SlideShare a Scribd company logo
Guided by;
D Sreehari Rao,
Assistant Professor, Dept. of Civil Engg.
By;
G Sireesha ( 11202012),
P Hari Krishna (11202024),
S Sri Hari (11202030).
In the present era the technology in communications has developed to a very
large extent. The communication industries have seen a tremendous increase in last few
years which have resulted in installation of large number of towers to increase the
coverage area and network consistency. In wireless communication network these towers
play a significant role hence failure of such structure in a disaster is a major concern.
Therefore utmost importance should be given in considering all possible extreme
conditions for designing these towers. In most of the studies, the researches have
considered the effect of wind only on the four legged self-supporting towers. In this
dissertation, a four legged lattice tower is analyzed and designed along with foundation
details.
BASED ON STRUCTURAL ACTION
SELF SUPPORTING
TOWERS
The towers that are supported
on ground or on buildings are
called as self-supporting
towers. Though the weight of
these towers is more they
require less base area and are
suitable in many situations.
Most of the TV, MW, Power
transmission, and flood light
towers are self-supporting
towers.
GUYED TOWERS
Guyed towers are normally
guyed in three directions. These
towers are much lighter than self
supporting type but require a
large free space to anchor guy
wires. Whenever large open
space is available, guyed towers
can be provided. There are other
restrictions to mount dish
antennae on these towers and
require large anchor blocks to
hold the ropes.
MONOPOLE
It is single self-supporting
pole, and is generally placed
over roofs of high raised
buildings, when number of
antennae required is less or
height of tower required is less
than 9m.
TYPES OF COMMUNICATION TOWERS
Self Supporting Tower Guyed Tower Monopole Tower
Based on the type of material sections :
Based on the sections used for fabrication, towers are classified into angular and hybrid
towers (with tubular and angle bracings). Lattice towers are usually made of bolted angles.
Towers with tubular members may be less than half the weight of angle towers because of the
reduced wind load on circular sections. However the extra cost of the tube and the more
complicated connection details can exceed the saving of steel weight and foundations.
Based on cross section of tower:
Towers can be classified, based on their cross section, into square, rectangular, triangular,
delta, hexagonal and polygonal towers. Triangular Lattice Towers have less weight but offer less
stiffness in torsion. With the increase in number of faces, it is observed that weight of tower
increases. The increase is 10% and 20% for square and hexagonal cross sections respectively.
Based on the number of segments:
The towers are classified based on the number of segments as Three slope tower; Two
slope tower; Single slope tower; Straight tower.
OBJECTIVES
The objective of this project is to design a Telecommunication tower, along with
foundation details, and to analyze it, below mentioned basic parameters are considered :
• Base width.
• Height of tower.
• Soil Bearing Capacity.
• Configuration of Tower.
Following research has to be carried out for meeting the above objectives:
• Soil exploration studies.
• Terminology of communication tower and its components.
• Different behaviors of towers.
• Methodology for analysis and design of communication towers.
To meet these objectives the following work has to be done:
• Towers are configured with keeping in mind all field and structural constraints on
AutoCAD 2015.
• Loading format including reliability, security and safety pattern are to be evaluated.
• Wind loading is calculated on the longitudinal face of the towers.
• Now all the towers are modelled and analyzed as a three dimensional structure
using STADD.Pro V8i and STAAD(X) Tower V8i.
• Finally tower members are designed as an angle sections.
DESIGN OF COMMUNICATION TOWERS
The following are the steps involved in design of communication tower:
• Selection of configuration of tower.
• Computation of loads acting on tower.
• Analysis of tower for appropriate loading conditions.
• Design of tower members according to codes of practices.
• Design of foundation according to codes of practices.
CONFIGURATION
A communication tower, like any other exposed structure, has a super
structure shaped, dimensioned and designed to suit the external loads and self-
weight
Selection of configuration of a tower involves fixing of top width, bottom
width, number of panels and their heights, type of bracing system and slope of
tower. The following are key parameters in configuration of tower.
• Width at bottom level = 4.00 m
• Width at top level = 1.20 m
• Overall Height = 30.00 m
• No. of levels = 09 levels
• Slope of outline of tower = 87º 8’ 15.34” (with horizontal)
ELEVATION OF LEVELS
LEVELS HEIGHT (M) BASE WIDTH (M) BRACING PATTERN OF
FACE
0 0 4 K2 Brace Down
1 6 3.3 Double K1 Brace Down
2 10.5 2.775 Double K1 Brace Down
3 14 2.367 Double K1 Brace Down
4 17 2.017 XX Bracing
5 19 1.783 XX Bracing
6 21 1.55 XX Bracing
7 22.5 1.375 XX Bracing
8 24 1.2 XX Bracing
9 30 1.2 XX Bracing
LOAD CONSIDERATIONS
In case of communication towers self-weight of tower is most important component
of tower design. The tele communication steel tower is a pin-jointed light structure, It is
still assumed that their behavior is similar to simple truss.
The percentage of openings in Tower structure will be more than 30%, so wind
loads acting on the tower will be of less magnitude compared to chimneys, but the major
cause of failures of telecommunication tower throughout the world though still remains to
be high intensity winds (HIW). The major problem faced is the difficulty in estimating
wind loads as they are based on a probabilistic approach. There has been several studies in
telecommunication towers taking into consideration the wind as well as dynamic effect.
The loadings which are considered during this project are:
1. Dead loads or Vertical loads
( i.e. self weight of tower members, Self weight of antennas, labour and
equipment during construction and maintenance.)
2. Transverse loads
(Wind load on exposed members of the tower and antenna.)
Wind load on tower:
