SlideShare a Scribd company logo
1 of 28
Download to read offline
Section	2.7
                     Related	Rates

                 V63.0121.027, Calculus	I



                      October	20, 2009


Announcements
   Midterm	average	57.69/75	(77%), median	59/75	(79%),
   standard	deviation	11%
   Solutions	soon.

                                         .   .   .   .   .   .
“Is	there	a	curve?”



     Midterm
         Mean	was	77%	and
         standard	deviation
         was	11%
         So	scores	average	are
         good
         Scores	above	66/75
         (88%)	are	great
     For	final	letter	grades,
     refer	to	syllabus




                                 .   .   .   .   .   .
What	are	related	rates	problems?




   Today	we’ll	look	at	a	direct	application	of	the	chain	rule	to
   real-world	problems. Examples	of	these	can	be	found	whenever
   you	have	some	system	or	object	changing, and	you	want	to
   measure	the	rate	of	change	of	something	related	to	it.




                                             .   .   .   .    .    .
Problem




  Example
  An	oil	slick	in	the	shape	of	a	disk	is	growing. At	a	certain	time,
  the	radius	is	1	km	and	the	volume	is	growing	at	the	rate	of
  10,000	liters	per	second. If	the	slick	is	always	20	cm	deep, how
  fast	is	the	radius	of	the	disk	growing	at	the	same	time?
                                               .    .   .    .    .    .
A solution



  The	volume	of	the	disk	is

             V = π r2 h .
                                            .       r
                                                    .
                  dV
  We	are	given        , a	certain                               h
                                                                .
                   dt
  value	of r, and	the	object	is
         dr
  to	find      at	that	instant.
         dt




                                    .   .       .       .   .       .
Solution

   Solution
   Differentiating V = π r2 h with	respect	to	time	we	have

                                   0
              dV        dr     dh¡
                                 !
                 = 2π rh + π r2 ¡
              dt        dt     ¡dt




                                                .    .   .   .   .   .
Solution

   Solution
   Differentiating V = π r2 h with	respect	to	time	we	have

                                   0
              dV        dr     dh¡
                                 !   dr    1     dV
                 = 2π rh + π r2 ¡ =⇒    =      ·    .
              dt        dt     ¡dt   dt   2π rh dt




                                                .    .   .   .   .   .
Solution

   Solution
   Differentiating V = π r2 h with	respect	to	time	we	have

                                   0
              dV        dr     dh¡
                                 !   dr    1     dV
                 = 2π rh + π r2 ¡ =⇒    =      ·    .
              dt        dt     ¡dt   dt   2π rh dt
   Now	we	evaluate:
                dr                       1          10, 000 L
                              =                   ·
                dt   r=1 km       2π(1 km)(20 cm)       s




                                                    .   .       .   .   .   .
Solution

   Solution
   Differentiating V = π r2 h with	respect	to	time	we	have

                                     0
                dV        dr     dh¡
                                   !   dr    1     dV
                   = 2π rh + π r2 ¡ =⇒    =      ·    .
                dt        dt     ¡dt   dt   2π rh dt
   Now	we	evaluate:
                  dr                       1          10, 000 L
                                =                   ·
                  dt   r=1 km       2π(1 km)(20 cm)       s

   Converting	every	length	to	meters	we	have

           dr                        1           10 m3    1 m
                         =                     ·       =
           dt   r=1 km       2π(1000 m)(0.2 m)     s     40π s


                                                      .   .       .   .   .   .
Outline




  Strategy



  Examples




             .   .   .   .   .   .
Strategies	for	Problem	Solving




   1. Understand	the	problem
   2. Devise	a	plan
   3. Carry	out	the	plan
   4. Review	and	extend



                                     György	Pólya
                                 (Hungarian, 1887–1985)


                                    .   .   .   .   .     .
Strategies	for	Related	Rates	Problems




                                    .   .   .   .   .   .
Strategies	for	Related	Rates	Problems

    1. Read	the	problem.




                                    .   .   .   .   .   .
Strategies	for	Related	Rates	Problems

    1. Read	the	problem.
    2. Draw	a	diagram.




                                    .   .   .   .   .   .
Strategies	for	Related	Rates	Problems

    1. Read	the	problem.
    2. Draw	a	diagram.
    3. Introduce	notation. Give	symbols	to	all	quantities	that	are
       functions	of	time	(and	maybe	some	constants)




