SlideShare a Scribd company logo
1 of 55
William Stallings
Computer Organization
and Architecture
8th Edition
Chapter 3
Top Level View of Computer
Function and Interconnection
Program Concept
• Hardwired systems are inflexible
• General purpose hardware can do
different tasks, given correct control
signals
• Instead of re-wiring, supply a new set of
control signals
What is a program?
• A sequence of steps
• For each step, an arithmetic or logical
operation is done
• For each operation, a different set of
control signals is needed
Function of Control Unit
• For each operation a unique code is
provided
—e.g. ADD, MOVE
• A hardware segment accepts the code and
issues the control signals
• We have a computer!
Components
• The Control Unit and the Arithmetic and
Logic Unit constitute the Central
Processing Unit
• Data and instructions need to get into the
system and results out
—Input/output
• Temporary storage of code and results is
needed
—Main memory
Computer Components:
Top Level View
Instruction Cycle
• Two steps:
—Fetch
—Execute
Fetch Cycle
• Program Counter (PC) holds address of
next instruction to fetch
• Processor fetches instruction from
memory location pointed to by PC
• Increment PC
—Unless told otherwise
• Instruction loaded into Instruction
Register (IR)
• Processor interprets instruction and
performs required actions
Execute Cycle
• Processor-memory
—data transfer between CPU and main memory
• Processor I/O
—Data transfer between CPU and I/O module
• Data processing
—Some arithmetic or logical operation on data
• Control
—Alteration of sequence of operations
—e.g. jump
• Combination of above
Example of Program Execution
Instruction Cycle State Diagram
Interrupts
• Mechanism by which other modules (e.g.
I/O) may interrupt normal sequence of
processing
• Program
—e.g. overflow, division by zero
• Timer
—Generated by internal processor timer
—Used in pre-emptive multi-tasking
• I/O
—from I/O controller
• Hardware failure
—e.g. memory parity error
Program Flow Control
Interrupt Cycle
• Added to instruction cycle
• Processor checks for interrupt
—Indicated by an interrupt signal
• If no interrupt, fetch next instruction
• If interrupt pending:
—Suspend execution of current program
—Save context
—Set PC to start address of interrupt handler
routine
—Process interrupt
—Restore context and continue interrupted
program
Transfer of Control via Interrupts
Instruction Cycle with Interrupts
Program Timing
Short I/O Wait
Program Timing
Long I/O Wait
Instruction Cycle (with Interrupts) -
State Diagram
Multiple Interrupts
• Disable interrupts
—Processor will ignore further interrupts while
processing one interrupt
—Interrupts remain pending and are checked
after first interrupt has been processed
—Interrupts handled in sequence as they occur
• Define priorities
—Low priority interrupts can be interrupted by
higher priority interrupts
—When higher priority interrupt has been
processed, processor returns to previous
interrupt
Multiple Interrupts - Sequential
Multiple Interrupts – Nested
Time Sequence of Multiple Interrupts
Connecting
• All the units must be connected
• Different type of connection for different
type of unit
—Memory
—Input/Output
—CPU
Computer Modules
Memory Connection
• Receives and sends data
• Receives addresses (of locations)
• Receives control signals
—Read
—Write
—Timing
Input/Output Connection(1)
• Similar to memory from computer’s
viewpoint
• Output
—Receive data from computer
—Send data to peripheral
• Input
—Receive data from peripheral
—Send data to computer
Input/Output Connection(2)
• Receive control signals from computer
• Send control signals to peripherals
—e.g. spin disk
• Receive addresses from computer
—e.g. port number to identify peripheral
• Send interrupt signals (control)
CPU Connection
• Reads instruction and data
• Writes out data (after processing)
• Sends control signals to other units
• Receives (& acts on) interrupts
Buses
• There are a number of possible
interconnection systems
• Single and multiple BUS structures are
most common
• e.g. Control/Address/Data bus (PC)
• e.g. Unibus (DEC-PDP)
What is a Bus?
• A communication pathway connecting two
or more devices
• Usually broadcast
• Often grouped
—A number of channels in one bus
—e.g. 32 bit data bus is 32 separate single bit
channels
• Power lines may not be shown
Data Bus
• Carries data
—Remember that there is no difference between
“data” and “instruction” at this level
• Width is a key determinant of
performance
—8, 16, 32, 64 bit
Address bus
• Identify the source or destination of data
• e.g. CPU needs to read an instruction
(data) from a given location in memory
• Bus width determines maximum memory
capacity of system
—e.g. 8080 has 16 bit address bus giving 64k
address space
Control Bus
• Control and timing information
—Memory read/write signal
—Interrupt request
—Clock signals
Bus Interconnection Scheme
Big and Yellow?
• What do buses look like?
—Parallel lines on circuit boards
—Ribbon cables
—Strip connectors on mother boards
– e.g. PCI
—Sets of wires
Physical Realization of Bus Architecture
Single Bus Problems
• Lots of devices on one bus leads to:
—Propagation delays
– Long data paths mean that co-ordination of bus use
can adversely affect performance
– If aggregate data transfer approaches bus capacity
• Most systems use multiple buses to
overcome these problems
Traditional (ISA)
(with cache)
High Performance Bus
Bus Types
• Dedicated
—Separate data & address lines
• Multiplexed
—Shared lines
—Address valid or data valid control line
—Advantage - fewer lines
—Disadvantages
– More complex control
– Ultimate performance
Bus Arbitration
• More than one module controlling the bus
• e.g. CPU and DMA controller
• Only one module may control bus at one
time
• Arbitration may be centralised or
distributed
Centralised or Distributed Arbitration
• Centralised
—Single hardware device controlling bus access
– Bus Controller
– Arbiter
—May be part of CPU or separate
• Distributed
—Each module may claim the bus
—Control logic on all modules
Timing
• Co-ordination of events on bus
• Synchronous
—Events determined by clock signals
—Control Bus includes clock line
—A single 1-0 is a bus cycle
—All devices can read clock line
—Usually sync on leading edge
—Usually a single cycle for an event
Synchronous Timing Diagram
Asynchronous Timing – Read Diagram
Asynchronous Timing – Write Diagram
PCI Bus
• Peripheral Component Interconnection
• Intel released to public domain
• 32 or 64 bit
• 50 lines
PCI Bus Lines (required)
• Systems lines
—Including clock and reset
• Address & Data
—32 time mux lines for address/data
—Interrupt & validate lines
• Interface Control
• Arbitration
—Not shared
—Direct connection to PCI bus arbiter
• Error lines
PCI Bus Lines (Optional)
• Interrupt lines
—Not shared
• Cache support
• 64-bit Bus Extension
—Additional 32 lines
—Time multiplexed
—2 lines to enable devices to agree to use 64-
bit transfer
• JTAG/Boundary Scan
—For testing procedures
PCI Commands
• Transaction between initiator (master)
and target
• Master claims bus
• Determine type of transaction
—e.g. I/O read/write
• Address phase
• One or more data phases
PCI Read Timing Diagram
PCI Bus Arbiter
PCI Bus Arbitration
Foreground Reading
• Stallings, chapter 3 (all of it)
• www.pcguide.com/ref/mbsys/buses/
• In fact, read the whole site!
• www.pcguide.com/

