SlideShare a Scribd company logo
1 of 14
1
Geotechnical Engineering–I [CE-221]
BSc Civil Engineering – 4th Semester
by
Dr. Muhammad Irfan
Assistant Professor
Civil Engg. Dept. – UET Lahore
Email: mirfan1@msn.com
Lecture Handouts: https://groups.google.com/d/forum/2016session-geotech-i
Lecture # 25
24-Apr-2018
2
WATER FLOW THROUGH SOILS
To determine the quantity of flow, two parameters are needed
* k = hydraulic conductivity
* i = hydraulic gradient
Determination of ‘k’
1- Laboratory Testing  [constant head test & falling head test]
2- Field Testing  [constant/falling head tests, pump out tests, etc]
3- Empirical Equations
Determination of ‘i’
1- From the head loss and geometry
2- Flow Nets
(how permeable is the soil medium)
(how large is the driving head)
Today’s
discussion
A
h
kAikq 


L
3
SUBSURFACE FLOW OF WATER
Aquifer: Soil or rock forming stratum with sufficient porosity and permeability
to store and transmit groundwater.
(e.g. sands, gravels, fractured rock)
Aquifer
4
Aquiclude/ Aquifuge: An impermeable stratum, or a stratum having
extremely low permeability.
(e.g. clays, intact rock)
Aquifer
SUBSURFACE FLOW OF WATER
5
Unconfined Aquifer (water table aquifer) are bound by the water table; i.e.,
they have no confining rock layers over the top of them.
Confined Aquifer: A water bearing layer confined between less pervious (or
impervious) layers.
SUBSURFACE FLOW OF WATER
6
ARTESIAN FLOW
 Artesian springs/wells are wells that flow under their own pressure.
 These require a sloping permeable layer of rock (Aquifer) with a recharge
zone higher than the well.
7
Determination of Hydraulic Conductivity
in the Field
1. Pumping wells with observation holes
2. Borehole test
3. Packer test
 Constant/ falling head type
 Mostly for rocks
8
In-situ Permeability Test using Pumping
Wells
Initial WT
Observation Wells
Sand
(Pervious Layer)
Clay
(Impervious Layer)
Test Well
WT after
pumping
Pumping out water
(Rate of pumping, q
(m3/hr))
 Steady state: equilibrium
state when the inflow to
the well becomes equal
to the rate of pumping.
 Water level in the test
well + observation wells
becomes constant at
steady state condition.
9
 Used to determine hydraulic conductivity (k) of soil in-situ.
 Water is pumped out at a constant rate from a test well that
has a perforated casing.
 Several observation wells at various radial distances are
made around the test well.
 Continuous observations of water level in the test well +
observation wells are made after the start of pumping, until
a steady state is reached.
 The steady state is established when the water level in the
test and observation wells becomes constant.
In-situ Permeability Test using Pumping
Wells
10
In-situ Permeability Test
Pumping Well in an Unconfined Aquifer
)(
ln.
2
2
2
1
2
1
hh
r
r
q
k









q
If q, h1, h2, r1, r2 are
known , k can be
calculated
11
In-situ Permeability Test
Pumping Well in a Confined Aquifer
)(
ln
2 21
2
1
hh
r
r
H
q
k









q
If q, h1, h2, r1, r2 are
known , k can be
calculated
Water entering into well
12
Practice Problem #7
A layer of sand 6m thick underlies a 5m thick layer of clay
stratum and overlies a bed of shale. A pumping well, sunk to
the base of sand yielded 10x10-3 m3/sec. Observation wells
placed at 15m and 30m from the well indicated groundwater
levels 2.5m and 3m above the depressed water level in the test
well, respectively. Determine the permeability of soil.
Permeability in Unconfined Aquifer
)(
ln.
2
2
2
1
2
1
hh
r
r
q
k








 )(
ln
2 21
2
1
hh
r
r
H
q
k









Permeability in Confined Aquifer
13
Practice Problem #8
A field pumping test is carried out to determine
average permeability of uniform soil deposit 30m
deep. Water table in the deposit is located at a depth
of 2m below ground surface. Steady state is reached
under a uniform pumping rate of 0.02 m3/sec. The
two observation wells located at distances of 20m
and 60m show elevations of water level at 2m and
0.5m below original water table respectively.
Determine the value of soil permeability.
Permeability in Unconfined Aquifer
)(
ln.
2
2
2
1
2
1
hh
r
r
q
k








