SlideShare a Scribd company logo
1 of 17
1
Geotechnical Engineering–II [CE-321]
BSc Civil Engineering – 5th Semester
by
Dr. Muhammad Irfan
Assistant Professor
Civil Engg. Dept. – UET Lahore
Email: mirfan1@msn.com
Lecture Handouts: https://groups.google.com/d/forum/geotech-ii_2015session
Lecture # 24
6-Dec-2017
2
Practice Problem #4











 




sin1
sin1
2
45tan2
o
a
aK
aaa KczK  2
c’ = 0
’ = 35°
 = 18 kN/m3
c’ = 0
’ = 30°
WT
 = 19 kN/m3
sat = 21 kN/m3
c’ = 0
’ = 32°
sat = 20 kN/m3
4m
4m
2m
4m
Determine the total active force per meter acting on the wall
along with its point of application.
q = 50 kPa
3
Practice Problem #5











 




sin1
sin1
2
45tan2
o
a
aK
aaa KczK  2
c’ = 10 kPa
’ = 35°
 = 18 kN/m3
WT
c’ = 50
’ = 0°
sat = 20 kN/m3
4m
4m
4m
Determine the total active force per meter acting on the wall
along with its point of application.
q = 50 kPa
c’ = 20 kPa
’ = 19.5°
sat = 21 kN/m3
4
Practice Problem #6











 




sin1
sin1
2
45tan2
o
a
aK
aaa KczK  2
c’ = 50 kPa
’ = 10°
 = 18 kN/m3
10 m
A retaining wall of 10 m height retains a cohesive soil.
Determine the active force with respect to various possibilities
of tension crack.
a
c
K
c
z



2
5
RANKINE THEORY
ACTIVE PRESSURE -- SUMMARY --











 




sin1
sin1
2
45tan2
o
a
aK
aaa KczK  2
a
c
K
c
z



2
6
COULOMB’S EARTH PRESSURE
THEORY
ASSUMPTIONS
1. The soil is homogeneous and isotropic.
2. Soil has both cohesion and friction (c- soil).
3. Rupture surface as well as backfill surface is planar.
4. There is friction between wall and soil.
5. Failure wedge is a rigid body undergoing translation.
Coulomb (1776)
7
BENEFITS OF ASSUMPTIONS
-- DIFFERENCE BETWEEN THEORY AND REALITY --
8
BENEFITS OF ASSUMPTIONS
-- DIFFERENCE BETWEEN THEORY AND REALITY --
Theoretical Earth Pressure Actual Earth Pressure
9
COULOMB’S ACTIVE EARTH PRESSURE
a
b
q
180aq
ab
A
B
C
D
qb
W
W = Weight of soil wedge ABC
𝑊 = 1
2∙𝐴𝐶∙𝐵𝐷∙1∙𝛾 ⋯⋯⋯(1)
𝐴𝐶
sin(𝛼 + 𝛽)
=
𝐴𝐵
sin(𝜃 − 𝛽)
∆𝑨𝑩𝑪
Using law of sines
𝐴𝐶 =
𝐴𝐵
sin(𝜃 − 𝛽)
∙ sin(𝛼 + 𝛽)
𝐴𝐶 =
𝐻
sin 𝛼 ∙ sin(𝜃 − 𝛽)
∙ sin(𝛼 + 𝛽)
H
10
COULOMB’S ACTIVE EARTH PRESSURE
a
b
q
180aq
ab
A
B
C
D
qb
W
W = Weight of soil wedge ABC
𝑊 = 1
2∙𝐴𝐶∙𝐵𝐷∙1∙𝛾 ⋯⋯⋯(1)
𝐴𝐶 =
𝐻
sin 𝛼 ∙ sin(𝜃 − 𝛽)
∙ sin(𝛼 + 𝛽)
∆𝑨𝑩𝑫
𝐵𝐷
sin(180 − (𝛼 + 𝜃))
=
𝐴𝐵
sin 90
∵ sin(180 − 𝛼 + 𝜃 ) = sin(𝛼 + 𝜃)
𝐵𝐷
sin(𝛼 + 𝜃)
=
𝐴𝐵
sin 90
𝐵𝐷 = sin(𝛼 + 𝜃) ∙
𝐴𝐵
1
𝐵𝐷 = sin(𝛼 + 𝜃) ∙
𝐻
sin 𝛼
H
11
COULOMB’S ACTIVE EARTH PRESSURE
a
b
q
180aq
ab
A
B
C
D
qb
W
W = Weight of soil wedge ABC
𝑊 = 1
2∙𝐴𝐶∙𝐵𝐷∙1∙𝛾 ⋯⋯⋯(1)
𝐴𝐶 =
𝐻
sin 𝛼 ∙ sin(𝜃 − 𝛽)
∙ sin(𝛼 + 𝛽)
𝐵𝐷 = sin(𝛼 + 𝜃) ∙
𝐻
sin 𝛼
𝑊 = 1
2 ∙
𝛾𝐻2
𝑠𝑖𝑛2 𝛼
∙
sin(𝛼 + 𝛽) ∙ sin(𝛼 + 𝜃)
sin(𝜃 − 𝛽)
Eq. 1 →
H
12
COULOMB’S ACTIVE EARTH PRESSURE
a
b
q
180aq
ab
A
B
C
D
qb
W
W
R