                                               .   .    .    .   .   .
Strategies	for	Related	Rates	Problems

    1. Read	the	problem.
    2. Draw	a	diagram.
    3. Introduce	notation. Give	symbols	to	all	quantities	that	are
       functions	of	time	(and	maybe	some	constants)
    4. Express	the	given	information	and	the	required	rate	in	terms
       of	derivatives




                                               .   .    .    .   .    .
Strategies	for	Related	Rates	Problems

    1. Read	the	problem.
    2. Draw	a	diagram.
    3. Introduce	notation. Give	symbols	to	all	quantities	that	are
       functions	of	time	(and	maybe	some	constants)
    4. Express	the	given	information	and	the	required	rate	in	terms
       of	derivatives
    5. Write	an	equation	that	relates	the	various	quantities	of	the
       problem. If	necessary, use	the	geometry	of	the	situation	to
       eliminate	all	but	one	of	the	variables.




                                               .    .    .   .    .   .
Strategies	for	Related	Rates	Problems

    1. Read	the	problem.
    2. Draw	a	diagram.
    3. Introduce	notation. Give	symbols	to	all	quantities	that	are
       functions	of	time	(and	maybe	some	constants)
    4. Express	the	given	information	and	the	required	rate	in	terms
       of	derivatives
    5. Write	an	equation	that	relates	the	various	quantities	of	the
       problem. If	necessary, use	the	geometry	of	the	situation	to
       eliminate	all	but	one	of	the	variables.
    6. Use	the	Chain	Rule	to	differentiate	both	sides	with	respect	to
       t.




                                               .    .    .   .    .     .
Strategies	for	Related	Rates	Problems

    1. Read	the	problem.
    2. Draw	a	diagram.
    3. Introduce	notation. Give	symbols	to	all	quantities	that	are
       functions	of	time	(and	maybe	some	constants)
    4. Express	the	given	information	and	the	required	rate	in	terms
       of	derivatives
    5. Write	an	equation	that	relates	the	various	quantities	of	the
       problem. If	necessary, use	the	geometry	of	the	situation	to
       eliminate	all	but	one	of	the	variables.
    6. Use	the	Chain	Rule	to	differentiate	both	sides	with	respect	to
       t.
    7. Substitute	the	given	information	into	the	resulting	equation
       and	solve	for	the	unknown	rate.

                                               .    .    .   .    .     .
Outline




  Strategy



  Examples




             .   .   .   .   .   .
Another	one




  Example
  A man	starts	walking	north	at	4ft/sec from	a	point P. Five	minutes
  later	a	woman	starts	walking	south	at	4ft/sec from	a	point	500	ft
  due	east	of P. At	what	rate	are	the	people	walking	apart	15	min
  after	the	woman	starts	walking?




                                               .    .    .   .    .    .
Diagram

          4
          . 	ft/sec




                      m
                      .



                          .




                              .   .   .   .   .   .
Diagram

          4
          . 	ft/sec




                      m
                      .



                          .   5
                              . 00



                                         w
                                         .



                                                 4
                                                 . 	ft/sec
                                     .       .       .       .   .   .
Diagram

          4
          . 	ft/sec




                              .
                              s
                      m
                      .



                          .       5
                                  . 00



                                             w
                                             .



                                                     4
                                                     . 	ft/sec
                                         .       .       .       .   .   .
Diagram

          4
          . 	ft/sec




                              .
                              s
                      m
                      .



                          .       5
                                  . 00



                      w
                      .                      w
                                             .

                                  5
                                  . 00
                                                     4
                                                     . 	ft/sec
                                         .       .       .       .   .   .
Diagram

          4
          . 	ft/sec

                                         √
                                   s
                                   .=        (m + w)2 + 5002




                              .
                              s
                      m
                      .



                          .       5
                                  . 00



                      w
                      .                              w
                                                     .

