SlideShare a Scribd company logo
1 of 37
Download to read offline
Chapter 7
Problem Solutions

7.1
a.
             V0 ( s )          1/ ( sC1 )
T (s) =                 =
             Vi ( s )       ⎡1/ ( sC1 ) ⎤ + R1
                            ⎣           ⎦
                  1
T (s) =
             1 + sR1C1
b.


  1



͉T ͉



         f                                  fH ϭ 159 Hz
           1          1
 fH =          =                 ⇒ f H = 159 Hz
        2π R1C1 2π (103 )(10−6 )
c.
                             1
V0 ( s ) = Vi ( s ) ⋅
                        1 + sR1C1
                                            1
For a step function Vi ( s ) =
                                            s
          1      1     K      K2
V0 ( s ) = ⋅          = 1+
          s 1 + sR1C1   s 1 + sR1C1
              K1 (1 + sR1C1 ) + K 2 s
         =
                    s (1 + sR1C1 )
              K1 + s ( K1 R1C1 + K 2 )
         =
                    s (1 + sR1C1 )
K 2 = − K1 R1C1 and K1 = 1
              1   − R1C1
V0 ( s ) =      +
              s 1 + sR1C1
              1      1
         =      −
              s    1
                       +s
                  R1C1
v0 ( t ) = 1 − e− t / R1C1

7.2
a.
             V0 ( s )              R2
T (s) =                 =
             Vi ( s )       R2 + ⎡1/ ( sC2 ) ⎤
                                 ⎣           ⎦
               sR2 C2
T (s) =
             1 + sR2 C2
b.
1



͉T ͉



                             fL ϭ 1.59 Hz
         1             1
 fL =         =                     ⇒ f L = 1.59 Hz
      2π R2 C2 2π (10 )(10 × 10−6 )
                     4


c.
                           sR2 C2
V0 ( s ) = Vi ( s ) ⋅
                         1 + sR2 C2
             1
Vi ( s ) =
             s
                R2 C2      1
V0 ( s ) =             =
             1 + sR2 C2 s + 1
                           R2 C2
v0 ( t ) = e− t / R2C2

7.3
a.
                                             1
                                        RP
                  V0 ( s )                  sCP
       T (s) =               =
                  Vi ( s )             1   ⎛       1 ⎞
                                 RP      + ⎜ RS +     ⎟
                                      sCP ⎝       sCS ⎠
                    1
             RP ⋅
         1        sCP        RP
RP         =           =
        sCP R + 1        1 + sRP CP
              P
                   sCP
Then
                        RP
T (s) =
               ⎛       1 ⎞
          RP + ⎜ RS +      ⎟ (1 + sRP CP )
               ⎝      sCS ⎠
                           RP
        =
                     RP CP      1
          RP + RS +         +       + sRS RP CP
                      CS       sCS
        ⎛ RP               ⎞ ⎛ ⎡         RP  C      1         sRP RS      ⎤⎞
T (s) = ⎜                  ⎟ × ⎜ 1/ ⎢1 +    ⋅ P+            +        ⋅ CP ⎥ ⎟
        ⎝ RP + RS          ⎠ ⎜ ⎢ RP + RS CS s ( RS + RP ) CS RS + RP
                               ⎝ ⎣                                        ⎥⎟
                                                                          ⎦⎠
b.
⎛                                                                ⎤⎞
        ⎛ 10 ⎞ ⎜ ⎡ 10 10
                                         −11
                                                                 + s ( 5 × 103 ) ⋅10−11 ⎥ ⎟
                                                      1
T (s) = ⎜          ⎟ × 1/ ⎢1 + ⋅ −6 +
        ⎝ 10 + 10 ⎠ ⎜ ⎢ 20 10                s ( 2 × 104 ) ⋅10−6                        ⎥⎟
                       ⎝ ⎣                                                              ⎦⎠
        1                  1
      ≅ ⋅
                           + s ( 5 × 10−8 )
        2 1+         1
                s ( 0.02 )
s = jω
             1                   1
T ( jω ) =     ⋅
             2     ⎡                            ⎤
             1 + j ⎢ω ( 5 × 10−8 ) −
                                         1
                                                ⎥
                   ⎣                 ω ( 0.02 ) ⎦
                 1                   1
For ω L =                  =                     = 50
          ( RS + RR ) CS ( 2 ×10 )(10−6 )
                                     4


             1                           1
T ( jω ) =     ⋅
             2      ⎡                                     ⎤
              1 + j ⎢( 50 ) ( 5 × 10−8 ) −
                                                 1
                    ⎣                      ( 50 )( 0.02 ) ⎥
                                                          ⎦
           1 1                         1 1
          ≈ ⋅       ⇒ T ( jω ) = ⋅
           2 1− j                      2 2
For
                    1                1
      ωH =                 =                    = 2 × 107
             ( RS   RP ) CP ( 5 × 103 )(10−11 )
             1                         1
T ( jω ) =     ⋅
             2     ⎡                                              ⎤
             1 + j ⎢( 2 × 107 )( 5 × 10−8 ) −
                                                      1
                                                                  ⎥
                   ⎢
                   ⎣                          ( 2 ×107 ) ( 0.02 ) ⎥
                                                                  ⎦
          1 1                        1 1
T ( jω ) ≈ ⋅       ⇒ T ( jω ) = ⋅
          2 1+ j                     2 2
                               1    RP
In each case, T ( jω ) =             ⋅
                                2 RP + RS
c.
     RS = RP = 10 kΩ, CS = CP = 0.1 μ F
            ⎛ ⎡                                              ⎤⎞
                                      + s ( 5 × 103 )(10−7 ) ⎥ ⎟
          1 ⎜ ⎢ 1 1         1
T (s) =    ⋅ 1/ 1 + ⋅ +
            ⎜
            ⎝ ⎣                 (
          2 ⎜ ⎢ 2 1 s 2 × 104 (10−7 )             )          ⎥⎟
                                                             ⎦⎠
                                                               ⎟
s = jω
             1                 1
T ( jω ) =     ⋅
             2        ⎡                               ⎤
             1 + + j ⎢ω ( 5 × 10−4 ) −
                1                            1
                                                      ⎥
                2     ⎢
                      ⎣                ω ( 2 × 10−3 ) ⎥
                                                      ⎦
                 1
 For ω =                   = 500
         ( 2 ×104 )(10−7 )
             1                               1
T ( jω ) =     ⋅
             2        ⎡                                           ⎤
              1.5 + j ⎢( 500 ) ( 5 × 10−4 ) −
                                                        1
                                                                  ⎥
                      ⎢
                      ⎣                       ( 500 ) ( 2 ×10−3 ) ⎥
                                                                  ⎦
           1        1
          = ⋅                  ⇒ T ( jω ) = 0.298
           2 1.5 − j ( 0.75 )
1
 For ω =                           = 2 × 103
              ( 5 ×10 )(10 )
                      3      −7



                 ⎧ ⎛         ⎡                                                   ⎫
                                                                              ⎤ ⎞⎪
             1 ⎪ ⎜
               ⋅ ⎨1/ 1.5 + j ⎢( 2 × 103 )( 5 × 10−4 ) −
                                                                  1
T ( jω ) =                                                                    ⎥ ⎟⎬
             2 ⎪ ⎜
                 ⎩ ⎝
                             ⎢
                             ⎣                          ( 2 ×103 )( 2 ×10−3 ) ⎥ ⎟⎪
                                                                              ⎦ ⎠⎭
             1        1
            = ⋅                 ⇒ T ( jω ) = 0.298
             2 1.5 + j ( 0.75 )
                                   1    RP
In each case, T ( jω ) <                 ⋅
                                    2 RP + RS

7.4
Circuit (a):
    V          R2                         R2
T= 0 =                        =
    Vi             1                    R1 (1/ sC1 )
           R2 +                   R2 +
                  sC1                  R1 + (1/ sC1 )
                                             R2                R2 (1 + sR1C1 )              Vo   R2      (1 + sR1C1 )
                              =                          =                             or      =      ⋅
                                                 R1          R2 + sR1 R2 C1 + R1            Vi R1 + R2 1 + sR1 R2 C1
                                  R2 +
                                             1 + sR1C1
Low frequency:
 Vo     R2      20     2
    =        =       =
 Vi   R1 + R2 10 + 20 3
High frequency:
Vo
    =1
 Vi

τ 1 = R1C1 = (104 )(10 × 10−6 ) = 0.10 ⇒ f1 =
                                                                 1
                                                                           = 1.59 Hz
                                                               2πτ 1

τ 2 = ( R1 R 2 ) C1 = (10 20 ) × 103 × (10 × 10−6 ) ⇒ τ 2 = 0.0667 ⇒ f 2 =
                                                                                                 1
                                                                                                      = 2.39 Hz
                                                                                                2πτ 2
͉T ͉


 1.0

0.67




                                  1.59             2.39                f
Circuit (b):
                       1    R2
                 R2
  V                     1 + sR2 C2
                      sC2
T= o =             =
  Vi       1             R2
       R2     + R1               + R1
          sC2        1 + sR2 C2

                           ⎛ R2 ⎞ ⎛               1         ⎞
                          =⎜         ⎟⎜                     ⎟
                           ⎝ R1 + R2 ⎠ ⎝ 1 + s ( R1 R2 ) C2 ⎠
                                       ⎜                    ⎟
Low frequency:
 Vo     R2      20     2
    =        =       =
 Vi   R1 + R2 20 + 10 3
τ = ( R1 R2 ) C2 = (10 20 ) × 103 × 10 × 10−6 = 0.0667
        1
 f =          = 2.39 Hz
       2πτ
0.67


 ͉T ͉



                                 2.39          f

7.5
a.
rS = ( Ri + RP ) CS = [30 + 10] × 103 × 10 × 10−6 ⇒ rS = 0.40 s
rP = ( Ri RP ) CP = ⎡30 10 ⎤ × 103 × 50 × 10−12 ⇒ rP = 0.375 μ s
                    ⎣      ⎦
b.
         1        1
 fL =       =           ⇒ f L = 0.398 Hz
       2π rS 2π ( 0.4 )
               1           1
 fH =             =                    ⇒ f H = 424 kHz
             2π rP 2π ( 0.375 × 10−6 )
At midband. CS → short, CP → open
Vo = I i ( Ri RP )
T ( s ) = Ri R P = 30 10 ⇒ T ( s ) = 7.5 k Ω
c.


7.5 k⍀


      ͉T ͉



                            fL                         fH


7.6
(a)
                  1                                1                                1
T=                              ⇒T =                                     =
          (1 + j 2π f τ )
                                        (                        )           1 + ( 2π f τ )
                            2                                        2                        2
                                            1 + ( 2π f τ )
                                                             2



T    max
             =1
               1          1        1
At f =            ⇒T =           =
              2πτ      1 + (1)
                               2
                                   2
                  ⎛1⎞
T    = 20 log10 ⎜ ⎟ ⇒ T dB ≅ −6 dB
                  ⎝ 2⎠
     dB


 Phase = 2 tan ( 2π f τ ) = −2 tan −1 (1) = −2 ( 45° ) ⇒ Phase = −90°
               −1


(b)
 Slope = −2 ( 6dB / oct ) = −12dB / oct = −40dB / decade
Phase = −2 ( 90° ) ⇒ Phase = −180°

7.7
(a)
−10 ( jω )
T ( jω ) =
                ⎛     jω ⎞           ⎛     jω ⎞
             20 ⎜ 1 +     ⎟ ( 2000 ) ⎜1 +      ⎟
                ⎝     20 ⎠           ⎝    2000 ⎠
                           ⎛ jω ⎞
                −5 × 10−3 ⎜      ⎟
                           ⎝ ω ⎠ = 2.5 × 10 ( jω )
                                                    −4

           =
             ⎛     jω ⎞ ⎛       jω ⎞ ⎛       jω ⎞⎛     jω ⎞
             ⎜1 +         1+              1+        1+
             ⎝     ω ⎟ ⎜ 2000 ⎟ ⎜ 20 ⎟⎜ 2000 ⎟
                      ⎠⎝             ⎠ ⎝         ⎠⎝       ⎠
               2.5 × 10−4 (ω )
T =
            ⎛ω ⎞     ⎛ ω ⎞
                      2                     2

         1+ ⎜ ⎟ ⋅ 1+ ⎜      ⎟
            ⎝ 20 ⎠   ⎝ 2000 ⎠
         ͉T ͉


 5 ϫ 10Ϫ3




2.5 ϫ 10Ϫ4
                     1                 20                    2000   ␻


(b)
                        jω ⎞
                (10 )(10 ) ⎛1 +
                           ⎜⎟
T ( jω ) =          ⎝   10 ⎠
                ⎛     jω ⎞
           1000 ⎜ 1 +     ⎟
                ⎝ 1000 ⎠
                       ⎛ω ⎞
                                   2

        ( 0.10 )    1+ ⎜ ⎟
                       ⎝ 10 ⎠
T =
                   ⎛ ω ⎞
                               2

                1+ ⎜      ⎟
                   ⎝ 1000 ⎠
 ͉T ͉


 10




0.10
                          10                    1000                    ␻



7.8
(a)
                     105                    10                   5
T (s) =                                =               ⋅
           ( 5 + 10 )( 5 + 500 ) (10 )( 500 )              ⎛ 5  ⎞⎛ 5     ⎞
                                                           ⎜ + 1⎟⎜    + 1⎟
                                                           ⎝ 10 ⎠⎝ 500 ⎠
                     ⎛ jω ⎞
                     ⎜     ⎟
        =
          10
             ⋅       ⎝ 10 ⎠
          500 ⎛ jω ⎞⎛ jω        ⎞
               ⎜    + 1⎟⎜    + 1⎟
               ⎝ 10    ⎠⎝ 500 ⎠
͉T ͉


0.02




                         10                                    500    ␻(rod/s)
(b)            Midband gain = 0.02
(c)            ω = 500 rad/s
(d)            ω = 10 rad/s

7.9
(a)
                        2 × 104
   T ( s) =
               ( S + 10 )( S + 10 )
                             3               5


                 2 × 104                           1
           =                          ⋅
               (10 )(10 )
                  3              5
                                          ⎛ S     ⎞⎛ S     ⎞
                                          ⎜ 3 + 1 ⎟ ⎜ 5 + 1⎟
                                          ⎝ 10    ⎠⎝ 10    ⎠
                    2 × 10−4
T ( jω ) =
               ⎛ jω    ⎞ ⎛ jω   ⎞
               ⎜ 3 + 1 ⎟ ⎜ 5 + 1⎟
               ⎝ 10    ⎠ ⎝ 10   ⎠
        ͉T ͉


2 ϫ 10Ϫ4




                                     10 3                      10 5              ␻(rod/s)
                        −4
(b)            2 × 10
(c)            ω = 103 rad/s
(d)            no low freq −3dB freq.

7.10
a.
                     ⎛ r       ⎞
V0 = − g mVπ RL Vπ = ⎜ π ⎟ Vi
                     ⎝ rπ + RS ⎠
            ⎛ r       ⎞        ⎛ 5.2 ⎞
T = g m RL ⎜ π ⎟ = ( 29 )( 6 ) ⎜           ⎟
            ⎝ rπ + RS ⎠        ⎝ 5.2 + 0.5 ⎠
Tmidband = 159
b.
 rS = ( RS + rπ ) CC
         1             1       1
 fL =        ⇒ rS =        =          ⇒ rS = 5.31 ms Open-circuit
      2π rS          2π f L 2π ( 30 )
           1           1
 rP =          =                 ⇒ τ P = 0.332 μ s Short-circuit
         2π f H 2π ( 480 × 103 )
c.
             rS           5.31× 10−3
CC =                 =                   ⇒ CC = 0.932 μ F
         ( RS + τ π ) ( 0.5 + 5.2 ) ×103
 rP = RL CL
         rP 0.332 × 10−6
CL =        =            ⇒ CL = 55.3 pF
         RL    6 × 103

7.11 Computer Analysis

7.12 Computer Analysis

7.13
a.
RTH = R1 R2 = 10 1.5 = 1.304 kΩ
       ⎛ R2 ⎞            ⎛ 1.5 ⎞
VTH = ⎜          ⎟ VCC = ⎜          ⎟ (12 ) = 1.565 V
       ⎝ R1 + R2 ⎠       ⎝ 1.5 + 10 ⎠
          1.565 − 0.7
I BQ =                     = 0.0759 mA
       1.30 + (101)( 0.1)
I CQ = 7.585 mA
        (100 )( 0.026 )
rπ =             = 0.343 kΩ
        7.59
     7.59
gm =       = 292 mA/V
     0.026
Ri = R1 R2 ⎡ rπ + (1 + β ) RE ⎤
           ⎣                  ⎦
     = 10 1.5 ⎡0.343 + (101)( 0.1) ⎤
              ⎣                    ⎦
     = 1.30 10.44 ⇒ Ri = 1.159 kΩ
r = ( RS + Ri ) CC = [ 0.5 + 1.16] × 103 × 0.1× 10−6
r = 1.659 × 10−4 s
         1          1
 fL =       =                  ⇒ f L = 959 Hz
        2π r 2π (1.66 × 10−4 )
b.
                          Rib
               RS
                                                                V0
                                   ϩ
                          Ib
                                V␲     r␲               gmV␲

     ϩ                             Ϫ
Vi                        R1͉͉R2                               RC
     Ϫ

                                             RE
V0 = − ( β I b ) RC
R1b = rπ + (1 + β ) RE
    = 0.343 + (101)( 0.1) = 10.44 kΩ
      ⎛ R1 R2 ⎞
 Ib = ⎜
      ⎜R R +R ⎟ i
                       I
                     ⎟
      ⎝ 1 2       ib ⎠

      ⎛ 1.30 ⎞
    =⎜              ⎟ I i = ( 0.111) I i
      ⎝ 1.30 + 10.4 ⎠
             Vi
 Ii =
      RS + R1 R2 Rib
                      Vi
         =
             0.5 + (1.3) (10.44 )
               Vi
     Ii =
             1.659
V0            β RC ( 0.111)         V0                 (100 )(1)( 0.111)       V0
   =                           ⇒                   =                       ⇒                  = 6.69
Vi                 1.659            Vi   midband
                                                            1.659              Vi   midband

c.