The wind load on tower can be calculated using the Indian standards IS: 875(Part 3)-
1987[3] and BS: 8100 (Part 1)-1996[4].
Wind load on antennae:
Wind load on antennae shall be considered from Andrew’s catalogue. In the Andrew’s
catalogue the wind loads on antennas are given for 200kmph wind speed. The designer
has to calculate the antenna loads corresponding to designwind speed.
DESIGN WIND PRESSURE
•At Tirupati region, the design wind speed = 39 m/s
•Design speed at the site = Vz = K1K2K3Vb
Risk co-efficient = K1 for 100 years life = 1.08
K2 , terrain factor for 30 m and class B of Terrain category 3 = 1.03
Topography factor (K3) = 1+ Cs
For the given plain topography K3 = 1 ( As C=0 )
• Vz = 1.08*1.03*1*39 = 55.62 m/s
• Design wind pressure = Pz = 0.6 Vz
2 = 1.86 KN/m2
Similarly the design wind pressures for different levels are calculated and tabulated as
follows:
Height (m) Design wind pressure
(KN/m2 )
0 0
10 1.36
12 1.44
15 1.55
18 1.63
21 1.70
24 1.75
27 1.81
30 1.86
MODELLING AND ANALYSIS
The lattice tower model was analyzed in ANSYS as well as in STAAD. Pro
V8i and STAAD(X) Tower V8i software package. The model was created using the
coordinate data for the points and the element connectivity table and suitable cross
sectional properties were assigned to the elements created. The boundary condition
was stimulated in the model by fixing the three lowermost nodes of the modeled
structure. The loads calculated above are applied at appropriate nodes and the stress
parameters, deformation of the structure under the effect of the applied load is
studied.
DESIGN OF MEMBERS
Suitable steel sections are initially assumed as members of the tower for
analyzing the structure. Once the analysis is done members are finalized based on the
stresses developing in them, following the codal provisions provided by Indian
Standards.
• The maximum allowable stresses in the members are given in IS 802 (Part-1).
• Limiting slenderness ratios for members are given in IS 802(Part-1).
• Effective Length of compression members should be assumed as per IS
806(1968).
DESIGN OF FOUNDATION
DESIGN OF SLAB BASE
As per IS 800:2007,
• Bearing strength of concrete = 0.6fck
• But for practical consideration bearing strength = 0.45fck
∴ Area of plate required =
𝑃𝑢
0.45𝑓𝑐𝑘
• Where Pu = Factored load
• Load on each leg is = 400KN
• Factored load on each leg = 600KN
• Area of plate required =
600
0.45×25
= 53333.33 mm2
∴ Side of each base plate = 300 × 300 mm2
• Minimum thickness required (ts) = (
2.5𝑤(𝑎2−0.3𝑏2)𝛾𝑚𝑜
𝑓𝑦
)0.5
Where W =
𝑃𝑢
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑏𝑎𝑠𝑒 𝑝𝑙𝑎𝑡𝑒
=
600×1000
300×300
= 6.66 N/mm2
a = 95 mm and b = 95 mm
∴ ts = (
2.5×6.66×(952−0.3×952)×1.1
250
)0.5
∴ ts =25 mm
(As ts >
tf (truss angle thickness ts = 12mm), hence safe.)
 Connect base plate to foundation concrete using 4 No’s 20mm diameter and
300mm long anchor bolts.
 If weld is to be used for connecting column to base plate check the weld length of
filler weeds.
DESIGN OF RAFT FOUNDATION
Initially assume footing size = 5m × 5m
Uniform load on footing (W) =
𝑎𝑥𝑖𝑎𝑙 𝑙𝑜𝑎𝑑
𝑎𝑟𝑒𝑎
=
800
25
= 32 KN/m2
Consider per meter width then load is = 32 KN/m
Maximum bending moment at center of footing = 100 KNm
Bending moment required Mu = 0.138fckbd2
100×106 = 0.138 × 25 × 1000 × d2
d = 170.25 mm
∴ d = 200 mm.
Area of steel required:
Mu = 0.87 fy Ast d (1-
𝐴𝑠𝑡×𝑓𝑦
𝑏𝑑×𝑓𝑐𝑘
)
100×106 = 0.87×415×Ast×200×(1-
𝐴𝑠𝑡×415
1000×200×25
)
Assume concrete grade = M20
Steel grade = Fe415
Ast required = 1596.36 mm2
Assume diameter of bars = 12 mm
No. of bars required =
1596.36
(
𝜋
4
)×122
= 15 bars
Spacing of bars =
5000
20
=250 mm
∴ 𝑃𝑟𝑜𝑣𝑖𝑑𝑒 20 𝑏𝑎𝑟𝑠 𝑜𝑓 12𝑚𝑚 𝑑𝑖𝑎 @ 250𝑚𝑚
𝐶
𝐶
𝑜𝑛 𝑏𝑜𝑡ℎ 𝑠𝑖𝑑𝑒𝑠.
Design of concrete column for slab base:
Axial load on the column = 600KN.
According to code axial load on column = 0.4fckAc + 0.67fyAst
(As per IS 456:2000)
600×103 = 0.4fckAc + 0.67fyAst
600×103 = 0.4×25×Ac + 0.67fyAst
 Assume 1% of steel of concrete area.
600×103 = 0.4×25×Ac + 0.67× 415 ×
1
100
Ac
∴ Ac = 46946.6 mm2 = 216.67 × 216.68 mm2
.
∴ Ac = 220 × 220 mm2
.
Hence provide 300 × 300 mm2 square column at 350mm from edge.
Height of this column above the raft footing = 450 mm
Area of steel = 1% of column cross section
= 0.01 × 300 × 300 = 900 mm2
Assume 20mm dia bars then No. of bars =
900
(
𝜋
4
)×202
= 3 bars
∴ 𝑃𝑟𝑜𝑣𝑖𝑑𝑒 4 𝑏𝑎𝑟𝑠 𝑜𝑓 20𝑚𝑚 𝑑𝑖𝑎 𝑤𝑖𝑡ℎ 8𝑚𝑚 𝑑𝑖𝑎 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑡𝑖𝑒 𝑏𝑎𝑟𝑠 𝑎𝑡 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 𝑠𝑝𝑎𝑐𝑖𝑛𝑔
𝑎𝑠 𝑝𝑒𝑟 𝑐𝑜𝑑𝑎𝑙 𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑠.
RESULT
A Telecommunication tower of 30m high is analyzed and
designed.
1. The configuration of the tower is as follows:
• Height of tower = 30m
• Base width = 4m
• Top width = 1.2m
• Type of tower = Four legged lattice tower with two slopes.
• Number of members = 564
2. Wind load is calculated using STADD.Pro V8i using IS: 875(Part 3)-
1987[3].
The total wind load acting on the structure is 2719 Kg.
3. Design has been done according to IS: 802 using STADD.Pro and
following results are obtained:
• a. Total weight of steel required in superstructure = 9758 Kg.
• b. Materials required in super structure:
S. No Profile Length(m) Weight(Kg)
1. ISA 100x100x12 120.33 2130
2. ISA 80x80x10 170.63 2019
3. ISA 90x90x10 418.69 5609
Total = 9758
4. Raft foundation of 5m x 5m has been designed along with slab base
and column base to transfer the loads to raft. The details of foundation are:
a. Allowable Bearing Pressure = 250 KPa
b. Thickness of slab base = 25 mm
c. Thickness of column base = 450 mm
d. Thickness of Raft foundation = 22 mm
CONCLUSION
In the present era, technology is growing at a rapid phase which
require adequate communication means like mobile phones, internet, radio
communication etc. So there is need for proper communication systems
including radio stations, Communication towers. If we could optimize the
design of towers and use less resources, it will save a lot of money and
resources. In olden days angle sections are used in making of truss in
towers, currently tubular sections are preferred as they are more
economical.
The wind load acting on the telecommunication towers will be
comparatively less in magnitude as it is open structure with more openings,
but failure of the towers is mainly due to High Intensity Winds and
Earthquakes. So high factor of safety should be given to wind loads and
seismic loads.