                                  5
                                  . 00
                                                             4
                                                             . 	ft/sec
                                                 .       .       .       .   .   .
Expressing	what	is	known	and	unknown


  15	minutes	after	the	woman	starts	walking, the	woman	has
  traveled       (      )(       )
                    4ft    60sec
                                   (15min) = 3600ft
                   sec      min
  while	the	man	has	traveled
                (     )(        )
                  4ft     60sec
                                  (20min) = 4800ft
                  sec      min

                    ds                          dm
  We	want	to	know      when m = 4800, w = 3600,    = 4, and
                    dt                          dt
   dw
      = 4.
   dt



                                            .   .    .   .   .   .
Differentiation


   We	have
                                                  (             )
       ds   1(                 )−1/2                  dm dw
          =    (m + w)2 + 5002       (2)(m + w)          +
       dt   2                                         dt   dt
                  (           )
            m + w dm dw
          =             +
              s      dt    dt

   At	our	particular	point	in	time

   ds           4800 + 3600                  672
      =√                          (4 + 4) = √      ≈ 7.98587ft/s
   dt                    2 + 5002             7081
            (4800 + 3600)




                                            .     .     .   .       .   .

More Related Content

What's hot

Section 6.4 graphs of the sine, cosine, tangent, cotangent, cosecant, and sec...
Section 6.4 graphs of the sine, cosine, tangent, cotangent, cosecant, and sec...Section 6.4 graphs of the sine, cosine, tangent, cotangent, cosecant, and sec...
Section 6.4 graphs of the sine, cosine, tangent, cotangent, cosecant, and sec...Wong Hsiung
 
Simplification of Fractions and Operations on Fractions
Simplification of Fractions and Operations on FractionsSimplification of Fractions and Operations on Fractions
Simplification of Fractions and Operations on FractionsVer Louie Gautani
 
Multi-step Equations
Multi-step EquationsMulti-step Equations
Multi-step EquationsBitsy Griffin
 
Completing the Square
Completing the SquareCompleting the Square
Completing the Squaretoni dimella
 
Maths Quadrilateral
Maths QuadrilateralMaths Quadrilateral
Maths Quadrilateralashleyyeap
 
Algebraic expressions and equations
Algebraic expressions and equationsAlgebraic expressions and equations
Algebraic expressions and equationsChristian Costa
 
Understanding Square Numbers (Lesson 1)
Understanding Square Numbers (Lesson 1) Understanding Square Numbers (Lesson 1)
Understanding Square Numbers (Lesson 1) jacob_lingley
 
Soal post test aplot
Soal post test   aplotSoal post test   aplot
Soal post test aplotOgi Meita
 
6th grade math algebra
6th grade math algebra6th grade math algebra
6th grade math algebragwl10925
 
Visual Models for Fraction Operations
Visual Models for Fraction OperationsVisual Models for Fraction Operations
Visual Models for Fraction Operationssjwiegmink
 
Bahan ajar kpk dan fpb dalam soal cerita (anis khoerunisa 5 e)
Bahan ajar kpk dan fpb dalam soal cerita (anis khoerunisa 5 e)Bahan ajar kpk dan fpb dalam soal cerita (anis khoerunisa 5 e)
Bahan ajar kpk dan fpb dalam soal cerita (anis khoerunisa 5 e)anis_31
 
Matematika Belah Ketupat ppt
Matematika Belah Ketupat pptMatematika Belah Ketupat ppt
Matematika Belah Ketupat pptEva Rosita
 
Sistem aksioma dan model
Sistem aksioma dan modelSistem aksioma dan model
Sistem aksioma dan modelStepanyCristy
 
Factoring Trinomials
Factoring TrinomialsFactoring Trinomials
Factoring TrinomialsDon Simmons
 
Lesson plan in mathematics 9
Lesson plan in mathematics 9Lesson plan in mathematics 9
Lesson plan in mathematics 9Nnelgebar
 

What's hot (20)

Section 6.4 graphs of the sine, cosine, tangent, cotangent, cosecant, and sec...
Section 6.4 graphs of the sine, cosine, tangent, cotangent, cosecant, and sec...Section 6.4 graphs of the sine, cosine, tangent, cotangent, cosecant, and sec...
Section 6.4 graphs of the sine, cosine, tangent, cotangent, cosecant, and sec...
 
