Your SlideShare is downloading. ×
Bab1 bentuk akar dan logaritma
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Bab1 bentuk akar dan logaritma

14,391
views

Published on

http://soalmatematikakelas.blogspot.com …

http://soalmatematikakelas.blogspot.com
http://soalfisikakelas.blogspot.com
http://soalkimiakelas.blogspot.com
http://soalbiologikelas.blogspot.com
http://soalbahasainggriskelas.blogspot.com
http://soalbhsindonesia.blogspot.com
http://soalpknkelas.blogspot.com

Published in: Education

2 Comments
0 Likes
Statistics
Notes
  • Be the first to like this

No Downloads
Views
Total Views
14,391
On Slideshare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
162
Comments
2
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. www.banksoal-matematika.com 1. PANGKAT RASIONAL, BENTUK AKAR DAN LOGARITMA A. Pangkat Rasional 1) Pangkat negatif dan nol Misalkan a ∈ R dan a ≠ 0, maka: a) a-n = n a 1 atau an = n a− 1 b) a0 = 1 2) Sifat-Sifat Pangkat Jika a dan b bilangan real serta n, p, q bilangan bulat positif, maka berlaku: a) ap × aq = ap+q b) ap : aq = ap-q c) ( )qp a = apq d) ( )n ba × = an ×bn e) ( ) n n b an b a = SOAL PENYELESAIAN 1. UN 2010 PAKET A Bentuk sederhana dari 1 575 35 3 27 − −− −−         ba ba adalah … a. (3 ab)2 b. 3 (ab)2 c. 9 (ab)2 d. 2 )( 3 ab e. 2 )( 9 ab Jawab : e 2. UN 2010 PAKET B Bentuk sederhana dari 254 423 )5( )5( −−− − ba ba adalah … a. 56 a4 b–18 b. 56 a4 b2 c. 52 a4 b2 d. 56 ab–1 e. 56 a9 b–1 Jawab : a
  • 2. SOAL PENYELESAIAN 3. EBTANAS 2002 Diketahui a = 2 + 5 dan b = 2 – 5 . Nilai dari a2 – b2 = … a. –3 b. –1 c. 2 5 d. 4 5 e. 8 5 Jawab : e B. Bentuk Akar 1) Definisi bentuk Akar Jika a bilangan real serta m, n bilangan bulat positif, maka berlaku: a) n aa n = 1 b) n m aa n m = 2) Operasi Aljabar Bentuk Akar Untuk setiap a, b, dan c bilangan positif, maka berlaku hubungan: a) a c + b c = (a + b) c b) a c – b c = (a – b) c c) ba × = ba× d) ba + = ab)ba( 2++ e) ba − = ab)ba( 2−+ 3) Merasionalkan penyebut Untuk setiap pecahan yang penyebutnya mengandung bilangan irrasional (bilangan yang tidak dapat di akar), dapat dirasionalkan penyebutnya dengan kaidah-kaidah sebagai berikut: a) b ba b b b a b a =×= b) ba bac ba ba ba c ba c − − − − ++ =×= 2 )( c) ba bac ba ba ba c ba c − − − − ++ =×= )( www.banksoal-matematika.com