R = Resultant of shear and normal forces
acting on failure plane
R
(q)
(ad)180(adq)
d
Pa
𝛿 = 2
3 𝜙
Our Goal:
Determine active force (Pa) on the wall.
 Draw force polygon of the system.
Pa
d = angle of wall friction
(𝑅𝑒𝑠𝑜𝑛𝑎𝑏𝑙𝑒 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛)
13
COULOMB’S ACTIVE EARTH PRESSURE
a
b
q
180aq
ab
A
B
C
D
qb
W
W
R

R
(q)
(ad)180(adq)
d
Pa
𝑃𝑎
sin(𝜃 − 𝜙)
=
𝑊
sin[180 − 𝛼 − 𝛿 + 𝜃 − 𝜙 ]
Applying sine law on force polygon
Pa
𝑃𝑎
sin(𝜃 − 𝜙)
=
𝑊
sin(𝛼 − 𝛿 + 𝜃 − 𝜙)
Replacing value of ‘W’
𝑃𝑎 =
1
2
∙
𝛾𝐻2
𝑠𝑖𝑛2 𝛼
∙
sin(𝛼 + 𝛽) ∙ sin(𝛼 + 𝜃) ∙ sin(𝜃 − 𝜙)
sin(𝜃 − 𝛽) ∙ sin(𝛼 − 𝛿 + 𝜃 − 𝜙)
14
COULOMB’S ACTIVE EARTH PRESSURE
a
b
q
180aq
ab
A
B
C
D
qb
W
W
R

