SNPIT & RC 
SUBJECT:- ADVANCED ENGINEERING MATHEMATICS 
SUBJECT CODE:- 2130002 
TOPIC:- LAPLACE TRANSFORM OF PERIODIC FUNCTIONS 
1
 PANCHAL ABHISHEK -130490109002 
 CHANCHAD BHUMIKA -130490109012 
 DESAI HALLY -130490109022 
 JISHNU NAIR -130490109032 
 LAD NEHAL -130490109042 
 MISTRY BRIJESH -130490109052 
 SURTI KAUSHAL -D2D 002 
 CHAUDHARI MEGHAVI -D2D 012 
GUIDED BY 
-Prof. RASHIK SHAH 
-Prof. NEHA BARIA 
GROUP MEMBERS 
2
LAPLACE TRANSFORM OF PERIODIC FUNCTIONS 
1. PERIODIC SQUARE WAVE 
2. PERIODIC TRIANGULAR WAVE 
3. PERIODIC SAWTOOTH WAVE 
4. STAIRCASE FUNCTION 
5. FULL-WAVE RECTIFIER 
6. HALF-WAVE RECTIFIER 
7. UNIT STEP FUNCTION 
8. SHIFTING THEOREM 
3
1. PERIODIC SQUARE WAVE 
1. Find the Laplace transform of the square wave 
function of period 2a 
defined as f(t) = k if 0  
t < a 
= -k if a < t < 2a 
The graph of square wave is shown in figure 
4
 ANS. :- 
since f(t) is a periodic function with period p= 2a 
L{f(t)}   
  
2 
  
2 
0 0 
2 
2 
0 
2 
2 
2 
2 
1 
1 
1 
1 
1 
1 2 
1 
a a 
st st 
as 
a a 
st st 
as 
a 
as as as 
as 
as as 
as 
ke dt ke dt 
e 
k e e 
e s s 
k e e e 
e s s s s 
k 
e e 
s e 
  
 
  
 
   
 
  
 
  
     
   
     
      
         
  
      
   
   
 
5
  
2 
 
k 1 
 
e 
    
  
s e e 
1 1 
k e 
s e 
2 2 2 
k e e e 
s e e e 
k as 
s 
2 2 2 
1 
1 
tanh 
2 
{ ( )} tanh 
2 
as 
as as 
as 
as 
as as as 
as as as 
k as 
L f t 
s 
 
 
  
  
 
  
   
   
   
   
   
     
  
   
  
  
    
  
6
2. PERIODIC TRIANGULAR WAVE 
 Find the Laplace transform of the periodic 
function shown in figure. 
7
 ANS.:-The function can be represented as 
f(t) = t 0 < t < a 
=2a-t a < t < 2a 
The function has a period 2a 
L{F(t)} 
2 
2 
 
0 
1 
( ) 
1 
a 
st 
as e f t dt 
e 
 
 
  
   
   
8
a 2 
a 
    
2 
  
  
  0 
 
st st 
  
2 
     
2 
  
  
  0 
 
2 
       
       2 
   
      
   
2 2 
         
2 
1 
( ) ( ) 
1 
1 
(2 ) 
1 
(1) 
1 
1 
(2 ) ( 1) 
as 
a 
a a 
st st 
as 
a 
a 
st st 
a 
as a 
st st 
a 
e f t dt e f t dt 
e 
e tdt e a t dt 
e 
e e 
t 
s s 
e 
e e 
a t 
s s 
 
  
 
  
 
  
         
      
 
9
as as as 2 
as as 
 a e e a e e e 
 
1 1 
       2 2 2 2 2 
 
e s s s s s s 
   
2 
   
2 2 
2 
a e e 
2 2 
2 
1 
1 
(1 2 ) 
(1 ) 
1 
{ ( )} (1 ) 
(1 ) 
1 
{ ( )} tan h 
2 
as 
as as 
as 
as 
as 
s e 
L f t e 
s e 
sa 
L f t 
s 
     
 
  
 
 
 
 
   
 
  
    
