SlideShare a Scribd company logo
1 of 18
Download to read offline
Counting
Recurrence Relations
 Sequences are ordered lists of elements.
• 1, 2, 3, 5, 8
• 1, 3, 9, 27, 81, …
 Sequences arise throughout mathematics, computer
science, and in many other disciplines, ranging from
botany to music.
 We will introduce the terminology to represent
sequences.
© S. Turaev, CSC 1700 Discrete Mathematics 2
Recurrence Relations
Definition: A sequence is a function from a subset of the
integers (usually either the set 0, 1, 2, 3, 4, … or
1, 2, 3, 4, … ) to a set 𝑆𝑆.
 The notation 𝑎𝑎𝑛𝑛 is used to denote the image of the
integer 𝑛𝑛. We can think of 𝑎𝑎𝑛𝑛 as the equivalent of
𝑓𝑓 𝑛𝑛 where 𝑓𝑓 is a function from 0,1,2, … to 𝑆𝑆. We
call 𝑎𝑎𝑛𝑛 a term of the sequence.
Example: Consider the sequence 𝑎𝑎𝑛𝑛 where 𝑎𝑎𝑛𝑛 = 1/𝑛𝑛.
Then
1,
1
2
,
1
3
,
1
4
, …
© S. Turaev, CSC 1700 Discrete Mathematics 3
Recurrence Relations
Definition: A recurrence relation for the sequence 𝑎𝑎𝑛𝑛 is
an equation that expresses 𝑎𝑎𝑛𝑛 in terms of one or more of
the previous terms of the sequence, namely,
𝑎𝑎0, 𝑎𝑎1, … , 𝑎𝑎𝑛𝑛−1, for all integers 𝑛𝑛 with 𝑛𝑛 ≥ 𝑛𝑛0, where 𝑛𝑛0
is a nonnegative integer.
 A sequence is called a solution of a recurrence relation
if its terms satisfy the recurrence relation.
 The initial conditions for a sequence specify the terms
that precede the first term where the recurrence
relation takes effect.
© S. Turaev, CSC 1700 Discrete Mathematics 4
Recurrence Relations
Example: Let 𝑎𝑎𝑛𝑛 be a sequence that satisfies the
recurrence relation 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛−1 + 3 for 𝑛𝑛 = 1, 2, 3, 4, …
and suppose that 𝑎𝑎0 = 2. What are 𝑎𝑎1, 𝑎𝑎2 and 𝑎𝑎3?
[Here the initial condition is 𝑎𝑎0 = 2.]
Example: Let 𝑎𝑎𝑛𝑛 be a sequence that satisfies the
recurrence relation 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛−1 − 𝑎𝑎𝑛𝑛−2 for 𝑛𝑛 = 2, 3, 4, …
and suppose that 𝑎𝑎0 = 3 and 𝑎𝑎1 = 5. What are 𝑎𝑎2 and
𝑎𝑎3?
[Here the initial conditions are 𝑎𝑎0 = 3 and 𝑎𝑎1 = 5.]
© S. Turaev, CSC 1700 Discrete Mathematics 5
Fibonacci Numbers
Definition: the Fibonacci sequence, 𝑓𝑓0, 𝑓𝑓1, 𝑓𝑓2, … , is
defined by:
 Initial Conditions: 𝑓𝑓0 = 0, 𝑓𝑓1 = 1
 Recurrence Relation: 𝑓𝑓𝑛𝑛 = 𝑓𝑓𝑛𝑛−1 + 𝑓𝑓𝑛𝑛−2
Example: Find 𝑓𝑓4, 𝑓𝑓5, 𝑓𝑓6, 𝑓𝑓7 and 𝑓𝑓8.
© S. Turaev, CSC 1700 Discrete Mathematics 6
Recurrence Relations
 Finding a formula for the 𝑛𝑛th term of the sequence
generated by a recurrence relation is called solving the
recurrence relation.
 Such a formula is called a explicit (closed) formula.
 One technique for finding an explicit formula for the
sequence defined by a recurrence relation is
backtracking.
© S. Turaev, CSC 1700 Discrete Mathematics 7
Recurrence Relations
Example: Let 𝑎𝑎𝑛𝑛 be a sequence that satisfies the
recurrence relation 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛−1 + 3 for 𝑛𝑛 = 2, 3, 4, … and
suppose that 𝑎𝑎1 = 2. Find an explicit formula for the
sequence.
𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛−1 + 3
= 𝑎𝑎𝑛𝑛−2 + 3 + 3 = 𝑎𝑎𝑛𝑛−2 + 2 ⋅ 3
= 𝑎𝑎𝑛𝑛−3 + 3 + 2 ⋅ 3 = 𝑎𝑎𝑛𝑛−3 + 3 ⋅ 3
⋯
= 𝑎𝑎2 + 𝑛𝑛 − 2 ⋅ 3 = 𝑎𝑎1 + 3 + 𝑛𝑛 − 2 ⋅ 3
= 𝑎𝑎1 + 𝑛𝑛 − 1 ⋅ 3 = 2 + 𝑛𝑛 − 1 ⋅ 3
= 3 ⋅ 𝑛𝑛 − 1
© S. Turaev, CSC 1700 Discrete Mathematics 8
Recurrence Relations : Backtracking
Example 1: 𝑏𝑏𝑛𝑛 = 5𝑏𝑏𝑛𝑛−1 + 3, 𝑏𝑏1 = 3.
Example 2: 𝑐𝑐𝑛𝑛 = 𝑐𝑐𝑛𝑛−1 + 𝑛𝑛, 𝑏𝑏1 = 4.
Example 3: 𝑑𝑑𝑛𝑛 = 𝑛𝑛 ⋅ 𝑑𝑑𝑛𝑛−1, 𝑑𝑑1 = 6.
© S. Turaev, CSC 1700 Discrete Mathematics 9
Fibonacci Numbers
Definition: the Fibonacci sequence, 𝑓𝑓0, 𝑓𝑓1, 𝑓𝑓2, … , is