R
(q)
(ad)180(adq)
d
Pa
As designers, we want to determine max.
value of Pa
Pa
𝑃𝑎 =
1
2
𝛾𝐻2 ∙
𝑠𝑖𝑛2(𝛼 + 𝜙)
𝑠𝑖𝑛2 𝛼 ∙ sin(𝛼 − 𝛿) 1 +
sin(𝜙 + 𝛿) ∙ sin(𝜙 − 𝛽)
sin(𝜙 − 𝛿) ∙ sin(𝜙 + 𝛽)
2
To determine critical value of b for max. Pa,
we have 𝑑𝑃𝑎
𝑑𝛽
= 0
15
COULOMB’S ACTIVE EARTH PRESSURE
a
b
q
180aq
ab
A
B
C
D
qb
W
R
d
Pa
𝐾 𝑎 =
𝑠𝑖𝑛2(𝛼 + 𝜙)
𝑠𝑖𝑛2 𝛼 ∙ sin(𝛼 − 𝛿) 1 +
sin(𝜙 + 𝛿) ∙ sin(𝜙 − 𝛽)
sin(𝜙 − 𝛿) ∙ sin(𝜙 + 𝛽)
2
Since,
𝑃𝑎 =
1
2
∙ 𝛾𝐻2
∙ 𝐾 𝑎
𝑃𝑎 =
1
2
𝛾𝐻2
∙
𝑠𝑖𝑛2
(𝛼 + 𝜙)
𝑠𝑖𝑛2 𝛼 ∙ sin(𝛼 − 𝛿) 1 +
sin(𝜙 + 𝛿) ∙ sin(𝜙 − 𝛽)
sin(𝜙 − 𝛿) ∙ sin(𝜙 + 𝛽)
2
16
COULOMB’S ACTIVE EARTH PRESSURE
a
b
q
180aq
ab
A
B
C
D
qb
W
R
d
Pa
𝑃𝑎 =
1
2
𝛾𝐻2
∙
𝑠𝑖𝑛2
(𝛼 + 𝜙)
𝑠𝑖𝑛2 𝛼 ∙ sin(𝛼 − 𝛿) 1 +
sin(𝜙 + 𝛿) ∙ sin(𝜙 − 𝛽)
sin(𝜙 − 𝛿) ∙ sin(𝜙 + 𝛽)
2
For a vertical wall face and horizontal
levelled ground
𝛼 = 90° , 𝑎𝑛𝑑 𝛽 = 0°
𝑃𝑎 =
1
2
𝛾𝐻2 ∙
1 − sin 𝜙
1 + sin 𝜙
Above equation is reduced to
i.e. same as Renkine’s Solution
17
CONCLUDED
REFERENCE MATERIAL
Principles of Geotechnical Engineering – (7th Edition)
Braja M. Das
Chapter #13
Essentials of Soil Mechanics and Foundations (7th Edition)
David F. McCarthy
Chapter #17
Geotechnical Engineering – Principles and Practices – (2nd Edition)
Coduto, Yueng, and Kitch
Chapter #17

More Related Content

What's hot

Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]Muhammad Irfan
 
Bearing capacity of shallow foundations by abhishek sharma
Bearing capacity of shallow foundations by abhishek sharma Bearing capacity of shallow foundations by abhishek sharma
Bearing capacity of shallow foundations by abhishek sharma ABHISHEK SHARMA
 
Load carrying capacity of piles
Load carrying capacity of pilesLoad carrying capacity of piles
Load carrying capacity of pilesLatif Hyder Wadho
 
Earth pressure( soil mechanics)
Earth pressure( soil mechanics)Earth pressure( soil mechanics)
Earth pressure( soil mechanics)Darshil Vekaria
 
Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Muhammad Irfan
 
Slope stability analysis methods
Slope stability analysis methodsSlope stability analysis methods
Slope stability analysis methodszaidalFarhan1
 
Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]Muhammad Irfan
 
Permeability of Soil
Permeability of SoilPermeability of Soil
Permeability of SoilArbaz Kazi
 
Geotechnical Engineering-I [Lec #21: Consolidation Problems]
Geotechnical Engineering-I [Lec #21: Consolidation Problems]Geotechnical Engineering-I [Lec #21: Consolidation Problems]
Geotechnical Engineering-I [Lec #21: Consolidation Problems]Muhammad Irfan
 
Shear Strength of Soil
Shear Strength of SoilShear Strength of Soil
Shear Strength of SoilUmang Parmar
 
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]Muhammad Irfan
 
Settlement of shallow foundation
Settlement of shallow foundationSettlement of shallow foundation
Settlement of shallow foundationLatif Hyder Wadho
 
Introduction to Foundation Engineering
Introduction to Foundation EngineeringIntroduction to Foundation Engineering
Introduction to Foundation EngineeringLatif Hyder Wadho
 
Lecture 11 Shear Strength of Soil CE240
Lecture 11 Shear Strength of Soil CE240Lecture 11 Shear Strength of Soil CE240
Lecture 11 Shear Strength of Soil CE240Wajahat Ullah
 