More Related Content

What's hot

Input output in computer Orgranization and architecture
Input output in computer Orgranization and architectureInput output in computer Orgranization and architecture
Input output in computer Orgranization and architecturevikram patel
 
Chapter 3 - Top Level View of Computer / Function and Interconection
Chapter 3 - Top Level View of Computer / Function and InterconectionChapter 3 - Top Level View of Computer / Function and Interconection
Chapter 3 - Top Level View of Computer / Function and InterconectionCésar de Souza
 
Chapter 2 - Computer Evolution and Performance
Chapter 2 - Computer Evolution and PerformanceChapter 2 - Computer Evolution and Performance
Chapter 2 - Computer Evolution and PerformanceCésar de Souza
 
Computer architecture control unit
Computer architecture control unitComputer architecture control unit
Computer architecture control unitMazin Alwaaly
 
Register organization, stack
Register organization, stackRegister organization, stack
Register organization, stackAsif Iqbal
 
Instruction Set Architecture (ISA)
Instruction Set Architecture (ISA)Instruction Set Architecture (ISA)
Instruction Set Architecture (ISA)Gaditek
 
Computer memory
Computer memoryComputer memory
Computer memoryJayapal Jp
 
8257 DMA Controller
8257 DMA Controller8257 DMA Controller
8257 DMA ControllerShivamSood22
 
Dma transfer
Dma transferDma transfer
Dma transfergmnithya
 
Instruction cycle
Instruction cycleInstruction cycle
Instruction cycleKumar
 
Computer Organization and Architecture.
Computer Organization and Architecture.Computer Organization and Architecture.
Computer Organization and Architecture.CS_GDRCST
 

What's hot (20)