defined by:
 Initial Conditions: 𝑓𝑓0 = 0, 𝑓𝑓1 = 1
 Recurrence Relation: 𝑓𝑓𝑛𝑛 = 𝑓𝑓𝑛𝑛−1 + 𝑓𝑓𝑛𝑛−2
Example: Find 𝑓𝑓4, 𝑓𝑓5, 𝑓𝑓6, 𝑓𝑓7 and 𝑓𝑓8.
© S. Turaev, CSC 1700 Discrete Mathematics 10
Linear Homogeneous Recurrence Relations
Definition: A linear homogeneous recurrence relation of
degree 𝑘𝑘 with constant coefficients is a recurrence
relation of the form
𝑎𝑎𝑛𝑛 = 𝑟𝑟1 𝑎𝑎𝑛𝑛−1 + 𝑟𝑟2 𝑎𝑎𝑛𝑛−2 + ⋯ + 𝑟𝑟𝑘𝑘 𝑎𝑎𝑛𝑛−𝑘𝑘
where 𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑘𝑘 are real numbers, and 𝑟𝑟𝑘𝑘 ≠ 0.
© S. Turaev, CSC 1700 Discrete Mathematics
• it is linear because the right-hand side is a sum of the previous
terms of the sequence each multiplied by a function of 𝑛𝑛.
• it is homogeneous because no terms occur that are not
multiples of the 𝑎𝑎𝑗𝑗s. Each coefficient is a constant.
• the degree is 𝑘𝑘 because 𝑎𝑎𝑛𝑛 is expressed in terms of the
previous 𝑘𝑘 terms of the sequence.
11
Linear Homogeneous Recurrence Relations
 𝑝𝑝𝑛𝑛 = 1.11 𝑝𝑝𝑛𝑛−1
 𝑓𝑓𝑛𝑛 = 𝑓𝑓𝑛𝑛−1 + 𝑓𝑓𝑛𝑛−2
 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛−2
2
 ℎ𝑛𝑛 = 2ℎ𝑛𝑛−1 + 1
 𝑏𝑏𝑛𝑛 = 𝑛𝑛𝑏𝑏𝑛𝑛−1
© S. Turaev, CSC 1700 Discrete Mathematics 12
Linear Homogeneous Recurrence Relations
 𝑝𝑝𝑛𝑛 = 1.11 𝑝𝑝𝑛𝑛−1
 𝑓𝑓𝑛𝑛 = 𝑓𝑓𝑛𝑛−1 + 𝑓𝑓𝑛𝑛−2
 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛−2
2
 ℎ𝑛𝑛 = 2ℎ𝑛𝑛−1 + 1
 𝑏𝑏𝑛𝑛 = 𝑛𝑛𝑏𝑏𝑛𝑛−1
© S. Turaev, CSC 1700 Discrete Mathematics
linear homogeneous recurrence
relation of degree 1
linear homogeneous recurrence
relation of degree 2
not linear
not homogeneous
coefficients are not constants
13
Linear Homogeneous Recurrence Relations
 The basic approach is to look for solutions of the form
𝑎𝑎𝑛𝑛 = 𝑥𝑥 𝑛𝑛
, where 𝑥𝑥 is a constant.
 Note that 𝑎𝑎𝑛𝑛 = 𝑥𝑥 𝑛𝑛
is a solution to the recurrence
relation
𝑎𝑎𝑛𝑛 = 𝑟𝑟1 𝑎𝑎𝑛𝑛−1 + 𝑟𝑟2 𝑎𝑎𝑛𝑛−2 + ⋯ + 𝑟𝑟𝑘𝑘 𝑎𝑎𝑛𝑛−𝑘𝑘
if and only if
𝑥𝑥 𝑛𝑛
= 𝑟𝑟1 𝑥𝑥 𝑛𝑛−1
+ 𝑟𝑟2 𝑥𝑥 𝑛𝑛−2
+ ⋯ + 𝑟𝑟𝑘𝑘 𝑥𝑥 𝑛𝑛−𝑘𝑘
.
© S. Turaev, CSC 1700 Discrete Mathematics 14
Linear Homogeneous Recurrence Relations
 Algebraic manipulation yields the characteristic
equation:
𝑥𝑥 𝑘𝑘
− 𝑟𝑟1 𝑥𝑥 𝑘𝑘−1
− 𝑟𝑟2 𝑥𝑥 𝑘𝑘−2
− ⋯ − 𝑟𝑟𝑘𝑘 = 0
 The sequence 𝑎𝑎𝑛𝑛 with 𝑎𝑎𝑛𝑛 = 𝑥𝑥 𝑛𝑛
is a solution if and
only if 𝑥𝑥 is a solution to the characteristic equation.
© S. Turaev, CSC 1700 Discrete Mathematics 15
Linear Homogeneous Recurrence Relations
Theorem: If the characteristic equation
𝑥𝑥2
− 𝑟𝑟1 𝑥𝑥 − 𝑟𝑟2 = 0
of the recurrence relation 𝑎𝑎𝑛𝑛 = 𝑟𝑟1 𝑎𝑎𝑛𝑛−1 + 𝑟𝑟2 𝑎𝑎𝑛𝑛−2 has two
distinct roots, 𝑥𝑥1 and 𝑥𝑥2, then
𝑎𝑎𝑛𝑛 = 𝑝𝑝𝑥𝑥1
𝑛𝑛
+ 𝑞𝑞𝑥𝑥2
𝑛𝑛
where 𝑝𝑝 and 𝑞𝑞 depend on the initial conditions, is the
explicit formula for the sequence.
© S. Turaev, CSC 1700 Discrete Mathematics 16
Linear Homogeneous Recurrence Relations
Theorem: If the characteristic equation
𝑥𝑥2
− 𝑟𝑟1 𝑥𝑥 − 𝑟𝑟2 = 0
of the recurrence relation 𝑎𝑎𝑛𝑛 = 𝑟𝑟1 𝑎𝑎𝑛𝑛−1 + 𝑟𝑟2 𝑎𝑎𝑛𝑛−2 has a
single root, 𝑥𝑥, then
𝑎𝑎𝑛𝑛 = 𝑝𝑝𝑥𝑥 𝑛𝑛
+ 𝑞𝑞𝑞𝑞𝑥𝑥 𝑛𝑛
where 𝑝𝑝 and 𝑞𝑞 depend on the initial conditions, is the
explicit formula for the sequence.
© S. Turaev, CSC 1700 Discrete Mathematics 17
Linear Homogeneous Recurrence Relations
Example 1: Find an explicit formula for the sequence
defined by 𝑎𝑎𝑛𝑛 = 4𝑎𝑎𝑛𝑛−1 + 5𝑎𝑎𝑛𝑛−2 with the initial
conditions 𝑎𝑎1 = 2 and 𝑎𝑎2 = 6.
Example 2: Find an explicit formula for the sequence
defined by 𝑏𝑏𝑛𝑛 = −6𝑏𝑏𝑛𝑛−1 − 9𝑏𝑏𝑛𝑛−2 with the initial
conditions 𝑏𝑏1 = 2.5 and 𝑏𝑏2 = 4.7.
Example 3 (Fibonacci sequence): Find an explicit formula
for the sequence defined by 𝑓𝑓𝑛𝑛 = 𝑓𝑓𝑛𝑛−1 + 𝑓𝑓𝑛𝑛−2 with the
initial conditions 𝑓𝑓0 = 0 and 𝑓𝑓1 = 1.
© S. Turaev, CSC 1700 Discrete Mathematics 18

