > 11th Mast; Ban maqan-Chamchamal Position name ! R R g 2 9 Sunday, 14. March 2010 Date of installing: : 2 E( 5 & Geographic coordinates (determined by GPS-device; WGS 84; hddd°mm'ss.s") )8 # ss.s" mm' hddd° ) 11,6'' 31' 35° N Latitude "a ! 25,5'' 47' 044° E Longitude + (;# : 2 Main wind direction at this place: 270° North (rough estimate by satellite; only necessary for boom-direction) G & 5 + Mast direction while assembling: 90° North (belongs to the existend countryside) 887 m : 2 ! + Height of location above sea level K? %, . / %, : . 176 /
  • 143. 12 : . o N ( "# Location U #8 Sulaymanyah Region B 2 5 6 ! & 2 ! 12th Mast; Shabaki kon-Dukan Position name ! R R W g 2 Tuesday, 16. March 2010 Date of installing: : 2 E( 5 & Geographic coordinates (determined by GPS-device; WGS 84; hddd°mm'ss.s") )8 # ss.s" mm' hddd° ) 13,2'' 57' 35° N Latitude "a ! 32,4'' 56' 044° E Longitude : 2 + (;# Main wind direction at this place: 270° North (rough estimate by satellite; only necessary for boom-direction) 5 + G & Mast direction while assembling: 90° North (belongs to the existend countryside) 602 m ! + : 2 Height of location above sea level K? %, . / %, : . 177 /
  • 144. 13 : . o N ( "# Location U #8 Sulaymanyah Region B 2 5 6 # # + k > 13th Mast; Aliawa-Chwar Qurna Position name ! R R ]:# g 2 Thursday, 18. March 2010 Date of installing: : 2 E( 5 & Geographic coordinates (determined by GPS-device; WGS 84; hddd°mm'ss.s") )8 # ss.s" mm' hddd° ) 36,1'' 11' 36° N Latitude "a ! 27,5'' 48' 044° E Longitude : 2 + (;# Main wind direction at this place: 270° North (rough estimate by satellite; only necessary for boom-direction) G & 5 + Mast direction while assembling: 90° North (belongs to the existend countryside) 535 m ! + : 2 Height of location above sea level K? %, . / %, : . 178 /
  • 145. 14 : . o N ( "# Location U #8 Sulaymanyah Region B 2 5 ! > & [ [ 14th Mast; Kalari kon-Kalar Position name ! R R g 2 Saturday, 20. March 2010 Date of installing: : 2 E( 5 & Geographic coordinates (determined by GPS-device; WGS 84; hddd°mm'ss.s") )8 # ss.s" mm' hddd° ) 17,5'' 39' 34° N Latitude "a ! 7,6'' 18' 045° E Longitude : 2 + (;# Main wind direction at this place: 270° North (rough estimate by satellite; only necessary for boom-direction) G & 5 + Mast direction while assembling: 90° North (belongs to the existend countryside) 254 m ! + : 2 Height of location above sea level K? %, . / %, : . 179 /
  • 146. 15 : . o N ( "# Location U #8 Sulaymanyah Region B 2 5 6 l#% !( m!i # 15th Mast; Kalari kon-Kalar Position name ! R R g 2 ! Monday, 22. March 2010 Date of installing: : 2 E( 5 & Geographic coordinates (determined by GPS-device; WGS 84; hddd°mm'ss.s") )8 # ss.s" mm' hddd° ) 46,1'' 19' 35° N Latitude "a ! 43,9'' 51' 045° E Longitude : 2 + (;# Main wind direction at this place: 270° North (rough estimate by satellite; only necessary for boom-direction) G & 5 + Mast direction while assembling: 90° North (belongs to the existend countryside) 509 m ! + : 2 Height of location above sea level K? %, . / %, : . 80 1 /