Class 8 Triaxial Test ( Geotechnical Engineering )
Class 8    Triaxial Test ( Geotechnical Engineering )Class 8    Triaxial Test ( Geotechnical Engineering )
Class 8 Triaxial Test ( Geotechnical Engineering )Hossam Shafiq I
 

What's hot (20)

Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
 
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
Geotechnical Engineering-II [Lec #22: Earth Pressure at Rest]
 
Bearing capacity of shallow foundations by abhishek sharma
Bearing capacity of shallow foundations by abhishek sharma Bearing capacity of shallow foundations by abhishek sharma
Bearing capacity of shallow foundations by abhishek sharma
 
Load carrying capacity of piles
Load carrying capacity of pilesLoad carrying capacity of piles
Load carrying capacity of piles
 
Earth pressure( soil mechanics)
Earth pressure( soil mechanics)Earth pressure( soil mechanics)
Earth pressure( soil mechanics)
 
Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]
 
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
 
4 permeability and seepage
4  permeability and seepage4  permeability and seepage
4 permeability and seepage
 
Slope stability analysis methods
Slope stability analysis methodsSlope stability analysis methods
Slope stability analysis methods
 
Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]Geotechnical Engineering-II [Lec #11: Settlement Computation]
Geotechnical Engineering-II [Lec #11: Settlement Computation]
 
Permeability of Soil
Permeability of SoilPermeability of Soil
Permeability of Soil
 
Geotechnical Engineering-I [Lec #21: Consolidation Problems]
Geotechnical Engineering-I [Lec #21: Consolidation Problems]Geotechnical Engineering-I [Lec #21: Consolidation Problems]
Geotechnical Engineering-I [Lec #21: Consolidation Problems]
 
Shear Strength of Soil
Shear Strength of SoilShear Strength of Soil
Shear Strength of Soil
 
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
 
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
 
Settlement of shallow foundation
Settlement of shallow foundationSettlement of shallow foundation
Settlement of shallow foundation
 
Introduction to Foundation Engineering
Introduction to Foundation EngineeringIntroduction to Foundation Engineering
Introduction to Foundation Engineering
 
Lecture 11 Shear Strength of Soil CE240
Lecture 11 Shear Strength of Soil CE240Lecture 11 Shear Strength of Soil CE240
Lecture 11 Shear Strength of Soil CE240
 
Class 8 Triaxial Test ( Geotechnical Engineering )
Class 8    Triaxial Test ( Geotechnical Engineering )Class 8    Triaxial Test ( Geotechnical Engineering )
Class 8 Triaxial Test ( Geotechnical Engineering )
 
Effective stress
Effective stressEffective stress
Effective stress
 

Similar to Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]

The design of earth-retaining structures - Lecture 2
The design of earth-retaining structures - Lecture 2The design of earth-retaining structures - Lecture 2
The design of earth-retaining structures - Lecture 2Chris Bridges
 
Trig cheat sheet
Trig cheat sheetTrig cheat sheet
Trig cheat sheetAneel Ahmad
 
Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures? Alessandro Palmeri
 
smLecture7 Calculation of Settlement.pptx
smLecture7 Calculation of Settlement.pptxsmLecture7 Calculation of Settlement.pptx
smLecture7 Calculation of Settlement.pptxAlemiHerbert
 
9 ce 632 earth pressure ppt.pdf
9 ce 632 earth pressure ppt.pdf9 ce 632 earth pressure ppt.pdf
9 ce 632 earth pressure ppt.pdfSaurabh Kumar
 
high thick masonry structural chiefly for defense —often used in plural b : a...
high thick masonry structural chiefly for defense —often used in plural b : a...high thick masonry structural chiefly for defense —often used in plural b : a...
high thick masonry structural chiefly for defense —often used in plural b : a...Ajith949843
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirSHAMJITH KM
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirSHAMJITH KM
 
Basement wall design
Basement wall designBasement wall design
Basement wall designCETCBIM
 
lecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxlecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxAYMENGOODKid
 