 )(
ln
2 21
2
1
hh
r
r
H
q
k









Permeability in Confined Aquifer
14
CONCLUDED
REFERENCE MATERIAL
Principles of Geotechnical Engineering – (7th Edition)
Braja M. Das
Chapter #7 & 8

More Related Content

What's hot

Geotechnical Engineering-I [Lec #21: Consolidation Problems]
Geotechnical Engineering-I [Lec #21: Consolidation Problems]Geotechnical Engineering-I [Lec #21: Consolidation Problems]
Geotechnical Engineering-I [Lec #21: Consolidation Problems]Muhammad Irfan
 
Lecture 7 stress distribution in soil
Lecture 7 stress distribution in soilLecture 7 stress distribution in soil
Lecture 7 stress distribution in soilDr.Abdulmannan Orabi
 
Geotechnical Engineering-I [Lec #27: Flow Nets]
Geotechnical Engineering-I [Lec #27: Flow Nets]Geotechnical Engineering-I [Lec #27: Flow Nets]
Geotechnical Engineering-I [Lec #27: Flow Nets]Muhammad Irfan
 
Drainage Engineering (Flow Nets)
Drainage Engineering (Flow Nets)Drainage Engineering (Flow Nets)
Drainage Engineering (Flow Nets)Latif Hyder Wadho
 
Consolidation settlement
Consolidation settlementConsolidation settlement
Consolidation settlementParth Joshi
 
Lecture 8 consolidation and compressibility
Lecture 8  consolidation and compressibilityLecture 8  consolidation and compressibility
Lecture 8 consolidation and compressibilityDr.Abdulmannan Orabi
 
Geotechnical Engineering-I [Lec #7: Sieve Analysis-2]
Geotechnical Engineering-I [Lec #7: Sieve Analysis-2]Geotechnical Engineering-I [Lec #7: Sieve Analysis-2]
Geotechnical Engineering-I [Lec #7: Sieve Analysis-2]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)Muhammad Irfan
 
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]Muhammad Irfan
 
3 a index properties of soil
3 a index properties of soil3 a index properties of soil
3 a index properties of soilSaurabh Kumar
 
Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]Muhammad Irfan
 
Class 3 (a) Soil Plasticity (Atterberg Limits) ( Geotechenical Engineering )
Class 3 (a)   Soil Plasticity (Atterberg Limits) ( Geotechenical Engineering )Class 3 (a)   Soil Plasticity (Atterberg Limits) ( Geotechenical Engineering )
Class 3 (a) Soil Plasticity (Atterberg Limits) ( Geotechenical Engineering )Hossam Shafiq I
 
Geotechnical engineering, civil engineering
Geotechnical engineering, civil engineeringGeotechnical engineering, civil engineering
Geotechnical engineering, civil engineeringSaicharan Vasala
 
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]Muhammad Irfan
 
Insitu and lab test
Insitu and lab testInsitu and lab test
Insitu and lab testShah Naseer
 
Unconfined Compression Test
Unconfined Compression TestUnconfined Compression Test
Unconfined Compression TestLove Sharma
 

What's hot (20)

Geotechnical Engineering-I [Lec #21: Consolidation Problems]
Geotechnical Engineering-I [Lec #21: Consolidation Problems]Geotechnical Engineering-I [Lec #21: Consolidation Problems]
Geotechnical Engineering-I [Lec #21: Consolidation Problems]
 
Lecture 7 stress distribution in soil
Lecture 7 stress distribution in soilLecture 7 stress distribution in soil
Lecture 7 stress distribution in soil
 
Geotechnical Engineering-I [Lec #27: Flow Nets]
Geotechnical Engineering-I [Lec #27: Flow Nets]Geotechnical Engineering-I [Lec #27: Flow Nets]
Geotechnical Engineering-I [Lec #27: Flow Nets]
 
Drainage Engineering (Flow Nets)
Drainage Engineering (Flow Nets)Drainage Engineering (Flow Nets)
Drainage Engineering (Flow Nets)
 
Lecture 4 classification of soil
Lecture 4 classification of soilLecture 4 classification of soil
Lecture 4 classification of soil
 
Consolidation settlement
Consolidation settlementConsolidation settlement
Consolidation settlement
 
Lecture 8 consolidation and compressibility
Lecture 8  consolidation and compressibilityLecture 8  consolidation and compressibility
Lecture 8 consolidation and compressibility
 