  
10
3. PERIODIC SAW TOOTH WAVE 
 Find the Laplace transform of the saw tooth 
wave function given by 
f(t)= if 0 < t < p, f(t+p) = f(t) 
k 
t 
p 
 ANS.:- 
11
Since f(t) is a periodic function with period p. 
p 
 
0 
 
0 
 
 
0 
2 
0 
1 
( ) 
1 
1 
1 
p(1 ) 
1 
p(1 ) 
st 
ps 
p 
st 
ps 
p 
st 
ps 
p 
st st 
ps 
e f t dt 
e 
kt 
e dt 
e p 
k 
e tdt 
e 
k e e 
t 
e s s 
 
 
 
 
 
  
 
 
 
 
 
 
 
     
       
       
L{f(t)} 
12
sp sp 
  
  
k pe e 
e s s s 
k 
    2 2 
 
   
  
     
 2 
  
2 
2 
1 
p(1 ) 
e sp e 
1 ( ) 
(1 ) s 
s s(1 ) 
{ ( )} 
s s(1 ) 
ps 
sp sp 
ps 
sp 
sp 
sp 
sp 
e p 
k ke 
p e 
k ke 
L f t 
p e 
 
  
 
 
 
 
 
  
 
   
 
13
4. STAIRCASE FUNCTION 
 Find the Laplace transform of the staircase function 
defined as 
g(t)=kn for np < t < (n+1)p, where n=0,1,2,…. 
(Note : This is not a periodic function) 
14
If h(t) is a saw tooth wave function defined in 
example 3 as 
kt 
p 
h(t)= for 0<t<p 
and h(t + p) = h(t) for all values of t. It is easy 
to observe from the figure that 
g(t)= -h(t) for 0 < t < 
kt 
p 
 
ANS:- 
15
  
     
[g(t)] { ( )} 
  
      
  
  
2 2 
     
  
  
[g(t)] 
1 
[g(t)] 
1 
sp 
sp 
sp 
sp 
kt 
L L L h t 
p 
k k ke 
L 
ps s p s e 
ke 
L 
s e 
 
 
 
 
 
16
 Find the Laplace transform of the full wave 
rectification of f(t)= 
Ans:-The graph of the function f(t)is shown in figure. 
Observe that 
for any t. 
5. FULL-WAVE RECTIFIER 
sin t t  0 
 
  
    
  
sin t sin t 
  
 
This function is called the full sine-wave rectifier 
function with period 
 
 
17
We may write the definition of f(t) as follows: 
f(t)= for 
sin t 0 t 
 
 
  
 
 
  
    
  
and f t f (t) 
for all t. 
18
 
L f t e tdt 
  
 
0 
st 
st 
 
    
2 2 
s 
st 
0 0 
2 2 
0 
2 2 
0 
1 
[ ( )] sin 
1 
sin ( .sin cos ) 
1 
sin 
sin 1 
s 
st 
s 
st 
e 
e 
Now e tdt s t t 
s 
e tdt e 
s 
e tdt e 
s 
 
 
 
 
  
  
 
  
 
 
  
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
  
     
   
  
    
   
  
    
   
 
 
 
19
 
 
  
L f t e 
 [ ( )]  .  1 
  
2 2 
    
2 
1 
 
 
  
2 2 
2 
 
 
2 2 
1 
1 
 
[ ( )] . 
1 
[ ( )] coth 
2 
s 
s 
 
s s 
s s 
s 
e 
e e 
L f t 
s 
 
e e 
s 
L f t 
s 
 
 
 
 
  
  
  
  
 
 
   
 
  
    
   
20
6. HALF-WAVE RECTIFICATION 
Find the Laplace transform of half-wave rectification 
of sinωt defined by 
wt if t w 
 sin 0 
  
  
   
( ) 
0 2 
2 
( ) 
f t 
if w t w 
n 
f t f t 
w 
 
  
 
  
    