More Related Content

What's hot

Part 3 Guy Tower Structure
Part 3 Guy Tower Structure Part 3 Guy Tower Structure
Part 3 Guy Tower Structure
Fred Teichman
 
IRJET- Analysis of Four Legged Steel Telecommunication Tower-Equivalent Stati...
IRJET- Analysis of Four Legged Steel Telecommunication Tower-Equivalent Stati...IRJET- Analysis of Four Legged Steel Telecommunication Tower-Equivalent Stati...
IRJET- Analysis of Four Legged Steel Telecommunication Tower-Equivalent Stati...
IRJET Journal
 
Lecture chapter 1u
Lecture chapter 1uLecture chapter 1u
Lecture chapter 1u
rgo-amo
 
Comparative study of four legged self supported angular telecommunication tow...
Comparative study of four legged self supported angular telecommunication tow...Comparative study of four legged self supported angular telecommunication tow...
Comparative study of four legged self supported angular telecommunication tow...
eSAT Journals
 
Design of industrial roof truss
Design of industrial roof truss Design of industrial roof truss
Design of industrial roof truss
Sudhir Gayake
 
BT 1: Concrete and Admixtures
BT 1: Concrete and AdmixturesBT 1: Concrete and Admixtures
BT 1: Concrete and Admixtures
Tabitha Fuentebella
 
National standard plumbing code
National standard plumbing codeNational standard plumbing code
National standard plumbing code
Alaa Alsaqer
 
Planning and cost analysis of the commercial building
Planning and cost analysis of the commercial buildingPlanning and cost analysis of the commercial building
Planning and cost analysis of the commercial building
ila vamsi krishna
 
CIVIL ENGINEERING LAW
CIVIL ENGINEERING LAWCIVIL ENGINEERING LAW
CIVIL ENGINEERING LAW
Amado C. Tancioco III
 
Electrical Systems in a Building
Electrical Systems in a BuildingElectrical Systems in a Building
Electrical Systems in a Building
GAURAV. H .TANDON
 
Cable stayed bridge
Cable stayed bridgeCable stayed bridge
Cable stayed bridge
Sadek Abdelraheem
 
Prestressed Concrete Design
Prestressed Concrete DesignPrestressed Concrete Design
Prestressed Concrete Design
Priodeep Chowdhury
 
Design of column base plates anchor bolt
Design of column base plates anchor boltDesign of column base plates anchor bolt
Design of column base plates anchor bolt
Khaled Eid
 
Steel design-examples
Steel design-examplesSteel design-examples
Steel design-examples
Faisal Amin
 
Design of beams
Design of beamsDesign of beams
Design of beams
Sabna Thilakan
 
Structural Steel and Timber Design EV306 Project Report
Structural Steel and Timber Design EV306 Project ReportStructural Steel and Timber Design EV306 Project Report
Structural Steel and Timber Design EV306 Project Report
herry924
 
Prestressed concrete
Prestressed concretePrestressed concrete
Prestressed concrete
Rajesh Burde
 
Guntry girder
Guntry girderGuntry girder
Guntry girder
kajol panchal
 
staad pro
staad prostaad pro
staad pro
Jaspreet singh
 
BUILDING TECH 5_04.pptx
BUILDING TECH 5_04.pptxBUILDING TECH 5_04.pptx
BUILDING TECH 5_04.pptx
LawrenceMartinez7
 

What's hot (20)

Part 3 Guy Tower Structure
Part 3 Guy Tower Structure Part 3 Guy Tower Structure
Part 3 Guy Tower Structure
 
IRJET- Analysis of Four Legged Steel Telecommunication Tower-Equivalent Stati...
IRJET- Analysis of Four Legged Steel Telecommunication Tower-Equivalent Stati...IRJET- Analysis of Four Legged Steel Telecommunication Tower-Equivalent Stati...
IRJET- Analysis of Four Legged Steel Telecommunication Tower-Equivalent Stati...
 