2021 preTEST5A Final Review Packet!
2021 preTEST5A Final Review Packet!2021 preTEST5A Final Review Packet!
2021 preTEST5A Final Review Packet!A Jorge Garcia
 
Introduction_to_trigonometry_final ppt..pptx
Introduction_to_trigonometry_final ppt..pptxIntroduction_to_trigonometry_final ppt..pptx
Introduction_to_trigonometry_final ppt..pptxSachinkumar218455
 
coulomb's theory of earth pressure
 coulomb's theory of earth pressure coulomb's theory of earth pressure
coulomb's theory of earth pressureSANJEEV Wazir
 
Questions and Solutions Basic Trigonometry.pdf
Questions and Solutions Basic Trigonometry.pdfQuestions and Solutions Basic Trigonometry.pdf
Questions and Solutions Basic Trigonometry.pdferbisyaputra
 
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...Burdwan University
 

Similar to Geotechnical Engineering-II [Lec #24: Coulomb EP Theory] (20)

Lateral Earth pressure
Lateral Earth pressureLateral Earth pressure
Lateral Earth pressure
 
Capítulo 11 (5th edition)rewrweerww
Capítulo 11 (5th edition)rewrweerwwCapítulo 11 (5th edition)rewrweerww
Capítulo 11 (5th edition)rewrweerww
 
The design of earth-retaining structures - Lecture 2
The design of earth-retaining structures - Lecture 2The design of earth-retaining structures - Lecture 2
The design of earth-retaining structures - Lecture 2
 
Trig cheat sheet
Trig cheat sheetTrig cheat sheet
Trig cheat sheet
 
Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?
 
smLecture7 Calculation of Settlement.pptx
smLecture7 Calculation of Settlement.pptxsmLecture7 Calculation of Settlement.pptx
smLecture7 Calculation of Settlement.pptx
 
Chapter 15
Chapter 15Chapter 15
Chapter 15
 
9 ce 632 earth pressure ppt.pdf
9 ce 632 earth pressure ppt.pdf9 ce 632 earth pressure ppt.pdf
9 ce 632 earth pressure ppt.pdf
 
Pipe project daniel
Pipe project danielPipe project daniel
Pipe project daniel
 
high thick masonry structural chiefly for defense —often used in plural b : a...
high thick masonry structural chiefly for defense —often used in plural b : a...high thick masonry structural chiefly for defense —often used in plural b : a...
high thick masonry structural chiefly for defense —often used in plural b : a...
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sir
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sir
 
Basement wall design
Basement wall designBasement wall design
Basement wall design
 
lecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxlecture 5 courseII (6).pptx
lecture 5 courseII (6).pptx
 
2021 preTEST5A Final Review Packet!
2021 preTEST5A Final Review Packet!2021 preTEST5A Final Review Packet!
2021 preTEST5A Final Review Packet!
 
Introduction_to_trigonometry_final ppt..pptx
Introduction_to_trigonometry_final ppt..pptxIntroduction_to_trigonometry_final ppt..pptx
Introduction_to_trigonometry_final ppt..pptx
 
coulomb's theory of earth pressure
 coulomb's theory of earth pressure coulomb's theory of earth pressure
coulomb's theory of earth pressure
 
Questions and Solutions Basic Trigonometry.pdf
Questions and Solutions Basic Trigonometry.pdfQuestions and Solutions Basic Trigonometry.pdf
Questions and Solutions Basic Trigonometry.pdf
 
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
 
Chap5 sec5.2
Chap5 sec5.2Chap5 sec5.2
Chap5 sec5.2
 

More from Muhammad Irfan

Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)Muhammad Irfan
 
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)Muhammad Irfan
 
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #0: Course Material]
Geotechnical Engineering-II [Lec #0: Course Material]Geotechnical Engineering-II [Lec #0: Course Material]
Geotechnical Engineering-II [Lec #0: Course Material]Muhammad Irfan
 
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]Geotechnical Engineering-I [Lec #29: Soil Exploration - II]
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]Muhammad Irfan
 