Register & Memory
Register & MemoryRegister & Memory
Register & Memory
 
Registers
RegistersRegisters
Registers
 
Input output in computer Orgranization and architecture
Input output in computer Orgranization and architectureInput output in computer Orgranization and architecture
Input output in computer Orgranization and architecture
 
Chapter 3 - Top Level View of Computer / Function and Interconection
Chapter 3 - Top Level View of Computer / Function and InterconectionChapter 3 - Top Level View of Computer / Function and Interconection
Chapter 3 - Top Level View of Computer / Function and Interconection
 
Chapter 2 - Computer Evolution and Performance
Chapter 2 - Computer Evolution and PerformanceChapter 2 - Computer Evolution and Performance
Chapter 2 - Computer Evolution and Performance
 
Computer system bus
Computer system busComputer system bus
Computer system bus
 
I/O System
I/O SystemI/O System
I/O System
 
Cache memory
Cache memoryCache memory
Cache memory
 
Computer architecture control unit
Computer architecture control unitComputer architecture control unit
Computer architecture control unit
 
Modes of data transfer
Modes of data transferModes of data transfer
Modes of data transfer
 
Register organization, stack
Register organization, stackRegister organization, stack
Register organization, stack
 
Instruction Set Architecture (ISA)
Instruction Set Architecture (ISA)Instruction Set Architecture (ISA)
Instruction Set Architecture (ISA)
 
Computer memory
Computer memoryComputer memory
Computer memory
 
8257 DMA Controller
8257 DMA Controller8257 DMA Controller
8257 DMA Controller
 
06 External Memory
06  External  Memory06  External  Memory
06 External Memory
 
Dma transfer
Dma transferDma transfer
Dma transfer
 
Basic computer architecture
Basic computer architectureBasic computer architecture
Basic computer architecture
 
Instruction cycle
Instruction cycleInstruction cycle
Instruction cycle
 
Computer Organization and Architecture.
Computer Organization and Architecture.Computer Organization and Architecture.
Computer Organization and Architecture.
 
Ch 4 95
Ch 4 95Ch 4 95
Ch 4 95
 

Similar to 03 top level view of computer function and interconnection.ppt.enc

03 top level view of computer function and interconnection
03 top level view of computer function and interconnection03 top level view of computer function and interconnection
03 top level view of computer function and interconnectionSher Shah Merkhel
 
03_top-level-view-of-computer-function-and-interconnection.ppt
03_top-level-view-of-computer-function-and-interconnection.ppt03_top-level-view-of-computer-function-and-interconnection.ppt
03_top-level-view-of-computer-function-and-interconnection.pptAmirZaman21
 
For students wk4_computer_function_and_interconnection
For students wk4_computer_function_and_interconnectionFor students wk4_computer_function_and_interconnection
For students wk4_computer_function_and_interconnectionlimyamahgoub
 
Report in SAD
Report in SADReport in SAD
Report in SADjesseledm
 
Wk 4 top_level_view_of_computer_function_and_interconnection
Wk 4 top_level_view_of_computer_function_and_interconnectionWk 4 top_level_view_of_computer_function_and_interconnection
Wk 4 top_level_view_of_computer_function_and_interconnectionlimyamahgoub
 
03_Top Level View of Computer Function and Interconnection.ppt
03_Top Level View of Computer Function and Interconnection.ppt03_Top Level View of Computer Function and Interconnection.ppt
03_Top Level View of Computer Function and Interconnection.pptChABiDRazZaQ
 
computer system structure
computer system structurecomputer system structure
computer system structureHAMZA AHMED
 
Computer function-and-interconnection 3
Computer function-and-interconnection 3Computer function-and-interconnection 3
Computer function-and-interconnection 3Mujaheed Sulantingan
 

Similar to 03 top level view of computer function and interconnection.ppt.enc (20)

03 top level view of computer function and interconnection
03 top level view of computer function and interconnection03 top level view of computer function and interconnection
03 top level view of computer function and interconnection
 
03_top-level-view-of-computer-function-and-interconnection.ppt
03_top-level-view-of-computer-function-and-interconnection.ppt03_top-level-view-of-computer-function-and-interconnection.ppt
03_top-level-view-of-computer-function-and-interconnection.ppt
 
For students wk4_computer_function_and_interconnection
For students wk4_computer_function_and_interconnectionFor students wk4_computer_function_and_interconnection
For students wk4_computer_function_and_interconnection
 