More Related Content

What's hot

Discrete mathematic
Discrete mathematicDiscrete mathematic
Discrete mathematicNaralaswapna
 
systems of linear equations & matrices
systems of linear equations & matricessystems of linear equations & matrices
systems of linear equations & matricesStudent
 
Matrix basic operations
Matrix basic operationsMatrix basic operations
Matrix basic operationsJessica Garcia
 
Number theory
Number theory Number theory
Number theory tes31
 
15 puzzle problem using branch and bound
15 puzzle problem using branch and bound15 puzzle problem using branch and bound
15 puzzle problem using branch and boundAbhishek Singh
 
Permutation & Combination
Permutation & CombinationPermutation & Combination
Permutation & CombinationPuru Agrawal
 
recurence solutions
recurence solutionsrecurence solutions
recurence solutionssoumya8396
 
Recurrence Relation
Recurrence RelationRecurrence Relation
Recurrence RelationPapu Kumar
 
Liner algebra-vector space-1 introduction to vector space and subspace
Liner algebra-vector space-1   introduction to vector space and subspace Liner algebra-vector space-1   introduction to vector space and subspace
Liner algebra-vector space-1 introduction to vector space and subspace Manikanta satyala
 
Matrices And Application Of Matrices
Matrices And Application Of MatricesMatrices And Application Of Matrices
Matrices And Application Of Matricesmailrenuka
 
Performance analysis(Time & Space Complexity)
Performance analysis(Time & Space Complexity)Performance analysis(Time & Space Complexity)
Performance analysis(Time & Space Complexity)swapnac12
 
Linear Algebra and Matrix
Linear Algebra and MatrixLinear Algebra and Matrix
Linear Algebra and Matrixitutor
 
Solving linear homogeneous recurrence relations
Solving linear homogeneous recurrence relationsSolving linear homogeneous recurrence relations
Solving linear homogeneous recurrence relationsDr. Maamoun Ahmed
 
Independence, basis and dimension
Independence, basis and dimensionIndependence, basis and dimension
Independence, basis and dimensionATUL KUMAR YADAV
 