6.69



͉V ͉
 V
     0
     i




                          fL ϭ 959 Hz                          f

7.14
I DQ = 0.5 mA ⇒ VS = ( 0.5 )( 0.5 ) = 0.25 V
                                         0.5
I DQ = K n (VGS − VTN ) ⇒ VGS =
                                2
                                             + 1.5 = 3.08 V
                                         0.2
 VG = VGS          + VS = 3.08 + 0.25 ⇒ VG = 3.33 V
      ⎛ R2 ⎞                  1
 VG = ⎜         ⎟ VDD ⇒ 3.33 = ⋅ Rin ⋅ VDD
      ⎝ R1 + R2 ⎠             R1
        1
3.33 = ( 200 )( 9 ) ⇒ R1 = 541 kΩ
        R1
 541R2
         = 200 ⇒ R2 = 317 kΩ
541 + R2
VD = VDSQ + VS = 4.5 + 0.25 = 4.75
      9 − 4.75
RD =           ⇒ RD = 8.5 kΩ
         0.5
        1             1       1
 fL =        ⇒ rL =       =          = 7.96 ms
      2π rL         2π f L 2π ( 20 )
                                    rL    7.96 × 10−3
 rL = Rin ⋅ CC ⇒ CC =                   =             ⇒ CC = 0.0398 μ F
                                    Rin    200 × 103
g m = 2 ( 0.2 )( 3.08 − 1.5 ) = 0.632 mA/V
                         g m RD     ( 0.632 )(8.5)
 Av                =             =                     ⇒ Av = 4.08
         midband
                       1 + g m RS 1 + ( 0.632 )( 0.5 )
4.08



     ͉A␯͉



                           fL ϭ 20 Hz                          f


Phase                         fL




 Ϫ90

Ϫ135

Ϫ180


7.15
                                                   I DQ              1
I DQ = K n (VGS − VTN ) ⇒ VGS =
                                   2
                                                          + VTN =       + 1 = 2.414 V
                                                    Kn              0.5
VS = −2.414 V
            −2.414 − ( −5 )
RS =                         ⇒ RS = 2.59 kΩ
                     1
VD = VDSQ          + VS = 3 − 2.414 = 0.586 V
            5 − 0.59
RD =                 ⇒ RD = 4.41 kΩ
                1
b.
                                                                      CC

                                       ϩ


Vi     ϩ                      RG       Vgs         gmVgs
       Ϫ
                                                                          I0
                                                                     RD        RL
                                           Ϫ
                                               RS




                   ⎛                           ⎞
                   ⎜                           ⎟
I 0 = − ( g mVgs ) ⎜
                       RD
                                               ⎟
                   ⎜R +R + 1                   ⎟
                   ⎜ D  L                      ⎟
                   ⎝      sCC                  ⎠
           Vi
Vgs =
       1 + g m RS
I0 ( s )            − gm         ⎡         sCC         ⎤
            =               ⋅ RD ⎢                     ⎥
Vi ( s )         1 + g m RS      ⎢1 + s ( RD + RL ) CC ⎥
                                 ⎣                     ⎦
                I0 ( s )
T (s) =
                Vi ( s )
                 − g m RD     1      s ( RD + RL ) CC
            =             ⋅       ⋅
                1 + g m RS RD + RL 1 + s ( RD + RL ) CC
c.
1             1       1
 fL =         → rL =       =         = 15.92 ms
        2π rL        2π f L 2π (10 )
                                           rL      15.9 × 10−3
 rL = ( RD + RL ) CC ⇒ CC =                    =                   ⇒ CC = 1.89 μ F
                                        RD + RL ( 4.41 + 4 ) × 103

7.16
a.
 9 − VSG
         = I D = K P (VSG + VTP )
                                  2

   RS
9 − VSG = ( 0.5 )(12 ) (VSG − 4VSG + 4 )
                          2


6VSG − 23VSG + 15 = 0
   2



                ( 23)        − 4 ( 6 )(15 )
                         2
         23 ±
VSG =                                         ⇒ VSG = 3 V
                     2 ( 6)
g m = 2 K P (VSG + VTP ) = 2 ( 0.5 )( 3 − 2 ) ⇒ g m = 1 mA/V
        1
Ro =       RS = 1 12 ⇒ Ro = 0.923 kΩ
        gm
b.          r = ( R0 + RL ) CC
                     1                   1            1
c.          fL =             ⇒r=               =             = 7.96 ms
                    2πτ               2π f L       2π ( 20 )
                       r        7.96 × 10−3
            CC =           =                     ⇒ CC = 0.729 μ F
                    Ro + RL ( 0.923 + 10 ) × 103

7.17
a.
                       1
I CQ = 1 mA, I BQ =        = 0.00833 mA
                      120
R1 || R2 = ( 0.1)(1 + β )( RE )
         = ( 0.1)(121)( 4 ) = 48.4 kΩ
VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE
1
   ⋅ RTH ⋅ VCC = ( 0.00833)( 48.4 ) + 0.7 + (121)( 0.00833)( 4 )
R1
1
   ( 48.4 )(12 ) = 5.135
R1
R1 = 113 kΩ
 113R2
         = 48.4 ⇒ R2 = 84.7 k Ω
113 + R2
b.
       r
R0 = π RE r0
     1+ β
        (120 )( 0.026 )
 rπ =                         = 3.12 kΩ
                1
     80
 r0 =   = 80 kΩ
      1
     3.12
R0 =      4 80 = 0.02579 4 80 ⇒ R0 = 25.6 Ω
     121
c.
r = ( R0 + RL ) CC 2
 r = ( 0.0256 + 4 ) × 103 × 2 × 10−6 = 8.05 × 10−3 s
        1           1
 f =       =                   ⇒ f = 19.8 Hz
       2π r 2π ( 8.05 × 10−3 )

7.18
(a)
          5 − 0.7
 I EQ =           = 1.075 mA I CQ = 1.064 mA
             4
VCEQ    = 10 − (1.064 )( 2 ) − (1.075 )( 4 )
VCEQ    = 3.57 V
        I CQ         1.064
gm =             =         = 40.92 mA/V
        VT           0.026
        β VT          (100 )( 0.026 )
 rπ =             =                           = 2.44 K
         I CQ                1.064
(b)
                                             rπ               2440
 For CC1 , Req1 = RS + RE                        = 200 + 4000
                                            1+ β              101
                 Req1 = 224.0r , τ 1 = Req1CC1 = 1.053 ms
For CC 2 , Req 2 = RC + RL = 2 + 47 = 49 K
                  τ 2 = Req 2 ⋅ Cc 2 = 49 ms
                             1                 1
(c)              f1 =              =                        ⇒ f1 = 151 Hz
                         2πτ 1         2π (1.053 × 10−3 )

7.19
(a)
τ H = ( RC RL ) CL = ( 2 47 ) × 103 × 10 × 10−12
                                 = 1.918 × 10−8 s
            1                          1
 fH =                =                             ⇒ f H = 8.30 MHz
        2πτ H            2π (1.918 × 10−8 )
(b)
            1
                             = 0.1
  1 + ( f .2πτ H )
                         2


        2
⎛ 1 ⎞
      ⎟ = 100 = 1 + ( f .2πτ H )
                                 2
⎜
⎝ 0.1 ⎠
            99                         99
 f =              =
       2πτ H          2π (1.918 × 10−8 )
 f = 82.6 MHz

7.20
(a)
5 − VSG
        = K P (VSG + VTP )
                           2

   R1
5 − VSG = (1)(1.2 )(VSG − 1.5 ) = (1.2 ) (VSG − 3VSG + 2.25 )
                                           22


1.2VSG − 2.6VSG − 2.3 = 0⇒ VSG = 2.84 V
     2


I DQ = 1.8 mA
VSDQ = 10 − (1.8 )(1.2 + 1.2 ) ⇒ VSDQ = 5.68 V

g m = 2 K P I DQ = 2 (1)(1.8 ) = 2.683 mA / V
 ro = ∞
(b)
         1   1
Ris =      =     = 0.3727 k Ω
        g m 2.68
 Ri = 1.2 0.373 = 0.284 k Ω
For CC1 , τ s1 = ( 284 + 200 ) ( 4.7 × 10−6 ) = 2.27 ms
For CC 2 , τ s 2 = (1.2 x103 + 50 × 103 )(10−6 ) = 51.2 ms
(c)
CC2 dominates,
             1             1
 f 3− dB =        =                   = 3.1 Hz
           2πτ s 2 2π ( 51.2 × 10−3 )

7.21
                    ′
Assume VTN = 1V , kn = 80μ A / V 2 , λ = 0
Neglecting RSi = 200Ω , Midband gain is:
 Av = g m RD
Let I DQ = 0.2 mA, VDSQ = 5V
                 9−5
Then RD =            ⇒ RD = 20 k Ω
                 0.2
                        Av           10                                         ⎛ k′ ⎞⎛ W ⎞
We need g m =                    =      = 0.5 mA / V 2 and g m = 2 K n I DQ = 2 ⎜ n ⎟ ⎜ ⎟ I DQ
                       RD            20                                         ⎝ 2 ⎠⎝ L ⎠
            ⎛ 0.080 ⎞ ⎛ W ⎞            W
or 0.5 = 2 ⎜          ⎟ ⎜ ⎟ ( 0.2 ) ⇒     = 7.81
            ⎝ 2 ⎠⎝ L ⎠                  L
Let
               9              9
R1 + R2 =              =              = 225 k Ω
          ( 0.2 ) I DQ ( 0.2 )( 0.2 )
             ⎛ 0.080 ⎞                                 ⎛ R2 ⎞             ⎛ R2 ⎞
                     ⎟ ( 7.81)(VGS − 1) ⇒ VGS = 1.80 = ⎜         ⎟ (9 ) = ⎜     ⎟ (9) ⇒
                                       2
I DQ = 0.2 = ⎜
             ⎝ 2 ⎠                                     ⎝ R1 + R2 ⎠        ⎝ 225 ⎠
R2 = 45 k Ω, R1 = 180 k Ω
RTH = R1 R2 = 180 45 = 36 k Ω
          1              1                                                     7.96 × 10−4
τ1 =             =              = 7.958 × 10−4 s = ( RSi + RTH ) CC or CC =                   ⇒
       2π f1         2π ( 200 )                                             ( 200 + 36 ×103 )
CC = 0.022 μ F
          1                  1                                             5.31× 10−5
τ2 =             =                      = 5.305 × 10−5 s = RD CL or CL =              ⇒ CL = 2.65 nF
        2π f 2       2π ( 3 x103 )                                          20 × 103

7.22
a.
R2 + (1/ sC )
T (s) =
               R2 + (1/ sC ) + R1
                  1 + sR2 C
T (s) =
              1 + s ( R1 + R2 ) C
     rA = R2 C , rB = ( R1 + R2 ) C
b.
     ͉T ͉

       1



0.0909


                           fB               fA            f
c.
rA = R2 C = (103 )(100 × 10−12 ) = 10−7 s = rA
rB = ( R1 + R2 ) C = [10 + 1] × 103 × 100 × 10−12
                            = 1.1× 10−6 s = rB
              1       1
 fA ≈            =           ⇒ f A = 1.59 MHz
            2π rA 2π (10−7 )
              1         1
 fB ≈            =                ⇒ f B = 0.145 MHz
            2π rB 2π (1.1× 10−6 )

7.23
                 10 − 0.7
I BQ =                           = 0.00997 mA
             430 + ( 201)( 2.5 )
I CQ = ( 200 ) I BQ = 1.995 mA
        ( 200 )( 0.026 )
rπ =                 = 2.61 k Ω
         1.99
Rib = 2.61 + ( 201)( 2.5 ) = 505 k Ω
              1             1
τs =                 =            = 0.0106 s
        2π f L           2π (15 )
= Req CC = ( 0.5 + 505 430 ) × 103 CC = 232.7 × 103 CC
Or CC = 4.55 × 10−8 F ⇒ 45.5 nF

7.24
10 = I BQ (300) + 0.7 + ( 201) I BQ (1) ⇒ I BQ = 0.0186 mA ⇒ I CQ = 3.7126 mA
        β VT           ( 200 )( 0.026 )
rπ =               =                       = 1.40 K
            I CQ            3.71
Ri = rπ + (1 + β ) RE = 1.40 + ( 201)(1) = 202.4 K
Req = RS + RB Ri = 0.1 + 300 202.4 = 121 K
τ L = Req ⋅ CC
              1                  1            1
 fL =                ⇒τL =             =             = 7.958 × 10−3 s
            2πτ L               2π f       2π ( 20 )
            τL         7.958 × 10−3
CC =               =                ⇒ CC = 0.0658 μ F
            Req         121× 103

7.25
RTH = R1 R2 = 1.2 1.2 = 0.6 k Ω
       ⎛ R2 ⎞               ⎛ 1.2 ⎞
VTH = ⎜          ⎟ (VCC ) = ⎜           ⎟ ( 5 ) = 2.5 V
       ⎝ R1 + R2 ⎠          ⎝ 1.2 + 1.2 ⎠
            2.5 − 0.7
I BQ =                     = 0.319 mA
       0.6 + (101)( 0.05 )
I CQ = 31.9 mA
       (100 )( 0.026 )
rπ =                     = 0.0815 k Ω
            31.9
                              1
τ C >> τ C and f =           so that f 3− dB ( CC1 ) << f3− dB ( CC 2 )
  C1        C2
                         2πτ
Then, for f 3− dB ( CC1 ) ⇒ CC 2 acts as an open and for f 3− dB ( CC 2 ) ⇒ CC1 acts as a short circuit.
                                  1                         1
 f 3− dB ( CC 2 ) = 25 Hz =            , so that τ 2 =             = 0.006366 s = Req CC 2
                              2πτ 2                      2π ( 25 )
where
              ⎛ r + R1 R2 RS ⎞
Req = RL + RE ⎜ π            ⎟
              ⎝     1+ β     ⎠
                 ⎛ 81.5 + 600 300 ⎞
     = 10 + 50 ⎜                    ⎟ = 10 + 50 2.787 ⇒
                 ⎝       101        ⎠
                            0.00637
Req = 12.64 Ω ⇒ CC 2 =                ⇒ CC 2 = 504 μ F
                              12.6
Rib = rπ + (1 + β ) RE Assume CC 2 an open
Rib = 81.5 + (101)( 50 ) = 5132 Ω
τ 1 = (100 )τ 2 = (100 )( 0.006366 ) = 0.6366 s = Req1CC1
Req1 = RS + RTH Rib = 300 + 600 5132 = 837.2 Ω
            0.6366
So CC1 =           ⇒ CC1 = 760 μ F
            837.2

7.26
From Problem 7.25 RTH = 0.6 K, I CQ = 31.9 mA, rπ = 81.5 Ω
                        1
τC2      τ C1 and f =       so f 3− dB ( CC 2 ) f 3− dB ( CC1 )
                       2πτ
Then f 3− dB ( CC 2 ) ⇒ CC1 acts as an open circuit and for f 3− dB ( CC1 ) ⇒ CC 2 acts as a short circuit.
                                  1
 f 3− dB ( CC1 ) = 20 Hz =             ⇒ τ C1 = 0.007958 s
                              2πτ C1
Rib = rπ + (1 + β ) ( RE RL ) = 81.5 + (101) ( 50 10 ) = 923.2 Ω
τ C1 ⇒ Req1 = RS + RTH Rib = 300 + 600 923.2 = 663.7 Ω
          0.007958
CC1 =               ⇒ CC1 = 12 μ F
            663.7
τC2    = 100τ C1 = 0.7958 s
                 ⎛ r + RTH ⎞                     ⎛ 81.5 + 600 ⎞
Req 2 = RL + RE ⎜ π        ⎟ = 10 + 50           ⎜            ⎟
                 ⎝ 1+ β ⎠                        ⎝ 101 ⎠
Req 2 = 10 + 50 6.748 = 15.95 Ω
        0.7958
CC 2 =          ⇒ CC 2 = 0.050 F
         15.95

7.27
a.
I D = K n (VGS − VTN )
                                   2



           ID         0.5
VGS =         + VTN =     + 0.8 = 1.8 V
           Kn         0.5
         −VGS − ( −5 )
                     5 − 1.8
 RS =                        ⇒ RS = 6.4 kΩ
                               =
           0.5         0.5
 VD = VDSQ + VS = 4 − 1.8 = 2.2 V
      5 − 2.2
 RD =         ⇒ RD = 5.6 kΩ
        0.5
(b)
gm = 2 Kn I D = 2               ( 0.5 )( 0.5 ) = 1 mA / V
rA = RS CS = ( 6.4 × 103 )( 5 × 10−6 )
           = 3.2 × 10−2 s
        1           1
 fA =      =                  ⇒ f A = 4.97 Hz
      2π rA 2π ( 3.2 × 10−2 )

     ⎛ RS    ⎞        ⎡ 6.4 × 103 ⎤
                                       ⎥ ( 5 × 10 )
                                                 −6
rB = ⎜       ⎟ CS = ⎢
     ⎝ 1 + g m RS
             ⎠        ⎢
                      ⎣ 1 + (1)( 6.4 ) ⎥
                                       ⎦
                    = 4.32 × 10−3 s
        1           1
 fB =      =                    ⇒ f B = 36.8 Hz
      2π rB 2π ( 4.32 × 10−3 )
c.
                    g m RD (1 + sRS CS )
 Av =
                           ⎡           ⎛     RS       ⎞ ⎤
         (1 + g m RS ) ⎢1 + s ⎜                       ⎟ CS ⎥
                    ⎣                  ⎝ 1 + g m RS   ⎠ ⎦
As RS becomes large
               g m RD ( sRS CS )
 Av →
                  ⎡      ⎛ R ⎞ ⎤
       ( g m RS ) ⎢1 + s ⎜ S ⎟ CS ⎥
                  ⎣      ⎝ g m RS ⎠ ⎦
                   ⎡ ⎛ 1 ⎞ ⎤
        ( g m RD ) ⎢ s ⎜  ⎟ CS ⎥
Av =               ⎣ ⎝ gm ⎠ ⎦
                 ⎛ 1           ⎞
            1+ s ⎜             ⎟ CS
                 ⎝ gm          ⎠
                                                   1
The corner frequency f B =                                   and the corresponding f A → 0
                                             2π (1/ g m ) CS
gm = 2 Kn I D = 2               ( 0.5 )( 0.5 ) = 1 mA / V
                1
 fB =                        ⇒ f B = 31.8 Hz
           ⎛ 1 ⎞
        2π ⎜ −3 ⎟ ( 5 × 10 )
                          −6

           ⎝ 10 ⎠

7.28
                      1              RE ( RS + rπ ) CE
a.           fB =         and rB =
                    2π rB          RS + rπ + (1 + β ) RE
RE rπ CE
For RS = 0 rB =
                       rπ + (1 + β ) RE
         −0.7 − ( −10 )
I EQ =                    = 1.86 mA
                5
β = 75 ⇒ I CQ = 1.84 mA
β = 125 ⇒ I CQ = 1.85 mA
                                   1
For f B ≤ 200 Hz ⇒ rB ≥                   = 0.796 ms
                               2π ( 200 )
rπ αβ so smallest rB will occur for smallest β .
                    ( 75)( 0.026 )
β = 75; rπ =                     = 1.06 kΩ
                      1.84

0.796 × 10−3 =
                 ( 5 ×103 ) (1.06 ) CE ⇒ C = 57.2 μ F
                    1.06 + ( 76 )( 5 )
                                            E


b.
                       (125 )( 0.026 )
For β = 125; rπ =                       = 1.76 kΩ
                             1.85

rB =
     ( 5 ×103 ) (1.76 ) ( 57.2 ×10−6 ) = 0.797 ms
            1.76 + (126 )( 5 )
           1           1
fB =          =                    ⇒ f B = 199.7 Hz Essentially independent of β .
         2π rB 2π ( 0.797 × 10−3 )

rA = RE CE = ( 5 × 103 )( 57.2 × 10−6 ) = 0.286 sec
           1        1
fA =          =             ⇒ f A = 0.556 Hz Independent of β .
         2π rA 2π ( 0.286 )

7.29
a.       Expression for the voltage gain is the same as Equation (7.66) with RS = 0.
b.
rA = RE CE
         RE rπ CE
rB =
     rπ + (1 + β ) RE

7.30
5 − 0.7
         = 1 mA = I E   I C = 0.99 mA
  4.3
     β VT (100 )( 0.026 )
rπ =        =             = 2.626 K
      I CQ       0.99
 rA = RE CE = ( 4.3 × 103 )( 5 × 10−6 ) = 2.15 ×10 −2 s

 rB =
             RE rπ CE
                          =
                            ( 4.3 ×103 )( 2.626 ×103 )( 5 ×10−6 ) = 1.292 ×10−4 s
         rπ + (1 + β ) RE      2.626 × 103 + (101) ( 4.3 × 103 )
           1           1
fA =          =                   = 7.40 Hz
         2π rA 2π ( 2.15 × 10−2 )
          1           1
fB =          =                   = 1.23 × 103 = 1.23 kHz
         2π rB 2π (1.292 × 10−4 )
β RC           (100 )( 2 )
 Av          =                   =                    = 0.458
      w→0
                 rπ + (1 + β ) RE 2.626 + (101)( 4.3)
                 β RC       (100 )( 2 )
 Av   w →∞
             =          =                 = 76.2
                  rπ          2.626
 ͉A␯͉


 76.2




0.458



                 7.40 Hz               1.23 kHz                          f

7.31
rH = ( RL RC ) CL = (10 5 ) × 103 × 15 × 10−12
rH = 5 × 10−8 s
           1          1
 fH =         =                ⇒ f H = 3.18 MHz
         2π rH 2π ( 5 × 10−8 )
      10 − 0.7
I EQ =         = 0.93 mA, I CQ = 0.921 mA
         10
     0.921
gm =         = 35.4 mA/V
     0.026
Av = g m ( RC RL ) = 35.4 ( 5 10 ) ⇒ Av = 118

7.32
     ⎛ R2 ⎞                       ⎛ 166 ⎞
VG = ⎜         ⎟ VDD            =⎜            ⎟ (10 )
     ⎝ R1 + R2 ⎠                  ⎝ 166 + 234 ⎠
                                = 4.15 V
        VG − VGS
                 = K n (VGS − VTN )
                                    2
ID =
           RS
4.15 − VGS = ( 0.5 )( 0.5 ) (VGS − 4VGS + 4 )
                               2


0.25VGS − 3.15 = 0 ⇒ VGS = 3.55 V
      2


g m = 2 K n (VGS − VTN ) = 2 ( 0.5 )( 3.55 − 2 )
g m = 1.55 mA / V
                 1          1
R0 = RS             = 0.5      = 0.5 0.645
                 gm       1.55
R0 = 0.282 kΩ
                                       1
r = ( R0 RL ) CL and f H =
                                      2π r
                                             1
βω ≈ f H = 5 MHz ⇒ r =                                 = 3.18 × 10−8 s
                                      2π ( 5 × 106 )
             r             3.18 × 10−8
CL =                =                    ⇒ CL = 121 pF
         R0 RL          ( 0.282 4 ) ×103
7.33
(a) Low-frequency
                RS     CC
                                                               Vo
                                ϩ
Vs     ϩ                   RB   V␲   r␲             RC    RL
       Ϫ
                                Ϫ           gmV␲



Mid-Band
               RS
                                                           Vo
                                ϩ
Vs     ϩ                   RB   V␲   r␲             RC    RL
       Ϫ
                                Ϫ           gmV␲



High-frequency
               RS
                                                                     Vo
                                ϩ
Vs     ϩ                   RB   V␲   r␲             RC    RL        CL
       Ϫ
                                Ϫ           gmV␲



(b)