03_Buses (1).ppt
03_Buses (1).ppt03_Buses (1).ppt
03_Buses (1).ppt
 
Report in SAD
Report in SADReport in SAD
Report in SAD
 
Wk 4 top_level_view_of_computer_function_and_interconnection
Wk 4 top_level_view_of_computer_function_and_interconnectionWk 4 top_level_view_of_computer_function_and_interconnection
Wk 4 top_level_view_of_computer_function_and_interconnection
 
07 input output
07 input output07 input output
07 input output
 
03_Top Level View of Computer Function and Interconnection.ppt
03_Top Level View of Computer Function and Interconnection.ppt03_Top Level View of Computer Function and Interconnection.ppt
03_Top Level View of Computer Function and Interconnection.ppt
 
Cs intro-ca
Cs intro-caCs intro-ca
Cs intro-ca
 
ch4.ppt
ch4.pptch4.ppt
ch4.ppt
 
07 input output
07 input output07 input output
07 input output
 
Input output
Input outputInput output
Input output
 
Ch 3 95
Ch 3 95Ch 3 95
Ch 3 95
 
computer system structure
computer system structurecomputer system structure
computer system structure
 
Counit2 2
Counit2 2Counit2 2
Counit2 2
 
Chapter01 (1).ppt
Chapter01 (1).pptChapter01 (1).ppt
Chapter01 (1).ppt
 
Chap 3 CA.pptx
Chap 3 CA.pptxChap 3 CA.pptx
Chap 3 CA.pptx
 
Cpu
CpuCpu
Cpu
 
Ch12 io systems
Ch12   io systemsCh12   io systems
Ch12 io systems
 
Computer function-and-interconnection 3
Computer function-and-interconnection 3Computer function-and-interconnection 3
Computer function-and-interconnection 3
 

More from Anwal Mirza

Training & development
Training & developmentTraining & development
Training & developmentAnwal Mirza
 
Training and dev
Training and devTraining and dev
Training and devAnwal Mirza
 
Testing and selection
Testing and selectionTesting and selection
Testing and selectionAnwal Mirza
 
Strategic planning
Strategic planningStrategic planning
Strategic planningAnwal Mirza
 
Hci scanrio-exercise
Hci scanrio-exerciseHci scanrio-exercise
Hci scanrio-exerciseAnwal Mirza
 
Hci user interface-design principals
Hci user interface-design principalsHci user interface-design principals
Hci user interface-design principalsAnwal Mirza
 
Hci user interface-design principals lec 7
Hci user interface-design principals lec 7Hci user interface-design principals lec 7
Hci user interface-design principals lec 7Anwal Mirza
 
Hci user centered design 11
Hci user centered design 11Hci user centered design 11
Hci user centered design 11Anwal Mirza
 
Hci lec 1 & 2
Hci lec 1 & 2Hci lec 1 & 2
Hci lec 1 & 2Anwal Mirza
 
Hci interace affects the user lec 8
Hci interace affects the user lec 8Hci interace affects the user lec 8
Hci interace affects the user lec 8Anwal Mirza
 
Hci evaluationa frame work lec 14
Hci evaluationa frame work lec 14Hci evaluationa frame work lec 14
Hci evaluationa frame work lec 14Anwal Mirza
 
Hci design collaboration lec 9 10
Hci  design collaboration lec 9 10Hci  design collaboration lec 9 10
Hci design collaboration lec 9 10Anwal Mirza
 

More from Anwal Mirza (20)

Training & development
Training & developmentTraining & development
Training & development
 
Training and dev
Training and devTraining and dev
Training and dev
 
Testing and selection
Testing and selectionTesting and selection
Testing and selection
 
Strategic planning
Strategic planningStrategic planning
Strategic planning
 
Recruitment
RecruitmentRecruitment
Recruitment
 
Job analysis
Job analysisJob analysis
Job analysis
 
Interviewing
Interviewing Interviewing
Interviewing
 
Hrm ppt ch. 01
Hrm ppt ch. 01Hrm ppt ch. 01
Hrm ppt ch. 01
 
Hrm challenges
Hrm challengesHrm challenges
Hrm challenges
 
Firstpage
FirstpageFirstpage
Firstpage
 
Hci scanrio-exercise
Hci scanrio-exerciseHci scanrio-exercise
Hci scanrio-exercise
 
Hci user interface-design principals
Hci user interface-design principalsHci user interface-design principals
Hci user interface-design principals
 
Hci user interface-design principals lec 7
Hci user interface-design principals lec 7Hci user interface-design principals lec 7
Hci user interface-design principals lec 7
 
Hci user centered design 11
Hci user centered design 11Hci user centered design 11
Hci user centered design 11
 