What's hot (20)

Discrete mathematic
Discrete mathematicDiscrete mathematic
Discrete mathematic
 
Combinatorics
CombinatoricsCombinatorics
Combinatorics
 
systems of linear equations & matrices
systems of linear equations & matricessystems of linear equations & matrices
systems of linear equations & matrices
 
Matrix basic operations
Matrix basic operationsMatrix basic operations
Matrix basic operations
 
Recurrence relation
Recurrence relationRecurrence relation
Recurrence relation
 
Number theory
Number theory Number theory
Number theory
 
15 puzzle problem using branch and bound
15 puzzle problem using branch and bound15 puzzle problem using branch and bound
15 puzzle problem using branch and bound
 
Permutation & Combination
Permutation & CombinationPermutation & Combination
Permutation & Combination
 
Propositional logic
Propositional logicPropositional logic
Propositional logic
 
recurence solutions
recurence solutionsrecurence solutions
recurence solutions
 
Group Theory
Group TheoryGroup Theory
Group Theory
 
Recurrence Relation
Recurrence RelationRecurrence Relation
Recurrence Relation
 
Liner algebra-vector space-1 introduction to vector space and subspace
Liner algebra-vector space-1   introduction to vector space and subspace Liner algebra-vector space-1   introduction to vector space and subspace
Liner algebra-vector space-1 introduction to vector space and subspace
 
Matrices And Application Of Matrices
Matrices And Application Of MatricesMatrices And Application Of Matrices
Matrices And Application Of Matrices
 
Performance analysis(Time & Space Complexity)
Performance analysis(Time & Space Complexity)Performance analysis(Time & Space Complexity)
Performance analysis(Time & Space Complexity)
 
Linear Algebra and Matrix
Linear Algebra and MatrixLinear Algebra and Matrix
Linear Algebra and Matrix
 
Solving linear homogeneous recurrence relations
Solving linear homogeneous recurrence relationsSolving linear homogeneous recurrence relations
Solving linear homogeneous recurrence relations
 
Independence, basis and dimension
Independence, basis and dimensionIndependence, basis and dimension
Independence, basis and dimension
 
Types of RELATIONS
Types of RELATIONSTypes of RELATIONS
Types of RELATIONS
 
Maths sets ppt
Maths sets pptMaths sets ppt
Maths sets ppt
 

Similar to Recurrence relations

Relations digraphs
Relations  digraphsRelations  digraphs
Relations digraphsIIUM
 
Integers and matrices (slides)
Integers and matrices (slides)Integers and matrices (slides)
Integers and matrices (slides)IIUM
 
Relations and Functions.pdf
Relations and Functions.pdfRelations and Functions.pdf
Relations and Functions.pdfGhanshyamGUPTA61
 
P2-Chp3-SequencesAndSeries from pure maths 2.pptx
P2-Chp3-SequencesAndSeries from pure maths 2.pptxP2-Chp3-SequencesAndSeries from pure maths 2.pptx
P2-Chp3-SequencesAndSeries from pure maths 2.pptxArafathAliMathsTeach
 
sequence and series.docx
sequence and series.docxsequence and series.docx
sequence and series.docxGetachew Mulaw
 
Semana 13 ecuaciones polinomiales ii álgebra-uni ccesa007
Semana 13   ecuaciones polinomiales ii  álgebra-uni ccesa007Semana 13   ecuaciones polinomiales ii  álgebra-uni ccesa007
Semana 13 ecuaciones polinomiales ii álgebra-uni ccesa007Demetrio Ccesa Rayme
 
11.3 Geometric Sequences and Series
11.3 Geometric Sequences and Series11.3 Geometric Sequences and Series
11.3 Geometric Sequences and Seriessmiller5
 
Counting i (slides)
Counting i (slides)Counting i (slides)
Counting i (slides)IIUM
 
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets Vladimir Godovalov
 
Lesson 1a_Sequence.pptx
Lesson 1a_Sequence.pptxLesson 1a_Sequence.pptx
Lesson 1a_Sequence.pptxBaldonMarcelo1
 
Arithmetic sequences and arithmetic means
Arithmetic sequences and arithmetic meansArithmetic sequences and arithmetic means
Arithmetic sequences and arithmetic meansDenmar Marasigan
 
Sistemas de ecuaciones lineales
Sistemas de ecuaciones linealesSistemas de ecuaciones lineales
Sistemas de ecuaciones linealesRokiFernandez1
 
Semana 29 sucesiones reales álgebra uni ccesa007
Semana 29 sucesiones reales  álgebra uni ccesa007Semana 29 sucesiones reales  álgebra uni ccesa007
Semana 29 sucesiones reales álgebra uni ccesa007Demetrio Ccesa Rayme
 
Binary Operations.pptx
Binary Operations.pptxBinary Operations.pptx
Binary Operations.pptxSoyaMathew1
 
ePortfolio- Mathematics
ePortfolio- MathematicsePortfolio- Mathematics
ePortfolio- Mathematicsreadsw346
 
Section 9: Equivalence Relations & Cosets
Section 9: Equivalence Relations & CosetsSection 9: Equivalence Relations & Cosets
Section 9: Equivalence Relations & CosetsKevin Johnson
 
