SlideShare a Scribd company logo
1 of 33
Download to read offline
Chapter 1:
Semiconductor Diodes
© Modified by Yuttapong Jiraraksopakun
ENE, KMUTT 2009
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Semiconductors, Insulators, Conductors
2
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Semiconductor Materials
Materials commonly used in the development of
semiconductor devices:
• Silicon (Si)
• Germanium (Ge)
• Gallium Arsenide (GaAs)
3
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Conduction in Semiconductors
4
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Doping
The electrical characteristics of silicon and germanium are improved
by adding materials in a process called doping.
There are just two types of doped semiconductor materials:
n-type
p-type
• n-type materials contain an excess of conduction band electrons.
• p-type materials contain an excess of valence band holes.
5
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Two currents through a diode:
Majority and Minority Carriers
Majority Carriers
• The majority carriers in n-type materials are electrons.
• The majority carriers in p-type materials are holes.
Minority Carriers
• The minority carriers in n-type materials are holes.
• The minority carriers in p-type materials are electrons.
6
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
p-n Junctions
One end of a silicon or germanium crystal can be doped as a p-
type material and the other end as an n-type material.
The result is a p-n junction.
7
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
p-n Junctions
At the p-n junction, the excess
conduction-band electrons on the
n-type side are attracted to the
valence-band holes on the p-type
side.
The electrons in the n-type
material migrate across the
junction to the p-type material
(electron flow).
The electron migration results in
a negative charge on the p-type
side of the junction and a positive
charge on the n-type side of the
junction.
The result is the formation of a
depletion region around the
junction.
8
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Diodes
The diode is a 2-terminal device.
A diode ideally conducts in
only one direction.
9
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Diode Operating Conditions
A diode has three operating conditions:
• No bias
• Forward bias
• Reverse bias
10
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Diode Operating Conditions
• No external voltage is applied: VD = 0 V
• No current is flowing: ID = 0 A
• Only a modest depletion region exists
No Bias
11
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
External voltage is applied across the p-n junction in
the opposite polarity of the p- and n-type materials.
Diode Operating Conditions
Reverse Bias
• The reverse voltage causes the
depletion region to widen.
• The electrons in the n-type material
are attracted toward the positive
terminal of the voltage source.
• The holes in the p-type material are
attracted toward the negative
terminal of the voltage source.
12
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Diode Operating Conditions
Forward Bias
External voltage is applied across the p-n junction in
the same polarity as the p- and n-type materials.
• The forward voltage causes the
depletion region to narrow.
• The electrons and holes are pushed
toward the p-n junction.
• The electrons and holes have
sufficient energy to cross the p-n
junction.
13
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Diode Characteristics
Conduction Region Non-Conduction Region
• The voltage across the diode is 0 V
• The current is infinite
• The forward resistance is defined as
RF = VF / IF
• The diode acts like a short
• All of the voltage is across the diode
• The current is 0 A
• The reverse resistance is defined as
RR = VR / IR
• The diode acts like open
14
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Actual Diode Characteristics
Note the regions for no
bias, reverse bias, and
forward bias conditions.
Carefully note the scale
for each of these
conditions.
15
( )
q
kT
V
e
I
I
T
nV
V
S
D
T
D
=
−
= 1
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
The Zener region is in the diode’s
reverse-bias region.
At some point the reverse bias voltage
is so large the diode breaks down and
the reverse current increases
dramatically.
Zener Region
• The maximum reverse voltage that won’t
take a diode into the zener region is
called the peak inverse voltage or peak
reverse voltage.
• The voltage that causes a diode to enter