Hci lec 5,6
Hci lec 5,6Hci lec 5,6
Hci lec 5,6
 
Hci lec 4
Hci lec 4Hci lec 4
Hci lec 4
 
Hci lec 1 & 2
Hci lec 1 & 2Hci lec 1 & 2
Hci lec 1 & 2
 
Hci interace affects the user lec 8
Hci interace affects the user lec 8Hci interace affects the user lec 8
Hci interace affects the user lec 8
 
Hci evaluationa frame work lec 14
Hci evaluationa frame work lec 14Hci evaluationa frame work lec 14
Hci evaluationa frame work lec 14
 
Hci design collaboration lec 9 10
Hci  design collaboration lec 9 10Hci  design collaboration lec 9 10
Hci design collaboration lec 9 10
 

Recently uploaded

Asset Management Software - Infographic
Asset Management Software - InfographicAsset Management Software - Infographic
Asset Management Software - InfographicHr365.us smith
 
What is Fashion PLM and Why Do You Need It
What is Fashion PLM and Why Do You Need ItWhat is Fashion PLM and Why Do You Need It
What is Fashion PLM and Why Do You Need ItWave PLM
 
EY_Graph Database Powered Sustainability
EY_Graph Database Powered SustainabilityEY_Graph Database Powered Sustainability
EY_Graph Database Powered SustainabilityNeo4j
 
software engineering Chapter 5 System modeling.pptx
software engineering Chapter 5 System modeling.pptxsoftware engineering Chapter 5 System modeling.pptx
software engineering Chapter 5 System modeling.pptxnada99848
 
Dealing with Cultural Dispersion — Stefano Lambiase — ICSE-SEIS 2024
Dealing with Cultural Dispersion — Stefano Lambiase — ICSE-SEIS 2024Dealing with Cultural Dispersion — Stefano Lambiase — ICSE-SEIS 2024
Dealing with Cultural Dispersion — Stefano Lambiase — ICSE-SEIS 2024StefanoLambiase
 
Cloud Data Center Network Construction - IEEE
Cloud Data Center Network Construction - IEEECloud Data Center Network Construction - IEEE
Cloud Data Center Network Construction - IEEEVICTOR MAESTRE RAMIREZ
 
Salesforce Certified Field Service Consultant
Salesforce Certified Field Service ConsultantSalesforce Certified Field Service Consultant
Salesforce Certified Field Service ConsultantAxelRicardoTrocheRiq
 
Unveiling Design Patterns: A Visual Guide with UML Diagrams
Unveiling Design Patterns: A Visual Guide with UML DiagramsUnveiling Design Patterns: A Visual Guide with UML Diagrams
Unveiling Design Patterns: A Visual Guide with UML DiagramsAhmed Mohamed
 
chapter--4-software-project-planning.ppt
chapter--4-software-project-planning.pptchapter--4-software-project-planning.ppt
chapter--4-software-project-planning.pptkotipi9215
 
Cloud Management Software Platforms: OpenStack
Cloud Management Software Platforms: OpenStackCloud Management Software Platforms: OpenStack
Cloud Management Software Platforms: OpenStackVICTOR MAESTRE RAMIREZ
 
Advancing Engineering with AI through the Next Generation of Strategic Projec...
Advancing Engineering with AI through the Next Generation of Strategic Projec...Advancing Engineering with AI through the Next Generation of Strategic Projec...
Advancing Engineering with AI through the Next Generation of Strategic Projec...OnePlan Solutions
 
Alluxio Monthly Webinar | Cloud-Native Model Training on Distributed Data
Alluxio Monthly Webinar | Cloud-Native Model Training on Distributed DataAlluxio Monthly Webinar | Cloud-Native Model Training on Distributed Data
Alluxio Monthly Webinar | Cloud-Native Model Training on Distributed DataAlluxio, Inc.
 
Steps To Getting Up And Running Quickly With MyTimeClock Employee Scheduling ...
Steps To Getting Up And Running Quickly With MyTimeClock Employee Scheduling ...Steps To Getting Up And Running Quickly With MyTimeClock Employee Scheduling ...
Steps To Getting Up And Running Quickly With MyTimeClock Employee Scheduling ...MyIntelliSource, Inc.
 
Try MyIntelliAccount Cloud Accounting Software As A Service Solution Risk Fre...
Try MyIntelliAccount Cloud Accounting Software As A Service Solution Risk Fre...Try MyIntelliAccount Cloud Accounting Software As A Service Solution Risk Fre...
Try MyIntelliAccount Cloud Accounting Software As A Service Solution Risk Fre...MyIntelliSource, Inc.
 