Geotechnical Engineering-I [Lec #7: Sieve Analysis-2]
Geotechnical Engineering-I [Lec #7: Sieve Analysis-2]Geotechnical Engineering-I [Lec #7: Sieve Analysis-2]
Geotechnical Engineering-I [Lec #7: Sieve Analysis-2]
 
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
 
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
 
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
 
3 a index properties of soil
3 a index properties of soil3 a index properties of soil
3 a index properties of soil
 
Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]
 
Class 3 (a) Soil Plasticity (Atterberg Limits) ( Geotechenical Engineering )
Class 3 (a)   Soil Plasticity (Atterberg Limits) ( Geotechenical Engineering )Class 3 (a)   Soil Plasticity (Atterberg Limits) ( Geotechenical Engineering )
Class 3 (a) Soil Plasticity (Atterberg Limits) ( Geotechenical Engineering )
 
Geotechnical engineering, civil engineering
Geotechnical engineering, civil engineeringGeotechnical engineering, civil engineering
Geotechnical engineering, civil engineering
 
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
 
4 permeability and seepage
4  permeability and seepage4  permeability and seepage
4 permeability and seepage
 
Insitu and lab test
Insitu and lab testInsitu and lab test
Insitu and lab test
 
Unconfined Compression Test
Unconfined Compression TestUnconfined Compression Test
Unconfined Compression Test
 
Basics of soil mechanics
Basics of soil mechanics   Basics of soil mechanics
Basics of soil mechanics
 

Similar to Geotechnical Engineering-I [Lec #25: In-Situ Permeability]

PERMEABILITY OF SOILS
PERMEABILITY OF SOILSPERMEABILITY OF SOILS
PERMEABILITY OF SOILSBahzad5
 
Hyd. Conductivity measurement.pptx
Hyd. Conductivity measurement.pptxHyd. Conductivity measurement.pptx
Hyd. Conductivity measurement.pptxRajeevRanjan971628
 
Lecture 07 permeability and seepage (11-dec-2021)
Lecture 07 permeability and seepage (11-dec-2021)Lecture 07 permeability and seepage (11-dec-2021)
Lecture 07 permeability and seepage (11-dec-2021)HusiShah
 
Methods of in site Permeability Test
Methods of in site Permeability TestMethods of in site Permeability Test
Methods of in site Permeability TestGaurang Kakadiya
 
Permeability test
Permeability testPermeability test
Permeability testRaz Azad
 
Management & mitigation of groundwater infiltration within underground excava...
Management & mitigation of groundwater infiltration within underground excava...Management & mitigation of groundwater infiltration within underground excava...
Management & mitigation of groundwater infiltration within underground excava...Angelo Indelicato
 
Geotechnical engineering II
Geotechnical engineering IIGeotechnical engineering II
Geotechnical engineering IIGaurang Kakadiya
 
07 a80102 groundwaterdevelopmentandmanagement
07 a80102 groundwaterdevelopmentandmanagement07 a80102 groundwaterdevelopmentandmanagement
07 a80102 groundwaterdevelopmentandmanagementimaduddin91
 
Analytical modelling of groundwater wells and well systems: how to get it r...
Analytical modelling of  groundwater wells and well systems:  how to get it r...Analytical modelling of  groundwater wells and well systems:  how to get it r...
Analytical modelling of groundwater wells and well systems: how to get it r...Anton Nikulenkov
 
Site inveswtigation vandana miss
Site inveswtigation vandana missSite inveswtigation vandana miss
Site inveswtigation vandana missSHAMJITH KM
 
Control Seepage Thought Earth Dams
Control Seepage Thought Earth DamsControl Seepage Thought Earth Dams
Control Seepage Thought Earth DamsAhmed Mansor
 
wells purposes.ppt
wells purposes.pptwells purposes.ppt
wells purposes.pptAli Al-naqa
 
soil mechanics : permebility
soil mechanics : permebilitysoil mechanics : permebility
soil mechanics : permebilityRajeswari Bandaru
 
Ex 7 b permeability by variable head
Ex 7 b permeability by variable headEx 7 b permeability by variable head
Ex 7 b permeability by variable headbhimaji40
 
Presentation on hydraulic conductivity and drainable porosity
Presentation on hydraulic conductivity and drainable porosityPresentation on hydraulic conductivity and drainable porosity
Presentation on hydraulic conductivity and drainable porosityAkhila Shiney
 