the zener region of operation is called the
zener voltage (VZ).
16
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
The point at which the diode changes from no-bias condition
to forward-bias condition occurs when the electrons and
holes are given sufficient energy to cross the p-n junction.
This energy comes from the external voltage applied across
the diode.
Forward Bias Voltage
The forward bias voltage required for a:
• gallium arsenide diode ≅ 1.2 V
• silicon diode ≅ 0.7 V
• germanium diode ≅ 0.3 V
17
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
As temperature increases it adds energy to the diode.
• It reduces the required forward bias voltage for forward-
bias conduction.
• It increases the amount of reverse current in the reverse-
bias condition.
• It increases maximum reverse bias avalanche voltage.
Germanium diodes are more sensitive to temperature
variations than silicon or gallium arsenide diodes.
Temperature Effects
18
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
IDEAL VERSUS PRATICAL
19
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Semiconductors react differently to DC and AC currents.
There are three types of resistance:
• DC (static) resistance
• AC (dynamic) resistance
• Average AC resistance
Resistance Levels
20
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
DC (Static) Resistance
For a specific applied DC voltage
VD, the diode has a specific
current ID, and a specific
resistance RD.
D
D
D
I
V
R =
21
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
• The resistance depends on the amount of current (ID) in the diode.
• The voltage across the diode is fairly constant (26 mV for 25°C).
• rB ranges from a typical 0.1 Ω for high power devices to 2 Ω for low
power, general purpose diodes. In some cases rB can be ignored.
AC (Dynamic) Resistance
B
D
d r
I
r +
=
′
mV
26
∞
=
′
rd
In the forward bias region:
In the reverse bias region:
The resistance is effectively infinite. The diode acts like an open.
22
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
AC resistance can be
calculated using the current
and voltage values for two
points on the diode
characteristic curve.
Average AC Resistance
pt.
to
pt.
d
d
av
ΔI
ΔV
r =
23
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Diode Equivalent Circuit
24
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
In reverse bias, the depletion layer is very large. The diode’s strong positive and
negative polarities create capacitance, CT. The amount of capacitance depends
on the reverse voltage applied.
In forward bias storage capacitance or diffusion capacitance (CD) exists as the
diode voltage increases.
Diode Capacitance
25
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Reverse recovery time is the time required for a diode to stop
conducting once it is switched from forward bias to reverse bias.
Reverse Recovery Time (trr)
26
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
1. Forward Voltage (VF) at a specified current and temperature
2. Maximum forward current (IF) at a specified temperature
3. Reverse saturation current (IR) at a specified voltage and
temperature
4. Reverse voltage rating, PIV or PRV or V(BR), at a specified
temperature
5. Maximum power dissipation at a specified temperature
6. Capacitance levels
7. Reverse recovery time, trr
8. Operating temperature range
Diode Specification Sheets
Data about a diode is presented uniformly for many different diodes.
This makes cross-matching of diodes for replacement or design
easier.
27
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
The anode is abbreviated A
The cathode is abbreviated K
Diode Symbol and Packaging
28
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Other Types of Diodes
Zener diode
Light-emitting diode
Diode arrays
29
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
A Zener is a diode operated in reverse bias
at the Zener voltage (VZ).
Common Zener voltages are between 1.8 V
and 200 V
Zener Diode
30
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Light-Emitting Diode (LED)
An LED emits photons when it is forward biased.
These can be in the infrared or visible spectrum.
The forward bias voltage is usually in the range of 2 V to 3 V.
31
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Multiple diodes can be
packaged together in an
integrated circuit (IC).
Common Anode
Common Cathode
A variety of combinations
exist.
Diode Arrays
32
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Homework
Section 1.8
- 25, 27, 32
Section 1.15
- 51
Section 1.16
- 55
33