MAT-314 Relations and Functions
MAT-314 Relations and FunctionsMAT-314 Relations and Functions
MAT-314 Relations and FunctionsKevin Johnson
 

Similar to Recurrence relations (20)

Relations digraphs
Relations  digraphsRelations  digraphs
Relations digraphs
 
Integers and matrices (slides)
Integers and matrices (slides)Integers and matrices (slides)
Integers and matrices (slides)
 
Relations and Functions.pdf
Relations and Functions.pdfRelations and Functions.pdf
Relations and Functions.pdf
 
P2-Chp3-SequencesAndSeries from pure maths 2.pptx
P2-Chp3-SequencesAndSeries from pure maths 2.pptxP2-Chp3-SequencesAndSeries from pure maths 2.pptx
P2-Chp3-SequencesAndSeries from pure maths 2.pptx
 
sequence and series.docx
sequence and series.docxsequence and series.docx
sequence and series.docx
 
Semana 13 ecuaciones polinomiales ii álgebra-uni ccesa007
Semana 13   ecuaciones polinomiales ii  álgebra-uni ccesa007Semana 13   ecuaciones polinomiales ii  álgebra-uni ccesa007
Semana 13 ecuaciones polinomiales ii álgebra-uni ccesa007
 
11.3 Geometric Sequences and Series
11.3 Geometric Sequences and Series11.3 Geometric Sequences and Series
11.3 Geometric Sequences and Series
 
Counting i (slides)
Counting i (slides)Counting i (slides)
Counting i (slides)
 
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
 
Lesson 1a_Sequence.pptx
Lesson 1a_Sequence.pptxLesson 1a_Sequence.pptx
Lesson 1a_Sequence.pptx
 
MT102 Лекц 10
MT102 Лекц 10MT102 Лекц 10
MT102 Лекц 10
 
Lecture 3
Lecture 3Lecture 3
Lecture 3
 
Lecture 3
Lecture 3Lecture 3
Lecture 3
 
Arithmetic sequences and arithmetic means
Arithmetic sequences and arithmetic meansArithmetic sequences and arithmetic means
Arithmetic sequences and arithmetic means
 
Sistemas de ecuaciones lineales
Sistemas de ecuaciones linealesSistemas de ecuaciones lineales
Sistemas de ecuaciones lineales
 
Semana 29 sucesiones reales álgebra uni ccesa007
Semana 29 sucesiones reales  álgebra uni ccesa007Semana 29 sucesiones reales  álgebra uni ccesa007
Semana 29 sucesiones reales álgebra uni ccesa007
 
Binary Operations.pptx
Binary Operations.pptxBinary Operations.pptx
Binary Operations.pptx
 
ePortfolio- Mathematics
ePortfolio- MathematicsePortfolio- Mathematics
ePortfolio- Mathematics
 
Section 9: Equivalence Relations & Cosets
Section 9: Equivalence Relations & CosetsSection 9: Equivalence Relations & Cosets
Section 9: Equivalence Relations & Cosets
 
MAT-314 Relations and Functions
MAT-314 Relations and FunctionsMAT-314 Relations and Functions
MAT-314 Relations and Functions
 

More from IIUM

How to use_000webhost
How to use_000webhostHow to use_000webhost
How to use_000webhostIIUM
 
Chapter 2
Chapter 2Chapter 2
Chapter 2IIUM
 
Chapter 1
Chapter 1Chapter 1
Chapter 1IIUM
 
Kreydle internship-multimedia
Kreydle internship-multimediaKreydle internship-multimedia
Kreydle internship-multimediaIIUM
 
03phpbldgblock
03phpbldgblock03phpbldgblock
03phpbldgblockIIUM
 
Chap2 practice key
Chap2 practice keyChap2 practice key
Chap2 practice keyIIUM
 
Group p1
Group p1Group p1
Group p1IIUM
 
Tutorial import n auto pilot blogspot friendly seo
Tutorial import n auto pilot blogspot friendly seoTutorial import n auto pilot blogspot friendly seo
Tutorial import n auto pilot blogspot friendly seoIIUM
 
Visual sceneperception encycloperception-sage-oliva2009
Visual sceneperception encycloperception-sage-oliva2009Visual sceneperception encycloperception-sage-oliva2009
Visual sceneperception encycloperception-sage-oliva2009IIUM
 
03 the htm_lforms
03 the htm_lforms03 the htm_lforms
03 the htm_lformsIIUM
 
Exercise on algo analysis answer
Exercise on algo analysis   answerExercise on algo analysis   answer
Exercise on algo analysis answerIIUM
 
Redo midterm
Redo midtermRedo midterm
Redo midtermIIUM
 
Heaps
HeapsHeaps
HeapsIIUM
 
Report format
Report formatReport format
Report formatIIUM
 
Edpuzzle guidelines
Edpuzzle guidelinesEdpuzzle guidelines
Edpuzzle guidelinesIIUM
 
Final Exam Paper
Final Exam PaperFinal Exam Paper
Final Exam PaperIIUM
 
Final Exam Paper
Final Exam PaperFinal Exam Paper
Final Exam PaperIIUM
 
Group assignment 1 s21516
Group assignment 1 s21516Group assignment 1 s21516
Group assignment 1 s21516IIUM
 
