SlideShare a Scribd company logo
1 of 83
Download to read offline
MAE 5420 - Compressible Fluid Flow!
1!
Section 6 Lecture 1:Oblique Shock Waves!
• Anderson, !
Chapter 4 pp.127-145 !
MAE 5420 - Compressible Fluid Flow!
2!
Mach Waves, Revisited!
• In Supersonic flow, pressure disturbances cannot !
outrun “point-mass” generating object!
• Result is an infinitesimally weak “mach wave”!
V t
c t
µ
sinµ =
c × t
V × t
"
#$
%
&' =
1
M
→ µ = sin−1 1
M
MAE 5420 - Compressible Fluid Flow!
3!
Oblique Shock Wave!
• When generating object is larger than a “point”, shockwave is stronger than!
mach wave …. Oblique shock wave!
• -- shock angle!
• -- turning or!
“wedge angle”!
β ≥ µ
β
θ
θ
MAE 5420 - Compressible Fluid Flow!
4!
Oblique Shock Wave Geometry!
! !Tangential ! !Normal!
Ahead ! !w1, Mt1 ! ! !u1, Mn1!
Of Shock!
Behind ! ! w2, Mt2 ! ! !u2, Mn2!
Shock !
• Must satisfy!
!i) continuity!
!ii) momentum!
!iii) energy!
MAE 5420 - Compressible Fluid Flow!
5!
Continuity Equation!
• For Steady Flow!
w2
u2
w1
u1
ds
ds
ρV
−>
• ds
−>
#
$
%
&
C.S.
∫∫ = 0 = −ρ1u1A + ρ2u2 A → ρ1u1 = ρ2u2
− ρV
−>
• ds
−>
#
$
%
&
C.S.
∫∫ =
∂
∂t
ρdv
c.v.
∫∫∫
#
$
)
%
&
*
0!
MAE 5420 - Compressible Fluid Flow!
6!
Momentum Equation!
• For Steady Flow w/no Body Forces!
ρV
−>
• ds
−>
#
$
%
&
C.S.
∫∫ V
−>
= − p( )
C.S.
∫∫ dS
−>
• Tangential Component!
• But from continuity!
−ρ1u1w1A + ρ2u2w2 A( )= 0
ρ1u1 = ρ2u2 w1 = w2
Tangential velocity is!
Constant across oblique!
Shock wave!
MAE 5420 - Compressible Fluid Flow!
7!
Momentum Equation (concluded)!
ρV
−>
• ds
−>
#
$
%
&
C.S.
∫∫ V
−>
= − p( )
C.S.
∫∫ dS
−>
• Normal Component! Tangential velocity is!
Constant across oblique!
Shock wave!
−ρ1u1
2
A + ρ2u2
2
A = p2 − p1( )A →
p1 + ρ1u1
2
= p2 + ρ2u2
2
MAE 5420 - Compressible Fluid Flow!
8!
Energy Equation!
• Steady Adiabatic Flow!
ρ e +
V2
2
"
#
$
%
&
' V
−>
• d S
−>
+ (pd S
−>
) • V
−>
C.S.
∫∫ = 0
C.S.
∫∫
• Tangential velocity components do not !
contribute to integrals … thus …!
p1u1 + ρ1 e1 +
V1
2
2
"
#
$
%
&
' u1 = p2u2 + ρ2 e2 +
V2
2
2
"
#
$
%
&
' u2
MAE 5420 - Compressible Fluid Flow!
9!
Energy Equation (cont’d)!
•!
• But …!
• … thus …!
Factor out {ρ1,u1}, {ρ2,u2}!
p1
ρ1
+ e1
"
#$
%
&' +
V1
2
2
(
)
*
*
+
,
-
-
ρ1u1 =
p2
ρ2
+ e2
"
#$
%
&' +
V2
2
2
(
)
*
*
+
,
-
-
ρ2u2
p1
ρ1
+ e1 = RgT1 + cvT1 = cp − cv( )T1 + cvT1 = cpT1 = h1
p2
ρ2
+ e2 = h2 … and …! ρ1u1 = ρ2u2
h1 +
V1
2
2
= h2 +
V2
2
2
MAE 5420 - Compressible Fluid Flow!
10!
Energy Equation (concluded)!
•!
• thus …!
Write Velocity in terms of components!