More Related Content

What's hot

Type of all kind of diode.zenzer diode,p n junction diode,pin diode,led diode...
Type of all kind of diode.zenzer diode,p n junction diode,pin diode,led diode...Type of all kind of diode.zenzer diode,p n junction diode,pin diode,led diode...
Type of all kind of diode.zenzer diode,p n junction diode,pin diode,led diode...Robioul Hasan
 
Benefits and advantages of led lights ppt
Benefits and advantages of led lights pptBenefits and advantages of led lights ppt
Benefits and advantages of led lights pptPayojKatiyar1
 
Topic_1_Introduction to electronics components
Topic_1_Introduction to electronics componentsTopic_1_Introduction to electronics components
Topic_1_Introduction to electronics componentsGhansyam Rathod
 
Electricity
ElectricityElectricity
Electricitysaosmith
 
Working principle diode and special diode
Working principle diode and special diodeWorking principle diode and special diode
Working principle diode and special diodeaman1894
 
IEEE 125 years History
IEEE 125 years HistoryIEEE 125 years History
IEEE 125 years HistoryIEEE Region 10
 

What's hot (13)

Type of all kind of diode.zenzer diode,p n junction diode,pin diode,led diode...
Type of all kind of diode.zenzer diode,p n junction diode,pin diode,led diode...Type of all kind of diode.zenzer diode,p n junction diode,pin diode,led diode...
Type of all kind of diode.zenzer diode,p n junction diode,pin diode,led diode...
 
LED
LEDLED
LED
 
Types of diode
Types of diodeTypes of diode
Types of diode
 
Benefits and advantages of led lights ppt
Benefits and advantages of led lights pptBenefits and advantages of led lights ppt
Benefits and advantages of led lights ppt
 
Topic_1_Introduction to electronics components
Topic_1_Introduction to electronics componentsTopic_1_Introduction to electronics components
Topic_1_Introduction to electronics components
 
Tunnel diode
Tunnel diodeTunnel diode
Tunnel diode
 
Opto oelectronics
Opto oelectronicsOpto oelectronics
Opto oelectronics
 
Electricity
ElectricityElectricity
Electricity
 
Working principle diode and special diode
Working principle diode and special diodeWorking principle diode and special diode
Working principle diode and special diode
 
Tunnel diode(1)
Tunnel diode(1)Tunnel diode(1)
Tunnel diode(1)
 
Seminar on Blue LED
Seminar on Blue LEDSeminar on Blue LED
Seminar on Blue LED
 
IEEE 125 years History
IEEE 125 years HistoryIEEE 125 years History
IEEE 125 years History
 
Blue led (1)
Blue led (1)Blue led (1)
Blue led (1)
 

Similar to Bem (2)

Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-2
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-2Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-2
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-2Shiwam Isrie
 
B-stad_CH_01.ppt
B-stad_CH_01.pptB-stad_CH_01.ppt
B-stad_CH_01.pptVikasMahor3
 
Diodes and rectifiers
Diodes and rectifiersDiodes and rectifiers
Diodes and rectifiersAnkit Dubey
 
Module-2_PNjunction diode.pptx
Module-2_PNjunction diode.pptxModule-2_PNjunction diode.pptx
Module-2_PNjunction diode.pptxSAPITHAPARANDHAMAN
 
CH01-Semiconductor Diodes.ppt.pdf
CH01-Semiconductor Diodes.ppt.pdfCH01-Semiconductor Diodes.ppt.pdf
CH01-Semiconductor Diodes.ppt.pdfrajatrokade185
 
Lecture_02_Diode_Applications.ppt
Lecture_02_Diode_Applications.pptLecture_02_Diode_Applications.ppt
Lecture_02_Diode_Applications.pptEfaFikadu
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-5
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-5Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-5
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-5Shiwam Isrie
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-15
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-15Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-15
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-15Shiwam Isrie
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-16
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-16Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-16
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-16Shiwam Isrie
 
BJT AC Analysis - Gdlc.pdf
BJT AC Analysis - Gdlc.pdfBJT AC Analysis - Gdlc.pdf
BJT AC Analysis - Gdlc.pdfShanmukhSaiR
 
87690-0135046920_pp5Chapter 5: Field-Effect Transistors.ppt
87690-0135046920_pp5Chapter 5:Field-Effect Transistors.ppt87690-0135046920_pp5Chapter 5:Field-Effect Transistors.ppt
87690-0135046920_pp5Chapter 5: Field-Effect Transistors.pptmohdrashdan7
 
Basic Electronics UNIt1 PPT
Basic Electronics UNIt1 PPTBasic Electronics UNIt1 PPT
Basic Electronics UNIt1 PPTPraveen Kunda
 