  
Where For all integer n. 
21
Ans. The graph of function F(t) is shown in the 
figure 
22
  
     
f t  2 w  
f ( t ) for all 
t 
2 
L f t e f t dt 
  
s 
w 
2 
0 
2 
w 
0 
1 
1 
1 
w 
st 
st 
= sin .....(1) 
s 
1 
w 
e 
e wtdt 
e 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
w w st 
  
  
      2  2 
 
  
Now sin sin cos 
0 0 
1 
  
   
2 2 
   
  
   
2 2 
= 
= 1 
st 
s 
w 
s 
w 
e 
e w t d t s wt w wt 
s w 
we w 
s w 
w 
e 
s w 
 
 
 
 
 
 
   
 
24
   
2 2 2 
1 
  
1 
2 2 
1 1 
2 2 
1 
1 
= 
= 
1 
s 
w 
s s 
w w 
s 
w 
s 
w 
e 
e e 
s 
w 
w 
L f t e 
s w 
e 
w 
s w 
w 
s w e 
 
  
 
 
 
 
  
 
 
  
   
  
  
   
     
   
   
 
  
    
    
 
  
    
  
(1) becomes  
25
7. UNIT STEP FUNCTION (OR 
HEAVISIDE’S FUNCTION 
 The unit step function u(t - a) is defined as 
u(t – a) =0 if t < a (a ≥ 0) 
=1 if t ≥ a figure. 
26
The unit step function is also called the Heaviside 
function. In particular if a = 0, we have 
u(t) = 0 if t < 0 
= 1 if t ≥ 0 
27
 Laplace transform of unit step function 
By definition of Laplace transform, 
    
{u( )} . ( ) 
0 
  
0 
0 
(0) (1) 
  
1 
st 
st st 
a 
st 
st as 
a 
L t a e u t a dt 
e dt e dt 
e 
e dt e 
s s 
 
 
  
  
   
  
     
   
 
  
 
28
1 1 
  
L u t a e  as L  1 
e  
as u t a 
        
{ ( )} { ( )} 
s s 
 
1 
in particular, if a 0 
  
 
1 1 
  
L u t L u t 
      
{ ( )} ( ) 
s s 
  
29
If 
Second shifting theorem 
{f( )}  
( ), 
{f(t  a) u(t  a)}  
 
as 
(s) 
Proof : by definition of Laplace transform, we have, 
{ (  ) u(t  a)}  . (  ) (  
) 
 
0 
0 
(u ) (0) dt ( ) (1) 
st 
a 
st st 
a 
L t f s then 
L e f 
L f t a e f t a u t a dt 
e f a e f t a dt 
 
 
 
  
    
  
30
st 
s a r 
  
( ) 
 
 
a 
 
 
0 
 
 
as sr as 
   
 
0 
1 
(u )) , 
(r) 
(r) ( ) 
as as 
  
{ ( ) u(t a)} ( ) [ ( )] 
[ as 
( )] ( ) ( ) 
e f a dt Substituting t a r 
e f dr 
e e f dr e f s 
L f t a e f s e L f t 
L  e  
f s f t a u t a 
    
 
  
     
    
31
as 
 
Cor L f t u t a e L f t a 
.1: { ( ) ( )} [ ( )] 
(alternative form of second shifting theorem) 
as 
   
 
Cor L u t a L u t a e L 
.2 : [ ( )] [1. ( )] (1) 
     
Cor L u t a u t b 
.3 : [ ( ) ( )] 
as 
as bs 
e 
 
s 
  
e e 
as bs 
 
s 
  
    
Cor L f t u t a u t b e L f t a e L f t b 
.4 : [ ( ) { (  )  (  )]  { (  )}  { (  
)} 
32
REFERENCE BOOK :- DR K.R.KACHOT 
33
34