Lecture chapter 1u
Lecture chapter 1uLecture chapter 1u
Lecture chapter 1u
 
Comparative study of four legged self supported angular telecommunication tow...
Comparative study of four legged self supported angular telecommunication tow...Comparative study of four legged self supported angular telecommunication tow...
Comparative study of four legged self supported angular telecommunication tow...
 
Design of industrial roof truss
Design of industrial roof truss Design of industrial roof truss
Design of industrial roof truss
 
BT 1: Concrete and Admixtures
BT 1: Concrete and AdmixturesBT 1: Concrete and Admixtures
BT 1: Concrete and Admixtures
 
National standard plumbing code
National standard plumbing codeNational standard plumbing code
National standard plumbing code
 
Planning and cost analysis of the commercial building
Planning and cost analysis of the commercial buildingPlanning and cost analysis of the commercial building
Planning and cost analysis of the commercial building
 
CIVIL ENGINEERING LAW
CIVIL ENGINEERING LAWCIVIL ENGINEERING LAW
CIVIL ENGINEERING LAW
 
Electrical Systems in a Building
Electrical Systems in a BuildingElectrical Systems in a Building
Electrical Systems in a Building
 
Cable stayed bridge
Cable stayed bridgeCable stayed bridge
Cable stayed bridge
 
Prestressed Concrete Design
Prestressed Concrete DesignPrestressed Concrete Design
Prestressed Concrete Design
 
Design of column base plates anchor bolt
Design of column base plates anchor boltDesign of column base plates anchor bolt
Design of column base plates anchor bolt
 
Steel design-examples
Steel design-examplesSteel design-examples
Steel design-examples
 
Design of beams
Design of beamsDesign of beams
Design of beams
 
Structural Steel and Timber Design EV306 Project Report
Structural Steel and Timber Design EV306 Project ReportStructural Steel and Timber Design EV306 Project Report
Structural Steel and Timber Design EV306 Project Report
 
Prestressed concrete
Prestressed concretePrestressed concrete
Prestressed concrete
 
Guntry girder
Guntry girderGuntry girder
Guntry girder
 
staad pro
staad prostaad pro
staad pro
 
BUILDING TECH 5_04.pptx
BUILDING TECH 5_04.pptxBUILDING TECH 5_04.pptx
BUILDING TECH 5_04.pptx
 

Similar to analysis and design of telecommunication tower

Design and Analysis of Steel Tower Attachments for Domestic Wind Tower
Design and Analysis of Steel Tower Attachments for Domestic Wind TowerDesign and Analysis of Steel Tower Attachments for Domestic Wind Tower
Design and Analysis of Steel Tower Attachments for Domestic Wind Tower
IRJET Journal
 
IRJET- Review Paper on Comparative Study of Dynamic Analysis of Transmission ...
IRJET- Review Paper on Comparative Study of Dynamic Analysis of Transmission ...IRJET- Review Paper on Comparative Study of Dynamic Analysis of Transmission ...
IRJET- Review Paper on Comparative Study of Dynamic Analysis of Transmission ...
IRJET Journal
 
IRJET- Comparative Study of Dynamic Analysis of Transmission Towers
IRJET- Comparative Study of Dynamic Analysis of Transmission TowersIRJET- Comparative Study of Dynamic Analysis of Transmission Towers
IRJET- Comparative Study of Dynamic Analysis of Transmission Towers
IRJET Journal
 
2581
25812581
uni arc
uni arcuni arc
uni arc
dafer sief
 
HV tower design 3
HV tower design 3HV tower design 3
HV tower design 3
Thy Khy
 
Analysis and Design of Power Transmission Lines Steel Towers.docx
Analysis and Design of Power Transmission Lines Steel Towers.docxAnalysis and Design of Power Transmission Lines Steel Towers.docx
Analysis and Design of Power Transmission Lines Steel Towers.docx
Adnan Lazem
 
Design of cell transmission tower with different bracing patterns
Design of cell transmission tower with different bracing patternsDesign of cell transmission tower with different bracing patterns
Design of cell transmission tower with different bracing patterns
IRJET Journal
 
IRJET- Response of Multistorey Building with Rooftop Telecommunication To...
IRJET-  	  Response of Multistorey Building with Rooftop Telecommunication To...IRJET-  	  Response of Multistorey Building with Rooftop Telecommunication To...
IRJET- Response of Multistorey Building with Rooftop Telecommunication To...
IRJET Journal
 
Large Span Lattice Frame Industrial Roof Structure
Large Span Lattice Frame Industrial Roof StructureLarge Span Lattice Frame Industrial Roof Structure
Large Span Lattice Frame Industrial Roof Structure
IOSR Journals
 
Large Span Lattice Frame Industrial Roof Structure
Large Span Lattice Frame Industrial Roof StructureLarge Span Lattice Frame Industrial Roof Structure
Large Span Lattice Frame Industrial Roof Structure
IOSR Journals
 
A012140107
A012140107A012140107
A012140107
IOSR Journals
 
Analysis of industrial shed
Analysis of industrial shedAnalysis of industrial shed
Analysis of industrial shed
CADmantra Technologies
 
Final Paper on Study and Design of Footbridge to connect the first floor of C...
Final Paper on Study and Design of Footbridge to connect the first floor of C...Final Paper on Study and Design of Footbridge to connect the first floor of C...
Final Paper on Study and Design of Footbridge to connect the first floor of C...
IRJET Journal
 