Pn junction diode by sarmad baloch
Pn junction diode by sarmad balochPn junction diode by sarmad baloch
Pn junction diode by sarmad balochSarmad Baloch
 

Similar to Bem (2) (20)

Bem (3)
Bem (3)Bem (3)
Bem (3)
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-2
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-2Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-2
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-2
 
B-stad_CH_01.ppt
B-stad_CH_01.pptB-stad_CH_01.ppt
B-stad_CH_01.ppt
 
Diodes and rectifiers
Diodes and rectifiersDiodes and rectifiers
Diodes and rectifiers
 
Module-2_PNjunction diode.pptx
Module-2_PNjunction diode.pptxModule-2_PNjunction diode.pptx
Module-2_PNjunction diode.pptx
 
CH01-Semiconductor Diodes.ppt.pdf
CH01-Semiconductor Diodes.ppt.pdfCH01-Semiconductor Diodes.ppt.pdf
CH01-Semiconductor Diodes.ppt.pdf
 
Ch01
Ch01Ch01
Ch01
 
Lecture_02_Diode_Applications.ppt
Lecture_02_Diode_Applications.pptLecture_02_Diode_Applications.ppt
Lecture_02_Diode_Applications.ppt
 
Bem (4)
Bem (4)Bem (4)
Bem (4)
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-5
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-5Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-5
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-5
 
Bem (8)
Bem (8)Bem (8)
Bem (8)
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-15
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-15Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-15
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-15
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-16
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-16Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-16
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-16
 
BJT AC Analysis - Gdlc.pdf
BJT AC Analysis - Gdlc.pdfBJT AC Analysis - Gdlc.pdf
BJT AC Analysis - Gdlc.pdf
 
87690-0135046920_pp5Chapter 5: Field-Effect Transistors.ppt
87690-0135046920_pp5Chapter 5:Field-Effect Transistors.ppt87690-0135046920_pp5Chapter 5:Field-Effect Transistors.ppt
87690-0135046920_pp5Chapter 5: Field-Effect Transistors.ppt
 
Basic Electronics UNIt1 PPT
Basic Electronics UNIt1 PPTBasic Electronics UNIt1 PPT
Basic Electronics UNIt1 PPT
 
chap.1.pdf
chap.1.pdfchap.1.pdf
chap.1.pdf
 
Chapter17
Chapter17Chapter17
Chapter17
 
Bem (5)
Bem (5)Bem (5)
Bem (5)
 
Pn junction diode by sarmad baloch
Pn junction diode by sarmad balochPn junction diode by sarmad baloch
Pn junction diode by sarmad baloch
 

More from AmeerHamzaDurrani

More from AmeerHamzaDurrani (17)

English vocabulary 1
English vocabulary 1English vocabulary 1
English vocabulary 1
 
Englishsummary writing
Englishsummary writingEnglishsummary writing
Englishsummary writing
 
English phrase clause
English phrase clauseEnglish phrase clause
English phrase clause
 
English3. phrases
English3. phrasesEnglish3. phrases
English3. phrases
 
Civilenggdrawingppx 170228111409
Civilenggdrawingppx 170228111409Civilenggdrawingppx 170228111409
Civilenggdrawingppx 170228111409
 
Civil engineering materials lab manual revised
Civil engineering materials lab manual revisedCivil engineering materials lab manual revised
Civil engineering materials lab manual revised
 
Ce materials ce115-6-paints-1
Ce materials ce115-6-paints-1Ce materials ce115-6-paints-1
Ce materials ce115-6-paints-1
 
Ce materials ce107-8-concrete
Ce materials ce107-8-concreteCe materials ce107-8-concrete
Ce materials ce107-8-concrete
 
Ce materials5. portland cement
Ce materials5. portland cementCe materials5. portland cement
Ce materials5. portland cement
 
Ce materials2 types of cement lectures
Ce materials2 types of cement lecturesCe materials2 types of cement lectures
Ce materials2 types of cement lectures
 
Ce drawingsectional views
Ce drawingsectional viewsCe drawingsectional views
Ce drawingsectional views
 