͉Am͉




                      fL                   fH        f
(c)
         12 − 0.7
I BQ =            = 11.3 μ A
          1 MΩ
I CQ   = 1.13 mA
            (100 )( 0.026 )
     rπ =          = 2.3 k Ω
          1.13
      1.13
 gm =       = 43.46 mA / V
      0.026
            V0                               ⎛ R R ⎞
Am =           ( midband ) = − g m ( RC RL ) ⎜ B π ⎟
                                             ⎜R r +R ⎟
            Vs                               ⎝ B π  S ⎠

                              ⎛ 1000 2.3 ⎞
    = − ( 43.46 ) ( 5.1 500 ) ⎜
                              ⎜ 1000 2.3 + 1 ⎟
                                             ⎟
                              ⎝              ⎠
                        ⎛ 2.29 ⎞
    = ( 43.46 )( 5.05 ) ⎜          ⎟ ⇒ Am = 153
                        ⎝ 2.29 + 1 ⎠
 Am dB = 43.7 dB
, τ L = ( RS + RB rπ ) CC or τ L = (1 + 1000 2.3) × 103 (10 × 10−6 )
            1
 fL =
        2πτ L
⇒ τ L = 3.29 × 10−2 s ⇒ f L = 4.83 Hz

                 , τ H = ( RC RL ) CL ⇒ τ L = ( 5.1 500 ) × 103 (10 × 10−12 )
             1
 fH =
           2πτ H
= 5.05 × 10−8 s ⇒ f H = 3.15 MHz

7.34
a.
                Ϫ                                               V0

       ϩ                                        RD     RL
Vi                                                             CL
       Ϫ        Vsg               gmVsg

                ϩ


                ⎛        1 ⎞
V0 = ( g mVsg ) ⎜ R0 RL     ⎟
                ⎝       sCL ⎠
Vsg = −Vi
                V0 ( s )         ⎛        1 ⎞
Av ( s ) =               = − g m ⎜ RD RL     ⎟
                Vi ( s )         ⎝       sCL ⎠
                  ⎡           1           ⎤
                  ⎢ RD RL ⋅               ⎥
                            sCL
           = − gm ⎢                       ⎥
                  ⎢           1           ⎥
                  ⎢ RD RL +               ⎥
                  ⎢
                  ⎣          sCL          ⎥
                                          ⎦
                                           1
Av ( s ) = − g m ( RD RL ) ⋅
                                  1 + s ( RD RL ) CL

b.              r = ( RD RL ) CL
c.              r = (10 20 ) × 103 × 10 × 10−12 ⇒ r = 6.67 × 10 −8 s
                            1           1
                 fH =          =                   ⇒ f H = 2.39 MHz
                           2π r 2π ( 6.67 × 10−8 )
From Example 7.6, gm = 0.705 mA/V
 Av = g m ( RD RL ) = ( 0.705 ) (10 20 ) ⇒ Av = 4.7

7.35 Computer Analysis

7.36 Computer Analysis

7.37 Computer Analysis

7.38
gm
 fT =
         2π ( Cπ + Cμ )
          I CQ            1
gm =               =          = 38.46 mA/V
          VT            0.026
            38.46 × 10−3
 fT =
         2π (10 + 2 ) × 10−12
 fT = 510 MHz
          fT           510
 fβ =              =       ⇒ f β = 4.25 MHz
          β            120

7.39
          fT           5000 MHz
 fβ =              =            ⇒ f β = 33.3 MHz
          β               150
                       gm
 fT =
         2π ( Cπ + Cμ )
        0.5
gm =         = 19.23 mA/V
      0.026
                19.2 × 10 −3
5 × 109 =
          2π ( Cπ + 0.15 ) × 10−12
                              19.2 × 10−3
Cπ + 0.15 =                                      = 0.612 pF
                        2π (10−12 )( 5 × 109 )
Cπ = 0.462 pF

7.40
                             fT       2000 MHz
a.                 fβ =           =            = 13.3 MHz = f β
                             β           150
b.
              150
h fe =
         1 + j ( f / fβ )
                       150
 h fe =                                = 10
               1 + ( f / fβ )
                                  2


               2
   ⎛ f ⎞ ⎛ 150 ⎞ 2
1+ ⎜ ⎟ = ⎜         = 225
   ⎜ f ⎟ ⎝ 10 ⎟⎠
   ⎝ β⎠
 f = f β ⋅ 224 = (13.33) 224 ⇒ f = 199.6 MHz

7.41
(a)
 V0 = − g mVπ RL where
                        1      rπ
              rπ
                       sC11 + srπ C1
Vπ =             ⋅ Vi =                 ⋅ Vi
         1                  rπ
     rπ     + rb                   + rb
        sC1             1 + srπ C1

                 rπ                 ⎛ r ⎞⎛                 1         ⎞
     =                       ⋅ Vi = ⎜ π ⎟ ⎜                          ⎟ ⋅ Vi
         rπ + rb + srb rπ C1        ⎝ rπ + rb ⎠ ⎜ 1 + s ( rb rπ ) C1 ⎟
                                                ⎝                    ⎠
V0 ( s )            ⎛ r ⎞⎛                 1         ⎞
So Av ( s ) =            = − g m RL ⎜ π ⎟ ⎜                          ⎟
                Vi ( s )                        ⎜ 1 + s ( rb rπ ) C1 ⎟
                                    ⎝ rπ + rb ⎠ ⎝                    ⎠
                                 (100 )( 0.026 )                            1
(b) Midband gain: rπ =                                 = 2.6 k Ω, g m =         = 38.46 mA / V
                                            1                             0.026
(i)        For rb = 100 Ω
                                    ⎛ 2.6 ⎞
             Av1 = − ( 38.46 )( 4 ) ⎜           ⎟ ⇒ Av1 = −148.1
                                    ⎝ 2.6 + 0.1 ⎠
(ii)       For rb = 500 Ω
                                       ⎛ 2.6 ⎞
               Av 2 = − ( 38.46 )( 4 ) ⎜           ⎟ ⇒ Av 2 = −129.0
                                       ⎝ 2.6 + 0.5 ⎠
                      1
(c)        f 3− dB =       , τ = ( rb rπ ) C1
                     2πτ
(i)        For rb = 100 Ω
                 τ 1 = ( 0.1 2.6 ) × 103 ( 2.2 ×10−12 ) = 2.12 × 10−10 s ⇒ f 3− db = 751 MHz
(ii)       For rb = 500 Ω
                 τ 2 = ( 0.5 2.6 ) × 103 ( 2.2 ×10−12 ) = 9.23 ×10−10 s f 3− dB = 173 MHz

7.42
(b)            f = 10 kHz = 104

           Z i = 200 +
                                   (
                              2500 1 − j (104 )(1.333 × 10−6 )      )
                                 1 + (10    4 2
                                                ) (1.333 ×10 )
                                                             −6 2


                = 200 + 2500 − j 33.3 = 2700 − j 33.3
(c)            f = 100 kHz = 105

           Z i = 200 +
                                   (
                              2500 1 − j (105 )(1.333 × 10−6 )      )
                                 1 + (10     ) (1.333 ×10 )
                                            5 2              −6 2


           Z i = 200 + 2456 − j 327 = 2656 − j 327
(d)            f = 1 MHz = 106

           Z i = 200 +
                                   (
                              2500 1 − j (106 )(1.333 × 10−6 )      )
                                 1 + (10    6 2
                                                ) (1.333 ×10 )
                                                             −6 2


           Z i = 200 + 900 − j1200 = 1100 − j1200

7.43
a.        CM = Cμ (1 + g m RL )
b.
                     RB͉͉RS        rb
                                                                                     V0
                                        ϩ
  RB             ϩ                     V␲         r␲                               RL
        • Vi
RB ϩ RS          Ϫ                                     C␲    CM           gmV␲
                                        Ϫ
V0 = − g mVπ RL          Let Cπ + CM = Ci
                         1
                 rπ
                        sCi⎛ RB ⎞
Vπ =                      ⋅⎜        ⎟ Vi
                             R + RS ⎠
              + RB RS + rb ⎝ B
           1
       rπ
          sC1
             Vo ( s )
Av ( s ) =
             Vi ( s )
                              ⎡                  1       ⎤
                              ⎢           rπ ⋅           ⎥
                                               sCi
                              ⎢                          ⎥
                              ⎢          rπ +
                                                 1       ⎥
                  ⎛ RB ⎞ ⎢                      sCi      ⎥
       = − g m RL ⎜         ⎟⎢                           ⎥
                  ⎝ RB + RS ⎠ ⎢ rπ ⋅ 1                   ⎥
                              ⎢      sCi                 ⎥
                              ⎢             + RB RS + rb ⎥
                                       1
                              ⎢ rπ +                     ⎥
                              ⎢
                              ⎣       sCi                ⎥
                                                         ⎦
                  ⎛ RB ⎞        ⎡                  rπ             ⎤
       = − g m RL ⎜         ⎟× ⎢                                  ⎥
                  ⎝ RB + RS ⎠ ⎢ rπ + (1 + srπ Ci ) ( RB RS + rb ) ⎥
                                ⎣                                 ⎦
Let Req = ( RB RS + rb )
                                     ⎡                                ⎤
                  ⎛ RB            ⎞ ⎢                  1              ⎥
Av ( s ) = − β RL ⎜                ×
                                  ⎟ ⎢
                  ⎝ RB + RS       ⎠ ⎢ ( rπ + Req )
                                     ⎣             ⎣         (   )
                                                   ⎡1 + s rπ Req Ci ⎤ ⎥
                                                                    ⎦⎥⎦
              − β RL ⎛ RB ⎞               1
Av ( s ) =           ⋅⎜         ⎟⋅
                                               (
             rπ + Req ⎝ RB + RS ⎠ 1 + s rπ Req Ci       )
                              1
c.            fH =
                          (
                        2π rπ Req Ci  )
7.44
High Freq. ⇒ CC1 , CC 2 , CE → short circuits
                                                        C␮
                                                                                     V0

                                  ϩ
IS                      R1͉͉R2 V␲         r␲       C␲            gmV␲     RC        RL
                                  Ϫ                                            I0
I CQ          5
gm =           =          = 192.3 mA/V
         VT         0.026
                   gm                           192 × 10−3
fT =                          ⇒ 250 × 106 =
        2π ( Cπ + Cμ )                         2π ( Cπ + Cμ )
Cπ + Cμ = 122.4 pF ⇒ Cμ = 5 pF, Cπ = 117.4 pF

               (
CM = Cμ 1 + g m ( RC RL )           )
       = 5 ⎡1 + (192.3) (1 1) ⎤ ⇒ CM = 485.8 pF
           ⎣                  ⎦
Ci = Cπ + CM = 117 + 485 = 603 pF
        ( 200 )( 0.026 )
rπ =                          = 1.04 kΩ
                   5
Req = R1 R2 rπ = 5 1.04 = 0.861 kΩ
r = Req ⋅ Ci           = ( 0.861× 103 )( 603 × 10−12 )
                       = 5.19 × 10 −7 s
        1                    1
f =            =                          ⇒ f = 307 kHz
       2π r        2π ( 5.19 × 10−7 )

7.45
RTH = R1 R2 = 60 5.5 = 5.04 kΩ
       ⎛ R2 ⎞            ⎛ 5.5 ⎞
VTH = ⎜          ⎟ VCC = ⎜          ⎟ (15 ) = 1.26 V
       ⎝ R1 + R2 ⎠       ⎝ 5.5 + 60 ⎠
           1.26 − 0.7
I BQ =                     = 0.0222 mA
       5.04 + (101)( 0.2 )
I CQ = 2.22 mA
       (100 )( 0.026 )
rπ =                 = 1.17 kΩ
           2.22
       2.22
gm =          = 85.4 mA/V
      0.026
Lower 3 – dB frequency:
rL = Req ⋅ CC1
Req = RS + R1 R2 rπ
      = 2 + 60 5.5 1.17 = 2.95 k Ω
 rL = ( 2.95 ×103 )( 0.1× 10−6 ) = 2.95 × 10−4 s
         1            1
fL =         =                   ⇒ f L = 540 Hz
        2π rL 2π ( 2.95 × 10−4 )
Upper 3 – dB frequency:
gm                                85.4 × 10−3
 fT =                        ⇒ 400 × 106 =
        2π ( Cπ + Cμ )                           2π ( Cπ + Cμ )
Cπ + Cμ = 34 pF; Cμ = 2 pF ⇒ Cπ = 32 pF
CM = Cμ (1 + g m RC ) = 2 (1 + ( 85.4 )( 4 ) ) ⇒ CM = 685 pF
Ci = Cπ + CM = 32 + 685 = 717 pF
Req = RS R1 R2 rπ              = 2 60 5.5 1.17
                               = 0.644 kΩ
r = Req ⋅ Ci        = ( 0.644 × 103 )( 717 × 10−12 )
                    = 4.62 × 10−7 s
          1
 fH =           ⇒ f H = 344 kHz
         2π r

7.46
RTH = R1 R2 = 600 55 = 50.38 K
       ⎛ R2 ⎞              ⎛ 55 ⎞
VTH = ⎜          ⎟ (15 ) = ⎜          ⎟ (15 ) = 1.2595 V
       ⎝ R1 + R2 ⎠         ⎝ 600 + 55 ⎠
          1.26 − 0.7
I BQ =                    = 0.00222 mA
       50.4 + (101)( 2 )
I CQ = 0.2217 mA
        (100 )( 0.026 )
rπ =                   = 11.73 K
           0.222
      0.2217
gm =              = 8.527 mA/V
       0.026
Lower – 3dB Fig.
τ L = R e q1 Cc1 ; Req1 = RS + RTH r π
                              = 0.50 + 50.38 11.73 = 10.0 K
τ L = (10 × 10   3
                     )( 0.1×10 ) = 10
                                  −6    −3
                                             s
τ L = R e q1 Cc1 ; Req1 = RS + RTH r π
                             = 0.50 + 50.38 11.73 = 10.0 K
τ L = (10 × 103 )( 0.1×10−6 ) = 10−3 s
          1              1
 fL =           =                 ⇒ f L = 159 Hz
        2πτ 2        2π (10−3 )
Upper – 3dB Fig.
            gm          8.527 × 10−3
 fT =               =                       = 400 × 106
      2π ( Cπ + Cμ ) 2π ( Cπ + 2 ) × 10
                                        −12


Cπ + Cμ = 3.393 pF ⇒ Cπ = 1.393 pF
CM = Cμ (1 + g m RC ) = 2 ⎡1 + ( 8.527 )( 40 ) ⎤ = 684 pF
                          ⎣                    ⎦
CT = Cπ + CM = 1.393 + 684 = 685.4 pF
Req 2 = RS RTH rπ = 0.5 50.38 11.73
        = 50.38 0.480 = 0.4750 K
τ H = R eq 2 .CT       = ( 0.4750 × 103 ) ( 685.4 × 10−12 )
                       = 3.256 × 10−7 s
           1                 1
 fH =         =                    ⇒ f H = 489 KHz
         2πτ H 2π ( 3.256 × 10−7 )
7.47
                gm
 fT =
         2π ( Cgs + Cgd )
                              ⎛ 40 ⎞
g m = 2 K n I D , K n = (15 ) ⎜ ⎟ = 60 μ A / V 2
                              ⎝ 10 ⎠
gm = 2       ( 60 )(100 ) = 154.9 μ A / V
               154.9 × 10−6
 fT =                              ⇒ fT = 44.8 MHz
         2π ( 0.5 + 0.05 ) × 10−12

7.48
                     gm
      fT =
             2π ( Cgs + Cgd )
      g m = 2 K n (VGs − VT )
                                                                  ID
      I D = K n (VGs − VTN ) or VGs − VTN =
                                2
                                                                     then g m = 2 K n I D
                                                                  Kn
                2 Kn I D                          Kn I D
So fT =                             =
             2π ( Cgs + Cgd )           π ( Cgs + Cgd )

                      ( 0.2 ×10 )( 20 ×10 )
                                    −3                     −6

(a)           fT =                                               ⇒ fT = 33.6 MHz
                          π ( 0.5 + 0.1) × 10−12

                      ( 0.2 ×10 )( 250 ×10 )
                                    −3                      −6

(b)           fT =                                                ⇒ fT = 118.6 MHz
                          π ( 0.5 + 0.1) × 10−12

                           ( 0.2 ×10 ) I −3
                                                   D
(c)          10 =
                9
                                                       ⇒ I D = 17.8 mA
                     π ( 0.5 + 0.1) × 10−12

7.49
                gm
 fT =
         2π ( Cgs + Cgd )
Cgs + Cgd = WLCox
                             ⎛W ⎞⎛ μ C ⎞
g m = 2 K n (VGS − VTN ) = 2 ⎜ ⎟ ⎜ n ox ⎟ (VGS − VTN )
                             ⎝ L ⎠⎝ 2 ⎠
             ⎛W ⎞
             ⎜ ⎟ ( μ n Cox )(VGS − VTN )
Then fT = ⎝ ⎠
              L
                    2π WLCox
         μ n (VGS − VTN )
 fT =
              2π L2
                          450 ( 0.5 )
(a)           fT =                                ⇒ fT = 2.49 GHz
                     2π (1.2 × 10−4 )
                                              2



                           450 ( 0.5 )
(b)           fT =                                ⇒ fT = 111 GHz
                     2π ( 0.18 × 10−4 )

7.50
a.
(
CM = Cgd ′ 1 + g m ( ro RD )       )
CM = 5 ⎡1 + ( 3) (15 10 ) ⎤ ⇒ CM = 95 pF
           ⎣              ⎦
b.
 r = ( ri ) ( Cgs + CM )
 r = (10 × 103 ) ( 50 + 95 ) × 10−12 = 1.45 × 10−6 s
        1          1
f =        =                  ⇒ f = 110 kHz
       2π r 2π (1.45 × 10−6 )

7.51
                  gm
fT =                              ( Eq. 7.104 )
       2π ( CgsT + CgdT )
                        ⎛ 2⎞
Let CgdT = 0 and CgsT = ⎜ ⎟ (WLCox )
                        ⎝ 3⎠
                    ⎛μ C               ⎞ ⎡W ⎤
g m = 2 K n I D = 2 ⎜ n ox             ⎟ ⎢ L ⎥ ID
                    ⎝ 2                ⎠⎣ ⎦
           ⎛1       ⎞⎛ W ⎞
        2 ⎜ μ n Cox ⎟⎜ ⎟ I D
           ⎝2       ⎠⎝ L ⎠
So fT =
             ⎛ 2⎞
          2π ⎜ ⎟ (W LCox )
             ⎝ 3⎠
                ⎛1        ⎞⎛ W ⎞
                ⎜ μ n Cox ⎟⎜ ⎟ I D
          3     ⎝ 2       ⎠⎝ L ⎠
       =      ⋅
         2π L       W Cox
             3           μn I D
     fT =          ⋅
            2π L       2W Cox L

7.52
(a)
          gm
 ′
gm =
       1 + g m rS
g m = 2 K n (VGS − VTN )

      ⎛ μ C ⎞ ⎛ W ⎞ ⎛ ( 400 ) ( 7.25 × 10 ) ⎞
                                         −8

K n = ⎜ n ox ⎟ ⎜ ⎟ = ⎜                      ⎟ (10 )
      ⎝ 2 ⎠⎝ L ⎠ ⎝   ⎜            2         ⎟
                                            ⎠
K n = 1.45 × 10−4 A / V 2
For VGS = 5 V
g m = 2 (1.45 × 10 −4 ) ( 5 − 0.65 ) = 1.26 × 10−3 A/V
g m = ( 0.80 ) g m = 1.01× 10−3 A/V
  ′
                       1.26 × 10−3
1.01× 10−3 =
                   1 + (1.26 × 10−3 ) rS
1 + (1.26 × 10−3 ) rS = 1.25 ⇒ rS = 196 Ω
b.
For VGS = 3 V
 g m = 2 (1.45 × 10−4 ) ( 3 − 0.65 ) = 0.6815 × 10−3 A/V
                  0.6815 × 10−3
  ′
 gm =
         1 + ( 0.6815 × 10−3 ) (196 )
   ′
 g m = 0.60 × 10−3 A/V
Re duced by ≈ 12%

7.53
a.
                        ϩ
                            Vgs            gmVgs

Ii                     Ri     Ϫ                             RL
                                                     I0
                                         rS



                                                                    I i Ri
 I 0 = g mVgs and Vgs = I i Ri − g mVgs rS so Vgs =
                                                                 1 + g m rS
                  I0    g R
Then Ai =            = m i
                  I i 1 + g m rS
b.          As an approximation, consider


             ϩ
                                                                          I0
Ii          Vgs         Ri        CgsT             CM                              RL
             Ϫ                                                   gЈ Vgs
                                                                  m




In this case
      I                       1                                                       gm
             ′
 Ai = 0 = g m Ri ⋅                        where CM = C gdT (1 + g m RL ) and g m =
                                                                  ′            ′
      Ii           1 + sRi ( C gsT + CM )                                          1 + g m rs
c.      As rS increases, CM decreases, so the bandwidth increases, but the current gain magnitude
decreases.