Folding Cheat Sheet #4 - fourth in a series
Folding Cheat Sheet #4 - fourth in a seriesFolding Cheat Sheet #4 - fourth in a series
Folding Cheat Sheet #4 - fourth in a seriesPhilip Schwarz
 
Automate your Kamailio Test Calls - Kamailio World 2024
Automate your Kamailio Test Calls - Kamailio World 2024Automate your Kamailio Test Calls - Kamailio World 2024
Automate your Kamailio Test Calls - Kamailio World 2024Andreas Granig
 
GOING AOT WITH GRAALVM – DEVOXX GREECE.pdf
GOING AOT WITH GRAALVM – DEVOXX GREECE.pdfGOING AOT WITH GRAALVM – DEVOXX GREECE.pdf
GOING AOT WITH GRAALVM – DEVOXX GREECE.pdfAlina Yurenko
 
ODSC - Batch to Stream workshop - integration of Apache Spark, Cassandra, Pos...
ODSC - Batch to Stream workshop - integration of Apache Spark, Cassandra, Pos...ODSC - Batch to Stream workshop - integration of Apache Spark, Cassandra, Pos...
ODSC - Batch to Stream workshop - integration of Apache Spark, Cassandra, Pos...Christina Lin
 
Intelligent Home Wi-Fi Solutions | ThinkPalm
Intelligent Home Wi-Fi Solutions | ThinkPalmIntelligent Home Wi-Fi Solutions | ThinkPalm
Intelligent Home Wi-Fi Solutions | ThinkPalmSujith Sukumaran
 

Recently uploaded (20)

Asset Management Software - Infographic
Asset Management Software - InfographicAsset Management Software - Infographic
Asset Management Software - Infographic
 
What is Fashion PLM and Why Do You Need It
What is Fashion PLM and Why Do You Need ItWhat is Fashion PLM and Why Do You Need It
What is Fashion PLM and Why Do You Need It
 
EY_Graph Database Powered Sustainability
EY_Graph Database Powered SustainabilityEY_Graph Database Powered Sustainability
EY_Graph Database Powered Sustainability
 
software engineering Chapter 5 System modeling.pptx
software engineering Chapter 5 System modeling.pptxsoftware engineering Chapter 5 System modeling.pptx
software engineering Chapter 5 System modeling.pptx
 
Dealing with Cultural Dispersion — Stefano Lambiase — ICSE-SEIS 2024
Dealing with Cultural Dispersion — Stefano Lambiase — ICSE-SEIS 2024Dealing with Cultural Dispersion — Stefano Lambiase — ICSE-SEIS 2024
Dealing with Cultural Dispersion — Stefano Lambiase — ICSE-SEIS 2024
 
Cloud Data Center Network Construction - IEEE
Cloud Data Center Network Construction - IEEECloud Data Center Network Construction - IEEE
Cloud Data Center Network Construction - IEEE
 
Salesforce Certified Field Service Consultant
Salesforce Certified Field Service ConsultantSalesforce Certified Field Service Consultant
Salesforce Certified Field Service Consultant
 
Unveiling Design Patterns: A Visual Guide with UML Diagrams
Unveiling Design Patterns: A Visual Guide with UML DiagramsUnveiling Design Patterns: A Visual Guide with UML Diagrams
Unveiling Design Patterns: A Visual Guide with UML Diagrams
 
chapter--4-software-project-planning.ppt
chapter--4-software-project-planning.pptchapter--4-software-project-planning.ppt
chapter--4-software-project-planning.ppt
 
Cloud Management Software Platforms: OpenStack
Cloud Management Software Platforms: OpenStackCloud Management Software Platforms: OpenStack
Cloud Management Software Platforms: OpenStack
 
Advancing Engineering with AI through the Next Generation of Strategic Projec...
Advancing Engineering with AI through the Next Generation of Strategic Projec...Advancing Engineering with AI through the Next Generation of Strategic Projec...
Advancing Engineering with AI through the Next Generation of Strategic Projec...
 
Alluxio Monthly Webinar | Cloud-Native Model Training on Distributed Data
Alluxio Monthly Webinar | Cloud-Native Model Training on Distributed DataAlluxio Monthly Webinar | Cloud-Native Model Training on Distributed Data
Alluxio Monthly Webinar | Cloud-Native Model Training on Distributed Data
 
Steps To Getting Up And Running Quickly With MyTimeClock Employee Scheduling ...
Steps To Getting Up And Running Quickly With MyTimeClock Employee Scheduling ...Steps To Getting Up And Running Quickly With MyTimeClock Employee Scheduling ...
Steps To Getting Up And Running Quickly With MyTimeClock Employee Scheduling ...
 