V1
2
= u1
2
+ w1
2
→ V2
2
= u2
2
+ w2
2
→ w1 = w2
h1 +
u1
2
2
= h2 +
u2
2
2
MAE 5420 - Compressible Fluid Flow!
11!
Collected Oblique Shock Equations!
• Continuity!
• Momentum!
• Energy!
w1 = w2
p1 + ρ1u1
2
= p2 + ρ2u2
2
ρ1u1 = ρ2u2
cpT1 +
u1
2
2
= cpT2 +
u2
2
2 θ
β−θ
β−θ
β
u1
u2
w1
w2
MAE 5420 - Compressible Fluid Flow!
12!
Compare Oblique to Normal Shock Equations!
• Continuity!
• Momentum!
• Energy!
ρ1V1 = ρ2V2
p1+ ρ1V1
2
= p2 + ρ2V2
2
cp1T1 +
V1
2
2
= cp2T2 +
V2
2
2
• Identical except for u1 replaces V1 (normal to shock wave)!
and w1=w2 (tangential to shock wave)!
Normal Shock Equations!
MAE 5420 - Compressible Fluid Flow!
13!
Compare Oblique to Normal Shock Equations"
(cont’d)!
• Defining:!
Mn
1=M1sin( )!
Mt
1=M1cos( )!
• Then by similarity!
we can write the solution!
Mn2 =
1+
γ −1( )
2
Mn1
2#
$%
&
'(
γ Mn1
2
−
γ −1( )
2
#
$%
&
'(
β
β
MAE 5420 - Compressible Fluid Flow!
14!
Compare Oblique to Normal Shock Equations"
(cont’d)!
• Similarity Solution!
ρ2
ρ1
=
γ +1( )Mn1
2
2 + γ −1( )Mn1
2
( )
p2
p1
= 1+
2γ
γ +1( )
Mn1
2
−1( )
T2
T1
= 1+
2γ
γ +1( )
Mn1
2
−1( )
#
$
%
&
'
(
2 + γ −1( )Mn1
2
( )
γ +1( )Mn1
2
#
$
%
%
&
'
(
(
Mn1 = M1 sin β( )
Letting!
Then …..!
MAE 5420 - Compressible Fluid Flow!
15!
Compare Oblique to Normal Shock Equations"
(cont’d)!
ρ2
ρ1
=
γ +1( ) M1 sinβ( )2
2 + γ −1( ) M1 sinβ( )2
( )
p2
p1
= 1+
2γ
γ +1( )
M1 sinβ( )2
−1( )
T2
T1
= 1+
2γ
γ +1( )
M1 sinβ( )2
−1( )%
&
'
(
)
*
2 + γ −1( ) M1 sinβ( )2
( )
γ +1( ) M1 sinβ( )2
%
&
'
'
(
)
*
*
Mn2 =
1+
γ −1( )
2
M1 sinβ( )2$
%&
'
()
γ M1 sinβ( )2
−
γ −1( )
2
$
%&
'
()
• Properties across Oblique Shock wave ~ f(M1, )!β
MAE 5420 - Compressible Fluid Flow!
16!
Total Mach Number Downstream "
of Oblique Shock!
w1 = w2
Tangential velocity is!
Constant across oblique!
Shock wave!
w1 = w2 → Mt1c1 = Mt2c2 = M1
cos(β)c1
Mt2 =
M1
cos(β)c1
c2
= M1
cos(β)
T1
T2
M2 = Mt2
2
+ Mn2
2
#$ %&
MAE 5420 - Compressible Fluid Flow!
17!
Total Mach Number Downstream "
of Oblique Shock (cont’d)!Tangential velocity is!
Constant across oblique!
Shock wave!
M2 = Mt2
2
+ Mn2
2
!" #$ → Mn2 =
1+
γ −1( )
2
M1
sin(β)[ ]2)
*+
,
-.
γ M1
sin(β)[ ]2
−
γ −1( )
2
)
*+
,
-.
M2 = M1
cos(β)[ ]2 T1
T2
+
1+
γ −1( )
2
M1
sin(β)[ ]2)
*+
,
-.
γ M1
sin(β)[ ]2
−
γ −1( )
2
)
*+
,
-.
!
"
/
/
/
/
#
$
0
0
0
0
MAE 5420 - Compressible Fluid Flow!
18!
Total Mach Number Downstream "
of Oblique Shock (concluded)!Tangential velocity is!
Constant across oblique!