IRJET- A Study on Seismic Analysis of RC Framed Structures on Varying Slo...
IRJET-  	  A Study on Seismic Analysis of RC Framed Structures on Varying Slo...IRJET-  	  A Study on Seismic Analysis of RC Framed Structures on Varying Slo...
IRJET- A Study on Seismic Analysis of RC Framed Structures on Varying Slo...
IRJET Journal
 
IMPROVING THE STRUCTURAL EFFICIENCY OF STEEL TRUSSES BY COMPARATIVE STUDY
IMPROVING THE STRUCTURAL EFFICIENCY OF STEEL TRUSSES BY COMPARATIVE STUDYIMPROVING THE STRUCTURAL EFFICIENCY OF STEEL TRUSSES BY COMPARATIVE STUDY
IMPROVING THE STRUCTURAL EFFICIENCY OF STEEL TRUSSES BY COMPARATIVE STUDY
IRJET Journal
 
PARAMETRIC OPTIMIZATION OF MOBILE TOWER BY VARYING LOADING CONDITIONS WITH DI...
PARAMETRIC OPTIMIZATION OF MOBILE TOWER BY VARYING LOADING CONDITIONS WITH DI...PARAMETRIC OPTIMIZATION OF MOBILE TOWER BY VARYING LOADING CONDITIONS WITH DI...
PARAMETRIC OPTIMIZATION OF MOBILE TOWER BY VARYING LOADING CONDITIONS WITH DI...
IRJET Journal
 
Hospital building project
Hospital building projectHospital building project
Hospital building project
sasi vijayalakshmi
 
Structural Behaviors of Reinforced Concrete Dome with Shell System under Vari...
Structural Behaviors of Reinforced Concrete Dome with Shell System under Vari...Structural Behaviors of Reinforced Concrete Dome with Shell System under Vari...
Structural Behaviors of Reinforced Concrete Dome with Shell System under Vari...
ijtsrd
 
2 ijaems jul-2015-3-analysis and design of four leg steel transmission tower ...
2 ijaems jul-2015-3-analysis and design of four leg steel transmission tower ...2 ijaems jul-2015-3-analysis and design of four leg steel transmission tower ...
2 ijaems jul-2015-3-analysis and design of four leg steel transmission tower ...
INFOGAIN PUBLICATION
 

Similar to analysis and design of telecommunication tower (20)

Design and Analysis of Steel Tower Attachments for Domestic Wind Tower
Design and Analysis of Steel Tower Attachments for Domestic Wind TowerDesign and Analysis of Steel Tower Attachments for Domestic Wind Tower
Design and Analysis of Steel Tower Attachments for Domestic Wind Tower
 
IRJET- Review Paper on Comparative Study of Dynamic Analysis of Transmission ...
IRJET- Review Paper on Comparative Study of Dynamic Analysis of Transmission ...IRJET- Review Paper on Comparative Study of Dynamic Analysis of Transmission ...
IRJET- Review Paper on Comparative Study of Dynamic Analysis of Transmission ...
 
IRJET- Comparative Study of Dynamic Analysis of Transmission Towers
IRJET- Comparative Study of Dynamic Analysis of Transmission TowersIRJET- Comparative Study of Dynamic Analysis of Transmission Towers
IRJET- Comparative Study of Dynamic Analysis of Transmission Towers
 
2581
25812581
2581
 
uni arc
uni arcuni arc
uni arc
 
HV tower design 3
HV tower design 3HV tower design 3
HV tower design 3
 
Analysis and Design of Power Transmission Lines Steel Towers.docx
Analysis and Design of Power Transmission Lines Steel Towers.docxAnalysis and Design of Power Transmission Lines Steel Towers.docx
Analysis and Design of Power Transmission Lines Steel Towers.docx
 
Design of cell transmission tower with different bracing patterns
Design of cell transmission tower with different bracing patternsDesign of cell transmission tower with different bracing patterns
Design of cell transmission tower with different bracing patterns
 
IRJET- Response of Multistorey Building with Rooftop Telecommunication To...
IRJET-  	  Response of Multistorey Building with Rooftop Telecommunication To...IRJET-  	  Response of Multistorey Building with Rooftop Telecommunication To...
IRJET- Response of Multistorey Building with Rooftop Telecommunication To...
 
Large Span Lattice Frame Industrial Roof Structure
Large Span Lattice Frame Industrial Roof StructureLarge Span Lattice Frame Industrial Roof Structure
Large Span Lattice Frame Industrial Roof Structure
 
Large Span Lattice Frame Industrial Roof Structure
Large Span Lattice Frame Industrial Roof StructureLarge Span Lattice Frame Industrial Roof Structure
Large Span Lattice Frame Industrial Roof Structure
 
A012140107
A012140107A012140107
A012140107
 
Analysis of industrial shed
Analysis of industrial shedAnalysis of industrial shed
Analysis of industrial shed
 
Final Paper on Study and Design of Footbridge to connect the first floor of C...
Final Paper on Study and Design of Footbridge to connect the first floor of C...Final Paper on Study and Design of Footbridge to connect the first floor of C...
Final Paper on Study and Design of Footbridge to connect the first floor of C...
 
IRJET- A Study on Seismic Analysis of RC Framed Structures on Varying Slo...
IRJET-  	  A Study on Seismic Analysis of RC Framed Structures on Varying Slo...IRJET-  	  A Study on Seismic Analysis of RC Framed Structures on Varying Slo...
IRJET- A Study on Seismic Analysis of RC Framed Structures on Varying Slo...
 