  • 147. ! " " # $ % &' ( ) * + $ , ) - +. + % (Fossil) (Renewable) / 0 +12 , " 3+$ , ) & * 4 ( " "5 * 3 0 ) * " 6+( - ( 7 ) 5 8 9 & : ) ; <+ 5 =+& )1 > ? - - - - > > > > 6+( - ( " , +61 * <+ ( ) * <+ " 4 & () * + ++ * 3 @ <+ ( ) <+ A - * - * - * - * > > > > , * - ! <+ 3 8 36@ B* " 6+( - ( 3 0 C + &' ") ( ) * A - - - - > > > > 0 + D * ) " 8 + & +6 6 ) * 3 0 A ) * E ; - * D+ ) ) * " $ " F & & ) + " ; " ( F D2 " $* # : ! 3 0 8 / ) * < D A " . 5 ) * E ;- - ( " @B " $ " 3 ( D+ B < * & ) " G % * ) * B ( " ) & ) " ) @B - & ! ) ! ) 5 ! F & " * " ) ! F H & )I+ " D 7 F) * * 5 $ " ) F ) 3 ( ) 6+ H 5 < * " 3+ D ' "@B5)* " 6 ) 36@ 6 ) & F B * & ) * & () * <+ * A - & + "J3 I 0 + K ( " & ) " % * ) * ( 8& ! ( F * ) * * " " A 5 ) ) * B ( & ) K ( " & ) * " ) ) % - ) + * L * D+ " 3+$ + 0 + * * &) ) - $ J3 I! + 5 ) & F D * )& + 8 D ) * )) 5 ! 8 M A ( L+ ) * ( L+ ) * ( L+ ) * ( L+ ) * > > > > N ) O * * " # " I6+& 1+ < *5+! * " A - " I 3 0 ) * ) - ( ( ) * 4 ( B5 5 & ) < 6+( * A @ 3 0 " )& MW # & " $ * " 3+$ * P B ( 4+. * # O * P B ( 4+. * O # Q I @ 5 #
  • 148. < * ) * 4 ( " 6+( - ( 6 65 ) 5 ")* @B < * < * $ +$ " ; * " B ( " @B A * " @B ! " 5 6+( - ( " )& < *) * # " * " 3 5 @B ( " F) 3+ " < * * -: R " D # " ) * & # &) ) S+ & J! + "* * + )) < Run-Of-River # " 5 ) ++ T+& 3+ " 3 36@ A * 4 ( & D2 " 36@ & ) G , & ) 5 , @B * & - )* " ) 5 U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U / # U U U U U U U U U U U U U U U U U U U U U U 1 U U U U U U U U U U U U U V A W U U 6+X U ( U YLU5 ) * U 0U + U* 4 U ( Z$ U RU +& ") 5 # U " " U U* U F)5U U) 5 &G " U* U) * U <U 3 4 U ( " U 6+( U * D$ U U )U U 6+ IU + & U () * 'U U U " " " U 3 5 U U " 6+X U ( 7 F D & B * U # RU +& $ U U ! <+ ( " 36@ < J3 , 8 U U 36@ [U +& U ( " $ 36@ C + D F U U * U U !/U U U U U U 6& DIU U + " U U U U ! ( U U ( U U* 4 U U ( U U) B <+ * * " ) )5 " + &' ( + * A U U U U " U U8& U U ! * U U U U U U 6+( - U U ( 1 U U ( " U U ( ") 5 U U U U + D+ U U U U* 0U U + & <+ U U U U & )& U U <U UJ3 U U " U U* U U ) U U U U U U U U 8 /3 U U ! * * U U * " ")* $ " )* [ & U* 4 U ( & U D2 G <0 + " $* * ) * ") " 6 @ 181 #
  • 149. ] B !) " + = ^ ! @B5 ! + U : ! 6 U U* IU + <U * U)* U ) ) H4 " " & ) * K ( A )* $ " )* @B5 U U " U U U 6+( - U ( 4 U ( U !H U ( * (* 4+. + ( # * I+ < * # U : ! 6 _6+ U !H U ( U U U - F & " + " ( 6 - + ) " * U $ U J3+U $ U " - U ( U ( 6 U - U U " U 6+( - U ( & U % * U 6+ ) + ) - 8& ! * < * " " & () * * + <+ * "* @B5 * 4 ( A ^ ! & ( @B5 U )* U $ " U)* " U U U 6+( - U ( U " U 4 U ( & U D2 0U + 0U U + U U* U U @B 1; U U <U U + U U 6+( - U U ( U U " U U & U U " U U) " U U 3 5 U U U U " U U) " + U U U U U U 1 - $ U U U U # 8U U , U U @B5 - U U U U 6 & IU U + U U " U U "@ U $ - U 6+( U ) U ++&' ( &) ) & " +61 * " 0 + +& D2 F ( <+ & DI+ U U U + U U U D+ : U U U U U U 3 5 A 8U U U * U U U 36@ " 6U U U U U U &' U U U +&' ( )U U U : U U U U U U ' + * +& + & A ` sarbast_engineer@yahoo.com
  • 150. ! " & <+ ( ) & ) ( < D ) <I! 6+1D+ < D 0 ) " * ) * ) * 6+() 5a ) * ) 0 ) " % * " * < D -* 0 ) F' <+ ) A ! " 6+1D+ * * + < D ) L+ " " 3+$ & < 3 A #$ ! " 6+1D+ ( "5 =+& ) + < D I! & < D + " B "@) J& < 6+X 8 * + ) - $ A ` com . yahoo @ engineer _ sarbast : b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b Kg SKE Kcal KJ KWH Unit 1 KWh 1 KJ 1 Kcal 1 Kg SKE SKE # 8 * " 1 " + A 103 Kilo K 106 Mega M 109 Giga G 1012 Tera T 1015 Petra P 1018 Exa E Q I @ 6 #
  • 151. A)) http://en.wikipedia.org/wiki/Wind_power B)) http://guidedtour.windpower.org ! " # $ %" & ' (! ) * + , % - +* % . % % % / ( 0" " $ 1 ) " # ) 2 3%. # "" +4 5 6 "$(7 " " 7- 7 " 8 % 9/ % : ; " %" ! < 2( = > ? @ ' A 9' # B 7 7 3%C D