Simplification of Fractions and Operations on Fractions
Simplification of Fractions and Operations on FractionsSimplification of Fractions and Operations on Fractions
Simplification of Fractions and Operations on Fractions
 
Negative exponents
Negative exponentsNegative exponents
Negative exponents
 
Multi-step Equations
Multi-step EquationsMulti-step Equations
Multi-step Equations
 
Completing the Square
Completing the SquareCompleting the Square
Completing the Square
 
Maths Quadrilateral
Maths QuadrilateralMaths Quadrilateral
Maths Quadrilateral
 
Algebraic expressions and equations
Algebraic expressions and equationsAlgebraic expressions and equations
Algebraic expressions and equations
 
Understanding Square Numbers (Lesson 1)
Understanding Square Numbers (Lesson 1) Understanding Square Numbers (Lesson 1)
Understanding Square Numbers (Lesson 1)
 
Soal post test aplot
Soal post test   aplotSoal post test   aplot
Soal post test aplot
 
6th grade math algebra
6th grade math algebra6th grade math algebra
6th grade math algebra
 
Visual Models for Fraction Operations
Visual Models for Fraction OperationsVisual Models for Fraction Operations
Visual Models for Fraction Operations
 
Bahan ajar kpk dan fpb dalam soal cerita (anis khoerunisa 5 e)
Bahan ajar kpk dan fpb dalam soal cerita (anis khoerunisa 5 e)Bahan ajar kpk dan fpb dalam soal cerita (anis khoerunisa 5 e)
Bahan ajar kpk dan fpb dalam soal cerita (anis khoerunisa 5 e)
 
Matematika Belah Ketupat ppt
Matematika Belah Ketupat pptMatematika Belah Ketupat ppt
Matematika Belah Ketupat ppt
 
Sistem aksioma dan model
Sistem aksioma dan modelSistem aksioma dan model
Sistem aksioma dan model
 
Resume geometri non euclid
Resume geometri non euclidResume geometri non euclid
Resume geometri non euclid
 
Quadrilaterals
QuadrilateralsQuadrilaterals
Quadrilaterals
 
Fractions
FractionsFractions
Fractions
 
Factoring Trinomials
Factoring TrinomialsFactoring Trinomials
Factoring Trinomials
 
Ppt On Lcm & Hcf Questions For Cat Preparation
Ppt On Lcm & Hcf Questions For Cat PreparationPpt On Lcm & Hcf Questions For Cat Preparation
Ppt On Lcm & Hcf Questions For Cat Preparation
 
Lesson plan in mathematics 9
Lesson plan in mathematics 9Lesson plan in mathematics 9
Lesson plan in mathematics 9
 

Similar to Lesson 13: Related Rates of Change

Lesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient RulesLesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient RulesMatthew Leingang
 
2 direct proportions
2 direct proportions2 direct proportions
2 direct proportionsfrangargil
 
2.3 Linear Models and Applications
2.3 Linear Models and Applications2.3 Linear Models and Applications
2.3 Linear Models and Applicationssmiller5
 
Lesson 13: Related Rates Problems
Lesson 13: Related Rates ProblemsLesson 13: Related Rates Problems
Lesson 13: Related Rates ProblemsMel Anthony Pepito
 
Lesson 13: Related Rates Problems
Lesson 13: Related Rates ProblemsLesson 13: Related Rates Problems
Lesson 13: Related Rates ProblemsMatthew Leingang
 
Introdution to differential forms
Introdution to differential formsIntrodution to differential forms
Introdution to differential formsDunga Pessoa
 
Integration basics
Integration basicsIntegration basics
Integration basicsTarun Gehlot
 
Algebra Readiness Page 10 HW
Algebra Readiness Page 10 HWAlgebra Readiness Page 10 HW
Algebra Readiness Page 10 HWmathriot
 
Theoryofcomp science
Theoryofcomp scienceTheoryofcomp science
Theoryofcomp scienceRaghu nath
 
Lesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient RuleLesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient RuleMatthew Leingang
 
Lesson 13: Related Rates (worksheet solutions)
Lesson 13: Related Rates (worksheet solutions)Lesson 13: Related Rates (worksheet solutions)
Lesson 13: Related Rates (worksheet solutions)Matthew Leingang
 
Lesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient RuleLesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient RuleMatthew Leingang
 
Application of Calculus in Real World
Application of Calculus in Real World Application of Calculus in Real World
Application of Calculus in Real World milanmath
 
Related rates ppt
Related rates pptRelated rates ppt
Related rates pptRon Eick
 
re:mobidyc the overview
re:mobidyc the overviewre:mobidyc the overview
re:mobidyc the overviewESUG
 

Similar to Lesson 13: Related Rates of Change (20)

Lesson 19: Related Rates
Lesson 19: Related RatesLesson 19: Related Rates
Lesson 19: Related Rates
 
Lesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient RulesLesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient Rules
 
2 direct proportions
2 direct proportions2 direct proportions
2 direct proportions
 
2.3 Linear Models and Applications
2.3 Linear Models and Applications2.3 Linear Models and Applications
2.3 Linear Models and Applications
 
Lesson 13: Related Rates Problems
Lesson 13: Related Rates ProblemsLesson 13: Related Rates Problems
Lesson 13: Related Rates Problems
 
Lesson 13: Related Rates Problems
Lesson 13: Related Rates ProblemsLesson 13: Related Rates Problems
Lesson 13: Related Rates Problems
 
Introdution to differential forms
Introdution to differential formsIntrodution to differential forms
Introdution to differential forms
 
Integration basics
Integration basicsIntegration basics
Integration basics
 
Lesson 7: The Derivative
Lesson 7: The DerivativeLesson 7: The Derivative
Lesson 7: The Derivative
 
Direct proportion
Direct proportionDirect proportion
Direct proportion
 
Algebra Readiness Page 10 HW
Algebra Readiness Page 10 HWAlgebra Readiness Page 10 HW
Algebra Readiness Page 10 HW
 
Calc 2.6
Calc 2.6Calc 2.6
Calc 2.6
 
Theoryofcomp science
Theoryofcomp scienceTheoryofcomp science
Theoryofcomp science
 
Lesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient RuleLesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient Rule
 
Lesson 13: Related Rates (worksheet solutions)
Lesson 13: Related Rates (worksheet solutions)Lesson 13: Related Rates (worksheet solutions)
Lesson 13: Related Rates (worksheet solutions)
 
Lesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient RuleLesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient Rule
 
Application of Calculus in Real World
Application of Calculus in Real World Application of Calculus in Real World
Application of Calculus in Real World
 
Math 21a Midterm I Review
Math 21a Midterm I ReviewMath 21a Midterm I Review
Math 21a Midterm I Review
 
Related rates ppt
Related rates pptRelated rates ppt
Related rates ppt
 
re:mobidyc the overview
re:mobidyc the overviewre:mobidyc the overview
re:mobidyc the overview
 

More from Matthew Leingang

Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceMatthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsMatthew Leingang
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Matthew Leingang
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Matthew Leingang
 

More from Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 

Recently uploaded

Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 

Recently uploaded (20)

Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 

Lesson 13: Related Rates of Change

  • 1. Section 2.7 Related Rates V63.0121.027, Calculus I October 20, 2009 Announcements Midterm average 57.69/75 (77%), median 59/75 (79%), standard deviation 11% Solutions soon. . . . . . .
  • 2. “Is there a curve?” Midterm Mean was 77% and standard deviation was 11% So scores average are good Scores above 66/75 (88%) are great For final letter grades, refer to syllabus . . . . . .
  • 3. What are related rates problems? Today we’ll look at a direct application of the chain rule to real-world problems. Examples of these can be found whenever you have some system or object changing, and you want to measure the rate of change of something related to it. . . . . . .
  • 4. Problem Example An oil slick in the shape of a disk is growing. At a certain time, the radius is 1 km and the volume is growing at the rate of 10,000 liters per second. If the slick is always 20 cm deep, how fast is the radius of the disk growing at the same time? . . . . . .
  • 5. A solution The volume of the disk is V = π r2 h . . r . dV We are given , a certain h . dt value of r, and the object is dr to find at that instant. dt . . . . . .
  • 6. Solution Solution Differentiating V = π r2 h with respect to time we have 0 dV dr dh¡ ! = 2π rh + π r2 ¡ dt dt ¡dt . . . . . .
  • 7. Solution Solution Differentiating V = π r2 h with respect to time we have 0 dV dr dh¡ ! dr 1 dV = 2π rh + π r2 ¡ =⇒ = · . dt dt ¡dt dt 2π rh dt . . . . . .
  • 8. Solution Solution Differentiating V = π r2 h with respect to time we have 0 dV dr dh¡ ! dr 1 dV = 2π rh + π r2 ¡ =⇒ = · . dt dt ¡dt dt 2π rh dt Now we evaluate: dr 1 10, 000 L = · dt r=1 km 2π(1 km)(20 cm) s . . . . . .
  • 9. Solution Solution Differentiating V = π r2 h with respect to time we have 0 dV dr dh¡ ! dr 1 dV = 2π rh + π r2 ¡ =⇒ = · . dt dt ¡dt dt 2π rh dt Now we evaluate: dr 1 10, 000 L = · dt r=1 km 2π(1 km)(20 cm) s Converting every length to meters we have dr 1 10 m3 1 m = · = dt r=1 km 2π(1000 m)(0.2 m) s 40π s . . . . . .
  • 10. Outline Strategy Examples . . . . . .
  • 11. Strategies for Problem Solving 1. Understand the problem 2. Devise a plan 3. Carry out the plan 4. Review and extend György Pólya (Hungarian, 1887–1985) . . . . . .
  • 13. Strategies for Related Rates Problems 1. Read the problem. . . . . . .
  • 14. Strategies for Related Rates Problems 1. Read the problem. 2. Draw a diagram. . . . . . .
  • 15. Strategies for Related Rates Problems 1. Read the problem. 2. Draw a diagram. 3. Introduce notation. Give symbols to all quantities that are functions of time (and maybe some constants) . . . . . .
  • 16. Strategies for Related Rates Problems 1. Read the problem. 2. Draw a diagram. 3. Introduce notation. Give symbols to all quantities that are functions of time (and maybe some constants) 4. Express the given information and the required rate in terms of derivatives . . . . . .
  • 17. Strategies for Related Rates Problems 1. Read the problem. 2. Draw a diagram. 3. Introduce notation. Give symbols to all quantities that are functions of time (and maybe some constants) 4. Express the given information and the required rate in terms of derivatives 5. Write an equation that relates the various quantities of the problem. If necessary, use the geometry of the situation to eliminate all but one of the variables. . . . . . .
  • 18. Strategies for Related Rates Problems 1. Read the problem. 2. Draw a diagram. 3. Introduce notation. Give symbols to all quantities that are functions of time (and maybe some constants) 4. Express the given information and the required rate in terms of derivatives 5. Write an equation that relates the various quantities of the problem. If necessary, use the geometry of the situation to eliminate all but one of the variables. 6. Use the Chain Rule to differentiate both sides with respect to t. . . . . . .
  • 19. Strategies for Related Rates Problems 1. Read the problem. 2. Draw a diagram. 3. Introduce notation. Give symbols to all quantities that are functions of time (and maybe some constants) 4. Express the given information and the required rate in terms of derivatives 5. Write an equation that relates the various quantities of the problem. If necessary, use the geometry of the situation to eliminate all but one of the variables. 6. Use the Chain Rule to differentiate both sides with respect to t. 7. Substitute the given information into the resulting equation and solve for the unknown rate. . . . . . .
  • 20. Outline Strategy Examples . . . . . .
  • 21. Another one Example A man starts walking north at 4ft/sec from a point P. Five minutes later a woman starts walking south at 4ft/sec from a point 500 ft due east of P. At what rate are the people walking apart 15 min after the woman starts walking? . . . . . .
  • 22. Diagram 4 . ft/sec m . . . . . . . .
  • 23. Diagram 4 . ft/sec m . . 5 . 00 w . 4 . ft/sec . . . . . .
  • 24. Diagram 4 . ft/sec . s m . . 5 . 00 w . 4 . ft/sec . . . . . .
  • 25. Diagram 4 . ft/sec . s m . . 5 . 00 w . w . 5 . 00 4 . ft/sec . . . . . .
  • 26. Diagram 4 . ft/sec √ s .= (m + w)2 + 5002 . s m . . 5 . 00 w . w . 5 . 00 4 . ft/sec . . . . . .
  • 27. Expressing what is known and unknown 15 minutes after the woman starts walking, the woman has traveled ( )( ) 4ft 60sec (15min) = 3600ft sec min while the man has traveled ( )( ) 4ft 60sec (20min) = 4800ft sec min ds dm We want to know when m = 4800, w = 3600, = 4, and dt dt dw = 4. dt . . . . . .
  • 28. Differentiation We have ( ) ds 1( )−1/2 dm dw = (m + w)2 + 5002 (2)(m + w) + dt 2 dt dt ( ) m + w dm dw = + s dt dt At our particular point in time ds 4800 + 3600 672 =√ (4 + 4) = √ ≈ 7.98587ft/s dt 2 + 5002 7081 (4800 + 3600) . . . . . .