IMPROVING THE STRUCTURAL EFFICIENCY OF STEEL TRUSSES BY COMPARATIVE STUDY
IMPROVING THE STRUCTURAL EFFICIENCY OF STEEL TRUSSES BY COMPARATIVE STUDYIMPROVING THE STRUCTURAL EFFICIENCY OF STEEL TRUSSES BY COMPARATIVE STUDY
IMPROVING THE STRUCTURAL EFFICIENCY OF STEEL TRUSSES BY COMPARATIVE STUDY
 
PARAMETRIC OPTIMIZATION OF MOBILE TOWER BY VARYING LOADING CONDITIONS WITH DI...
PARAMETRIC OPTIMIZATION OF MOBILE TOWER BY VARYING LOADING CONDITIONS WITH DI...PARAMETRIC OPTIMIZATION OF MOBILE TOWER BY VARYING LOADING CONDITIONS WITH DI...
PARAMETRIC OPTIMIZATION OF MOBILE TOWER BY VARYING LOADING CONDITIONS WITH DI...
 
Hospital building project
Hospital building projectHospital building project
Hospital building project
 
Structural Behaviors of Reinforced Concrete Dome with Shell System under Vari...
Structural Behaviors of Reinforced Concrete Dome with Shell System under Vari...Structural Behaviors of Reinforced Concrete Dome with Shell System under Vari...
Structural Behaviors of Reinforced Concrete Dome with Shell System under Vari...
 
2 ijaems jul-2015-3-analysis and design of four leg steel transmission tower ...
2 ijaems jul-2015-3-analysis and design of four leg steel transmission tower ...2 ijaems jul-2015-3-analysis and design of four leg steel transmission tower ...
2 ijaems jul-2015-3-analysis and design of four leg steel transmission tower ...
 

Recently uploaded

学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
171ticu
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
kandramariana6
 
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
Gino153088
 
一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理
一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理
一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理
upoux
 
morris_worm_intro_and_source_code_analysis_.pdf
morris_worm_intro_and_source_code_analysis_.pdfmorris_worm_intro_and_source_code_analysis_.pdf
morris_worm_intro_and_source_code_analysis_.pdf
ycwu0509
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
IJECEIAES
 
SCALING OF MOS CIRCUITS m .pptx
SCALING OF MOS CIRCUITS m                 .pptxSCALING OF MOS CIRCUITS m                 .pptx
SCALING OF MOS CIRCUITS m .pptx
harshapolam10
 
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
upoux
 
Engineering Standards Wiring methods.pdf
Engineering Standards Wiring methods.pdfEngineering Standards Wiring methods.pdf
Engineering Standards Wiring methods.pdf
edwin408357
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
Yasser Mahgoub
 
Mechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdfMechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdf
21UME003TUSHARDEB
 
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURSCompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
RamonNovais6
 
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
nedcocy
 
Welding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdfWelding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdf
AjmalKhan50578
 
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
ydzowc
 
Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...
Prakhyath Rai
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
IJECEIAES
 
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
ecqow
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
bijceesjournal
 
Data Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason WebinarData Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason Webinar
UReason
 

Recently uploaded (20)

学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
 
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
 
一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理
一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理
一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理
 
morris_worm_intro_and_source_code_analysis_.pdf
morris_worm_intro_and_source_code_analysis_.pdfmorris_worm_intro_and_source_code_analysis_.pdf
morris_worm_intro_and_source_code_analysis_.pdf
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
 
SCALING OF MOS CIRCUITS m .pptx
SCALING OF MOS CIRCUITS m                 .pptxSCALING OF MOS CIRCUITS m                 .pptx
SCALING OF MOS CIRCUITS m .pptx
 
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
 
Engineering Standards Wiring methods.pdf
Engineering Standards Wiring methods.pdfEngineering Standards Wiring methods.pdf
Engineering Standards Wiring methods.pdf
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
 
Mechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdfMechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdf
 
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURSCompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
 
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
 
Welding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdfWelding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdf
 
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
 
Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
 
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
 
Data Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason WebinarData Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason Webinar
 