7.54
      ⎛ R2 ⎞            ⎛ 225 ⎞
VGS = ⎜         ⎟ VDD = ⎜           ⎟ (10 )
      ⎝ R1 + R2 ⎠       ⎝ 225 + 500 ⎠
VGS = 3.10 V
 g m = 2 K n (VGS − VTN ) = 2 (1)( 3.10 − 2 )
 g m = 2.207 mA / V
a.
                  Ri                                      CgdT
                                                                                         V0

                                               ϩ
Vi   ϩ                            R1͉͉R2       Vgs        CgsT                 gmVgs    RD
     Ϫ
                                               Ϫ




b.
CM = C gdT (1 + g m RD ) = (1) ⎡1 + ( 2.207 )( 5 ) ⎤
                               ⎣                   ⎦
CM = 12 pF
c.
r = ( Ri R1 R2 ) ( CgsT + CM )
Ri R1 R2 = 1 500 225 = 1 155 = 0.9936 kΩ
r = ( 0.9936 × 103 ) ( 5 + 12 ) × 10−12 = 1.69 × 10 −8 s
         1                 1
 fH =          =                       ⇒ f H = 9.42 MHz
        2π r       2π (1.69 × 10−8 )
        − g mVgs RD                    R1 R2              155
Av =                   and Vgs =                ⋅ Vi =           ⋅ Vi = 0.994 Vi
             Vi                    R1 R2 + Ri            155 + 1
Av = − ( 2.2 )( 5 )( 0.994 ) ⇒ Av = −10.9

7.55
RTH = R1 R2 = 33 22 = 13.2 kΩ
       ⎛ R2 ⎞             ⎛ 22 ⎞
VTH = ⎜          ⎟ ( 5) = ⎜         ⎟ ( 5) = 2 V
       ⎝ R1 + R2 ⎠        ⎝ 22 + 33 ⎠
            2 − 0.7
I BQ =                    = 0.00261 mA
       13.2 + (121)( 4 )
 I CQ = 0.3138
         (120 )( 0.026 )
  rπ =                  = 9.94 kΩ
             0.3138
         0.3138
  gm =           = 12.07 mA/V
          0.026
           100
   r0 =          = 318 kΩ
         0.3138
a.
                    gm
        fT =
              2π ( Cπ + Cμ )
                gm    12.07 × 10−3
Cπ + Cμ =           =
               2π fT 2π ( 600 × 106 )
Cπ + Cμ = 3.20 pF; Cμ = 1 pF ⇒ Cπ = 2.20 pF

                       (
CM = Cμ ⎡1 + g m ro RC RL ⎤
         ⎣                  ⎦      )
                           (
   = (1) ⎡1 + (12.07 ) 318 4 5 ⎤
         ⎣                     ⎦        )
CM = 27.6 pF
b.
r = Req ( Cπ + CM )
Req = R1 R2 Rs rπ = 33 22 2 rπ

    = 1.74 9.94 kΩ ⇒ Req = 1.48 kΩ
r = (1.48 × 103 ) ( 2.20 + 27.6 ) × 10−12
r = 4.41× 10 −8 s
         1               1
fH =          =                       ⇒ f H = 3.61 MHz
       2π r       2π ( 4.41× 10−8 )

              (
V0 = − g mVπ ro RC RL        )                           x
     ⎛ R1 R2 rπ ⎞
Vπ = ⎜               ⎟V
     ⎜ R1 R2 rπ + RS ⎟ i
     ⎝               ⎠
R1 R2 rπ = 33 22 9.94 = 5.67 kΩ
     ⎛ 5.67 ⎞
vπ = ⎜          ⎟ Vi = 0.739Vi
     ⎝ 5.67 + 2 ⎠
r0 RC RL = 318 4 5 = 2.18 kΩ
Av = − (12.07 )( 0.739 )( 2.18 )
Av = −19.7

7.56
RTH = R1 R2 = 40 5 = 4.44 kΩ
       ⎛ R2 ⎞            ⎛ 5 ⎞
VTH = ⎜          ⎟ VCC = ⎜        ⎟ (10 ) = 1.111 V
       ⎝ R1 + R2 ⎠       ⎝ 5 + 40 ⎠
           1.111 − 0.7
I BQ =                     = 0.00633 mA
       4.44 + (121)( 0.5 )
 I CQ = 0.760 mA
         (120 )( 0.026 )
  rπ =               = 4.11 kΩ
           0.760
       0.760
 gm =         = 29.23 mA/V
       0.026
  r0 = ∞
                  gm
  fT =
         2π ( Cπ + Cμ )
               gm    29.23 × 10−3
Cπ + Cμ =          =
              2π fT 2π ( 250 × 106 )
Cπ + Cμ = 18.6 pF; Cμ = 3 pF ⇒ Cπ = 15.6 pF
a.
CM = Cμ ⎡1 + g m ( RC RL ) ⎤
         ⎣                    ⎦
       ⎡1 + ( 29.2 ) ( 5 2.5 ) ⎤ ⇒ CM = 149 pF
CM = 3 ⎣                       ⎦
For upper frequency:
rH = Req ( Cπ + CM )
Req = rπ R1 R2 RS = 4.11 40 5 0.5
Req = 0.405 kΩ
 rH = ( 0.405 × 103 ) (15.6 + 149 ) × 10−12
     = 6.67 ×10 −8 s
         1
 fH =        ⇒ f H = 2.39 MHz
       2π rH
For lower frequency:
  rL = Req CC1
Req = RS + R1 R2 rπ = 0.5 + 40 5 4.11
Req = 2.64 kΩ
  rL = ( 2.64 × 103 )( 4.7 × 10−6 ) = 1.24 × 10−2 s
         1
 fL =         ⇒ f L = 12.8 Hz
        2π rL
b.
͉A␯͉


39.5




                 fL                         fH    f
V0 = − g mVπ ( RC RL )
     ⎛ R1 R2 rπ ⎞
Vπ = ⎜                 ⎟V
     ⎜ R1 R2 rπ + RS ⎟ i
     ⎝                 ⎠
     ⎛ 2.135 ⎞
Vπ = ⎜             ⎟ Vi = 0.8102Vi
     ⎝ 2.135 + 0.5 ⎠
 AV = ( 29.23)( 0.8102 ) ( 5 2.5 )
 AV = 39.5

7.57
                              9 − VSG
I D = K P (VSG + VTP ) =
                          2

                                RS
( 2 )(1.2 ) (VSG − 4VSG + 4 ) = 9 − VSG
               2


2.4VSG − 8.6VSG + 0.6 = 0
     2



                (8.6 ) − 4 ( 2.4 )( 0.6 )
                      2
        8.6 ±
VSG =
                    2 ( 2.4 )
VSG = 3.512 V
g m = 2 K P (VSG + VTP ) = 2 ( 2 )( 3.512 − 2 )
g m = 6.049 mA / V
I D = ( 2 )( 3.512 − 2 ) = 4.572 mA
                          2


       1            1
r0 =        =               ⇒ r0 = 21.9 kΩ
     λ I o ( 0.01)( 4.56 )
a.                            (
              CM = CgdT 1 + g m ( ro RD )   )
              CM = (1) ⎡1 + ( 6.04 ) ( 21.9 1) ⎤ ⇒ CM = 6.785 pF
                       ⎣                       ⎦
b.
rH = ( Ri RG ) ( CgsT + CM )
rH = ( 2 100 ) × 103 (10 + 6.78 ) × 10−12
rH = 3.29 × 10−8 s
           1
 fH =                → f H = 4.84 MHz
         2πτ H
V0 = − g m ( ro RD ) ⋅ Vgs
      ⎛ RG ⎞              ⎛ 100 ⎞
Vgs = ⎜           ⎟ Vi = ⎜      ⎟ Vi
      ⎝ RG + Ri ⎠         ⎝ 102 ⎠
                ⎛ 100 ⎞
Av = − ( 6.04 ) ⎜      ⎟ ( 21.9 1)
                ⎝ 102 ⎠
Av = −5.67

7.58
     ⎛ R2 ⎞                    ⎛ 22 ⎞
VG = ⎜         ⎟ ( 20 ) − 10 = ⎜        ⎟ ( 20 ) − 10
     ⎝ R1 + R2 ⎠               ⎝ 22 + 8 ⎠
VG = 4.67 V
        10 − VSG − 4.67
                        = K P (VSG + VTP )
                                           2
ID =
              RS
5.33 − VSG = (1)( 0.5 ) (VSG − 4VSG + 4 )
                           2


0.5VSG − VSG − 3.33 = 0
     2


         1 ± 1 + 4 ( 0.5 )( 3.33)
VSG =                                 ⇒ VSG = 3.77 V
                      2 ( 0.5 )
g m = 2 K p (VSG + VTP ) = 2 (1)( 3.77 − 2 )
g m = 3.54 mA / V
b.
                 (
CM = CgdT 1 + g m ( RD RL )       )
CM = ( 3) ⎡1 + ( 3.54 ) ( 2 5 ) ⎤ ⇒ CM = 18.2 pF
           ⎣                    ⎦
a.
r = Req ( CgsT + CM )

Req = Ri R1 R2 = 0.5 8 22 = 0.461 kΩ

r = ( 0.461× 103 ) (15 + 18.2 ) × 10−12
     = 1.53 × 10−8 s
          1
 fH =           ⇒ f H = 10.4 MHz
         2π r
c.
 V0 = − g mVgs ( RD RL )
      ⎛ R R ⎞             ⎛ 5.87 ⎞
Vgs = ⎜ 1 2 ⎟ Vi = ⎜
      ⎜ R1 R2 Ri ⎟                     ⎟ Vi ⇒ Vgs = ( 0.9215 ) Vi
      ⎝             ⎠     ⎝ 5.87 + 0.5 ⎠
 Av = − ( 3.54 )( 0.9215 ) ( 2 5 ) ⇒ Av = −4.66
7.59
                          ⎛ 100 ⎞
 I E = 0.5 mA ⇒ I CQ = ⎜        ⎟ ( 0.5 ) = 0.495 mA
                          ⎝ 101 ⎠
       0.495
 gm =         = 19.0 mA/V
       0.026
       (100 )( 0.026 )
  rπ =                 = 5.25 kΩ
           0.495
a.        Input: From Eq. 7.107b
        ⎡ rπ            ⎤
  rPπ = ⎢        RE RS ⎥ Cπ
        ⎣1 + β          ⎦
         ⎡ 5.25          ⎤
       =⎢        0.5 0.05⎥ × 103 × 10 × 10−12
         ⎣ 101           ⎦
       = 2.43 × 10−10 s
          1
 f Hπ =       ⇒ f H π = 656 MHz
       2π rpπ
Output: From Eq. 7.108b
 rPμ = ( RB RL ) Cμ = (100 1) × 103 × 10−12
       = 9.90 × 10−10 s
            1
 fH μ =          ⇒ f H μ = 161 MHz
          2π rPμ
b.
             RS                             gmV␲
                                                         V0

                             Ϫ
Vi   ϩ            RE        V␲    r␲               RB   RL
     Ϫ
                             ϩ



V0 = − g m Vπ ( RB RL )
          Vπ Vπ Vi − ( −Vπ )
g mVπ +     +   +            =0
          rπ RE     RS
   ⎡        1   1      1 ⎤ −V
Vπ ⎢ g m + +        + ⎥= i
   ⎣       rπ RE RS ⎦ RS
   ⎡        1      1      1 ⎤ −Vi
Vπ ⎢19 +       +      +       =
   ⎣      5.25 0.5 0.05 ⎥ 0.05
                            ⎦
Vπ ( 41.19 ) = −Vi ( 20 )
Vπ = − ( 0.4856 ) Vi
V0
   = − (19 )( −0.4856 )(100 1)
Vi
 Av = 9.14
c.
 r = CL ( RL RB ) = (15 × 10−12 ) (1 100 ) × 103
 r = 1.485 × 10−8 s
      1
 f =     → f = 10.7 MHz
    2π r
Since f < f H μ ⇒ 3d B freq. dominated by CL .

7.60
20 − 0.7
I EQ =            = 1.93 mA
           10
        ⎛ 100 ⎞
I CQ = ⎜      ⎟ (1.93) = 1.91 mA
        ⎝ 101 ⎠
         1.91
 gm =           = 73.5 mA/V
        0.026
        (100 )( 0.026 )
   rπ =                 = 1.36 kΩ
             1.91
a.         Input:
        ⎡ rπ            ⎤
 rPπ = ⎢         RE RS ⎥ ⋅ Cπ
        ⎣1 + β          ⎦
         ⎡1.36       ⎤
       =⎢       10 1⎥ × 103 × 10 × 10−12
         ⎣ 101       ⎦
 rPπ   = 1.327 × 10−10 s
          1
 f Pπ =       ⇒ f Pπ = 1.20 GHz
       2π rPπ
Output:
 rPπ = ( RC RL ) Cμ = ( 6.5 5 ) × 103 × 10−12
 rPπ = 2.826 × 10−9 s
          1
 f Pμ =        → f Pμ = 56.3 MHz
        2π rPπ
b.
V0 = − g m Vπ ( RC RL )
              Vπ Vπ Vi − ( −Vπ )
g mVπ +         +   +            =0
              rπ RE     RS
   ⎛        1    1   1 ⎞   Vi
Vπ ⎜ g m + +       +   ⎟=−
   ⎝       rπ RE RS ⎠      RS
   ⎡           1   1 1 ⎤ −V
Vπ ⎢ 73.5 +      + + = i
   ⎣         1.36 10 1 ⎥ (1)
                        ⎦
Vπ ( 75.34 ) = −Vi ⇒ Vπ = − ( 0.01327 ) Vi
V0 = − ( 73.5 )( −0.01327 ) ( 6.5 5 ) Vi
 Av = 2.76
c.
 r = CL ( RL Rc ) = (15 × 10−12 ) ( 6.5 5 ) × 103
 r = 4.24 × 10−8 s
          1
 f =     → f = 3.75 MHz
    2π r
Since f < fp μ , 3dB frequency is dominated by CL.

7.61
VGS + I D RS = 5
     5 − VGS
              = K n (VGS − VTN )
                                 2
ID =
         RS
5 − VGS = ( 3)(10 ) (V 2GS − 2VGS + 1)
30V 2GS − 59VGS + 25 = 0

                  ( 59 )        − 4 ( 30 )( 25 )
                           2
          59 ±
VGS =                                              ⇒ VGS = 1.349 V
                         2 ( 30 )
g m = 2 K n (VGS − VTN ) = 2 ( 3)(1.35 − 1)
g m = 2.093 mA / V
On the output:
rPμ = ( RD RL ) Cgd T = ( 5 4 ) × 103 × 4 × 10−12
rPμ = 8.89 × 10−9 s
            1
 f Pμ =          → f Pμ = 17.9 MHz
          2π rPμ
                  Ri                                    gmVgs
                                                                        V0

                                        Ϫ
Vi   ϩ                         RS        Vgs                      RD   RL
     Ϫ
                                        ϩ



V0 = − g mVgs ( RD RL )
           Vgs        Vi − ( −Vgs )
g mVgs +          +                       =0
            RS              RS
    ⎛       1    1⎞  V
Vgs ⎜ g m +    + ⎟=− i
    ⎝       RS Ri ⎠  Ri
    ⎛          1 1⎞   V
Vgs ⎜ 2.093 + + ⎟ = − i
    ⎝         10 2 ⎠   2
Vgs = ( 0.1857 )Vi
       V0
Av =      = ( 2.093)( 0.1857 ) ( 5 4 )
       Vi
Av = 0.864

7.62
dc analysis
       V + − VSG
                 = K P (VSG + VTP )
                                    2
ID =
           RS
5 − VSG = (1)( 4 )(VSG − 0.8 )
                                               2


           = 4 (VSG − 1.6VSG + 0.64 )
                  2


4VSG − 5.4VSG − 2.44 = 0
   2



                      ( 5.4 )       + 4 ( 4 )( 2.44 )
                                2
          5.4 ±
VSG =                                                   = 1.707
                           2 ( 4)
g m = 2 K P (VSG + VTP ) = 2 (1)(1.707 − 0.8 )
g m = 1.81 mA / V
Ri                                 gmVgs


                     Ϫ
               RS      Vgs         CgsT                CgdT        RD   RL

                     ϩ



                                                  1
3 ⋅ dB frequency due to CgsT : Req =                 RS Ri
                                                  gm
              1
 fA =
         2π Req ⋅ CgsT
        1
Req =       4 0.5 = 0.246 kΩ
      1.81
                1
 fA =                          = 162 MHz
      2π ( 246 ) ( 4 × 10−12 )
3 − dB frequency due to CgdT
                 1
 fB =
         2π ( RD RL ) CgdT
                     1
     =
         2π ( 2 4 ) × 103 × 10−12
 f = 119 MHz
Midband gain
                Ri                        gmVgs
                                                              V0

                       Ϫ
Vi   ϩ               Vgs      RS                  RD     RL
     Ϫ
                       ϩ



               1               1
           −      RS               4 −
               gm            1.81
Vgs =             ⋅ Vi =               ⋅ Vi
      1                    1
         RS + R i              4 + 0.5
      gm                 1.81
     = −0.492Vi
V0 = − g mVgs ( RD RL )
Av = ( 0.492 )(1.81) ( 4 2 ) ⇒ Av = 1.19

7.63
         (120 )( 0.026 )
 rπ =                        = 3.059 kΩ
           1.02
 g m = 39.23 mA/V
a.
1
Input: f H π =
                 2π rπ
rπ = ⎡ Rs R2 R3 rπ ⎤ ( Cπ + 2Cμ )
     ⎣             ⎦
Req = 0.1 20.5 28.3 3.06 = 0.096 kΩ
rπ = ( 96 ) (12 + 2 ( 2 ) ) × 10−12 = 1.537 × 10−9 s
                  1
f Hπ =                        = 103.6 MHz
         2π (1.536 × 10−9 )
                     1
Output: f H μ =
                   2π rμ
rμ = ( RC RL ) Cμ
= (15 10 ) × 103 × 2 × 10−12
= 6.67 × 10−9
                 1
fH μ =                        = 23.9 MHz
         2π ( 6.67 × 10−9 )
b.
                      ⎡ R2 R3 rπ ⎤
A = g m ( RC     RL ) ⎢               ⎥
                      ⎣ R2 R3 rπ + RS ⎦
R2 R3 rπ = 20.5 28.3 3.059 = 2.433 kΩ
                       ⎡ 2.433 ⎤
 A = ( 39.23) ( 5 10 ) ⎢             ⎥ ⇒ A = 125.6
                       ⎣ 2.433 + 0.1 ⎦
c.         CL = 15 pF > Cμ ⇒ CL dominates frequency response.