Try MyIntelliAccount Cloud Accounting Software As A Service Solution Risk Fre...
Try MyIntelliAccount Cloud Accounting Software As A Service Solution Risk Fre...Try MyIntelliAccount Cloud Accounting Software As A Service Solution Risk Fre...
Try MyIntelliAccount Cloud Accounting Software As A Service Solution Risk Fre...
 
Hot Sexy call girls in Patel Nagar🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Patel Nagar🔝 9953056974 🔝 escort ServiceHot Sexy call girls in Patel Nagar🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Patel Nagar🔝 9953056974 🔝 escort Service
 
Folding Cheat Sheet #4 - fourth in a series
Folding Cheat Sheet #4 - fourth in a seriesFolding Cheat Sheet #4 - fourth in a series
Folding Cheat Sheet #4 - fourth in a series
 
Automate your Kamailio Test Calls - Kamailio World 2024
Automate your Kamailio Test Calls - Kamailio World 2024Automate your Kamailio Test Calls - Kamailio World 2024
Automate your Kamailio Test Calls - Kamailio World 2024
 
GOING AOT WITH GRAALVM – DEVOXX GREECE.pdf
GOING AOT WITH GRAALVM – DEVOXX GREECE.pdfGOING AOT WITH GRAALVM – DEVOXX GREECE.pdf
GOING AOT WITH GRAALVM – DEVOXX GREECE.pdf
 
ODSC - Batch to Stream workshop - integration of Apache Spark, Cassandra, Pos...
ODSC - Batch to Stream workshop - integration of Apache Spark, Cassandra, Pos...ODSC - Batch to Stream workshop - integration of Apache Spark, Cassandra, Pos...
ODSC - Batch to Stream workshop - integration of Apache Spark, Cassandra, Pos...
 
Intelligent Home Wi-Fi Solutions | ThinkPalm
Intelligent Home Wi-Fi Solutions | ThinkPalmIntelligent Home Wi-Fi Solutions | ThinkPalm
Intelligent Home Wi-Fi Solutions | ThinkPalm
 