Ce drawing isometric projections
Ce drawing isometric projectionsCe drawing isometric projections
Ce drawing isometric projections
 
Ce drawing[lab]fwddrawing project drawings part two
Ce drawing[lab]fwddrawing project drawings part twoCe drawing[lab]fwddrawing project drawings part two
Ce drawing[lab]fwddrawing project drawings part two
 
Ce drawing[lab]fwddrawing project drawings part one
Ce drawing[lab]fwddrawing project drawings part oneCe drawing[lab]fwddrawing project drawings part one
Ce drawing[lab]fwddrawing project drawings part one
 
Bem (7)
Bem (7)Bem (7)
Bem (7)
 
Bem (6)
Bem (6)Bem (6)
Bem (6)
 
Bem (1)
Bem (1)Bem (1)
Bem (1)
 

Recently uploaded

HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 

Recently uploaded (20)

HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 

Bem (2)

  • 1. Chapter 1: Semiconductor Diodes © Modified by Yuttapong Jiraraksopakun ENE, KMUTT 2009
  • 2. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Semiconductors, Insulators, Conductors 2
  • 3. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Semiconductor Materials Materials commonly used in the development of semiconductor devices: • Silicon (Si) • Germanium (Ge) • Gallium Arsenide (GaAs) 3
  • 4. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Conduction in Semiconductors 4
  • 5. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Doping The electrical characteristics of silicon and germanium are improved by adding materials in a process called doping. There are just two types of doped semiconductor materials: n-type p-type • n-type materials contain an excess of conduction band electrons. • p-type materials contain an excess of valence band holes. 5
  • 6. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Two currents through a diode: Majority and Minority Carriers Majority Carriers • The majority carriers in n-type materials are electrons. • The majority carriers in p-type materials are holes. Minority Carriers • The minority carriers in n-type materials are holes. • The minority carriers in p-type materials are electrons. 6
  • 7. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky p-n Junctions One end of a silicon or germanium crystal can be doped as a p- type material and the other end as an n-type material. The result is a p-n junction. 7
  • 8. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky p-n Junctions At the p-n junction, the excess conduction-band electrons on the n-type side are attracted to the valence-band holes on the p-type side. The electrons in the n-type material migrate across the junction to the p-type material (electron flow). The electron migration results in a negative charge on the p-type side of the junction and a positive charge on the n-type side of the junction. The result is the formation of a depletion region around the junction. 8
  • 9. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Diodes The diode is a 2-terminal device. A diode ideally conducts in only one direction. 9
  • 10. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Diode Operating Conditions A diode has three operating conditions: • No bias • Forward bias • Reverse bias 10
  • 11. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Diode Operating Conditions • No external voltage is applied: VD = 0 V • No current is flowing: ID = 0 A • Only a modest depletion region exists No Bias 11
  • 12. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky External voltage is applied across the p-n junction in the opposite polarity of the p- and n-type materials. Diode Operating Conditions Reverse Bias • The reverse voltage causes the depletion region to widen. • The electrons in the n-type material are attracted toward the positive terminal of the voltage source. • The holes in the p-type material are attracted toward the negative terminal of the voltage source. 12
  • 13. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Diode Operating Conditions Forward Bias External voltage is applied across the p-n junction in the same polarity as the p- and n-type materials. • The forward voltage causes the depletion region to narrow. • The electrons and holes are pushed toward the p-n junction. • The electrons and holes have sufficient energy to cross the p-n junction. 13
  • 14. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Diode Characteristics Conduction Region Non-Conduction Region • The voltage across the diode is 0 V • The current is infinite • The forward resistance is defined as RF = VF / IF • The diode acts like a short • All of the voltage is across the diode • The current is 0 A • The reverse resistance is defined as RR = VR / IR • The diode acts like open 14
  • 15. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Actual Diode Characteristics Note the regions for no bias, reverse bias, and forward bias conditions. Carefully note the scale for each of these conditions. 15 ( ) q kT V e I I T nV V S D T D = − = 1