More Related Content

What's hot

An Introduction to Hidden Markov Model
An Introduction to Hidden Markov ModelAn Introduction to Hidden Markov Model
An Introduction to Hidden Markov ModelShih-Hsiang Lin
 
Physics formula list
Physics formula listPhysics formula list
Physics formula listJSlinkyNY
 
4831603 physics-formula-list-form-4
4831603 physics-formula-list-form-44831603 physics-formula-list-form-4
4831603 physics-formula-list-form-4hongtee82
 
Laplace equation
Laplace equationLaplace equation
Laplace equationalexkhan129
 
adv-2015-16-solution-09
adv-2015-16-solution-09adv-2015-16-solution-09
adv-2015-16-solution-09志远 姚
 
Hidden Markov Models
Hidden Markov ModelsHidden Markov Models
Hidden Markov ModelsVu Pham
 
Signals and Systems Formula Sheet
Signals and Systems Formula SheetSignals and Systems Formula Sheet
Signals and Systems Formula SheetHaris Hassan
 
Kinematika rotasi
Kinematika rotasiKinematika rotasi
Kinematika rotasirymmanz86
 
Laplace transform & fourier series
Laplace transform & fourier seriesLaplace transform & fourier series
Laplace transform & fourier seriesvaibhav tailor
 
Final Present Pap1on relibility
Final Present Pap1on relibilityFinal Present Pap1on relibility
Final Present Pap1on relibilityketan gajjar
 
CIVE 572 Final Project
CIVE 572 Final ProjectCIVE 572 Final Project
CIVE 572 Final Projectdanielrobb
 
Adiabatic Theorem for Discrete Time Evolution
Adiabatic Theorem for Discrete Time EvolutionAdiabatic Theorem for Discrete Time Evolution
Adiabatic Theorem for Discrete Time Evolutiontanaka-atushi
 
4 matched filters and ambiguity functions for radar signals-2
4 matched filters and ambiguity functions for radar signals-24 matched filters and ambiguity functions for radar signals-2
4 matched filters and ambiguity functions for radar signals-2Solo Hermelin
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrixRumah Belajar
 

What's hot (20)

An Introduction to Hidden Markov Model
An Introduction to Hidden Markov ModelAn Introduction to Hidden Markov Model
An Introduction to Hidden Markov Model
 
Physics formula list
Physics formula listPhysics formula list
Physics formula list
 
Hmm viterbi
Hmm viterbiHmm viterbi
Hmm viterbi
 
4831603 physics-formula-list-form-4
4831603 physics-formula-list-form-44831603 physics-formula-list-form-4
4831603 physics-formula-list-form-4
 
Laplace equation
Laplace equationLaplace equation
Laplace equation
 
adv-2015-16-solution-09
adv-2015-16-solution-09adv-2015-16-solution-09
adv-2015-16-solution-09
 
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
 
Hidden Markov Models
Hidden Markov ModelsHidden Markov Models
Hidden Markov Models
 
Legendre functions
Legendre functionsLegendre functions
Legendre functions
 
Tables
TablesTables
Tables
 
Signals and Systems Formula Sheet
Signals and Systems Formula SheetSignals and Systems Formula Sheet
Signals and Systems Formula Sheet
 
Kinematika rotasi
Kinematika rotasiKinematika rotasi
Kinematika rotasi
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
Laplace transform & fourier series
Laplace transform & fourier seriesLaplace transform & fourier series
Laplace transform & fourier series
 
Final Present Pap1on relibility
Final Present Pap1on relibilityFinal Present Pap1on relibility
Final Present Pap1on relibility
 
CIVE 572 Final Project
CIVE 572 Final ProjectCIVE 572 Final Project
CIVE 572 Final Project
 
Adiabatic Theorem for Discrete Time Evolution
Adiabatic Theorem for Discrete Time EvolutionAdiabatic Theorem for Discrete Time Evolution
Adiabatic Theorem for Discrete Time Evolution
 
Ps02 cmth03 unit 1
Ps02 cmth03 unit 1Ps02 cmth03 unit 1
Ps02 cmth03 unit 1
 
4 matched filters and ambiguity functions for radar signals-2
4 matched filters and ambiguity functions for radar signals-24 matched filters and ambiguity functions for radar signals-2
4 matched filters and ambiguity functions for radar signals-2
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrix
 

Viewers also liked

Mid-Challenge webinar presentation august 11
Mid-Challenge webinar presentation august 11 Mid-Challenge webinar presentation august 11
Mid-Challenge webinar presentation august 11 GlobalGiving
 
when i was scammed in Malaysia
when i was scammed in Malaysiawhen i was scammed in Malaysia
when i was scammed in MalaysiaMehmood Ramzan
 
Everything Must Go exhibition opens for one weekend only
Everything Must Go exhibition opens for one weekend only Everything Must Go exhibition opens for one weekend only
Everything Must Go exhibition opens for one weekend only brakqd41ba
 
Hadoop Demystified + Automation Smackdown! Austin JUG June 24 2014
Hadoop Demystified + Automation Smackdown!  Austin JUG June 24 2014Hadoop Demystified + Automation Smackdown!  Austin JUG June 24 2014
Hadoop Demystified + Automation Smackdown! Austin JUG June 24 2014datafundamentals
 
P4 CL Slides
P4 CL SlidesP4 CL Slides
P4 CL Slidesxnpsp5
 
Частные компании: Кипр и Белиз
Частные компании: Кипр и БелизЧастные компании: Кипр и Белиз
Частные компании: Кипр и БелизMaxim Shvidkiy
 
Terrific Thoughts To Treasure
Terrific Thoughts To TreasureTerrific Thoughts To Treasure
Terrific Thoughts To TreasureOH TEIK BIN
 
Henry Akafia: Bob's retirement strategy
Henry Akafia: Bob's retirement strategy Henry Akafia: Bob's retirement strategy
Henry Akafia: Bob's retirement strategy hakafia
 
Women in Business November 2012 newsletter
Women in Business November 2012 newsletterWomen in Business November 2012 newsletter
Women in Business November 2012 newsletterJacoba Poppleton
 
A survey early detection of
A survey early detection ofA survey early detection of
A survey early detection ofijcsa
 
צביעה של גרפים מקריים
צביעה של גרפים מקרייםצביעה של גרפים מקריים
צביעה של גרפים מקרייםDalya Gartzman
 

Viewers also liked (19)

Clinton 2015 KPI
Clinton 2015 KPIClinton 2015 KPI
Clinton 2015 KPI
 
Mid-Challenge webinar presentation august 11
Mid-Challenge webinar presentation august 11 Mid-Challenge webinar presentation august 11
Mid-Challenge webinar presentation august 11
 
Garment
GarmentGarment
Garment
 
when i was scammed in Malaysia
when i was scammed in Malaysiawhen i was scammed in Malaysia
when i was scammed in Malaysia
 
Everything Must Go exhibition opens for one weekend only
Everything Must Go exhibition opens for one weekend only Everything Must Go exhibition opens for one weekend only
Everything Must Go exhibition opens for one weekend only
 
Easter.b
Easter.bEaster.b
Easter.b
 
Hadoop Demystified + Automation Smackdown! Austin JUG June 24 2014
Hadoop Demystified + Automation Smackdown!  Austin JUG June 24 2014Hadoop Demystified + Automation Smackdown!  Austin JUG June 24 2014
Hadoop Demystified + Automation Smackdown! Austin JUG June 24 2014
 
P4 CL Slides
P4 CL SlidesP4 CL Slides
P4 CL Slides
 
Частные компании: Кипр и Белиз
Частные компании: Кипр и БелизЧастные компании: Кипр и Белиз
Частные компании: Кипр и Белиз
 
Media Use
Media UseMedia Use
Media Use
 
Terrific Thoughts To Treasure
Terrific Thoughts To TreasureTerrific Thoughts To Treasure
Terrific Thoughts To Treasure
 
Corne illusion
Corne illusionCorne illusion
Corne illusion
 
Henry Akafia: Bob's retirement strategy
Henry Akafia: Bob's retirement strategy Henry Akafia: Bob's retirement strategy
Henry Akafia: Bob's retirement strategy
 
Women in Business November 2012 newsletter
Women in Business November 2012 newsletterWomen in Business November 2012 newsletter
Women in Business November 2012 newsletter
 
A survey early detection of
A survey early detection ofA survey early detection of
A survey early detection of
 
GBLAS_CV_2016_rev2
GBLAS_CV_2016_rev2GBLAS_CV_2016_rev2
GBLAS_CV_2016_rev2
 
צביעה של גרפים מקריים
צביעה של גרפים מקרייםצביעה של גרפים מקריים
צביעה של גרפים מקריים
 
Sistema de gestion
Sistema de gestionSistema de gestion
Sistema de gestion
 
Felicidade em ponto pequeno
Felicidade em ponto pequenoFelicidade em ponto pequeno
Felicidade em ponto pequeno
 

Similar to Ch07s

University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tablesGaurav Vasani
 
Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)asghar123456
 
Den5200 ps1
Den5200 ps1Den5200 ps1
Den5200 ps1jogerpow
 
Formulario Trigonometria
Formulario TrigonometriaFormulario Trigonometria
Formulario TrigonometriaAntonio Guasco
 
Mathematical formula tables
Mathematical formula tablesMathematical formula tables
Mathematical formula tablesSaravana Selvan
 
Laplace table
Laplace tableLaplace table
Laplace tablenoori734
 
Laplace table
Laplace tableLaplace table
Laplace tableprathsel
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsMatthew Leingang
 
Ch 04 Arithmetic Coding (Ppt)
Ch 04 Arithmetic Coding (Ppt)Ch 04 Arithmetic Coding (Ppt)
Ch 04 Arithmetic Coding (Ppt)anithabalaprabhu
 
Ch 04 Arithmetic Coding ( P P T)
Ch 04  Arithmetic  Coding ( P P T)Ch 04  Arithmetic  Coding ( P P T)
Ch 04 Arithmetic Coding ( P P T)anithabalaprabhu
 

Similar to Ch07s (20)

Ch07p
Ch07pCh07p
Ch07p
 
Ch15p
Ch15pCh15p
Ch15p
 
Taylor series
Taylor seriesTaylor series
Taylor series
 
University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tables
 
Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)
 
Den5200 ps1
Den5200 ps1Den5200 ps1
Den5200 ps1
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
 
Formulario Trigonometria
Formulario TrigonometriaFormulario Trigonometria
Formulario Trigonometria
 
Unit i
Unit iUnit i
Unit i
 
Mathematical formula tables
Mathematical formula tablesMathematical formula tables
Mathematical formula tables
 
Laplace table
Laplace tableLaplace table
Laplace table
 
Laplace table
Laplace tableLaplace table
Laplace table
 
NotesLaplace.pdf
NotesLaplace.pdfNotesLaplace.pdf
NotesLaplace.pdf
 
Sect2 1
Sect2 1Sect2 1
Sect2 1
 
Cash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap FuturesCash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap Futures
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functions
 
Ch 04 Arithmetic Coding (Ppt)
Ch 04 Arithmetic Coding (Ppt)Ch 04 Arithmetic Coding (Ppt)
Ch 04 Arithmetic Coding (Ppt)
 
Ch 04 Arithmetic Coding ( P P T)
Ch 04  Arithmetic  Coding ( P P T)Ch 04  Arithmetic  Coding ( P P T)
Ch 04 Arithmetic Coding ( P P T)
 
LaplaceTransformIIT.pdf
LaplaceTransformIIT.pdfLaplaceTransformIIT.pdf
LaplaceTransformIIT.pdf
 
Ch04s
Ch04sCh04s
Ch04s
 

More from Bilal Sarwar (20)

Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+
 
Ramey soft
Ramey soft Ramey soft
Ramey soft
 
Ramey soft
Ramey softRamey soft
Ramey soft
 
Ch17s 3rd Naemen
Ch17s 3rd NaemenCh17s 3rd Naemen
Ch17s 3rd Naemen
 
Ch17p 3rd Naemen
Ch17p 3rd NaemenCh17p 3rd Naemen
Ch17p 3rd Naemen
 
Ch16p
Ch16pCh16p
Ch16p
 
Ch14s
Ch14sCh14s
Ch14s
 
Ch14p
Ch14pCh14p
Ch14p
 
Ch13s
Ch13sCh13s
Ch13s
 
Ch13p
Ch13pCh13p
Ch13p
 
Ch12s
Ch12sCh12s
Ch12s
 
Ch12p
Ch12pCh12p
Ch12p
 
Ch11s
Ch11sCh11s
Ch11s
 
Ch11p
Ch11pCh11p
Ch11p
 
Ch10s
Ch10sCh10s
Ch10s
 
Ch10p
Ch10pCh10p
Ch10p
 
Ch09s
Ch09sCh09s
Ch09s
 
Ch09p
Ch09pCh09p
Ch09p
 
Ch08s
Ch08sCh08s
Ch08s
 
Ch08p
Ch08pCh08p
Ch08p
 

Recently uploaded

04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 

Recently uploaded (20)