Laplace periodic function with graph

  • 1.
    SNPIT & RC SUBJECT:- ADVANCED ENGINEERING MATHEMATICS SUBJECT CODE:- 2130002 TOPIC:- LAPLACE TRANSFORM OF PERIODIC FUNCTIONS 1
  • 2.
     PANCHAL ABHISHEK-130490109002  CHANCHAD BHUMIKA -130490109012  DESAI HALLY -130490109022  JISHNU NAIR -130490109032  LAD NEHAL -130490109042  MISTRY BRIJESH -130490109052  SURTI KAUSHAL -D2D 002  CHAUDHARI MEGHAVI -D2D 012 GUIDED BY -Prof. RASHIK SHAH -Prof. NEHA BARIA GROUP MEMBERS 2
  • 3.
    LAPLACE TRANSFORM OFPERIODIC FUNCTIONS 1. PERIODIC SQUARE WAVE 2. PERIODIC TRIANGULAR WAVE 3. PERIODIC SAWTOOTH WAVE 4. STAIRCASE FUNCTION 5. FULL-WAVE RECTIFIER 6. HALF-WAVE RECTIFIER 7. UNIT STEP FUNCTION 8. SHIFTING THEOREM 3
  • 4.
    1. PERIODIC SQUAREWAVE 1. Find the Laplace transform of the square wave function of period 2a defined as f(t) = k if 0  t < a = -k if a < t < 2a The graph of square wave is shown in figure 4
  • 5.
     ANS. :- since f(t) is a periodic function with period p= 2a L{f(t)}     2   2 0 0 2 2 0 2 2 2 2 1 1 1 1 1 1 2 1 a a st st as a a st st as a as as as as as as as ke dt ke dt e k e e e s s k e e e e s s s s k e e s e                                                           5
  • 6.
      2  k 1  e       s e e 1 1 k e s e 2 2 2 k e e e s e e e k as s 2 2 2 1 1 tanh 2 { ( )} tanh 2 as as as as as as as as as as as k as L f t s                                             6
  • 7.
    2. PERIODIC TRIANGULARWAVE  Find the Laplace transform of the periodic function shown in figure. 7
  • 8.
     ANS.:-The functioncan be represented as f(t) = t 0 < t < a =2a-t a < t < 2a The function has a period 2a L{F(t)} 2 2  0 1 ( ) 1 a st as e f t dt e           8
  • 9.
    a 2 a     2       0  st st   2      2       0  2               2             2 2          2 1 ( ) ( ) 1 1 (2 ) 1 (1) 1 1 (2 ) ( 1) as a a a st st as a a st st a as a st st a e f t dt e f t dt e e tdt e a t dt e e e t s s e e e a t s s                          9
  • 10.
    as as as2 as as  a e e a e e e  1 1        2 2 2 2 2  e s s s s s s    2    2 2 2 a e e 2 2 2 1 1 (1 2 ) (1 ) 1 { ( )} (1 ) (1 ) 1 { ( )} tan h 2 as as as as as as s e L f t e s e sa L f t s                         10
  • 11.
    3. PERIODIC SAWTOOTH WAVE  Find the Laplace transform of the saw tooth wave function given by f(t)= if 0 < t < p, f(t+p) = f(t) k t p  ANS.:- 11
  • 12.
    Since f(t) isa periodic function with period p. p  0  0   0 2 0 1 ( ) 1 1 1 p(1 ) 1 p(1 ) st ps p st ps p st ps p st st ps e f t dt e kt e dt e p k e tdt e k e e t e s s                                  L{f(t)} 12
  • 13.
    sp sp    k pe e e s s s k     2 2             2   2 2 1 p(1 ) e sp e 1 ( ) (1 ) s s s(1 ) { ( )} s s(1 ) ps sp sp ps sp sp sp sp e p k ke p e k ke L f t p e                13
  • 14.
    4. STAIRCASE FUNCTION  Find the Laplace transform of the staircase function defined as g(t)=kn for np < t < (n+1)p, where n=0,1,2,…. (Note : This is not a periodic function) 14
  • 15.
    If h(t) isa saw tooth wave function defined in example 3 as kt p h(t)= for 0<t<p and h(t + p) = h(t) for all values of t. It is easy to observe from the figure that g(t)= -h(t) for 0 < t < kt p  ANS:- 15
  • 16.