Avl tree-rotations
Avl tree-rotationsAvl tree-rotations
Avl tree-rotationsIIUM
 
Week12 graph
Week12   graph Week12   graph
Week12 graph IIUM
 

More from IIUM (20)

How to use_000webhost
How to use_000webhostHow to use_000webhost
How to use_000webhost
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
Kreydle internship-multimedia
Kreydle internship-multimediaKreydle internship-multimedia
Kreydle internship-multimedia
 
03phpbldgblock
03phpbldgblock03phpbldgblock
03phpbldgblock
 
Chap2 practice key
Chap2 practice keyChap2 practice key
Chap2 practice key
 
Group p1
Group p1Group p1
Group p1
 
Tutorial import n auto pilot blogspot friendly seo
Tutorial import n auto pilot blogspot friendly seoTutorial import n auto pilot blogspot friendly seo
Tutorial import n auto pilot blogspot friendly seo
 
Visual sceneperception encycloperception-sage-oliva2009
Visual sceneperception encycloperception-sage-oliva2009Visual sceneperception encycloperception-sage-oliva2009
Visual sceneperception encycloperception-sage-oliva2009
 
03 the htm_lforms
03 the htm_lforms03 the htm_lforms
03 the htm_lforms
 
Exercise on algo analysis answer
Exercise on algo analysis   answerExercise on algo analysis   answer
Exercise on algo analysis answer
 
Redo midterm
Redo midtermRedo midterm
Redo midterm
 
Heaps
HeapsHeaps
Heaps
 
Report format
Report formatReport format
Report format
 
Edpuzzle guidelines
Edpuzzle guidelinesEdpuzzle guidelines
Edpuzzle guidelines
 
Final Exam Paper
Final Exam PaperFinal Exam Paper
Final Exam Paper
 
Final Exam Paper
Final Exam PaperFinal Exam Paper
Final Exam Paper
 
Group assignment 1 s21516
Group assignment 1 s21516Group assignment 1 s21516
Group assignment 1 s21516
 
Avl tree-rotations
Avl tree-rotationsAvl tree-rotations
Avl tree-rotations
 
Week12 graph
Week12   graph Week12   graph
Week12 graph
 

Recently uploaded

Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.MateoGardella
 

Recently uploaded (20)

Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
 

Recurrence relations

  • 2. Recurrence Relations  Sequences are ordered lists of elements. • 1, 2, 3, 5, 8 • 1, 3, 9, 27, 81, …  Sequences arise throughout mathematics, computer science, and in many other disciplines, ranging from botany to music.  We will introduce the terminology to represent sequences. © S. Turaev, CSC 1700 Discrete Mathematics 2
  • 3. Recurrence Relations Definition: A sequence is a function from a subset of the integers (usually either the set 0, 1, 2, 3, 4, … or 1, 2, 3, 4, … ) to a set 𝑆𝑆.  The notation 𝑎𝑎𝑛𝑛 is used to denote the image of the integer 𝑛𝑛. We can think of 𝑎𝑎𝑛𝑛 as the equivalent of 𝑓𝑓 𝑛𝑛 where 𝑓𝑓 is a function from 0,1,2, … to 𝑆𝑆. We call 𝑎𝑎𝑛𝑛 a term of the sequence. Example: Consider the sequence 𝑎𝑎𝑛𝑛 where 𝑎𝑎𝑛𝑛 = 1/𝑛𝑛. Then 1, 1 2 , 1 3 , 1 4 , … © S. Turaev, CSC 1700 Discrete Mathematics 3
  • 4. Recurrence Relations Definition: A recurrence relation for the sequence 𝑎𝑎𝑛𝑛 is an equation that expresses 𝑎𝑎𝑛𝑛 in terms of one or more of the previous terms of the sequence, namely, 𝑎𝑎0, 𝑎𝑎1, … , 𝑎𝑎𝑛𝑛−1, for all integers 𝑛𝑛 with 𝑛𝑛 ≥ 𝑛𝑛0, where 𝑛𝑛0 is a nonnegative integer.  A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.  The initial conditions for a sequence specify the terms that precede the first term where the recurrence relation takes effect. © S. Turaev, CSC 1700 Discrete Mathematics 4
  • 5. Recurrence Relations Example: Let 𝑎𝑎𝑛𝑛 be a sequence that satisfies the recurrence relation 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛−1 + 3 for 𝑛𝑛 = 1, 2, 3, 4, … and suppose that 𝑎𝑎0 = 2. What are 𝑎𝑎1, 𝑎𝑎2 and 𝑎𝑎3? [Here the initial condition is 𝑎𝑎0 = 2.] Example: Let 𝑎𝑎𝑛𝑛 be a sequence that satisfies the recurrence relation 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛−1 − 𝑎𝑎𝑛𝑛−2 for 𝑛𝑛 = 2, 3, 4, … and suppose that 𝑎𝑎0 = 3 and 𝑎𝑎1 = 5. What are 𝑎𝑎2 and 𝑎𝑎3? [Here the initial conditions are 𝑎𝑎0 = 3 and 𝑎𝑎1 = 5.] © S. Turaev, CSC 1700 Discrete Mathematics 5
  • 6. Fibonacci Numbers Definition: the Fibonacci sequence, 𝑓𝑓0, 𝑓𝑓1, 𝑓𝑓2, … , is defined by:  Initial Conditions: 𝑓𝑓0 = 0, 𝑓𝑓1 = 1  Recurrence Relation: 𝑓𝑓𝑛𝑛 = 𝑓𝑓𝑛𝑛−1 + 𝑓𝑓𝑛𝑛−2 Example: Find 𝑓𝑓4, 𝑓𝑓5, 𝑓𝑓6, 𝑓𝑓7 and 𝑓𝑓8. © S. Turaev, CSC 1700 Discrete Mathematics 6
  • 7. Recurrence Relations  Finding a formula for the 𝑛𝑛th term of the sequence generated by a recurrence relation is called solving the recurrence relation.  Such a formula is called a explicit (closed) formula.  One technique for finding an explicit formula for the sequence defined by a recurrence relation is backtracking. © S. Turaev, CSC 1700 Discrete Mathematics 7
  • 8. Recurrence Relations Example: Let 𝑎𝑎𝑛𝑛 be a sequence that satisfies the recurrence relation 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛−1 + 3 for 𝑛𝑛 = 2, 3, 4, … and suppose that 𝑎𝑎1 = 2. Find an explicit formula for the sequence. 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛−1 + 3 = 𝑎𝑎𝑛𝑛−2 + 3 + 3 = 𝑎𝑎𝑛𝑛−2 + 2 ⋅ 3 = 𝑎𝑎𝑛𝑛−3 + 3 + 2 ⋅ 3 = 𝑎𝑎𝑛𝑛−3 + 3 ⋅ 3 ⋯ = 𝑎𝑎2 + 𝑛𝑛 − 2 ⋅ 3 = 𝑎𝑎1 + 3 + 𝑛𝑛 − 2 ⋅ 3 = 𝑎𝑎1 + 𝑛𝑛 − 1 ⋅ 3 = 2 + 𝑛𝑛 − 1 ⋅ 3 = 3 ⋅ 𝑛𝑛 − 1 © S. Turaev, CSC 1700 Discrete Mathematics 8
  • 9. Recurrence Relations : Backtracking Example 1: 𝑏𝑏𝑛𝑛 = 5𝑏𝑏𝑛𝑛−1 + 3, 𝑏𝑏1 = 3. Example 2: 𝑐𝑐𝑛𝑛 = 𝑐𝑐𝑛𝑛−1 + 𝑛𝑛, 𝑏𝑏1 = 4. Example 3: 𝑑𝑑𝑛𝑛 = 𝑛𝑛 ⋅ 𝑑𝑑𝑛𝑛−1, 𝑑𝑑1 = 6. © S. Turaev, CSC 1700 Discrete Mathematics 9