04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 

Ch07s

  • 1. Chapter 7 Problem Solutions 7.1 a. V0 ( s ) 1/ ( sC1 ) T (s) = = Vi ( s ) ⎡1/ ( sC1 ) ⎤ + R1 ⎣ ⎦ 1 T (s) = 1 + sR1C1 b. 1 ͉T ͉ f fH ϭ 159 Hz 1 1 fH = = ⇒ f H = 159 Hz 2π R1C1 2π (103 )(10−6 ) c. 1 V0 ( s ) = Vi ( s ) ⋅ 1 + sR1C1 1 For a step function Vi ( s ) = s 1 1 K K2 V0 ( s ) = ⋅ = 1+ s 1 + sR1C1 s 1 + sR1C1 K1 (1 + sR1C1 ) + K 2 s = s (1 + sR1C1 ) K1 + s ( K1 R1C1 + K 2 ) = s (1 + sR1C1 ) K 2 = − K1 R1C1 and K1 = 1 1 − R1C1 V0 ( s ) = + s 1 + sR1C1 1 1 = − s 1 +s R1C1 v0 ( t ) = 1 − e− t / R1C1 7.2 a. V0 ( s ) R2 T (s) = = Vi ( s ) R2 + ⎡1/ ( sC2 ) ⎤ ⎣ ⎦ sR2 C2 T (s) = 1 + sR2 C2 b.
  • 2. 1 ͉T ͉ fL ϭ 1.59 Hz 1 1 fL = = ⇒ f L = 1.59 Hz 2π R2 C2 2π (10 )(10 × 10−6 ) 4 c. sR2 C2 V0 ( s ) = Vi ( s ) ⋅ 1 + sR2 C2 1 Vi ( s ) = s R2 C2 1 V0 ( s ) = = 1 + sR2 C2 s + 1 R2 C2 v0 ( t ) = e− t / R2C2 7.3 a. 1 RP V0 ( s ) sCP T (s) = = Vi ( s ) 1 ⎛ 1 ⎞ RP + ⎜ RS + ⎟ sCP ⎝ sCS ⎠ 1 RP ⋅ 1 sCP RP RP = = sCP R + 1 1 + sRP CP P sCP Then RP T (s) = ⎛ 1 ⎞ RP + ⎜ RS + ⎟ (1 + sRP CP ) ⎝ sCS ⎠ RP = RP CP 1 RP + RS + + + sRS RP CP CS sCS ⎛ RP ⎞ ⎛ ⎡ RP C 1 sRP RS ⎤⎞ T (s) = ⎜ ⎟ × ⎜ 1/ ⎢1 + ⋅ P+ + ⋅ CP ⎥ ⎟ ⎝ RP + RS ⎠ ⎜ ⎢ RP + RS CS s ( RS + RP ) CS RS + RP ⎝ ⎣ ⎥⎟ ⎦⎠ b.
  • 3. ⎤⎞ ⎛ 10 ⎞ ⎜ ⎡ 10 10 −11 + s ( 5 × 103 ) ⋅10−11 ⎥ ⎟ 1 T (s) = ⎜ ⎟ × 1/ ⎢1 + ⋅ −6 + ⎝ 10 + 10 ⎠ ⎜ ⎢ 20 10 s ( 2 × 104 ) ⋅10−6 ⎥⎟ ⎝ ⎣ ⎦⎠ 1 1 ≅ ⋅ + s ( 5 × 10−8 ) 2 1+ 1 s ( 0.02 ) s = jω 1 1 T ( jω ) = ⋅ 2 ⎡ ⎤ 1 + j ⎢ω ( 5 × 10−8 ) − 1 ⎥ ⎣ ω ( 0.02 ) ⎦ 1 1 For ω L = = = 50 ( RS + RR ) CS ( 2 ×10 )(10−6 ) 4 1 1 T ( jω ) = ⋅ 2 ⎡ ⎤ 1 + j ⎢( 50 ) ( 5 × 10−8 ) − 1 ⎣ ( 50 )( 0.02 ) ⎥ ⎦ 1 1 1 1 ≈ ⋅ ⇒ T ( jω ) = ⋅ 2 1− j 2 2 For 1 1 ωH = = = 2 × 107 ( RS RP ) CP ( 5 × 103 )(10−11 ) 1 1 T ( jω ) = ⋅ 2 ⎡ ⎤ 1 + j ⎢( 2 × 107 )( 5 × 10−8 ) − 1 ⎥ ⎢ ⎣ ( 2 ×107 ) ( 0.02 ) ⎥ ⎦ 1 1 1 1 T ( jω ) ≈ ⋅ ⇒ T ( jω ) = ⋅ 2 1+ j 2 2 1 RP In each case, T ( jω ) = ⋅ 2 RP + RS c. RS = RP = 10 kΩ, CS = CP = 0.1 μ F ⎛ ⎡ ⎤⎞ + s ( 5 × 103 )(10−7 ) ⎥ ⎟ 1 ⎜ ⎢ 1 1 1 T (s) = ⋅ 1/ 1 + ⋅ + ⎜ ⎝ ⎣ ( 2 ⎜ ⎢ 2 1 s 2 × 104 (10−7 ) ) ⎥⎟ ⎦⎠ ⎟ s = jω 1 1 T ( jω ) = ⋅ 2 ⎡ ⎤ 1 + + j ⎢ω ( 5 × 10−4 ) − 1 1 ⎥ 2 ⎢ ⎣ ω ( 2 × 10−3 ) ⎥ ⎦ 1 For ω = = 500 ( 2 ×104 )(10−7 ) 1 1 T ( jω ) = ⋅ 2 ⎡ ⎤ 1.5 + j ⎢( 500 ) ( 5 × 10−4 ) − 1 ⎥ ⎢ ⎣ ( 500 ) ( 2 ×10−3 ) ⎥ ⎦ 1 1 = ⋅ ⇒ T ( jω ) = 0.298 2 1.5 − j ( 0.75 )
  • 4. 1 For ω = = 2 × 103 ( 5 ×10 )(10 ) 3 −7 ⎧ ⎛ ⎡ ⎫ ⎤ ⎞⎪ 1 ⎪ ⎜ ⋅ ⎨1/ 1.5 + j ⎢( 2 × 103 )( 5 × 10−4 ) − 1 T ( jω ) = ⎥ ⎟⎬ 2 ⎪ ⎜ ⎩ ⎝ ⎢ ⎣ ( 2 ×103 )( 2 ×10−3 ) ⎥ ⎟⎪ ⎦ ⎠⎭ 1 1 = ⋅ ⇒ T ( jω ) = 0.298 2 1.5 + j ( 0.75 ) 1 RP In each case, T ( jω ) < ⋅ 2 RP + RS 7.4 Circuit (a): V R2 R2 T= 0 = = Vi 1 R1 (1/ sC1 ) R2 + R2 + sC1 R1 + (1/ sC1 ) R2 R2 (1 + sR1C1 ) Vo R2 (1 + sR1C1 ) = = or = ⋅ R1 R2 + sR1 R2 C1 + R1 Vi R1 + R2 1 + sR1 R2 C1 R2 + 1 + sR1C1 Low frequency: Vo R2 20 2 = = = Vi R1 + R2 10 + 20 3 High frequency: Vo =1 Vi τ 1 = R1C1 = (104 )(10 × 10−6 ) = 0.10 ⇒ f1 = 1 = 1.59 Hz 2πτ 1 τ 2 = ( R1 R 2 ) C1 = (10 20 ) × 103 × (10 × 10−6 ) ⇒ τ 2 = 0.0667 ⇒ f 2 = 1 = 2.39 Hz 2πτ 2 ͉T ͉ 1.0 0.67 1.59 2.39 f Circuit (b): 1 R2 R2 V 1 + sR2 C2 sC2 T= o = = Vi 1 R2 R2 + R1 + R1 sC2 1 + sR2 C2 ⎛ R2 ⎞ ⎛ 1 ⎞ =⎜ ⎟⎜ ⎟ ⎝ R1 + R2 ⎠ ⎝ 1 + s ( R1 R2 ) C2 ⎠ ⎜ ⎟ Low frequency: Vo R2 20 2 = = = Vi R1 + R2 20 + 10 3 τ = ( R1 R2 ) C2 = (10 20 ) × 103 × 10 × 10−6 = 0.0667 1 f = = 2.39 Hz 2πτ
  • 5. 0.67 ͉T ͉ 2.39 f 7.5 a. rS = ( Ri + RP ) CS = [30 + 10] × 103 × 10 × 10−6 ⇒ rS = 0.40 s rP = ( Ri RP ) CP = ⎡30 10 ⎤ × 103 × 50 × 10−12 ⇒ rP = 0.375 μ s ⎣ ⎦ b. 1 1 fL = = ⇒ f L = 0.398 Hz 2π rS 2π ( 0.4 ) 1 1 fH = = ⇒ f H = 424 kHz 2π rP 2π ( 0.375 × 10−6 ) At midband. CS → short, CP → open Vo = I i ( Ri RP ) T ( s ) = Ri R P = 30 10 ⇒ T ( s ) = 7.5 k Ω c. 7.5 k⍀ ͉T ͉ fL fH 7.6 (a) 1 1 1 T= ⇒T = = (1 + j 2π f τ ) ( ) 1 + ( 2π f τ ) 2 2 2 1 + ( 2π f τ ) 2 T max =1 1 1 1 At f = ⇒T = = 2πτ 1 + (1) 2 2 ⎛1⎞ T = 20 log10 ⎜ ⎟ ⇒ T dB ≅ −6 dB ⎝ 2⎠ dB Phase = 2 tan ( 2π f τ ) = −2 tan −1 (1) = −2 ( 45° ) ⇒ Phase = −90° −1 (b) Slope = −2 ( 6dB / oct ) = −12dB / oct = −40dB / decade Phase = −2 ( 90° ) ⇒ Phase = −180° 7.7 (a)
  • 6. −10 ( jω ) T ( jω ) = ⎛ jω ⎞ ⎛ jω ⎞ 20 ⎜ 1 + ⎟ ( 2000 ) ⎜1 + ⎟ ⎝ 20 ⎠ ⎝ 2000 ⎠ ⎛ jω ⎞ −5 × 10−3 ⎜ ⎟ ⎝ ω ⎠ = 2.5 × 10 ( jω ) −4 = ⎛ jω ⎞ ⎛ jω ⎞ ⎛ jω ⎞⎛ jω ⎞ ⎜1 + 1+ 1+ 1+ ⎝ ω ⎟ ⎜ 2000 ⎟ ⎜ 20 ⎟⎜ 2000 ⎟ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ 2.5 × 10−4 (ω ) T = ⎛ω ⎞ ⎛ ω ⎞ 2 2 1+ ⎜ ⎟ ⋅ 1+ ⎜ ⎟ ⎝ 20 ⎠ ⎝ 2000 ⎠ ͉T ͉ 5 ϫ 10Ϫ3 2.5 ϫ 10Ϫ4 1 20 2000 ␻ (b) jω ⎞ (10 )(10 ) ⎛1 + ⎜⎟ T ( jω ) = ⎝ 10 ⎠ ⎛ jω ⎞ 1000 ⎜ 1 + ⎟ ⎝ 1000 ⎠ ⎛ω ⎞ 2 ( 0.10 ) 1+ ⎜ ⎟ ⎝ 10 ⎠ T = ⎛ ω ⎞ 2 1+ ⎜ ⎟ ⎝ 1000 ⎠ ͉T ͉ 10 0.10 10 1000 ␻ 7.8 (a) 105 10 5 T (s) = = ⋅ ( 5 + 10 )( 5 + 500 ) (10 )( 500 ) ⎛ 5 ⎞⎛ 5 ⎞ ⎜ + 1⎟⎜ + 1⎟ ⎝ 10 ⎠⎝ 500 ⎠ ⎛ jω ⎞ ⎜ ⎟ = 10 ⋅ ⎝ 10 ⎠ 500 ⎛ jω ⎞⎛ jω ⎞ ⎜ + 1⎟⎜ + 1⎟ ⎝ 10 ⎠⎝ 500 ⎠
  • 7. ͉T ͉ 0.02 10 500 ␻(rod/s) (b) Midband gain = 0.02 (c) ω = 500 rad/s (d) ω = 10 rad/s 7.9 (a) 2 × 104 T ( s) = ( S + 10 )( S + 10 ) 3 5 2 × 104 1 = ⋅ (10 )(10 ) 3 5 ⎛ S ⎞⎛ S ⎞ ⎜ 3 + 1 ⎟ ⎜ 5 + 1⎟ ⎝ 10 ⎠⎝ 10 ⎠ 2 × 10−4 T ( jω ) = ⎛ jω ⎞ ⎛ jω ⎞ ⎜ 3 + 1 ⎟ ⎜ 5 + 1⎟ ⎝ 10 ⎠ ⎝ 10 ⎠ ͉T ͉ 2 ϫ 10Ϫ4 10 3 10 5 ␻(rod/s) −4 (b) 2 × 10 (c) ω = 103 rad/s (d) no low freq −3dB freq. 7.10 a. ⎛ r ⎞ V0 = − g mVπ RL Vπ = ⎜ π ⎟ Vi ⎝ rπ + RS ⎠ ⎛ r ⎞ ⎛ 5.2 ⎞ T = g m RL ⎜ π ⎟ = ( 29 )( 6 ) ⎜ ⎟ ⎝ rπ + RS ⎠ ⎝ 5.2 + 0.5 ⎠ Tmidband = 159 b. rS = ( RS + rπ ) CC 1 1 1 fL = ⇒ rS = = ⇒ rS = 5.31 ms Open-circuit 2π rS 2π f L 2π ( 30 ) 1 1 rP = = ⇒ τ P = 0.332 μ s Short-circuit 2π f H 2π ( 480 × 103 )
  • 8. c. rS 5.31× 10−3 CC = = ⇒ CC = 0.932 μ F ( RS + τ π ) ( 0.5 + 5.2 ) ×103 rP = RL CL rP 0.332 × 10−6 CL = = ⇒ CL = 55.3 pF RL 6 × 103 7.11 Computer Analysis 7.12 Computer Analysis 7.13 a. RTH = R1 R2 = 10 1.5 = 1.304 kΩ ⎛ R2 ⎞ ⎛ 1.5 ⎞ VTH = ⎜ ⎟ VCC = ⎜ ⎟ (12 ) = 1.565 V ⎝ R1 + R2 ⎠ ⎝ 1.5 + 10 ⎠ 1.565 − 0.7 I BQ = = 0.0759 mA 1.30 + (101)( 0.1) I CQ = 7.585 mA (100 )( 0.026 ) rπ = = 0.343 kΩ 7.59 7.59 gm = = 292 mA/V 0.026 Ri = R1 R2 ⎡ rπ + (1 + β ) RE ⎤ ⎣ ⎦ = 10 1.5 ⎡0.343 + (101)( 0.1) ⎤ ⎣ ⎦ = 1.30 10.44 ⇒ Ri = 1.159 kΩ r = ( RS + Ri ) CC = [ 0.5 + 1.16] × 103 × 0.1× 10−6 r = 1.659 × 10−4 s 1 1 fL = = ⇒ f L = 959 Hz 2π r 2π (1.66 × 10−4 ) b. Rib RS V0 ϩ Ib V␲ r␲ gmV␲ ϩ Ϫ Vi R1͉͉R2 RC Ϫ RE
  • 9. V0 = − ( β I b ) RC R1b = rπ + (1 + β ) RE = 0.343 + (101)( 0.1) = 10.44 kΩ ⎛ R1 R2 ⎞ Ib = ⎜ ⎜R R +R ⎟ i I ⎟ ⎝ 1 2 ib ⎠ ⎛ 1.30 ⎞ =⎜ ⎟ I i = ( 0.111) I i ⎝ 1.30 + 10.4 ⎠ Vi Ii = RS + R1 R2 Rib Vi = 0.5 + (1.3) (10.44 ) Vi Ii = 1.659 V0 β RC ( 0.111) V0 (100 )(1)( 0.111) V0 = ⇒ = ⇒ = 6.69 Vi 1.659 Vi midband 1.659 Vi midband c. 6.69 ͉V ͉ V 0 i fL ϭ 959 Hz f 7.14 I DQ = 0.5 mA ⇒ VS = ( 0.5 )( 0.5 ) = 0.25 V 0.5 I DQ = K n (VGS − VTN ) ⇒ VGS = 2 + 1.5 = 3.08 V 0.2 VG = VGS + VS = 3.08 + 0.25 ⇒ VG = 3.33 V ⎛ R2 ⎞ 1 VG = ⎜ ⎟ VDD ⇒ 3.33 = ⋅ Rin ⋅ VDD ⎝ R1 + R2 ⎠ R1 1 3.33 = ( 200 )( 9 ) ⇒ R1 = 541 kΩ R1 541R2 = 200 ⇒ R2 = 317 kΩ 541 + R2 VD = VDSQ + VS = 4.5 + 0.25 = 4.75 9 − 4.75 RD = ⇒ RD = 8.5 kΩ 0.5 1 1 1 fL = ⇒ rL = = = 7.96 ms 2π rL 2π f L 2π ( 20 ) rL 7.96 × 10−3 rL = Rin ⋅ CC ⇒ CC = = ⇒ CC = 0.0398 μ F Rin 200 × 103 g m = 2 ( 0.2 )( 3.08 − 1.5 ) = 0.632 mA/V g m RD ( 0.632 )(8.5) Av = = ⇒ Av = 4.08 midband 1 + g m RS 1 + ( 0.632 )( 0.5 )
  • 10. 4.08 ͉A␯͉ fL ϭ 20 Hz f Phase fL Ϫ90 Ϫ135 Ϫ180 7.15 I DQ 1 I DQ = K n (VGS − VTN ) ⇒ VGS = 2 + VTN = + 1 = 2.414 V Kn 0.5 VS = −2.414 V −2.414 − ( −5 ) RS = ⇒ RS = 2.59 kΩ 1 VD = VDSQ + VS = 3 − 2.414 = 0.586 V 5 − 0.59 RD = ⇒ RD = 4.41 kΩ 1 b. CC ϩ Vi ϩ RG Vgs gmVgs Ϫ I0 RD RL Ϫ RS ⎛ ⎞ ⎜ ⎟ I 0 = − ( g mVgs ) ⎜ RD ⎟ ⎜R +R + 1 ⎟ ⎜ D L ⎟ ⎝ sCC ⎠ Vi Vgs = 1 + g m RS I0 ( s ) − gm ⎡ sCC ⎤ = ⋅ RD ⎢ ⎥ Vi ( s ) 1 + g m RS ⎢1 + s ( RD + RL ) CC ⎥ ⎣ ⎦ I0 ( s ) T (s) = Vi ( s ) − g m RD 1 s ( RD + RL ) CC = ⋅ ⋅ 1 + g m RS RD + RL 1 + s ( RD + RL ) CC c.
  • 11. 1 1 1 fL = → rL = = = 15.92 ms 2π rL 2π f L 2π (10 ) rL 15.9 × 10−3 rL = ( RD + RL ) CC ⇒ CC = = ⇒ CC = 1.89 μ F RD + RL ( 4.41 + 4 ) × 103 7.16 a. 9 − VSG = I D = K P (VSG + VTP ) 2 RS 9 − VSG = ( 0.5 )(12 ) (VSG − 4VSG + 4 ) 2 6VSG − 23VSG + 15 = 0 2 ( 23) − 4 ( 6 )(15 ) 2 23 ± VSG = ⇒ VSG = 3 V 2 ( 6) g m = 2 K P (VSG + VTP ) = 2 ( 0.5 )( 3 − 2 ) ⇒ g m = 1 mA/V 1 Ro = RS = 1 12 ⇒ Ro = 0.923 kΩ gm b. r = ( R0 + RL ) CC 1 1 1 c. fL = ⇒r= = = 7.96 ms 2πτ 2π f L 2π ( 20 ) r 7.96 × 10−3 CC = = ⇒ CC = 0.729 μ F Ro + RL ( 0.923 + 10 ) × 103 7.17 a. 1 I CQ = 1 mA, I BQ = = 0.00833 mA 120 R1 || R2 = ( 0.1)(1 + β )( RE ) = ( 0.1)(121)( 4 ) = 48.4 kΩ VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE 1 ⋅ RTH ⋅ VCC = ( 0.00833)( 48.4 ) + 0.7 + (121)( 0.00833)( 4 ) R1 1 ( 48.4 )(12 ) = 5.135 R1 R1 = 113 kΩ 113R2 = 48.4 ⇒ R2 = 84.7 k Ω 113 + R2 b. r R0 = π RE r0 1+ β (120 )( 0.026 ) rπ = = 3.12 kΩ 1 80 r0 = = 80 kΩ 1 3.12 R0 = 4 80 = 0.02579 4 80 ⇒ R0 = 25.6 Ω 121 c.
  • 12. r = ( R0 + RL ) CC 2 r = ( 0.0256 + 4 ) × 103 × 2 × 10−6 = 8.05 × 10−3 s 1 1 f = = ⇒ f = 19.8 Hz 2π r 2π ( 8.05 × 10−3 ) 7.18 (a) 5 − 0.7 I EQ = = 1.075 mA I CQ = 1.064 mA 4 VCEQ = 10 − (1.064 )( 2 ) − (1.075 )( 4 ) VCEQ = 3.57 V I CQ 1.064 gm = = = 40.92 mA/V VT 0.026 β VT (100 )( 0.026 ) rπ = = = 2.44 K I CQ 1.064 (b) rπ 2440 For CC1 , Req1 = RS + RE = 200 + 4000 1+ β 101 Req1 = 224.0r , τ 1 = Req1CC1 = 1.053 ms For CC 2 , Req 2 = RC + RL = 2 + 47 = 49 K τ 2 = Req 2 ⋅ Cc 2 = 49 ms 1 1 (c) f1 = = ⇒ f1 = 151 Hz 2πτ 1 2π (1.053 × 10−3 ) 7.19 (a) τ H = ( RC RL ) CL = ( 2 47 ) × 103 × 10 × 10−12 = 1.918 × 10−8 s 1 1 fH = = ⇒ f H = 8.30 MHz 2πτ H 2π (1.918 × 10−8 ) (b) 1 = 0.1 1 + ( f .2πτ H ) 2 2 ⎛ 1 ⎞ ⎟ = 100 = 1 + ( f .2πτ H ) 2 ⎜ ⎝ 0.1 ⎠ 99 99 f = = 2πτ H 2π (1.918 × 10−8 ) f = 82.6 MHz 7.20 (a)
  • 13. 5 − VSG = K P (VSG + VTP ) 2 R1 5 − VSG = (1)(1.2 )(VSG − 1.5 ) = (1.2 ) (VSG − 3VSG + 2.25 ) 22 1.2VSG − 2.6VSG − 2.3 = 0⇒ VSG = 2.84 V 2 I DQ = 1.8 mA VSDQ = 10 − (1.8 )(1.2 + 1.2 ) ⇒ VSDQ = 5.68 V g m = 2 K P I DQ = 2 (1)(1.8 ) = 2.683 mA / V ro = ∞ (b) 1 1 Ris = = = 0.3727 k Ω g m 2.68 Ri = 1.2 0.373 = 0.284 k Ω For CC1 , τ s1 = ( 284 + 200 ) ( 4.7 × 10−6 ) = 2.27 ms For CC 2 , τ s 2 = (1.2 x103 + 50 × 103 )(10−6 ) = 51.2 ms (c) CC2 dominates, 1 1 f 3− dB = = = 3.1 Hz 2πτ s 2 2π ( 51.2 × 10−3 ) 7.21 ′ Assume VTN = 1V , kn = 80μ A / V 2 , λ = 0 Neglecting RSi = 200Ω , Midband gain is: Av = g m RD Let I DQ = 0.2 mA, VDSQ = 5V 9−5 Then RD = ⇒ RD = 20 k Ω 0.2 Av 10 ⎛ k′ ⎞⎛ W ⎞ We need g m = = = 0.5 mA / V 2 and g m = 2 K n I DQ = 2 ⎜ n ⎟ ⎜ ⎟ I DQ RD 20 ⎝ 2 ⎠⎝ L ⎠ ⎛ 0.080 ⎞ ⎛ W ⎞ W or 0.5 = 2 ⎜ ⎟ ⎜ ⎟ ( 0.2 ) ⇒ = 7.81 ⎝ 2 ⎠⎝ L ⎠ L Let 9 9 R1 + R2 = = = 225 k Ω ( 0.2 ) I DQ ( 0.2 )( 0.2 ) ⎛ 0.080 ⎞ ⎛ R2 ⎞ ⎛ R2 ⎞ ⎟ ( 7.81)(VGS − 1) ⇒ VGS = 1.80 = ⎜ ⎟ (9 ) = ⎜ ⎟ (9) ⇒ 2 I DQ = 0.2 = ⎜ ⎝ 2 ⎠ ⎝ R1 + R2 ⎠ ⎝ 225 ⎠ R2 = 45 k Ω, R1 = 180 k Ω RTH = R1 R2 = 180 45 = 36 k Ω 1 1 7.96 × 10−4 τ1 = = = 7.958 × 10−4 s = ( RSi + RTH ) CC or CC = ⇒ 2π f1 2π ( 200 ) ( 200 + 36 ×103 ) CC = 0.022 μ F 1 1 5.31× 10−5 τ2 = = = 5.305 × 10−5 s = RD CL or CL = ⇒ CL = 2.65 nF 2π f 2 2π ( 3 x103 ) 20 × 103 7.22 a.