Construction of Dams.pptx
Construction of Dams.pptxConstruction of Dams.pptx
Construction of Dams.pptxKhawarSakhani
 
Groundwater Hydrology.pdf
Groundwater Hydrology.pdfGroundwater Hydrology.pdf
Groundwater Hydrology.pdftheelshane
 
subsurface investigation of ground water
subsurface investigation of ground watersubsurface investigation of ground water
subsurface investigation of ground waterMalimaluMalimaluVeer
 

Similar to Geotechnical Engineering-I [Lec #25: In-Situ Permeability] (20)

PERMEABILITY OF SOILS
PERMEABILITY OF SOILSPERMEABILITY OF SOILS
PERMEABILITY OF SOILS
 
Hyd. Conductivity measurement.pptx
Hyd. Conductivity measurement.pptxHyd. Conductivity measurement.pptx
Hyd. Conductivity measurement.pptx
 
Methods of Dewatering
Methods of DewateringMethods of Dewatering
Methods of Dewatering
 
Lecture 07 permeability and seepage (11-dec-2021)
Lecture 07 permeability and seepage (11-dec-2021)Lecture 07 permeability and seepage (11-dec-2021)
Lecture 07 permeability and seepage (11-dec-2021)
 
Methods of in site Permeability Test
Methods of in site Permeability TestMethods of in site Permeability Test
Methods of in site Permeability Test
 
Permeability test
Permeability testPermeability test
Permeability test
 
Management & mitigation of groundwater infiltration within underground excava...
Management & mitigation of groundwater infiltration within underground excava...Management & mitigation of groundwater infiltration within underground excava...
Management & mitigation of groundwater infiltration within underground excava...
 
Geotechnical engineering II
Geotechnical engineering IIGeotechnical engineering II
Geotechnical engineering II
 
07 a80102 groundwaterdevelopmentandmanagement
07 a80102 groundwaterdevelopmentandmanagement07 a80102 groundwaterdevelopmentandmanagement
07 a80102 groundwaterdevelopmentandmanagement
 
Analytical modelling of groundwater wells and well systems: how to get it r...
Analytical modelling of  groundwater wells and well systems:  how to get it r...Analytical modelling of  groundwater wells and well systems:  how to get it r...
Analytical modelling of groundwater wells and well systems: how to get it r...
 
Site inveswtigation vandana miss
Site inveswtigation vandana missSite inveswtigation vandana miss
Site inveswtigation vandana miss
 
Control Seepage Thought Earth Dams
Control Seepage Thought Earth DamsControl Seepage Thought Earth Dams
Control Seepage Thought Earth Dams
 
wells purposes.ppt
wells purposes.pptwells purposes.ppt
wells purposes.ppt
 
soil mechanics : permebility
soil mechanics : permebilitysoil mechanics : permebility
soil mechanics : permebility
 
Ex 7 b permeability by variable head
Ex 7 b permeability by variable headEx 7 b permeability by variable head
Ex 7 b permeability by variable head
 
Presentation on hydraulic conductivity and drainable porosity
Presentation on hydraulic conductivity and drainable porosityPresentation on hydraulic conductivity and drainable porosity
Presentation on hydraulic conductivity and drainable porosity
 
Construction of Dams.pptx
Construction of Dams.pptxConstruction of Dams.pptx
Construction of Dams.pptx
 
Unit 2.ppt
Unit 2.pptUnit 2.ppt
Unit 2.ppt
 
Groundwater Hydrology.pdf
Groundwater Hydrology.pdfGroundwater Hydrology.pdf
Groundwater Hydrology.pdf
 
subsurface investigation of ground water
subsurface investigation of ground watersubsurface investigation of ground water
subsurface investigation of ground water
 

More from Muhammad Irfan

Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)Muhammad Irfan
 
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)Muhammad Irfan
 
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Muhammad Irfan
 

More from Muhammad Irfan (20)

Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
 
Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]
 
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
 
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
 
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
 
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
 
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
 
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
 
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
 
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
 
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
 
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
 
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
 
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
 
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
 
Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]
 
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
 
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
 
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
 
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
 

Recently uploaded

Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixingviprabot1
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage examplePragyanshuParadkar1
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 

Recently uploaded (20)

Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixing
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage example
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 

Geotechnical Engineering-I [Lec #25: In-Situ Permeability]