Geotechnical Engineering-I [Lec #28: Soil Exploration]
Geotechnical Engineering-I [Lec #28: Soil Exploration]Geotechnical Engineering-I [Lec #28: Soil Exploration]
Geotechnical Engineering-I [Lec #28: Soil Exploration]Muhammad Irfan
 

More from Muhammad Irfan (20)

Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]Geotechnical Engineering-II [Lec #26: Slope Stability]
Geotechnical Engineering-II [Lec #26: Slope Stability]
 
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
 
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
Geotechnical Engineering-II [Lec #20: WT effect on Bearing Capcity)
 
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
 
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
 
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
 
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
 
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
Geotechnical Engineering-II [Lec #14: Timoshenko & Goodier Method]
 
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
Geotechnical Engineering-II [Lec #12: Consolidation Settlement Computation]
 
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
Geotechnical Engineering-II [Lec #8: Boussinesq Method - Rectangular Areas]
 
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
 
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
 
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
 
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
 
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
 
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
Geotechnical Engineering-II [Lec #2: Mohr-Coulomb Failure Criteria]
 
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
Geotechnical Engineering-II [Lec #1: Shear Strength of Soil]
 
Geotechnical Engineering-II [Lec #0: Course Material]
Geotechnical Engineering-II [Lec #0: Course Material]Geotechnical Engineering-II [Lec #0: Course Material]
Geotechnical Engineering-II [Lec #0: Course Material]
 
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]Geotechnical Engineering-I [Lec #29: Soil Exploration - II]
Geotechnical Engineering-I [Lec #29: Soil Exploration - II]
 
Geotechnical Engineering-I [Lec #28: Soil Exploration]
Geotechnical Engineering-I [Lec #28: Soil Exploration]Geotechnical Engineering-I [Lec #28: Soil Exploration]
Geotechnical Engineering-I [Lec #28: Soil Exploration]
 

Recently uploaded

Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaOmar Fathy
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARKOUSTAV SARKAR
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdfKamal Acharya
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesRAJNEESHKUMAR341697
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadhamedmustafa094
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxSCMS School of Architecture
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationBhangaleSonal
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueBhangaleSonal
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Servicemeghakumariji156
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesMayuraD1
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 

Recently uploaded (20)

Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 

Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]