  • 14. R2 + (1/ sC ) T (s) = R2 + (1/ sC ) + R1 1 + sR2 C T (s) = 1 + s ( R1 + R2 ) C rA = R2 C , rB = ( R1 + R2 ) C b. ͉T ͉ 1 0.0909 fB fA f c. rA = R2 C = (103 )(100 × 10−12 ) = 10−7 s = rA rB = ( R1 + R2 ) C = [10 + 1] × 103 × 100 × 10−12 = 1.1× 10−6 s = rB 1 1 fA ≈ = ⇒ f A = 1.59 MHz 2π rA 2π (10−7 ) 1 1 fB ≈ = ⇒ f B = 0.145 MHz 2π rB 2π (1.1× 10−6 ) 7.23 10 − 0.7 I BQ = = 0.00997 mA 430 + ( 201)( 2.5 ) I CQ = ( 200 ) I BQ = 1.995 mA ( 200 )( 0.026 ) rπ = = 2.61 k Ω 1.99 Rib = 2.61 + ( 201)( 2.5 ) = 505 k Ω 1 1 τs = = = 0.0106 s 2π f L 2π (15 ) = Req CC = ( 0.5 + 505 430 ) × 103 CC = 232.7 × 103 CC Or CC = 4.55 × 10−8 F ⇒ 45.5 nF 7.24 10 = I BQ (300) + 0.7 + ( 201) I BQ (1) ⇒ I BQ = 0.0186 mA ⇒ I CQ = 3.7126 mA β VT ( 200 )( 0.026 ) rπ = = = 1.40 K I CQ 3.71 Ri = rπ + (1 + β ) RE = 1.40 + ( 201)(1) = 202.4 K Req = RS + RB Ri = 0.1 + 300 202.4 = 121 K τ L = Req ⋅ CC 1 1 1 fL = ⇒τL = = = 7.958 × 10−3 s 2πτ L 2π f 2π ( 20 ) τL 7.958 × 10−3 CC = = ⇒ CC = 0.0658 μ F Req 121× 103 7.25
  • 15. RTH = R1 R2 = 1.2 1.2 = 0.6 k Ω ⎛ R2 ⎞ ⎛ 1.2 ⎞ VTH = ⎜ ⎟ (VCC ) = ⎜ ⎟ ( 5 ) = 2.5 V ⎝ R1 + R2 ⎠ ⎝ 1.2 + 1.2 ⎠ 2.5 − 0.7 I BQ = = 0.319 mA 0.6 + (101)( 0.05 ) I CQ = 31.9 mA (100 )( 0.026 ) rπ = = 0.0815 k Ω 31.9 1 τ C >> τ C and f = so that f 3− dB ( CC1 ) << f3− dB ( CC 2 ) C1 C2 2πτ Then, for f 3− dB ( CC1 ) ⇒ CC 2 acts as an open and for f 3− dB ( CC 2 ) ⇒ CC1 acts as a short circuit. 1 1 f 3− dB ( CC 2 ) = 25 Hz = , so that τ 2 = = 0.006366 s = Req CC 2 2πτ 2 2π ( 25 ) where ⎛ r + R1 R2 RS ⎞ Req = RL + RE ⎜ π ⎟ ⎝ 1+ β ⎠ ⎛ 81.5 + 600 300 ⎞ = 10 + 50 ⎜ ⎟ = 10 + 50 2.787 ⇒ ⎝ 101 ⎠ 0.00637 Req = 12.64 Ω ⇒ CC 2 = ⇒ CC 2 = 504 μ F 12.6 Rib = rπ + (1 + β ) RE Assume CC 2 an open Rib = 81.5 + (101)( 50 ) = 5132 Ω τ 1 = (100 )τ 2 = (100 )( 0.006366 ) = 0.6366 s = Req1CC1 Req1 = RS + RTH Rib = 300 + 600 5132 = 837.2 Ω 0.6366 So CC1 = ⇒ CC1 = 760 μ F 837.2 7.26 From Problem 7.25 RTH = 0.6 K, I CQ = 31.9 mA, rπ = 81.5 Ω 1 τC2 τ C1 and f = so f 3− dB ( CC 2 ) f 3− dB ( CC1 ) 2πτ Then f 3− dB ( CC 2 ) ⇒ CC1 acts as an open circuit and for f 3− dB ( CC1 ) ⇒ CC 2 acts as a short circuit. 1 f 3− dB ( CC1 ) = 20 Hz = ⇒ τ C1 = 0.007958 s 2πτ C1 Rib = rπ + (1 + β ) ( RE RL ) = 81.5 + (101) ( 50 10 ) = 923.2 Ω τ C1 ⇒ Req1 = RS + RTH Rib = 300 + 600 923.2 = 663.7 Ω 0.007958 CC1 = ⇒ CC1 = 12 μ F 663.7 τC2 = 100τ C1 = 0.7958 s ⎛ r + RTH ⎞ ⎛ 81.5 + 600 ⎞ Req 2 = RL + RE ⎜ π ⎟ = 10 + 50 ⎜ ⎟ ⎝ 1+ β ⎠ ⎝ 101 ⎠ Req 2 = 10 + 50 6.748 = 15.95 Ω 0.7958 CC 2 = ⇒ CC 2 = 0.050 F 15.95 7.27 a.
  • 16. I D = K n (VGS − VTN ) 2 ID 0.5 VGS = + VTN = + 0.8 = 1.8 V Kn 0.5 −VGS − ( −5 ) 5 − 1.8 RS = ⇒ RS = 6.4 kΩ = 0.5 0.5 VD = VDSQ + VS = 4 − 1.8 = 2.2 V 5 − 2.2 RD = ⇒ RD = 5.6 kΩ 0.5 (b) gm = 2 Kn I D = 2 ( 0.5 )( 0.5 ) = 1 mA / V rA = RS CS = ( 6.4 × 103 )( 5 × 10−6 ) = 3.2 × 10−2 s 1 1 fA = = ⇒ f A = 4.97 Hz 2π rA 2π ( 3.2 × 10−2 ) ⎛ RS ⎞ ⎡ 6.4 × 103 ⎤ ⎥ ( 5 × 10 ) −6 rB = ⎜ ⎟ CS = ⎢ ⎝ 1 + g m RS ⎠ ⎢ ⎣ 1 + (1)( 6.4 ) ⎥ ⎦ = 4.32 × 10−3 s 1 1 fB = = ⇒ f B = 36.8 Hz 2π rB 2π ( 4.32 × 10−3 ) c. g m RD (1 + sRS CS ) Av = ⎡ ⎛ RS ⎞ ⎤ (1 + g m RS ) ⎢1 + s ⎜ ⎟ CS ⎥ ⎣ ⎝ 1 + g m RS ⎠ ⎦ As RS becomes large g m RD ( sRS CS ) Av → ⎡ ⎛ R ⎞ ⎤ ( g m RS ) ⎢1 + s ⎜ S ⎟ CS ⎥ ⎣ ⎝ g m RS ⎠ ⎦ ⎡ ⎛ 1 ⎞ ⎤ ( g m RD ) ⎢ s ⎜ ⎟ CS ⎥ Av = ⎣ ⎝ gm ⎠ ⎦ ⎛ 1 ⎞ 1+ s ⎜ ⎟ CS ⎝ gm ⎠ 1 The corner frequency f B = and the corresponding f A → 0 2π (1/ g m ) CS gm = 2 Kn I D = 2 ( 0.5 )( 0.5 ) = 1 mA / V 1 fB = ⇒ f B = 31.8 Hz ⎛ 1 ⎞ 2π ⎜ −3 ⎟ ( 5 × 10 ) −6 ⎝ 10 ⎠ 7.28 1 RE ( RS + rπ ) CE a. fB = and rB = 2π rB RS + rπ + (1 + β ) RE
  • 17. RE rπ CE For RS = 0 rB = rπ + (1 + β ) RE −0.7 − ( −10 ) I EQ = = 1.86 mA 5 β = 75 ⇒ I CQ = 1.84 mA β = 125 ⇒ I CQ = 1.85 mA 1 For f B ≤ 200 Hz ⇒ rB ≥ = 0.796 ms 2π ( 200 ) rπ αβ so smallest rB will occur for smallest β . ( 75)( 0.026 ) β = 75; rπ = = 1.06 kΩ 1.84 0.796 × 10−3 = ( 5 ×103 ) (1.06 ) CE ⇒ C = 57.2 μ F 1.06 + ( 76 )( 5 ) E b. (125 )( 0.026 ) For β = 125; rπ = = 1.76 kΩ 1.85 rB = ( 5 ×103 ) (1.76 ) ( 57.2 ×10−6 ) = 0.797 ms 1.76 + (126 )( 5 ) 1 1 fB = = ⇒ f B = 199.7 Hz Essentially independent of β . 2π rB 2π ( 0.797 × 10−3 ) rA = RE CE = ( 5 × 103 )( 57.2 × 10−6 ) = 0.286 sec 1 1 fA = = ⇒ f A = 0.556 Hz Independent of β . 2π rA 2π ( 0.286 ) 7.29 a. Expression for the voltage gain is the same as Equation (7.66) with RS = 0. b. rA = RE CE RE rπ CE rB = rπ + (1 + β ) RE 7.30 5 − 0.7 = 1 mA = I E I C = 0.99 mA 4.3 β VT (100 )( 0.026 ) rπ = = = 2.626 K I CQ 0.99 rA = RE CE = ( 4.3 × 103 )( 5 × 10−6 ) = 2.15 ×10 −2 s rB = RE rπ CE = ( 4.3 ×103 )( 2.626 ×103 )( 5 ×10−6 ) = 1.292 ×10−4 s rπ + (1 + β ) RE 2.626 × 103 + (101) ( 4.3 × 103 ) 1 1 fA = = = 7.40 Hz 2π rA 2π ( 2.15 × 10−2 ) 1 1 fB = = = 1.23 × 103 = 1.23 kHz 2π rB 2π (1.292 × 10−4 )
  • 18. β RC (100 )( 2 ) Av = = = 0.458 w→0 rπ + (1 + β ) RE 2.626 + (101)( 4.3) β RC (100 )( 2 ) Av w →∞ = = = 76.2 rπ 2.626 ͉A␯͉ 76.2 0.458 7.40 Hz 1.23 kHz f 7.31 rH = ( RL RC ) CL = (10 5 ) × 103 × 15 × 10−12 rH = 5 × 10−8 s 1 1 fH = = ⇒ f H = 3.18 MHz 2π rH 2π ( 5 × 10−8 ) 10 − 0.7 I EQ = = 0.93 mA, I CQ = 0.921 mA 10 0.921 gm = = 35.4 mA/V 0.026 Av = g m ( RC RL ) = 35.4 ( 5 10 ) ⇒ Av = 118 7.32 ⎛ R2 ⎞ ⎛ 166 ⎞ VG = ⎜ ⎟ VDD =⎜ ⎟ (10 ) ⎝ R1 + R2 ⎠ ⎝ 166 + 234 ⎠ = 4.15 V VG − VGS = K n (VGS − VTN ) 2 ID = RS 4.15 − VGS = ( 0.5 )( 0.5 ) (VGS − 4VGS + 4 ) 2 0.25VGS − 3.15 = 0 ⇒ VGS = 3.55 V 2 g m = 2 K n (VGS − VTN ) = 2 ( 0.5 )( 3.55 − 2 ) g m = 1.55 mA / V 1 1 R0 = RS = 0.5 = 0.5 0.645 gm 1.55 R0 = 0.282 kΩ 1 r = ( R0 RL ) CL and f H = 2π r 1 βω ≈ f H = 5 MHz ⇒ r = = 3.18 × 10−8 s 2π ( 5 × 106 ) r 3.18 × 10−8 CL = = ⇒ CL = 121 pF R0 RL ( 0.282 4 ) ×103 7.33
  • 19. (a) Low-frequency RS CC Vo ϩ Vs ϩ RB V␲ r␲ RC RL Ϫ Ϫ gmV␲ Mid-Band RS Vo ϩ Vs ϩ RB V␲ r␲ RC RL Ϫ Ϫ gmV␲ High-frequency RS Vo ϩ Vs ϩ RB V␲ r␲ RC RL CL Ϫ Ϫ gmV␲ (b) ͉Am͉ fL fH f (c) 12 − 0.7 I BQ = = 11.3 μ A 1 MΩ I CQ = 1.13 mA (100 )( 0.026 ) rπ = = 2.3 k Ω 1.13 1.13 gm = = 43.46 mA / V 0.026 V0 ⎛ R R ⎞ Am = ( midband ) = − g m ( RC RL ) ⎜ B π ⎟ ⎜R r +R ⎟ Vs ⎝ B π S ⎠ ⎛ 1000 2.3 ⎞ = − ( 43.46 ) ( 5.1 500 ) ⎜ ⎜ 1000 2.3 + 1 ⎟ ⎟ ⎝ ⎠ ⎛ 2.29 ⎞ = ( 43.46 )( 5.05 ) ⎜ ⎟ ⇒ Am = 153 ⎝ 2.29 + 1 ⎠ Am dB = 43.7 dB
  • 20. , τ L = ( RS + RB rπ ) CC or τ L = (1 + 1000 2.3) × 103 (10 × 10−6 ) 1 fL = 2πτ L ⇒ τ L = 3.29 × 10−2 s ⇒ f L = 4.83 Hz , τ H = ( RC RL ) CL ⇒ τ L = ( 5.1 500 ) × 103 (10 × 10−12 ) 1 fH = 2πτ H = 5.05 × 10−8 s ⇒ f H = 3.15 MHz 7.34 a. Ϫ V0 ϩ RD RL Vi CL Ϫ Vsg gmVsg ϩ ⎛ 1 ⎞ V0 = ( g mVsg ) ⎜ R0 RL ⎟ ⎝ sCL ⎠ Vsg = −Vi V0 ( s ) ⎛ 1 ⎞ Av ( s ) = = − g m ⎜ RD RL ⎟ Vi ( s ) ⎝ sCL ⎠ ⎡ 1 ⎤ ⎢ RD RL ⋅ ⎥ sCL = − gm ⎢ ⎥ ⎢ 1 ⎥ ⎢ RD RL + ⎥ ⎢ ⎣ sCL ⎥ ⎦ 1 Av ( s ) = − g m ( RD RL ) ⋅ 1 + s ( RD RL ) CL b. r = ( RD RL ) CL c. r = (10 20 ) × 103 × 10 × 10−12 ⇒ r = 6.67 × 10 −8 s 1 1 fH = = ⇒ f H = 2.39 MHz 2π r 2π ( 6.67 × 10−8 ) From Example 7.6, gm = 0.705 mA/V Av = g m ( RD RL ) = ( 0.705 ) (10 20 ) ⇒ Av = 4.7 7.35 Computer Analysis 7.36 Computer Analysis 7.37 Computer Analysis 7.38
  • 21. gm fT = 2π ( Cπ + Cμ ) I CQ 1 gm = = = 38.46 mA/V VT 0.026 38.46 × 10−3 fT = 2π (10 + 2 ) × 10−12 fT = 510 MHz fT 510 fβ = = ⇒ f β = 4.25 MHz β 120 7.39 fT 5000 MHz fβ = = ⇒ f β = 33.3 MHz β 150 gm fT = 2π ( Cπ + Cμ ) 0.5 gm = = 19.23 mA/V 0.026 19.2 × 10 −3 5 × 109 = 2π ( Cπ + 0.15 ) × 10−12 19.2 × 10−3 Cπ + 0.15 = = 0.612 pF 2π (10−12 )( 5 × 109 ) Cπ = 0.462 pF 7.40 fT 2000 MHz a. fβ = = = 13.3 MHz = f β β 150 b. 150 h fe = 1 + j ( f / fβ ) 150 h fe = = 10 1 + ( f / fβ ) 2 2 ⎛ f ⎞ ⎛ 150 ⎞ 2 1+ ⎜ ⎟ = ⎜ = 225 ⎜ f ⎟ ⎝ 10 ⎟⎠ ⎝ β⎠ f = f β ⋅ 224 = (13.33) 224 ⇒ f = 199.6 MHz 7.41 (a) V0 = − g mVπ RL where 1 rπ rπ sC11 + srπ C1 Vπ = ⋅ Vi = ⋅ Vi 1 rπ rπ + rb + rb sC1 1 + srπ C1 rπ ⎛ r ⎞⎛ 1 ⎞ = ⋅ Vi = ⎜ π ⎟ ⎜ ⎟ ⋅ Vi rπ + rb + srb rπ C1 ⎝ rπ + rb ⎠ ⎜ 1 + s ( rb rπ ) C1 ⎟ ⎝ ⎠
  • 22. V0 ( s ) ⎛ r ⎞⎛ 1 ⎞ So Av ( s ) = = − g m RL ⎜ π ⎟ ⎜ ⎟ Vi ( s ) ⎜ 1 + s ( rb rπ ) C1 ⎟ ⎝ rπ + rb ⎠ ⎝ ⎠ (100 )( 0.026 ) 1 (b) Midband gain: rπ = = 2.6 k Ω, g m = = 38.46 mA / V 1 0.026 (i) For rb = 100 Ω ⎛ 2.6 ⎞ Av1 = − ( 38.46 )( 4 ) ⎜ ⎟ ⇒ Av1 = −148.1 ⎝ 2.6 + 0.1 ⎠ (ii) For rb = 500 Ω ⎛ 2.6 ⎞ Av 2 = − ( 38.46 )( 4 ) ⎜ ⎟ ⇒ Av 2 = −129.0 ⎝ 2.6 + 0.5 ⎠ 1 (c) f 3− dB = , τ = ( rb rπ ) C1 2πτ (i) For rb = 100 Ω τ 1 = ( 0.1 2.6 ) × 103 ( 2.2 ×10−12 ) = 2.12 × 10−10 s ⇒ f 3− db = 751 MHz (ii) For rb = 500 Ω τ 2 = ( 0.5 2.6 ) × 103 ( 2.2 ×10−12 ) = 9.23 ×10−10 s f 3− dB = 173 MHz 7.42 (b) f = 10 kHz = 104 Z i = 200 + ( 2500 1 − j (104 )(1.333 × 10−6 ) ) 1 + (10 4 2 ) (1.333 ×10 ) −6 2 = 200 + 2500 − j 33.3 = 2700 − j 33.3 (c) f = 100 kHz = 105 Z i = 200 + ( 2500 1 − j (105 )(1.333 × 10−6 ) ) 1 + (10 ) (1.333 ×10 ) 5 2 −6 2 Z i = 200 + 2456 − j 327 = 2656 − j 327 (d) f = 1 MHz = 106 Z i = 200 + ( 2500 1 − j (106 )(1.333 × 10−6 ) ) 1 + (10 6 2 ) (1.333 ×10 ) −6 2 Z i = 200 + 900 − j1200 = 1100 − j1200 7.43 a. CM = Cμ (1 + g m RL ) b. RB͉͉RS rb V0 ϩ RB ϩ V␲ r␲ RL • Vi RB ϩ RS Ϫ C␲ CM gmV␲ Ϫ
  • 23. V0 = − g mVπ RL Let Cπ + CM = Ci 1 rπ sCi⎛ RB ⎞ Vπ = ⋅⎜ ⎟ Vi R + RS ⎠ + RB RS + rb ⎝ B 1 rπ sC1 Vo ( s ) Av ( s ) = Vi ( s ) ⎡ 1 ⎤ ⎢ rπ ⋅ ⎥ sCi ⎢ ⎥ ⎢ rπ + 1 ⎥ ⎛ RB ⎞ ⎢ sCi ⎥ = − g m RL ⎜ ⎟⎢ ⎥ ⎝ RB + RS ⎠ ⎢ rπ ⋅ 1 ⎥ ⎢ sCi ⎥ ⎢ + RB RS + rb ⎥ 1 ⎢ rπ + ⎥ ⎢ ⎣ sCi ⎥ ⎦ ⎛ RB ⎞ ⎡ rπ ⎤ = − g m RL ⎜ ⎟× ⎢ ⎥ ⎝ RB + RS ⎠ ⎢ rπ + (1 + srπ Ci ) ( RB RS + rb ) ⎥ ⎣ ⎦ Let Req = ( RB RS + rb ) ⎡ ⎤ ⎛ RB ⎞ ⎢ 1 ⎥ Av ( s ) = − β RL ⎜ × ⎟ ⎢ ⎝ RB + RS ⎠ ⎢ ( rπ + Req ) ⎣ ⎣ ( ) ⎡1 + s rπ Req Ci ⎤ ⎥ ⎦⎥⎦ − β RL ⎛ RB ⎞ 1 Av ( s ) = ⋅⎜ ⎟⋅ ( rπ + Req ⎝ RB + RS ⎠ 1 + s rπ Req Ci ) 1 c. fH = ( 2π rπ Req Ci ) 7.44 High Freq. ⇒ CC1 , CC 2 , CE → short circuits C␮ V0 ϩ IS R1͉͉R2 V␲ r␲ C␲ gmV␲ RC RL Ϫ I0
  • 24. I CQ 5 gm = = = 192.3 mA/V VT 0.026 gm 192 × 10−3 fT = ⇒ 250 × 106 = 2π ( Cπ + Cμ ) 2π ( Cπ + Cμ ) Cπ + Cμ = 122.4 pF ⇒ Cμ = 5 pF, Cπ = 117.4 pF ( CM = Cμ 1 + g m ( RC RL ) ) = 5 ⎡1 + (192.3) (1 1) ⎤ ⇒ CM = 485.8 pF ⎣ ⎦ Ci = Cπ + CM = 117 + 485 = 603 pF ( 200 )( 0.026 ) rπ = = 1.04 kΩ 5 Req = R1 R2 rπ = 5 1.04 = 0.861 kΩ r = Req ⋅ Ci = ( 0.861× 103 )( 603 × 10−12 ) = 5.19 × 10 −7 s 1 1 f = = ⇒ f = 307 kHz 2π r 2π ( 5.19 × 10−7 ) 7.45 RTH = R1 R2 = 60 5.5 = 5.04 kΩ ⎛ R2 ⎞ ⎛ 5.5 ⎞ VTH = ⎜ ⎟ VCC = ⎜ ⎟ (15 ) = 1.26 V ⎝ R1 + R2 ⎠ ⎝ 5.5 + 60 ⎠ 1.26 − 0.7 I BQ = = 0.0222 mA 5.04 + (101)( 0.2 ) I CQ = 2.22 mA (100 )( 0.026 ) rπ = = 1.17 kΩ 2.22 2.22 gm = = 85.4 mA/V 0.026 Lower 3 – dB frequency: rL = Req ⋅ CC1 Req = RS + R1 R2 rπ = 2 + 60 5.5 1.17 = 2.95 k Ω rL = ( 2.95 ×103 )( 0.1× 10−6 ) = 2.95 × 10−4 s 1 1 fL = = ⇒ f L = 540 Hz 2π rL 2π ( 2.95 × 10−4 ) Upper 3 – dB frequency:
  • 25. gm 85.4 × 10−3 fT = ⇒ 400 × 106 = 2π ( Cπ + Cμ ) 2π ( Cπ + Cμ ) Cπ + Cμ = 34 pF; Cμ = 2 pF ⇒ Cπ = 32 pF CM = Cμ (1 + g m RC ) = 2 (1 + ( 85.4 )( 4 ) ) ⇒ CM = 685 pF Ci = Cπ + CM = 32 + 685 = 717 pF Req = RS R1 R2 rπ = 2 60 5.5 1.17 = 0.644 kΩ r = Req ⋅ Ci = ( 0.644 × 103 )( 717 × 10−12 ) = 4.62 × 10−7 s 1 fH = ⇒ f H = 344 kHz 2π r 7.46 RTH = R1 R2 = 600 55 = 50.38 K ⎛ R2 ⎞ ⎛ 55 ⎞ VTH = ⎜ ⎟ (15 ) = ⎜ ⎟ (15 ) = 1.2595 V ⎝ R1 + R2 ⎠ ⎝ 600 + 55 ⎠ 1.26 − 0.7 I BQ = = 0.00222 mA 50.4 + (101)( 2 ) I CQ = 0.2217 mA (100 )( 0.026 ) rπ = = 11.73 K 0.222 0.2217 gm = = 8.527 mA/V 0.026 Lower – 3dB Fig. τ L = R e q1 Cc1 ; Req1 = RS + RTH r π = 0.50 + 50.38 11.73 = 10.0 K τ L = (10 × 10 3 )( 0.1×10 ) = 10 −6 −3 s τ L = R e q1 Cc1 ; Req1 = RS + RTH r π = 0.50 + 50.38 11.73 = 10.0 K τ L = (10 × 103 )( 0.1×10−6 ) = 10−3 s 1 1 fL = = ⇒ f L = 159 Hz 2πτ 2 2π (10−3 ) Upper – 3dB Fig. gm 8.527 × 10−3 fT = = = 400 × 106 2π ( Cπ + Cμ ) 2π ( Cπ + 2 ) × 10 −12 Cπ + Cμ = 3.393 pF ⇒ Cπ = 1.393 pF CM = Cμ (1 + g m RC ) = 2 ⎡1 + ( 8.527 )( 40 ) ⎤ = 684 pF ⎣ ⎦ CT = Cπ + CM = 1.393 + 684 = 685.4 pF Req 2 = RS RTH rπ = 0.5 50.38 11.73 = 50.38 0.480 = 0.4750 K τ H = R eq 2 .CT = ( 0.4750 × 103 ) ( 685.4 × 10−12 ) = 3.256 × 10−7 s 1 1 fH = = ⇒ f H = 489 KHz 2πτ H 2π ( 3.256 × 10−7 )
  • 26. 7.47 gm fT = 2π ( Cgs + Cgd ) ⎛ 40 ⎞ g m = 2 K n I D , K n = (15 ) ⎜ ⎟ = 60 μ A / V 2 ⎝ 10 ⎠ gm = 2 ( 60 )(100 ) = 154.9 μ A / V 154.9 × 10−6 fT = ⇒ fT = 44.8 MHz 2π ( 0.5 + 0.05 ) × 10−12 7.48 gm fT = 2π ( Cgs + Cgd ) g m = 2 K n (VGs − VT ) ID I D = K n (VGs − VTN ) or VGs − VTN = 2 then g m = 2 K n I D Kn 2 Kn I D Kn I D So fT = = 2π ( Cgs + Cgd ) π ( Cgs + Cgd ) ( 0.2 ×10 )( 20 ×10 ) −3 −6 (a) fT = ⇒ fT = 33.6 MHz π ( 0.5 + 0.1) × 10−12 ( 0.2 ×10 )( 250 ×10 ) −3 −6 (b) fT = ⇒ fT = 118.6 MHz π ( 0.5 + 0.1) × 10−12 ( 0.2 ×10 ) I −3 D (c) 10 = 9 ⇒ I D = 17.8 mA π ( 0.5 + 0.1) × 10−12 7.49 gm fT = 2π ( Cgs + Cgd ) Cgs + Cgd = WLCox ⎛W ⎞⎛ μ C ⎞ g m = 2 K n (VGS − VTN ) = 2 ⎜ ⎟ ⎜ n ox ⎟ (VGS − VTN ) ⎝ L ⎠⎝ 2 ⎠ ⎛W ⎞ ⎜ ⎟ ( μ n Cox )(VGS − VTN ) Then fT = ⎝ ⎠ L 2π WLCox μ n (VGS − VTN ) fT = 2π L2 450 ( 0.5 ) (a) fT = ⇒ fT = 2.49 GHz 2π (1.2 × 10−4 ) 2 450 ( 0.5 ) (b) fT = ⇒ fT = 111 GHz 2π ( 0.18 × 10−4 ) 7.50 a.
  • 27. ( CM = Cgd ′ 1 + g m ( ro RD ) ) CM = 5 ⎡1 + ( 3) (15 10 ) ⎤ ⇒ CM = 95 pF ⎣ ⎦ b. r = ( ri ) ( Cgs + CM ) r = (10 × 103 ) ( 50 + 95 ) × 10−12 = 1.45 × 10−6 s 1 1 f = = ⇒ f = 110 kHz 2π r 2π (1.45 × 10−6 ) 7.51 gm fT = ( Eq. 7.104 ) 2π ( CgsT + CgdT ) ⎛ 2⎞ Let CgdT = 0 and CgsT = ⎜ ⎟ (WLCox ) ⎝ 3⎠ ⎛μ C ⎞ ⎡W ⎤ g m = 2 K n I D = 2 ⎜ n ox ⎟ ⎢ L ⎥ ID ⎝ 2 ⎠⎣ ⎦ ⎛1 ⎞⎛ W ⎞ 2 ⎜ μ n Cox ⎟⎜ ⎟ I D ⎝2 ⎠⎝ L ⎠ So fT = ⎛ 2⎞ 2π ⎜ ⎟ (W LCox ) ⎝ 3⎠ ⎛1 ⎞⎛ W ⎞ ⎜ μ n Cox ⎟⎜ ⎟ I D 3 ⎝ 2 ⎠⎝ L ⎠ = ⋅ 2π L W Cox 3 μn I D fT = ⋅ 2π L 2W Cox L 7.52 (a) gm ′ gm = 1 + g m rS g m = 2 K n (VGS − VTN ) ⎛ μ C ⎞ ⎛ W ⎞ ⎛ ( 400 ) ( 7.25 × 10 ) ⎞ −8 K n = ⎜ n ox ⎟ ⎜ ⎟ = ⎜ ⎟ (10 ) ⎝ 2 ⎠⎝ L ⎠ ⎝ ⎜ 2 ⎟ ⎠ K n = 1.45 × 10−4 A / V 2 For VGS = 5 V g m = 2 (1.45 × 10 −4 ) ( 5 − 0.65 ) = 1.26 × 10−3 A/V g m = ( 0.80 ) g m = 1.01× 10−3 A/V ′ 1.26 × 10−3 1.01× 10−3 = 1 + (1.26 × 10−3 ) rS 1 + (1.26 × 10−3 ) rS = 1.25 ⇒ rS = 196 Ω b.
  • 28. For VGS = 3 V g m = 2 (1.45 × 10−4 ) ( 3 − 0.65 ) = 0.6815 × 10−3 A/V 0.6815 × 10−3 ′ gm = 1 + ( 0.6815 × 10−3 ) (196 ) ′ g m = 0.60 × 10−3 A/V Re duced by ≈ 12% 7.53 a. ϩ Vgs gmVgs Ii Ri Ϫ RL I0 rS I i Ri I 0 = g mVgs and Vgs = I i Ri − g mVgs rS so Vgs = 1 + g m rS I0 g R Then Ai = = m i I i 1 + g m rS b. As an approximation, consider ϩ I0 Ii Vgs Ri CgsT CM RL Ϫ gЈ Vgs m In this case I 1 gm ′ Ai = 0 = g m Ri ⋅ where CM = C gdT (1 + g m RL ) and g m = ′ ′ Ii 1 + sRi ( C gsT + CM ) 1 + g m rs c. As rS increases, CM decreases, so the bandwidth increases, but the current gain magnitude decreases. 7.54 ⎛ R2 ⎞ ⎛ 225 ⎞ VGS = ⎜ ⎟ VDD = ⎜ ⎟ (10 ) ⎝ R1 + R2 ⎠ ⎝ 225 + 500 ⎠ VGS = 3.10 V g m = 2 K n (VGS − VTN ) = 2 (1)( 3.10 − 2 ) g m = 2.207 mA / V a. Ri CgdT V0 ϩ Vi ϩ R1͉͉R2 Vgs CgsT gmVgs RD Ϫ Ϫ b.
  • 29. CM = C gdT (1 + g m RD ) = (1) ⎡1 + ( 2.207 )( 5 ) ⎤ ⎣ ⎦ CM = 12 pF c. r = ( Ri R1 R2 ) ( CgsT + CM ) Ri R1 R2 = 1 500 225 = 1 155 = 0.9936 kΩ r = ( 0.9936 × 103 ) ( 5 + 12 ) × 10−12 = 1.69 × 10 −8 s 1 1 fH = = ⇒ f H = 9.42 MHz 2π r 2π (1.69 × 10−8 ) − g mVgs RD R1 R2 155 Av = and Vgs = ⋅ Vi = ⋅ Vi = 0.994 Vi Vi R1 R2 + Ri 155 + 1 Av = − ( 2.2 )( 5 )( 0.994 ) ⇒ Av = −10.9 7.55 RTH = R1 R2 = 33 22 = 13.2 kΩ ⎛ R2 ⎞ ⎛ 22 ⎞ VTH = ⎜ ⎟ ( 5) = ⎜ ⎟ ( 5) = 2 V ⎝ R1 + R2 ⎠ ⎝ 22 + 33 ⎠ 2 − 0.7 I BQ = = 0.00261 mA 13.2 + (121)( 4 ) I CQ = 0.3138 (120 )( 0.026 ) rπ = = 9.94 kΩ 0.3138 0.3138 gm = = 12.07 mA/V 0.026 100 r0 = = 318 kΩ 0.3138 a. gm fT = 2π ( Cπ + Cμ ) gm 12.07 × 10−3 Cπ + Cμ = = 2π fT 2π ( 600 × 106 ) Cπ + Cμ = 3.20 pF; Cμ = 1 pF ⇒ Cπ = 2.20 pF ( CM = Cμ ⎡1 + g m ro RC RL ⎤ ⎣ ⎦ ) ( = (1) ⎡1 + (12.07 ) 318 4 5 ⎤ ⎣ ⎦ ) CM = 27.6 pF b.
  • 30. r = Req ( Cπ + CM ) Req = R1 R2 Rs rπ = 33 22 2 rπ = 1.74 9.94 kΩ ⇒ Req = 1.48 kΩ r = (1.48 × 103 ) ( 2.20 + 27.6 ) × 10−12 r = 4.41× 10 −8 s 1 1 fH = = ⇒ f H = 3.61 MHz 2π r 2π ( 4.41× 10−8 ) ( V0 = − g mVπ ro RC RL ) x ⎛ R1 R2 rπ ⎞ Vπ = ⎜ ⎟V ⎜ R1 R2 rπ + RS ⎟ i ⎝ ⎠ R1 R2 rπ = 33 22 9.94 = 5.67 kΩ ⎛ 5.67 ⎞ vπ = ⎜ ⎟ Vi = 0.739Vi ⎝ 5.67 + 2 ⎠ r0 RC RL = 318 4 5 = 2.18 kΩ Av = − (12.07 )( 0.739 )( 2.18 ) Av = −19.7 7.56 RTH = R1 R2 = 40 5 = 4.44 kΩ ⎛ R2 ⎞ ⎛ 5 ⎞ VTH = ⎜ ⎟ VCC = ⎜ ⎟ (10 ) = 1.111 V ⎝ R1 + R2 ⎠ ⎝ 5 + 40 ⎠ 1.111 − 0.7 I BQ = = 0.00633 mA 4.44 + (121)( 0.5 ) I CQ = 0.760 mA (120 )( 0.026 ) rπ = = 4.11 kΩ 0.760 0.760 gm = = 29.23 mA/V 0.026 r0 = ∞ gm fT = 2π ( Cπ + Cμ ) gm 29.23 × 10−3 Cπ + Cμ = = 2π fT 2π ( 250 × 106 ) Cπ + Cμ = 18.6 pF; Cμ = 3 pF ⇒ Cπ = 15.6 pF a. CM = Cμ ⎡1 + g m ( RC RL ) ⎤ ⎣ ⎦ ⎡1 + ( 29.2 ) ( 5 2.5 ) ⎤ ⇒ CM = 149 pF CM = 3 ⎣ ⎦ For upper frequency:
  • 31. rH = Req ( Cπ + CM ) Req = rπ R1 R2 RS = 4.11 40 5 0.5 Req = 0.405 kΩ rH = ( 0.405 × 103 ) (15.6 + 149 ) × 10−12 = 6.67 ×10 −8 s 1 fH = ⇒ f H = 2.39 MHz 2π rH For lower frequency: rL = Req CC1 Req = RS + R1 R2 rπ = 0.5 + 40 5 4.11 Req = 2.64 kΩ rL = ( 2.64 × 103 )( 4.7 × 10−6 ) = 1.24 × 10−2 s 1 fL = ⇒ f L = 12.8 Hz 2π rL b. ͉A␯͉ 39.5 fL fH f V0 = − g mVπ ( RC RL ) ⎛ R1 R2 rπ ⎞ Vπ = ⎜ ⎟V ⎜ R1 R2 rπ + RS ⎟ i ⎝ ⎠ ⎛ 2.135 ⎞ Vπ = ⎜ ⎟ Vi = 0.8102Vi ⎝ 2.135 + 0.5 ⎠ AV = ( 29.23)( 0.8102 ) ( 5 2.5 ) AV = 39.5 7.57 9 − VSG I D = K P (VSG + VTP ) = 2 RS ( 2 )(1.2 ) (VSG − 4VSG + 4 ) = 9 − VSG 2 2.4VSG − 8.6VSG + 0.6 = 0 2 (8.6 ) − 4 ( 2.4 )( 0.6 ) 2 8.6 ± VSG = 2 ( 2.4 ) VSG = 3.512 V g m = 2 K P (VSG + VTP ) = 2 ( 2 )( 3.512 − 2 ) g m = 6.049 mA / V I D = ( 2 )( 3.512 − 2 ) = 4.572 mA 2 1 1 r0 = = ⇒ r0 = 21.9 kΩ λ I o ( 0.01)( 4.56 )
  • 32. a. ( CM = CgdT 1 + g m ( ro RD ) ) CM = (1) ⎡1 + ( 6.04 ) ( 21.9 1) ⎤ ⇒ CM = 6.785 pF ⎣ ⎦ b. rH = ( Ri RG ) ( CgsT + CM ) rH = ( 2 100 ) × 103 (10 + 6.78 ) × 10−12 rH = 3.29 × 10−8 s 1 fH = → f H = 4.84 MHz 2πτ H V0 = − g m ( ro RD ) ⋅ Vgs ⎛ RG ⎞ ⎛ 100 ⎞ Vgs = ⎜ ⎟ Vi = ⎜ ⎟ Vi ⎝ RG + Ri ⎠ ⎝ 102 ⎠ ⎛ 100 ⎞ Av = − ( 6.04 ) ⎜ ⎟ ( 21.9 1) ⎝ 102 ⎠ Av = −5.67 7.58 ⎛ R2 ⎞ ⎛ 22 ⎞ VG = ⎜ ⎟ ( 20 ) − 10 = ⎜ ⎟ ( 20 ) − 10 ⎝ R1 + R2 ⎠ ⎝ 22 + 8 ⎠ VG = 4.67 V 10 − VSG − 4.67 = K P (VSG + VTP ) 2 ID = RS 5.33 − VSG = (1)( 0.5 ) (VSG − 4VSG + 4 ) 2 0.5VSG − VSG − 3.33 = 0 2 1 ± 1 + 4 ( 0.5 )( 3.33) VSG = ⇒ VSG = 3.77 V 2 ( 0.5 ) g m = 2 K p (VSG + VTP ) = 2 (1)( 3.77 − 2 ) g m = 3.54 mA / V b. ( CM = CgdT 1 + g m ( RD RL ) ) CM = ( 3) ⎡1 + ( 3.54 ) ( 2 5 ) ⎤ ⇒ CM = 18.2 pF ⎣ ⎦ a. r = Req ( CgsT + CM ) Req = Ri R1 R2 = 0.5 8 22 = 0.461 kΩ r = ( 0.461× 103 ) (15 + 18.2 ) × 10−12 = 1.53 × 10−8 s 1 fH = ⇒ f H = 10.4 MHz 2π r c. V0 = − g mVgs ( RD RL ) ⎛ R R ⎞ ⎛ 5.87 ⎞ Vgs = ⎜ 1 2 ⎟ Vi = ⎜ ⎜ R1 R2 Ri ⎟ ⎟ Vi ⇒ Vgs = ( 0.9215 ) Vi ⎝ ⎠ ⎝ 5.87 + 0.5 ⎠ Av = − ( 3.54 )( 0.9215 ) ( 2 5 ) ⇒ Av = −4.66
  • 33. 7.59 ⎛ 100 ⎞ I E = 0.5 mA ⇒ I CQ = ⎜ ⎟ ( 0.5 ) = 0.495 mA ⎝ 101 ⎠ 0.495 gm = = 19.0 mA/V 0.026 (100 )( 0.026 ) rπ = = 5.25 kΩ 0.495 a. Input: From Eq. 7.107b ⎡ rπ ⎤ rPπ = ⎢ RE RS ⎥ Cπ ⎣1 + β ⎦ ⎡ 5.25 ⎤ =⎢ 0.5 0.05⎥ × 103 × 10 × 10−12 ⎣ 101 ⎦ = 2.43 × 10−10 s 1 f Hπ = ⇒ f H π = 656 MHz 2π rpπ Output: From Eq. 7.108b rPμ = ( RB RL ) Cμ = (100 1) × 103 × 10−12 = 9.90 × 10−10 s 1 fH μ = ⇒ f H μ = 161 MHz 2π rPμ b. RS gmV␲ V0 Ϫ Vi ϩ RE V␲ r␲ RB RL Ϫ ϩ V0 = − g m Vπ ( RB RL ) Vπ Vπ Vi − ( −Vπ ) g mVπ + + + =0 rπ RE RS ⎡ 1 1 1 ⎤ −V Vπ ⎢ g m + + + ⎥= i ⎣ rπ RE RS ⎦ RS ⎡ 1 1 1 ⎤ −Vi Vπ ⎢19 + + + = ⎣ 5.25 0.5 0.05 ⎥ 0.05 ⎦ Vπ ( 41.19 ) = −Vi ( 20 ) Vπ = − ( 0.4856 ) Vi V0 = − (19 )( −0.4856 )(100 1) Vi Av = 9.14 c. r = CL ( RL RB ) = (15 × 10−12 ) (1 100 ) × 103 r = 1.485 × 10−8 s 1 f = → f = 10.7 MHz 2π r Since f < f H μ ⇒ 3d B freq. dominated by CL . 7.60
  • 34. 20 − 0.7 I EQ = = 1.93 mA 10 ⎛ 100 ⎞ I CQ = ⎜ ⎟ (1.93) = 1.91 mA ⎝ 101 ⎠ 1.91 gm = = 73.5 mA/V 0.026 (100 )( 0.026 ) rπ = = 1.36 kΩ 1.91 a. Input: ⎡ rπ ⎤ rPπ = ⎢ RE RS ⎥ ⋅ Cπ ⎣1 + β ⎦ ⎡1.36 ⎤ =⎢ 10 1⎥ × 103 × 10 × 10−12 ⎣ 101 ⎦ rPπ = 1.327 × 10−10 s 1 f Pπ = ⇒ f Pπ = 1.20 GHz 2π rPπ Output: rPπ = ( RC RL ) Cμ = ( 6.5 5 ) × 103 × 10−12 rPπ = 2.826 × 10−9 s 1 f Pμ = → f Pμ = 56.3 MHz 2π rPπ b. V0 = − g m Vπ ( RC RL ) Vπ Vπ Vi − ( −Vπ ) g mVπ + + + =0 rπ RE RS ⎛ 1 1 1 ⎞ Vi Vπ ⎜ g m + + + ⎟=− ⎝ rπ RE RS ⎠ RS ⎡ 1 1 1 ⎤ −V Vπ ⎢ 73.5 + + + = i ⎣ 1.36 10 1 ⎥ (1) ⎦ Vπ ( 75.34 ) = −Vi ⇒ Vπ = − ( 0.01327 ) Vi V0 = − ( 73.5 )( −0.01327 ) ( 6.5 5 ) Vi Av = 2.76 c. r = CL ( RL Rc ) = (15 × 10−12 ) ( 6.5 5 ) × 103 r = 4.24 × 10−8 s 1 f = → f = 3.75 MHz 2π r Since f < fp μ , 3dB frequency is dominated by CL. 7.61
  • 35. VGS + I D RS = 5 5 − VGS = K n (VGS − VTN ) 2 ID = RS 5 − VGS = ( 3)(10 ) (V 2GS − 2VGS + 1) 30V 2GS − 59VGS + 25 = 0 ( 59 ) − 4 ( 30 )( 25 ) 2 59 ± VGS = ⇒ VGS = 1.349 V 2 ( 30 ) g m = 2 K n (VGS − VTN ) = 2 ( 3)(1.35 − 1) g m = 2.093 mA / V On the output: rPμ = ( RD RL ) Cgd T = ( 5 4 ) × 103 × 4 × 10−12 rPμ = 8.89 × 10−9 s 1 f Pμ = → f Pμ = 17.9 MHz 2π rPμ Ri gmVgs V0 Ϫ Vi ϩ RS Vgs RD RL Ϫ ϩ V0 = − g mVgs ( RD RL ) Vgs Vi − ( −Vgs ) g mVgs + + =0 RS RS ⎛ 1 1⎞ V Vgs ⎜ g m + + ⎟=− i ⎝ RS Ri ⎠ Ri ⎛ 1 1⎞ V Vgs ⎜ 2.093 + + ⎟ = − i ⎝ 10 2 ⎠ 2 Vgs = ( 0.1857 )Vi V0 Av = = ( 2.093)( 0.1857 ) ( 5 4 ) Vi Av = 0.864 7.62 dc analysis V + − VSG = K P (VSG + VTP ) 2 ID = RS 5 − VSG = (1)( 4 )(VSG − 0.8 ) 2 = 4 (VSG − 1.6VSG + 0.64 ) 2 4VSG − 5.4VSG − 2.44 = 0 2 ( 5.4 ) + 4 ( 4 )( 2.44 ) 2 5.4 ± VSG = = 1.707 2 ( 4) g m = 2 K P (VSG + VTP ) = 2 (1)(1.707 − 0.8 ) g m = 1.81 mA / V
  • 36. Ri gmVgs Ϫ RS Vgs CgsT CgdT RD RL ϩ 1 3 ⋅ dB frequency due to CgsT : Req = RS Ri gm 1 fA = 2π Req ⋅ CgsT 1 Req = 4 0.5 = 0.246 kΩ 1.81 1 fA = = 162 MHz 2π ( 246 ) ( 4 × 10−12 ) 3 − dB frequency due to CgdT 1 fB = 2π ( RD RL ) CgdT 1 = 2π ( 2 4 ) × 103 × 10−12 f = 119 MHz Midband gain Ri gmVgs V0 Ϫ Vi ϩ Vgs RS RD RL Ϫ ϩ 1 1 − RS 4 − gm 1.81 Vgs = ⋅ Vi = ⋅ Vi 1 1 RS + R i 4 + 0.5 gm 1.81 = −0.492Vi V0 = − g mVgs ( RD RL ) Av = ( 0.492 )(1.81) ( 4 2 ) ⇒ Av = 1.19 7.63 (120 )( 0.026 ) rπ = = 3.059 kΩ 1.02 g m = 39.23 mA/V a.
  • 37. 1 Input: f H π = 2π rπ rπ = ⎡ Rs R2 R3 rπ ⎤ ( Cπ + 2Cμ ) ⎣ ⎦ Req = 0.1 20.5 28.3 3.06 = 0.096 kΩ rπ = ( 96 ) (12 + 2 ( 2 ) ) × 10−12 = 1.537 × 10−9 s 1 f Hπ = = 103.6 MHz 2π (1.536 × 10−9 ) 1 Output: f H μ = 2π rμ rμ = ( RC RL ) Cμ = (15 10 ) × 103 × 2 × 10−12 = 6.67 × 10−9 1 fH μ = = 23.9 MHz 2π ( 6.67 × 10−9 ) b. ⎡ R2 R3 rπ ⎤ A = g m ( RC RL ) ⎢ ⎥ ⎣ R2 R3 rπ + RS ⎦ R2 R3 rπ = 20.5 28.3 3.059 = 2.433 kΩ ⎡ 2.433 ⎤ A = ( 39.23) ( 5 10 ) ⎢ ⎥ ⇒ A = 125.6 ⎣ 2.433 + 0.1 ⎦ c. CL = 15 pF > Cμ ⇒ CL dominates frequency response.