  • 16. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky The Zener region is in the diode’s reverse-bias region. At some point the reverse bias voltage is so large the diode breaks down and the reverse current increases dramatically. Zener Region • The maximum reverse voltage that won’t take a diode into the zener region is called the peak inverse voltage or peak reverse voltage. • The voltage that causes a diode to enter the zener region of operation is called the zener voltage (VZ). 16
  • 17. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky The point at which the diode changes from no-bias condition to forward-bias condition occurs when the electrons and holes are given sufficient energy to cross the p-n junction. This energy comes from the external voltage applied across the diode. Forward Bias Voltage The forward bias voltage required for a: • gallium arsenide diode ≅ 1.2 V • silicon diode ≅ 0.7 V • germanium diode ≅ 0.3 V 17
  • 18. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky As temperature increases it adds energy to the diode. • It reduces the required forward bias voltage for forward- bias conduction. • It increases the amount of reverse current in the reverse- bias condition. • It increases maximum reverse bias avalanche voltage. Germanium diodes are more sensitive to temperature variations than silicon or gallium arsenide diodes. Temperature Effects 18
  • 19. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky IDEAL VERSUS PRATICAL 19
  • 20. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Semiconductors react differently to DC and AC currents. There are three types of resistance: • DC (static) resistance • AC (dynamic) resistance • Average AC resistance Resistance Levels 20
  • 21. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky DC (Static) Resistance For a specific applied DC voltage VD, the diode has a specific current ID, and a specific resistance RD. D D D I V R = 21
  • 22. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky • The resistance depends on the amount of current (ID) in the diode. • The voltage across the diode is fairly constant (26 mV for 25°C). • rB ranges from a typical 0.1 Ω for high power devices to 2 Ω for low power, general purpose diodes. In some cases rB can be ignored. AC (Dynamic) Resistance B D d r I r + = ′ mV 26 ∞ = ′ rd In the forward bias region: In the reverse bias region: The resistance is effectively infinite. The diode acts like an open. 22
  • 23. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky AC resistance can be calculated using the current and voltage values for two points on the diode characteristic curve. Average AC Resistance pt. to pt. d d av ΔI ΔV r = 23
  • 24. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Diode Equivalent Circuit 24
  • 25. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky In reverse bias, the depletion layer is very large. The diode’s strong positive and negative polarities create capacitance, CT. The amount of capacitance depends on the reverse voltage applied. In forward bias storage capacitance or diffusion capacitance (CD) exists as the diode voltage increases. Diode Capacitance 25
  • 26. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Reverse recovery time is the time required for a diode to stop conducting once it is switched from forward bias to reverse bias. Reverse Recovery Time (trr) 26
  • 27. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky 1. Forward Voltage (VF) at a specified current and temperature 2. Maximum forward current (IF) at a specified temperature 3. Reverse saturation current (IR) at a specified voltage and temperature 4. Reverse voltage rating, PIV or PRV or V(BR), at a specified temperature 5. Maximum power dissipation at a specified temperature 6. Capacitance levels 7. Reverse recovery time, trr 8. Operating temperature range Diode Specification Sheets Data about a diode is presented uniformly for many different diodes. This makes cross-matching of diodes for replacement or design easier. 27
  • 28. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky The anode is abbreviated A The cathode is abbreviated K Diode Symbol and Packaging 28
  • 29. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Other Types of Diodes Zener diode Light-emitting diode Diode arrays 29
  • 30. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky A Zener is a diode operated in reverse bias at the Zener voltage (VZ). Common Zener voltages are between 1.8 V and 200 V Zener Diode 30
  • 31. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Light-Emitting Diode (LED) An LED emits photons when it is forward biased. These can be in the infrared or visible spectrum. The forward bias voltage is usually in the range of 2 V to 3 V. 31
  • 32. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Multiple diodes can be packaged together in an integrated circuit (IC). Common Anode Common Cathode A variety of combinations exist. Diode Arrays 32
  • 33. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Homework Section 1.8 - 25, 27, 32 Section 1.15 - 51 Section 1.16 - 55 33