  • 10. Fibonacci Numbers Definition: the Fibonacci sequence, 𝑓𝑓0, 𝑓𝑓1, 𝑓𝑓2, … , is defined by:  Initial Conditions: 𝑓𝑓0 = 0, 𝑓𝑓1 = 1  Recurrence Relation: 𝑓𝑓𝑛𝑛 = 𝑓𝑓𝑛𝑛−1 + 𝑓𝑓𝑛𝑛−2 Example: Find 𝑓𝑓4, 𝑓𝑓5, 𝑓𝑓6, 𝑓𝑓7 and 𝑓𝑓8. © S. Turaev, CSC 1700 Discrete Mathematics 10
  • 11. Linear Homogeneous Recurrence Relations Definition: A linear homogeneous recurrence relation of degree 𝑘𝑘 with constant coefficients is a recurrence relation of the form 𝑎𝑎𝑛𝑛 = 𝑟𝑟1 𝑎𝑎𝑛𝑛−1 + 𝑟𝑟2 𝑎𝑎𝑛𝑛−2 + ⋯ + 𝑟𝑟𝑘𝑘 𝑎𝑎𝑛𝑛−𝑘𝑘 where 𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑘𝑘 are real numbers, and 𝑟𝑟𝑘𝑘 ≠ 0. © S. Turaev, CSC 1700 Discrete Mathematics • it is linear because the right-hand side is a sum of the previous terms of the sequence each multiplied by a function of 𝑛𝑛. • it is homogeneous because no terms occur that are not multiples of the 𝑎𝑎𝑗𝑗s. Each coefficient is a constant. • the degree is 𝑘𝑘 because 𝑎𝑎𝑛𝑛 is expressed in terms of the previous 𝑘𝑘 terms of the sequence. 11
  • 12. Linear Homogeneous Recurrence Relations  𝑝𝑝𝑛𝑛 = 1.11 𝑝𝑝𝑛𝑛−1  𝑓𝑓𝑛𝑛 = 𝑓𝑓𝑛𝑛−1 + 𝑓𝑓𝑛𝑛−2  𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛−2 2  ℎ𝑛𝑛 = 2ℎ𝑛𝑛−1 + 1  𝑏𝑏𝑛𝑛 = 𝑛𝑛𝑏𝑏𝑛𝑛−1 © S. Turaev, CSC 1700 Discrete Mathematics 12
  • 13. Linear Homogeneous Recurrence Relations  𝑝𝑝𝑛𝑛 = 1.11 𝑝𝑝𝑛𝑛−1  𝑓𝑓𝑛𝑛 = 𝑓𝑓𝑛𝑛−1 + 𝑓𝑓𝑛𝑛−2  𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛−2 2  ℎ𝑛𝑛 = 2ℎ𝑛𝑛−1 + 1  𝑏𝑏𝑛𝑛 = 𝑛𝑛𝑏𝑏𝑛𝑛−1 © S. Turaev, CSC 1700 Discrete Mathematics linear homogeneous recurrence relation of degree 1 linear homogeneous recurrence relation of degree 2 not linear not homogeneous coefficients are not constants 13
  • 14. Linear Homogeneous Recurrence Relations  The basic approach is to look for solutions of the form 𝑎𝑎𝑛𝑛 = 𝑥𝑥 𝑛𝑛 , where 𝑥𝑥 is a constant.  Note that 𝑎𝑎𝑛𝑛 = 𝑥𝑥 𝑛𝑛 is a solution to the recurrence relation 𝑎𝑎𝑛𝑛 = 𝑟𝑟1 𝑎𝑎𝑛𝑛−1 + 𝑟𝑟2 𝑎𝑎𝑛𝑛−2 + ⋯ + 𝑟𝑟𝑘𝑘 𝑎𝑎𝑛𝑛−𝑘𝑘 if and only if 𝑥𝑥 𝑛𝑛 = 𝑟𝑟1 𝑥𝑥 𝑛𝑛−1 + 𝑟𝑟2 𝑥𝑥 𝑛𝑛−2 + ⋯ + 𝑟𝑟𝑘𝑘 𝑥𝑥 𝑛𝑛−𝑘𝑘 . © S. Turaev, CSC 1700 Discrete Mathematics 14
  • 15. Linear Homogeneous Recurrence Relations  Algebraic manipulation yields the characteristic equation: 𝑥𝑥 𝑘𝑘 − 𝑟𝑟1 𝑥𝑥 𝑘𝑘−1 − 𝑟𝑟2 𝑥𝑥 𝑘𝑘−2 − ⋯ − 𝑟𝑟𝑘𝑘 = 0  The sequence 𝑎𝑎𝑛𝑛 with 𝑎𝑎𝑛𝑛 = 𝑥𝑥 𝑛𝑛 is a solution if and only if 𝑥𝑥 is a solution to the characteristic equation. © S. Turaev, CSC 1700 Discrete Mathematics 15
  • 16. Linear Homogeneous Recurrence Relations Theorem: If the characteristic equation 𝑥𝑥2 − 𝑟𝑟1 𝑥𝑥 − 𝑟𝑟2 = 0 of the recurrence relation 𝑎𝑎𝑛𝑛 = 𝑟𝑟1 𝑎𝑎𝑛𝑛−1 + 𝑟𝑟2 𝑎𝑎𝑛𝑛−2 has two distinct roots, 𝑥𝑥1 and 𝑥𝑥2, then 𝑎𝑎𝑛𝑛 = 𝑝𝑝𝑥𝑥1 𝑛𝑛 + 𝑞𝑞𝑥𝑥2 𝑛𝑛 where 𝑝𝑝 and 𝑞𝑞 depend on the initial conditions, is the explicit formula for the sequence. © S. Turaev, CSC 1700 Discrete Mathematics 16
  • 17. Linear Homogeneous Recurrence Relations Theorem: If the characteristic equation 𝑥𝑥2 − 𝑟𝑟1 𝑥𝑥 − 𝑟𝑟2 = 0 of the recurrence relation 𝑎𝑎𝑛𝑛 = 𝑟𝑟1 𝑎𝑎𝑛𝑛−1 + 𝑟𝑟2 𝑎𝑎𝑛𝑛−2 has a single root, 𝑥𝑥, then 𝑎𝑎𝑛𝑛 = 𝑝𝑝𝑥𝑥 𝑛𝑛 + 𝑞𝑞𝑞𝑞𝑥𝑥 𝑛𝑛 where 𝑝𝑝 and 𝑞𝑞 depend on the initial conditions, is the explicit formula for the sequence. © S. Turaev, CSC 1700 Discrete Mathematics 17
  • 18. Linear Homogeneous Recurrence Relations Example 1: Find an explicit formula for the sequence defined by 𝑎𝑎𝑛𝑛 = 4𝑎𝑎𝑛𝑛−1 + 5𝑎𝑎𝑛𝑛−2 with the initial conditions 𝑎𝑎1 = 2 and 𝑎𝑎2 = 6. Example 2: Find an explicit formula for the sequence defined by 𝑏𝑏𝑛𝑛 = −6𝑏𝑏𝑛𝑛−1 − 9𝑏𝑏𝑛𝑛−2 with the initial conditions 𝑏𝑏1 = 2.5 and 𝑏𝑏2 = 4.7. Example 3 (Fibonacci sequence): Find an explicit formula for the sequence defined by 𝑓𝑓𝑛𝑛 = 𝑓𝑓𝑛𝑛−1 + 𝑓𝑓𝑛𝑛−2 with the initial conditions 𝑓𝑓0 = 0 and 𝑓𝑓1 = 1. © S. Turaev, CSC 1700 Discrete Mathematics 18