  • 152. ! " # Contain B5 NO. Subject Page 5 G F @ Directed to II II DI+ 2 Thanks III III ) H+ ] 2 3 Preface IV IV " & # * 3 4 KRG U U U U Logo V V " ! * 4 ( & D2 4 5 About R.E – Editor VI-X VI-X [+= * - * 5 6 Introduction 1 1 U U U U U I+ 6 Renewable Energy 3 3 U U U U U U U U U U U U U U U U Kurdistan and Obstacle for generation and source of energy. U U U U U U U U U* U U U U U U U U U U 6+( - ( " I+ " U U U U U U U U U U U " A Wind History U U U U U U U U U U U U U U " 6+( " L+ ) X +$ &' Cost 23 23 " R+& )+ " " 6+( - ( Atmospheric 24 24 6 , " & X D+ Roughness 31 31 " ( " 5 Obstacle of wind 33 33 3 5 Suitable location for wind 33 33 : ! 6 " Definition of wind 34 34 U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U 6+ Lift & Drag Forces 42 42 I+ ) 5"H+( * "H+( Airfoil in stall 44 44 ) ) ^ " * * Pitch Control vs. Stall Control 45 45 ^ c+ 1 B/ Rotor Solidity 46 46 G " 5 +1 Tip Speed Ratio 47 47 )+ " L 5 How Does a Wind Turbine Work 48 48 F * ) ( 6+ 5 & Turbines can be categorized into two overarching classes based on the orientation of the rotor 58 58 " & + ) ( 6+ 5 & * D6+ " G Rotor # U U U U U U U U U U U $ * U U U U U U Types of Wind Power 60 60 ) ( 6+ 5 & $ Off-shore Wind power 68 68 6+ 5 & ) * * ) ( Cost comparison Onshore and Offshore 69 69 ") ( 6+ 5 & )+ " R+& " ) +$ D Onshore # * Offshore # Number of Blades – One 70 70 ) ") ( 6+ 5 &
  • 153. Number of Blades – Two 71 71 5 & ) * ") ( 6+ Number of Blades – Three 72 72 ) ") ( 6+ 5 & Sizes and Applications 73 73 6+( ; Wind Power Advantages 74 74 U U U U U U U U U " U U U U * U U U U U U Disadvantage of wind energy 75 75 U U U U U U U U " U U U U Sound & Noise from Wind Turbines 76 76 U U U U U U U U 6+ & " ) @ ) @ d * Effect of Wind Turbines on Radar 77 77 " ) *) 5 U U U U U U U U 6+ & " 3 B5% Wind energy and Renewable energy in the world 78 78 " X +$ &' 3 ! %Costs of a Wind Turbine 85 85 " 5 U U U U U U U U U U U U U U U " R+& " U U U U U U U U U Manufacturing Market Share 86 86 & * D * $ ) ( 6+ 5 D $ Process of building Wind Power 89 89 6 ) ( 6+ 5 & ) * Installation Mast of measurement of wind in Kurdistan Region 91 91 U U U U U U U U U $ - U U U U U U U U U * Z ) * ) * )* $ Q )* $ U U U U U U U U U U Q !H V + U U U U ( e 4+. U U U U e U U U U U (* W Equipments of mast 93 93 Q )* $ Q )* $ + Reading and download data from data logger to the PC 109 109 ! &) * " &) * " 6 ) ) * & += Process of building Wind measuring mast 114 114 $ ) * 6 " &) * )+ WIND ENERGY DETAILED FEASIBILITY STUDY FOR ERBIL, DOHUK AND SULAYMANIA GOVERNORATES Contract no. KRG – MOE / WFS – 01 / 2008 $ U U U U U U U U U U Q )* $ Q )* !H V + ( (* 4+. W 43 Conclusion 136 136 -: A 43 44 Suggestion 139 139 +6I+ . 44 45 Symbols and scales of energy 139 139 X +$ + + 4+( A 45 References & Sources 140 140 A Contain 141 141 < 5+ A 48 Brief history about editor: 143 143 * )D 5 * : 48
  • 154. : ! " ! ! " ! ! " ! ! " ! #$% #$% #$% #$% && && && && ! ! ! ! ' () ' () ' () ' () && && && && ! " ! ! " ! ! " ! ! " ! * * * * – + ! + ! + ! + ! , "-" ./ , "-" ./ , "-" ./ , "-" ./ E-mail Address: sarbast_engineer@yahoo.com sarbastara@gmail.com bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb -) I+ )fD 5- ) * + > ## * U U U ) ) + 4+. g " L+ ? ? # # U U U U U* a !" 6+$ * D+ X +$ 6+= ) * Q + ? ? ## $ Z ) * Q 1 D ? h)+i (JICA Alumni Association – IRAQ (JAAI)) & 1 * + 3 ( ( 0 ) @ D $ # (JICA-Japan International cooperation Agency) " L+ ? ? *)E " " ! &' & % A " . " * j * 4 ( " ) =+ A &
  • 155. Kurdistan Regional Government-Iraq Ministry of Electricity General Directorate of Electricity of Suleimany Directorate of Technical Hydropower & Renewable Energy Renewable Energy Wind Energy Prepared & Designed by: Engineer: Sarbast F. Muhammed