03 top level view of computer function and interconnection.ppt.enc

  • 1. William Stallings Computer Organization and Architecture 8th Edition Chapter 3 Top Level View of Computer Function and Interconnection
  • 2. Program Concept • Hardwired systems are inflexible • General purpose hardware can do different tasks, given correct control signals • Instead of re-wiring, supply a new set of control signals
  • 3. What is a program? • A sequence of steps • For each step, an arithmetic or logical operation is done • For each operation, a different set of control signals is needed
  • 4. Function of Control Unit • For each operation a unique code is provided —e.g. ADD, MOVE • A hardware segment accepts the code and issues the control signals • We have a computer!
  • 5. Components • The Control Unit and the Arithmetic and Logic Unit constitute the Central Processing Unit • Data and instructions need to get into the system and results out —Input/output • Temporary storage of code and results is needed —Main memory
  • 7. Instruction Cycle • Two steps: —Fetch —Execute
  • 8. Fetch Cycle • Program Counter (PC) holds address of next instruction to fetch • Processor fetches instruction from memory location pointed to by PC • Increment PC —Unless told otherwise • Instruction loaded into Instruction Register (IR) • Processor interprets instruction and performs required actions
  • 9. Execute Cycle • Processor-memory —data transfer between CPU and main memory • Processor I/O —Data transfer between CPU and I/O module • Data processing —Some arithmetic or logical operation on data • Control —Alteration of sequence of operations —e.g. jump • Combination of above
  • 10. Example of Program Execution
  • 12. Interrupts • Mechanism by which other modules (e.g. I/O) may interrupt normal sequence of processing • Program —e.g. overflow, division by zero • Timer —Generated by internal processor timer —Used in pre-emptive multi-tasking • I/O —from I/O controller • Hardware failure —e.g. memory parity error
  • 14. Interrupt Cycle • Added to instruction cycle • Processor checks for interrupt —Indicated by an interrupt signal • If no interrupt, fetch next instruction • If interrupt pending: —Suspend execution of current program —Save context —Set PC to start address of interrupt handler routine —Process interrupt —Restore context and continue interrupted program
  • 15. Transfer of Control via Interrupts
  • 19. Instruction Cycle (with Interrupts) - State Diagram
  • 20. Multiple Interrupts • Disable interrupts —Processor will ignore further interrupts while processing one interrupt —Interrupts remain pending and are checked after first interrupt has been processed —Interrupts handled in sequence as they occur • Define priorities —Low priority interrupts can be interrupted by higher priority interrupts —When higher priority interrupt has been processed, processor returns to previous interrupt
  • 21. Multiple Interrupts - Sequential
  • 23. Time Sequence of Multiple Interrupts
  • 24. Connecting • All the units must be connected • Different type of connection for different type of unit —Memory —Input/Output —CPU
  • 26. Memory Connection • Receives and sends data • Receives addresses (of locations) • Receives control signals —Read —Write —Timing
  • 27. Input/Output Connection(1) • Similar to memory from computer’s viewpoint • Output —Receive data from computer —Send data to peripheral • Input —Receive data from peripheral —Send data to computer
  • 28. Input/Output Connection(2) • Receive control signals from computer • Send control signals to peripherals —e.g. spin disk • Receive addresses from computer —e.g. port number to identify peripheral • Send interrupt signals (control)
  • 29. CPU Connection • Reads instruction and data • Writes out data (after processing) • Sends control signals to other units • Receives (& acts on) interrupts
  • 30. Buses • There are a number of possible interconnection systems • Single and multiple BUS structures are most common • e.g. Control/Address/Data bus (PC) • e.g. Unibus (DEC-PDP)
  • 31. What is a Bus? • A communication pathway connecting two or more devices • Usually broadcast • Often grouped —A number of channels in one bus —e.g. 32 bit data bus is 32 separate single bit channels • Power lines may not be shown
  • 32. Data Bus • Carries data —Remember that there is no difference between “data” and “instruction” at this level • Width is a key determinant of performance —8, 16, 32, 64 bit
  • 33. Address bus • Identify the source or destination of data • e.g. CPU needs to read an instruction (data) from a given location in memory • Bus width determines maximum memory capacity of system —e.g. 8080 has 16 bit address bus giving 64k address space
  • 34. Control Bus • Control and timing information —Memory read/write signal —Interrupt request —Clock signals
  • 36. Big and Yellow? • What do buses look like? —Parallel lines on circuit boards —Ribbon cables —Strip connectors on mother boards – e.g. PCI —Sets of wires
  • 37. Physical Realization of Bus Architecture
  • 38. Single Bus Problems • Lots of devices on one bus leads to: —Propagation delays – Long data paths mean that co-ordination of bus use can adversely affect performance – If aggregate data transfer approaches bus capacity • Most systems use multiple buses to overcome these problems
  • 41. Bus Types • Dedicated —Separate data & address lines • Multiplexed —Shared lines —Address valid or data valid control line —Advantage - fewer lines —Disadvantages – More complex control – Ultimate performance
  • 42. Bus Arbitration • More than one module controlling the bus • e.g. CPU and DMA controller • Only one module may control bus at one time • Arbitration may be centralised or distributed
  • 43. Centralised or Distributed Arbitration • Centralised —Single hardware device controlling bus access – Bus Controller – Arbiter —May be part of CPU or separate • Distributed —Each module may claim the bus —Control logic on all modules
  • 44. Timing • Co-ordination of events on bus • Synchronous —Events determined by clock signals —Control Bus includes clock line —A single 1-0 is a bus cycle —All devices can read clock line —Usually sync on leading edge —Usually a single cycle for an event
  • 46. Asynchronous Timing – Read Diagram
  • 47. Asynchronous Timing – Write Diagram
  • 48. PCI Bus • Peripheral Component Interconnection • Intel released to public domain • 32 or 64 bit • 50 lines
  • 49. PCI Bus Lines (required) • Systems lines —Including clock and reset • Address & Data —32 time mux lines for address/data —Interrupt & validate lines • Interface Control • Arbitration —Not shared —Direct connection to PCI bus arbiter • Error lines
  • 50. PCI Bus Lines (Optional) • Interrupt lines —Not shared • Cache support • 64-bit Bus Extension —Additional 32 lines —Time multiplexed —2 lines to enable devices to agree to use 64- bit transfer • JTAG/Boundary Scan —For testing procedures
  • 51. PCI Commands • Transaction between initiator (master) and target • Master claims bus • Determine type of transaction —e.g. I/O read/write • Address phase • One or more data phases
  • 52. PCI Read Timing Diagram
  • 55. Foreground Reading • Stallings, chapter 3 (all of it) • www.pcguide.com/ref/mbsys/buses/ • In fact, read the whole site! • www.pcguide.com/