analysis and design of telecommunication tower

  • 1. Guided by; D Sreehari Rao, Assistant Professor, Dept. of Civil Engg. By; G Sireesha ( 11202012), P Hari Krishna (11202024), S Sri Hari (11202030).
  • 2. In the present era the technology in communications has developed to a very large extent. The communication industries have seen a tremendous increase in last few years which have resulted in installation of large number of towers to increase the coverage area and network consistency. In wireless communication network these towers play a significant role hence failure of such structure in a disaster is a major concern. Therefore utmost importance should be given in considering all possible extreme conditions for designing these towers. In most of the studies, the researches have considered the effect of wind only on the four legged self-supporting towers. In this dissertation, a four legged lattice tower is analyzed and designed along with foundation details.
  • 3. BASED ON STRUCTURAL ACTION SELF SUPPORTING TOWERS The towers that are supported on ground or on buildings are called as self-supporting towers. Though the weight of these towers is more they require less base area and are suitable in many situations. Most of the TV, MW, Power transmission, and flood light towers are self-supporting towers. GUYED TOWERS Guyed towers are normally guyed in three directions. These towers are much lighter than self supporting type but require a large free space to anchor guy wires. Whenever large open space is available, guyed towers can be provided. There are other restrictions to mount dish antennae on these towers and require large anchor blocks to hold the ropes. MONOPOLE It is single self-supporting pole, and is generally placed over roofs of high raised buildings, when number of antennae required is less or height of tower required is less than 9m. TYPES OF COMMUNICATION TOWERS
  • 4. Self Supporting Tower Guyed Tower Monopole Tower
  • 5. Based on the type of material sections : Based on the sections used for fabrication, towers are classified into angular and hybrid towers (with tubular and angle bracings). Lattice towers are usually made of bolted angles. Towers with tubular members may be less than half the weight of angle towers because of the reduced wind load on circular sections. However the extra cost of the tube and the more complicated connection details can exceed the saving of steel weight and foundations. Based on cross section of tower: Towers can be classified, based on their cross section, into square, rectangular, triangular, delta, hexagonal and polygonal towers. Triangular Lattice Towers have less weight but offer less stiffness in torsion. With the increase in number of faces, it is observed that weight of tower increases. The increase is 10% and 20% for square and hexagonal cross sections respectively. Based on the number of segments: The towers are classified based on the number of segments as Three slope tower; Two slope tower; Single slope tower; Straight tower.
  • 6. OBJECTIVES The objective of this project is to design a Telecommunication tower, along with foundation details, and to analyze it, below mentioned basic parameters are considered : • Base width. • Height of tower. • Soil Bearing Capacity. • Configuration of Tower. Following research has to be carried out for meeting the above objectives: • Soil exploration studies. • Terminology of communication tower and its components. • Different behaviors of towers. • Methodology for analysis and design of communication towers.
  • 7. To meet these objectives the following work has to be done: • Towers are configured with keeping in mind all field and structural constraints on AutoCAD 2015. • Loading format including reliability, security and safety pattern are to be evaluated. • Wind loading is calculated on the longitudinal face of the towers. • Now all the towers are modelled and analyzed as a three dimensional structure using STADD.Pro V8i and STAAD(X) Tower V8i. • Finally tower members are designed as an angle sections.
  • 8. DESIGN OF COMMUNICATION TOWERS The following are the steps involved in design of communication tower: • Selection of configuration of tower. • Computation of loads acting on tower. • Analysis of tower for appropriate loading conditions. • Design of tower members according to codes of practices. • Design of foundation according to codes of practices.
  • 9. CONFIGURATION A communication tower, like any other exposed structure, has a super structure shaped, dimensioned and designed to suit the external loads and self- weight Selection of configuration of a tower involves fixing of top width, bottom width, number of panels and their heights, type of bracing system and slope of tower. The following are key parameters in configuration of tower. • Width at bottom level = 4.00 m • Width at top level = 1.20 m • Overall Height = 30.00 m • No. of levels = 09 levels • Slope of outline of tower = 87º 8’ 15.34” (with horizontal)
  • 10.
  • 11. ELEVATION OF LEVELS LEVELS HEIGHT (M) BASE WIDTH (M) BRACING PATTERN OF FACE 0 0 4 K2 Brace Down 1 6 3.3 Double K1 Brace Down 2 10.5 2.775 Double K1 Brace Down 3 14 2.367 Double K1 Brace Down 4 17 2.017 XX Bracing 5 19 1.783 XX Bracing 6 21 1.55 XX Bracing 7 22.5 1.375 XX Bracing 8 24 1.2 XX Bracing 9 30 1.2 XX Bracing
  • 12. LOAD CONSIDERATIONS In case of communication towers self-weight of tower is most important component of tower design. The tele communication steel tower is a pin-jointed light structure, It is still assumed that their behavior is similar to simple truss. The percentage of openings in Tower structure will be more than 30%, so wind loads acting on the tower will be of less magnitude compared to chimneys, but the major cause of failures of telecommunication tower throughout the world though still remains to be high intensity winds (HIW). The major problem faced is the difficulty in estimating wind loads as they are based on a probabilistic approach. There has been several studies in telecommunication towers taking into consideration the wind as well as dynamic effect.