  • 3. SOAL PENYELESAIAN 1. UN 2010 PAKET A Bentuk sederhana dari )53( )32)(32(4 + −+ = … a. –(3 – 5 ) b. – 4 1 (3 – 5 ) c. 4 1 (3 – 5 ) d. (3 – 5 ) e. (3 + 5 ) Jawab : d 2. UN 2010 PAKET B Bentuk sederhana dari 62 )53)(53(6 + −+ =… a. 24 + 12 6 b. –24 + 12 6 c. 24 – 12 6 d. –24 – 6 e. –24 – 12 6 Jawab : b 3. UN 2008 PAKET A/B Hasil dari 32712 −+ adalah … a. 6 b. 4 3 c. 5 3 d. 6 3 e. 12 3 Jawab : b www.banksoal-matematika.com
  • 4. SOAL PENYELESAIAN 4. UN 2007 PAKET A Bentuk sederhana dari ( )24332758 +−+ adalah … a. 2 2 + 14 3 b. –2 2 – 4 3 c. –2 2 + 4 3 d. –2 2 + 4 3 e. 2 2 – 4 3 Jawab : b 5. UN 2007 PAKET B Bentuk sederhana dari ( )( )323423 +− = … a. – 6 – 6 b. 6 – 6 c. – 6 + 6 d. 24 – 6 e. 18 + 6 Jawab : a 6. UN 2006 Bentuk sederhana dari 73 24 − adalah … a. 18 – 24 7 b. 18 – 6 7 c. 12 + 4 7 d. 18 + 6 7 e. 36 + 12 7 Jawab : e 7. EBTANAS 2002 Diketahui a = 9; b = 16; dan c = 36. Nilai dari 3 2 1 3 1       ⋅⋅ −− cba = … a. 1 b. 3 c. 9 d. 12 e. 18 Jawab : c www.banksoal-matematika.com
  • 5. C. Logaritma a) Pengertian logaritma Logaritma merupakan invers (kebalikan) dari perpangkatan. Misalkan a adalah bilangan positif (a > 0) dan g adalah bilangan positif yang tidak sama dengan 1 (g > 0, g ≠ 1), maka: g log a = x jika hanya jika gx = a atau bisa di tulis : (1) untuk g log a = x ⇒ a = gx (2) untuk gx = a ⇒ x = g log a b) sifat-sifat logaritma sebagai berikut: (1) g log (a × b) = g log a + g log b (2) g log ( )b a = g log a – g log b (3) g log an = n × g log a (4) g log a = glog alog p p (5) g log a = glog 1 a (6) g log a × a log b = g log b (7) mg alog n = n m g log a (8) ag alogg = SOAL PENYELESAIAN 1. UN 2010 PAKET A Nilai dari ( ) ( )2323 3 2log18log 6log − = … a. 8 1 b. 2 1 c. 1 d. 2 e. 8 Jawab : a www.banksoal-matematika.com
  • 6. SOAL PENYELESAIAN 2. UN 2010 PAKET B Nilai dari 18log2log 4log3log9log 33 3227 − ⋅+ = … a. 3 14− b. 6 14− c. 6 10− d. 6 14 e. 3 14 Jawab : b 3. UN 2009 PAKET A/B Untuk x yang memenuhi 816log 4 12 2 = −x , maka 32x = … a. 19 b. 32 c. 52 d. 144 e. 208 Jawab : d 4. UN 2008 PAKET A/B Jika 7 log 2 = a dan 2 log3 = b, maka 6 log 14 = … a. ba a + b. 1 1 + + b a c. )1( 1 + + ba a d. 1 1 + + a b e. )1( 1 + + ab b Jawab : c www.banksoal-matematika.com
  • 7. SOAL PENYELESAIAN 5. UN 2007 PAKET B Jika diketahui 3 log 5 = m dan 7 log 5 = n, maka 35 log 15 = … a. n m + + 1 1 b. m n + + 1 1 c. m nm + + 1 )1( d. ( ) )1( 1 nm mn + + e. 1 1 + + m mn Jawab : c 6. UN 2005 Nilai dari qrp pqr 1 log 1 log 1 log 35 ⋅⋅ = … a. 15 b. 5 c. –3 d. 15 1 e. 5 Jawab : a 7. UN 2004 Diketahui 2 log5 = x dan 2 log3 = y. Nilai 4 3 300log2 = … a. 2 3 4 3 3 2 ++ yx b. 22 3 2 3 ++ yx c. 2x + y + 2 d. 2 3 4 32 ++ yx e. 22 2 3 ++ yx Jawab : a www.banksoal-matematika.com