          [g(t)] { ( )}             2 2          [g(t)] 1 [g(t)] 1 sp sp sp sp kt L L L h t p k k ke L ps s p s e ke L s e      16
  • 17.
     Find theLaplace transform of the full wave rectification of f(t)= Ans:-The graph of the function f(t)is shown in figure. Observe that for any t. 5. FULL-WAVE RECTIFIER sin t t  0          sin t sin t    This function is called the full sine-wave rectifier function with period   17
  • 18.
    We may writethe definition of f(t) as follows: f(t)= for sin t 0 t               and f t f (t) for all t. 18
  • 19.
     L ft e tdt    0 st st      2 2 s st 0 0 2 2 0 2 2 0 1 [ ( )] sin 1 sin ( .sin cos ) 1 sin sin 1 s st s st e e Now e tdt s t t s e tdt e s e tdt e s                                                                19
  • 20.
       L f t e  [ ( )]  .  1   2 2     2 1     2 2 2   2 2 1 1  [ ( )] . 1 [ ( )] coth 2 s s  s s s s s e e e L f t s  e e s L f t s                            20
  • 21.
    6. HALF-WAVE RECTIFICATION Find the Laplace transform of half-wave rectification of sinωt defined by wt if t w  sin 0        ( ) 0 2 2 ( ) f t if w t w n f t f t w             Where For all integer n. 21
  • 22.
    Ans. The graphof function F(t) is shown in the figure 22
  • 23.
          f t  2 w  f ( t ) for all t 2 L f t e f t dt   s w 2 0 2 w 0 1 1 1 w st st = sin .....(1) s 1 w e e wtdt e              23
  • 24.
    w w st           2  2    Now sin sin cos 0 0 1      2 2         2 2 = = 1 st s w s w e e w t d t s wt w wt s w we w s w w e s w           24
  • 25.
       2 2 2 1   1 2 2 1 1 2 2 1 1 = = 1 s w s s w w s w s w e e e s w w L f t e s w e w s w w s w e                                                       (1) becomes  25
  • 26.
    7. UNIT STEPFUNCTION (OR HEAVISIDE’S FUNCTION  The unit step function u(t - a) is defined as u(t – a) =0 if t < a (a ≥ 0) =1 if t ≥ a figure. 26
  • 27.
    The unit stepfunction is also called the Heaviside function. In particular if a = 0, we have u(t) = 0 if t < 0 = 1 if t ≥ 0 27
  • 28.
     Laplace transformof unit step function By definition of Laplace transform,     {u( )} . ( ) 0   0 0 (0) (1)   1 st st st a st st as a L t a e u t a dt e dt e dt e e dt e s s                        28
  • 29.
    1 1  L u t a e  as L  1 e  as u t a         { ( )} { ( )} s s  1 in particular, if a 0    1 1   L u t L u t       { ( )} ( ) s s   29
  • 30.
    If Second shiftingtheorem {f( )}  ( ), {f(t  a) u(t  a)}   as (s) Proof : by definition of Laplace transform, we have, { (  ) u(t  a)}  . (  ) (  )  0 0 (u ) (0) dt ( ) (1) st a st st a L t f s then L e f L f t a e f t a u t a dt e f a e f t a dt            30
  • 31.
    st s ar   ( )   a   0   as sr as     0 1 (u )) , (r) (r) ( ) as as   { ( ) u(t a)} ( ) [ ( )] [ as ( )] ( ) ( ) e f a dt Substituting t a r e f dr e e f dr e f s L f t a e f s e L f t L  e  f s f t a u t a                 31
  • 32.
    as  CorL f t u t a e L f t a .1: { ( ) ( )} [ ( )] (alternative form of second shifting theorem) as     Cor L u t a L u t a e L .2 : [ ( )] [1. ( )] (1)      Cor L u t a u t b .3 : [ ( ) ( )] as as bs e  s   e e as bs  s       Cor L f t u t a u t b e L f t a e L f t b .4 : [ ( ) { (  )  (  )]  { (  )}  { (  )} 32
  • 33.
    REFERENCE BOOK :-DR K.R.KACHOT 33
  • 34.