  • 1. 1 Geotechnical Engineering–II [CE-321] BSc Civil Engineering – 5th Semester by Dr. Muhammad Irfan Assistant Professor Civil Engg. Dept. – UET Lahore Email: mirfan1@msn.com Lecture Handouts: https://groups.google.com/d/forum/geotech-ii_2015session Lecture # 24 6-Dec-2017
  • 2. 2 Practice Problem #4                  sin1 sin1 2 45tan2 o a aK aaa KczK  2 c’ = 0 ’ = 35°  = 18 kN/m3 c’ = 0 ’ = 30° WT  = 19 kN/m3 sat = 21 kN/m3 c’ = 0 ’ = 32° sat = 20 kN/m3 4m 4m 2m 4m Determine the total active force per meter acting on the wall along with its point of application. q = 50 kPa
  • 3. 3 Practice Problem #5                  sin1 sin1 2 45tan2 o a aK aaa KczK  2 c’ = 10 kPa ’ = 35°  = 18 kN/m3 WT c’ = 50 ’ = 0° sat = 20 kN/m3 4m 4m 4m Determine the total active force per meter acting on the wall along with its point of application. q = 50 kPa c’ = 20 kPa ’ = 19.5° sat = 21 kN/m3
  • 4. 4 Practice Problem #6                  sin1 sin1 2 45tan2 o a aK aaa KczK  2 c’ = 50 kPa ’ = 10°  = 18 kN/m3 10 m A retaining wall of 10 m height retains a cohesive soil. Determine the active force with respect to various possibilities of tension crack. a c K c z    2
  • 5. 5 RANKINE THEORY ACTIVE PRESSURE -- SUMMARY --                  sin1 sin1 2 45tan2 o a aK aaa KczK  2 a c K c z    2
  • 6. 6 COULOMB’S EARTH PRESSURE THEORY ASSUMPTIONS 1. The soil is homogeneous and isotropic. 2. Soil has both cohesion and friction (c- soil). 3. Rupture surface as well as backfill surface is planar. 4. There is friction between wall and soil. 5. Failure wedge is a rigid body undergoing translation. Coulomb (1776)
  • 7. 7 BENEFITS OF ASSUMPTIONS -- DIFFERENCE BETWEEN THEORY AND REALITY --
  • 8. 8 BENEFITS OF ASSUMPTIONS -- DIFFERENCE BETWEEN THEORY AND REALITY -- Theoretical Earth Pressure Actual Earth Pressure
  • 9. 9 COULOMB’S ACTIVE EARTH PRESSURE a b q 180aq ab A B C D qb W W = Weight of soil wedge ABC 𝑊 = 1 2∙𝐴𝐶∙𝐵𝐷∙1∙𝛾 ⋯⋯⋯(1) 𝐴𝐶 sin(𝛼 + 𝛽) = 𝐴𝐵 sin(𝜃 − 𝛽) ∆𝑨𝑩𝑪 Using law of sines 𝐴𝐶 = 𝐴𝐵 sin(𝜃 − 𝛽) ∙ sin(𝛼 + 𝛽) 𝐴𝐶 = 𝐻 sin 𝛼 ∙ sin(𝜃 − 𝛽) ∙ sin(𝛼 + 𝛽) H
  • 10. 10 COULOMB’S ACTIVE EARTH PRESSURE a b q 180aq ab A B C D qb W W = Weight of soil wedge ABC 𝑊 = 1 2∙𝐴𝐶∙𝐵𝐷∙1∙𝛾 ⋯⋯⋯(1) 𝐴𝐶 = 𝐻 sin 𝛼 ∙ sin(𝜃 − 𝛽) ∙ sin(𝛼 + 𝛽) ∆𝑨𝑩𝑫 𝐵𝐷 sin(180 − (𝛼 + 𝜃)) = 𝐴𝐵 sin 90 ∵ sin(180 − 𝛼 + 𝜃 ) = sin(𝛼 + 𝜃) 𝐵𝐷 sin(𝛼 + 𝜃) = 𝐴𝐵 sin 90 𝐵𝐷 = sin(𝛼 + 𝜃) ∙ 𝐴𝐵 1 𝐵𝐷 = sin(𝛼 + 𝜃) ∙ 𝐻 sin 𝛼 H