  • 13. The loadings which are considered during this project are: 1. Dead loads or Vertical loads ( i.e. self weight of tower members, Self weight of antennas, labour and equipment during construction and maintenance.) 2. Transverse loads (Wind load on exposed members of the tower and antenna.) Wind load on tower: The wind load on tower can be calculated using the Indian standards IS: 875(Part 3)- 1987[3] and BS: 8100 (Part 1)-1996[4]. Wind load on antennae: Wind load on antennae shall be considered from Andrew’s catalogue. In the Andrew’s catalogue the wind loads on antennas are given for 200kmph wind speed. The designer has to calculate the antenna loads corresponding to designwind speed.
  • 14. DESIGN WIND PRESSURE •At Tirupati region, the design wind speed = 39 m/s •Design speed at the site = Vz = K1K2K3Vb Risk co-efficient = K1 for 100 years life = 1.08 K2 , terrain factor for 30 m and class B of Terrain category 3 = 1.03 Topography factor (K3) = 1+ Cs For the given plain topography K3 = 1 ( As C=0 ) • Vz = 1.08*1.03*1*39 = 55.62 m/s • Design wind pressure = Pz = 0.6 Vz 2 = 1.86 KN/m2
  • 15. Similarly the design wind pressures for different levels are calculated and tabulated as follows: Height (m) Design wind pressure (KN/m2 ) 0 0 10 1.36 12 1.44 15 1.55 18 1.63 21 1.70 24 1.75 27 1.81 30 1.86
  • 16.
  • 17.
  • 18. MODELLING AND ANALYSIS The lattice tower model was analyzed in ANSYS as well as in STAAD. Pro V8i and STAAD(X) Tower V8i software package. The model was created using the coordinate data for the points and the element connectivity table and suitable cross sectional properties were assigned to the elements created. The boundary condition was stimulated in the model by fixing the three lowermost nodes of the modeled structure. The loads calculated above are applied at appropriate nodes and the stress parameters, deformation of the structure under the effect of the applied load is studied.
  • 19.
  • 20. DESIGN OF MEMBERS Suitable steel sections are initially assumed as members of the tower for analyzing the structure. Once the analysis is done members are finalized based on the stresses developing in them, following the codal provisions provided by Indian Standards. • The maximum allowable stresses in the members are given in IS 802 (Part-1). • Limiting slenderness ratios for members are given in IS 802(Part-1). • Effective Length of compression members should be assumed as per IS 806(1968).
  • 21.
  • 23. DESIGN OF SLAB BASE As per IS 800:2007, • Bearing strength of concrete = 0.6fck • But for practical consideration bearing strength = 0.45fck ∴ Area of plate required = 𝑃𝑢 0.45𝑓𝑐𝑘 • Where Pu = Factored load • Load on each leg is = 400KN • Factored load on each leg = 600KN • Area of plate required = 600 0.45×25 = 53333.33 mm2 ∴ Side of each base plate = 300 × 300 mm2
  • 24. • Minimum thickness required (ts) = ( 2.5𝑤(𝑎2−0.3𝑏2)𝛾𝑚𝑜 𝑓𝑦 )0.5 Where W = 𝑃𝑢 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑏𝑎𝑠𝑒 𝑝𝑙𝑎𝑡𝑒 = 600×1000 300×300 = 6.66 N/mm2 a = 95 mm and b = 95 mm ∴ ts = ( 2.5×6.66×(952−0.3×952)×1.1 250 )0.5 ∴ ts =25 mm (As ts > tf (truss angle thickness ts = 12mm), hence safe.)  Connect base plate to foundation concrete using 4 No’s 20mm diameter and 300mm long anchor bolts.  If weld is to be used for connecting column to base plate check the weld length of filler weeds.
  • 25. DESIGN OF RAFT FOUNDATION
  • 26. Initially assume footing size = 5m × 5m Uniform load on footing (W) = 𝑎𝑥𝑖𝑎𝑙 𝑙𝑜𝑎𝑑 𝑎𝑟𝑒𝑎 = 800 25 = 32 KN/m2 Consider per meter width then load is = 32 KN/m Maximum bending moment at center of footing = 100 KNm Bending moment required Mu = 0.138fckbd2 100×106 = 0.138 × 25 × 1000 × d2 d = 170.25 mm ∴ d = 200 mm. Area of steel required: Mu = 0.87 fy Ast d (1- 𝐴𝑠𝑡×𝑓𝑦 𝑏𝑑×𝑓𝑐𝑘 ) 100×106 = 0.87×415×Ast×200×(1- 𝐴𝑠𝑡×415 1000×200×25 )
  • 27. Assume concrete grade = M20 Steel grade = Fe415 Ast required = 1596.36 mm2 Assume diameter of bars = 12 mm No. of bars required = 1596.36 ( 𝜋 4 )×122 = 15 bars Spacing of bars = 5000 20 =250 mm ∴ 𝑃𝑟𝑜𝑣𝑖𝑑𝑒 20 𝑏𝑎𝑟𝑠 𝑜𝑓 12𝑚𝑚 𝑑𝑖𝑎 @ 250𝑚𝑚 𝐶 𝐶 𝑜𝑛 𝑏𝑜𝑡ℎ 𝑠𝑖𝑑𝑒𝑠. Design of concrete column for slab base: Axial load on the column = 600KN. According to code axial load on column = 0.4fckAc + 0.67fyAst (As per IS 456:2000) 600×103 = 0.4fckAc + 0.67fyAst 600×103 = 0.4×25×Ac + 0.67fyAst
  • 28.  Assume 1% of steel of concrete area. 600×103 = 0.4×25×Ac + 0.67× 415 × 1 100 Ac ∴ Ac = 46946.6 mm2 = 216.67 × 216.68 mm2 . ∴ Ac = 220 × 220 mm2 . Hence provide 300 × 300 mm2 square column at 350mm from edge. Height of this column above the raft footing = 450 mm Area of steel = 1% of column cross section = 0.01 × 300 × 300 = 900 mm2 Assume 20mm dia bars then No. of bars = 900 ( 𝜋 4 )×202 = 3 bars ∴ 𝑃𝑟𝑜𝑣𝑖𝑑𝑒 4 𝑏𝑎𝑟𝑠 𝑜𝑓 20𝑚𝑚 𝑑𝑖𝑎 𝑤𝑖𝑡ℎ 8𝑚𝑚 𝑑𝑖𝑎 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑡𝑖𝑒 𝑏𝑎𝑟𝑠 𝑎𝑡 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑎𝑠 𝑝𝑒𝑟 𝑐𝑜𝑑𝑎𝑙 𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑠.
  • 29.
  • 30. RESULT A Telecommunication tower of 30m high is analyzed and designed. 1. The configuration of the tower is as follows: • Height of tower = 30m • Base width = 4m • Top width = 1.2m • Type of tower = Four legged lattice tower with two slopes. • Number of members = 564
  • 31. 2. Wind load is calculated using STADD.Pro V8i using IS: 875(Part 3)- 1987[3]. The total wind load acting on the structure is 2719 Kg. 3. Design has been done according to IS: 802 using STADD.Pro and following results are obtained: • a. Total weight of steel required in superstructure = 9758 Kg. • b. Materials required in super structure: S. No Profile Length(m) Weight(Kg) 1. ISA 100x100x12 120.33 2130 2. ISA 80x80x10 170.63 2019 3. ISA 90x90x10 418.69 5609 Total = 9758
  • 32. 4. Raft foundation of 5m x 5m has been designed along with slab base and column base to transfer the loads to raft. The details of foundation are: a. Allowable Bearing Pressure = 250 KPa b. Thickness of slab base = 25 mm c. Thickness of column base = 450 mm d. Thickness of Raft foundation = 22 mm
  • 33. CONCLUSION In the present era, technology is growing at a rapid phase which require adequate communication means like mobile phones, internet, radio communication etc. So there is need for proper communication systems including radio stations, Communication towers. If we could optimize the design of towers and use less resources, it will save a lot of money and resources. In olden days angle sections are used in making of truss in towers, currently tubular sections are preferred as they are more economical. The wind load acting on the telecommunication towers will be comparatively less in magnitude as it is open structure with more openings, but failure of the towers is mainly due to High Intensity Winds and Earthquakes. So high factor of safety should be given to wind loads and seismic loads.