  • 1. 1 Geotechnical Engineering–I [CE-221] BSc Civil Engineering – 4th Semester by Dr. Muhammad Irfan Assistant Professor Civil Engg. Dept. – UET Lahore Email: mirfan1@msn.com Lecture Handouts: https://groups.google.com/d/forum/2016session-geotech-i Lecture # 25 24-Apr-2018
  • 2. 2 WATER FLOW THROUGH SOILS To determine the quantity of flow, two parameters are needed * k = hydraulic conductivity * i = hydraulic gradient Determination of ‘k’ 1- Laboratory Testing  [constant head test & falling head test] 2- Field Testing  [constant/falling head tests, pump out tests, etc] 3- Empirical Equations Determination of ‘i’ 1- From the head loss and geometry 2- Flow Nets (how permeable is the soil medium) (how large is the driving head) Today’s discussion A h kAikq    L
  • 3. 3 SUBSURFACE FLOW OF WATER Aquifer: Soil or rock forming stratum with sufficient porosity and permeability to store and transmit groundwater. (e.g. sands, gravels, fractured rock) Aquifer
  • 4. 4 Aquiclude/ Aquifuge: An impermeable stratum, or a stratum having extremely low permeability. (e.g. clays, intact rock) Aquifer SUBSURFACE FLOW OF WATER
  • 5. 5 Unconfined Aquifer (water table aquifer) are bound by the water table; i.e., they have no confining rock layers over the top of them. Confined Aquifer: A water bearing layer confined between less pervious (or impervious) layers. SUBSURFACE FLOW OF WATER
  • 6. 6 ARTESIAN FLOW  Artesian springs/wells are wells that flow under their own pressure.  These require a sloping permeable layer of rock (Aquifer) with a recharge zone higher than the well.
  • 7. 7 Determination of Hydraulic Conductivity in the Field 1. Pumping wells with observation holes 2. Borehole test 3. Packer test  Constant/ falling head type  Mostly for rocks
  • 8. 8 In-situ Permeability Test using Pumping Wells Initial WT Observation Wells Sand (Pervious Layer) Clay (Impervious Layer) Test Well WT after pumping Pumping out water (Rate of pumping, q (m3/hr))  Steady state: equilibrium state when the inflow to the well becomes equal to the rate of pumping.  Water level in the test well + observation wells becomes constant at steady state condition.
  • 9. 9  Used to determine hydraulic conductivity (k) of soil in-situ.  Water is pumped out at a constant rate from a test well that has a perforated casing.  Several observation wells at various radial distances are made around the test well.  Continuous observations of water level in the test well + observation wells are made after the start of pumping, until a steady state is reached.  The steady state is established when the water level in the test and observation wells becomes constant. In-situ Permeability Test using Pumping Wells
  • 10. 10 In-situ Permeability Test Pumping Well in an Unconfined Aquifer )( ln. 2 2 2 1 2 1 hh r r q k          q If q, h1, h2, r1, r2 are known , k can be calculated
  • 11. 11 In-situ Permeability Test Pumping Well in a Confined Aquifer )( ln 2 21 2 1 hh r r H q k          q If q, h1, h2, r1, r2 are known , k can be calculated Water entering into well
  • 12. 12 Practice Problem #7 A layer of sand 6m thick underlies a 5m thick layer of clay stratum and overlies a bed of shale. A pumping well, sunk to the base of sand yielded 10x10-3 m3/sec. Observation wells placed at 15m and 30m from the well indicated groundwater levels 2.5m and 3m above the depressed water level in the test well, respectively. Determine the permeability of soil. Permeability in Unconfined Aquifer )( ln. 2 2 2 1 2 1 hh r r q k          )( ln 2 21 2 1 hh r r H q k          Permeability in Confined Aquifer
  • 13. 13 Practice Problem #8 A field pumping test is carried out to determine average permeability of uniform soil deposit 30m deep. Water table in the deposit is located at a depth of 2m below ground surface. Steady state is reached under a uniform pumping rate of 0.02 m3/sec. The two observation wells located at distances of 20m and 60m show elevations of water level at 2m and 0.5m below original water table respectively. Determine the value of soil permeability. Permeability in Unconfined Aquifer )( ln. 2 2 2 1 2 1 hh r r q k          )( ln 2 21 2 1 hh r r H q k          Permeability in Confined Aquifer
  • 14. 14 CONCLUDED REFERENCE MATERIAL Principles of Geotechnical Engineering – (7th Edition) Braja M. Das Chapter #7 & 8