  • 11. 11 COULOMB’S ACTIVE EARTH PRESSURE a b q 180aq ab A B C D qb W W = Weight of soil wedge ABC 𝑊 = 1 2∙𝐴𝐶∙𝐵𝐷∙1∙𝛾 ⋯⋯⋯(1) 𝐴𝐶 = 𝐻 sin 𝛼 ∙ sin(𝜃 − 𝛽) ∙ sin(𝛼 + 𝛽) 𝐵𝐷 = sin(𝛼 + 𝜃) ∙ 𝐻 sin 𝛼 𝑊 = 1 2 ∙ 𝛾𝐻2 𝑠𝑖𝑛2 𝛼 ∙ sin(𝛼 + 𝛽) ∙ sin(𝛼 + 𝜃) sin(𝜃 − 𝛽) Eq. 1 → H
  • 12. 12 COULOMB’S ACTIVE EARTH PRESSURE a b q 180aq ab A B C D qb W W R  R = Resultant of shear and normal forces acting on failure plane R (q) (ad)180(adq) d Pa 𝛿 = 2 3 𝜙 Our Goal: Determine active force (Pa) on the wall.  Draw force polygon of the system. Pa d = angle of wall friction (𝑅𝑒𝑠𝑜𝑛𝑎𝑏𝑙𝑒 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛)
  • 13. 13 COULOMB’S ACTIVE EARTH PRESSURE a b q 180aq ab A B C D qb W W R  R (q) (ad)180(adq) d Pa 𝑃𝑎 sin(𝜃 − 𝜙) = 𝑊 sin[180 − 𝛼 − 𝛿 + 𝜃 − 𝜙 ] Applying sine law on force polygon Pa 𝑃𝑎 sin(𝜃 − 𝜙) = 𝑊 sin(𝛼 − 𝛿 + 𝜃 − 𝜙) Replacing value of ‘W’ 𝑃𝑎 = 1 2 ∙ 𝛾𝐻2 𝑠𝑖𝑛2 𝛼 ∙ sin(𝛼 + 𝛽) ∙ sin(𝛼 + 𝜃) ∙ sin(𝜃 − 𝜙) sin(𝜃 − 𝛽) ∙ sin(𝛼 − 𝛿 + 𝜃 − 𝜙)
  • 14. 14 COULOMB’S ACTIVE EARTH PRESSURE a b q 180aq ab A B C D qb W W R  R (q) (ad)180(adq) d Pa As designers, we want to determine max. value of Pa Pa 𝑃𝑎 = 1 2 𝛾𝐻2 ∙ 𝑠𝑖𝑛2(𝛼 + 𝜙) 𝑠𝑖𝑛2 𝛼 ∙ sin(𝛼 − 𝛿) 1 + sin(𝜙 + 𝛿) ∙ sin(𝜙 − 𝛽) sin(𝜙 − 𝛿) ∙ sin(𝜙 + 𝛽) 2 To determine critical value of b for max. Pa, we have 𝑑𝑃𝑎 𝑑𝛽 = 0
  • 15. 15 COULOMB’S ACTIVE EARTH PRESSURE a b q 180aq ab A B C D qb W R d Pa 𝐾 𝑎 = 𝑠𝑖𝑛2(𝛼 + 𝜙) 𝑠𝑖𝑛2 𝛼 ∙ sin(𝛼 − 𝛿) 1 + sin(𝜙 + 𝛿) ∙ sin(𝜙 − 𝛽) sin(𝜙 − 𝛿) ∙ sin(𝜙 + 𝛽) 2 Since, 𝑃𝑎 = 1 2 ∙ 𝛾𝐻2 ∙ 𝐾 𝑎 𝑃𝑎 = 1 2 𝛾𝐻2 ∙ 𝑠𝑖𝑛2 (𝛼 + 𝜙) 𝑠𝑖𝑛2 𝛼 ∙ sin(𝛼 − 𝛿) 1 + sin(𝜙 + 𝛿) ∙ sin(𝜙 − 𝛽) sin(𝜙 − 𝛿) ∙ sin(𝜙 + 𝛽) 2
  • 16. 16 COULOMB’S ACTIVE EARTH PRESSURE a b q 180aq ab A B C D qb W R d Pa 𝑃𝑎 = 1 2 𝛾𝐻2 ∙ 𝑠𝑖𝑛2 (𝛼 + 𝜙) 𝑠𝑖𝑛2 𝛼 ∙ sin(𝛼 − 𝛿) 1 + sin(𝜙 + 𝛿) ∙ sin(𝜙 − 𝛽) sin(𝜙 − 𝛿) ∙ sin(𝜙 + 𝛽) 2 For a vertical wall face and horizontal levelled ground 𝛼 = 90° , 𝑎𝑛𝑑 𝛽 = 0° 𝑃𝑎 = 1 2 𝛾𝐻2 ∙ 1 − sin 𝜙 1 + sin 𝜙 Above equation is reduced to i.e. same as Renkine’s Solution
  • 17. 17 CONCLUDED REFERENCE MATERIAL Principles of Geotechnical Engineering – (7th Edition) Braja M. Das Chapter #13 Essentials of Soil Mechanics and Foundations (7th Edition) David F. McCarthy Chapter #17 Geotechnical Engineering – Principles and Practices – (2nd Edition) Coduto, Yueng, and Kitch Chapter #17