Shock wave!
• Or … More simply .. If we consider geometric arguments!
M2 =
Mn2
sin β −θ( )
M3M2
Mn2
Mt2
β−θ
MAE 5420 - Compressible Fluid Flow!
19!
Oblique Shock Wave Angle!
• Properties across Oblique !
Shock wave ~ f(M1, )!
• is the geometric angle!
that “forces” the flow!
• How do we relate to ?!
β
θ β
θ
MAE 5420 - Compressible Fluid Flow!
20!
Oblique Shock Wave Angle (cont’d)!
• Since (from continuity)!
ρ1u1 = ρ2u2
θ
β−θ
β−θ
β
u1
u2
w1
w2
ρ1u1 = ρ2u2 →
u2
u1
=
ρ1
ρ2
MAE 5420 - Compressible Fluid Flow!
21!
Oblique Shock Wave Angle (cont’d)!
θ
β−θ
β−θ
β
u1
u2
w1
w2
u2
w2
= tan β −θ( )
u1
w1
= tan β( )
$
%
&
&
&
&
&
&
'
(
)
)
)
)
)
)
• from Momentum!
w1 = w2
MAE 5420 - Compressible Fluid Flow!
22!
Oblique Shock Wave Angle (cont’d)!
• Solving for the ratio u2/u1!
Implicit relationship for shock angle in terms of!
Free stream mach number and “wedge angle”!
→
u2
u1
=
tan β −θ( )
tan β( )
=
ρ1
ρ2
→→
ρ2
ρ1
=
γ +1( )Mn1
2
2 + γ −1( )Mn1
2
( )
∴
tan β −θ( )
tan β( )
=
2 + γ −1( ) M1 sin β( )() *+
2
( )
γ +1( ) M1 sin β( )() *+
2
MAE 5420 - Compressible Fluid Flow!
23!
Oblique Shock Wave Angle (cont’d)!
• Solve explicitly for tan( )!
tan β −θ( )
tan β( )
=
sin β −θ( )
cos β −θ( )
=
sin β( )cos θ( )− cos β( )sin θ( )
cos β( )cos θ( )+ sin β( )sin θ( )
$
%&
'
()
cosβ
sinβ
=
sin β( )cos θ( )
sinβ
−
cos β( )sin θ( )
sinβ
cos β( )cos θ( )
cosβ
+
sin β( )sin θ( )
cosβ
$
%
&
&
&
&
'
(
)
)
)
)
=
cos θ( )−
sin θ( )
tan β( )
cos θ( )+ tan β( )sin θ( )
$
%
&
&
&
&
'
(
)
)
)
)
=
1−
sin θ( )
cos θ( )tan β( )
1+
tan β( )sin θ( )
cos θ( )
$
%
&
&
&
&
'
(
)
)
)
)
=
1−
tan θ( )
tan β( )
1+ tan β( )tan θ( )
$
%
&
&
&
&
'
(
)
)
)
)
=
tan β( )− tan θ( )
tan β( )+ tan2
β( )tan θ( )
θ
MAE 5420 - Compressible Fluid Flow!
24!
Oblique Shock Wave Angle (cont’d)!
• Solve explicitly for tan( )!
tan β( )− tan θ( )
tan β( )+ tan2
β( )tan θ( )
=
2 + γ −1( ) M1 sin β( )%& '(
2
( )
γ +1( ) M1 sin β( )%& '(
2
θ
MAE 5420 - Compressible Fluid Flow!
25!
Oblique Shock Wave Angle (cont’d)!
• Solve for tan( )"
tan β( )− tan θ( )$% &' γ +1( ) M1 sin β( )$% &'
2
=
tan β( )+ tan2
β( )tan θ( )$% &' 2 + γ −1( ) M1 sin β( )$% &'
2
( )→
tan β( ) γ +1( ) M1 sin β( )$% &'
2
− 2 + γ −1( ) M1 sin β( )$% &'
2
( )$
%
&
'
=
tan θ( ) γ +1( ) M1 sin β( )$% &'
2
+ tan2
β( ) 2 + γ −1( ) M1 sin β( )$% &'
2
( )$
%
&
'
→
tan θ( ) =
tan β( ) γ +1( ) M1 sin β( )$% &'
2
− 2 + γ −1( ) M1 sin β( )$% &'
2
( )$
%
&
'
γ +1( ) M1 sin β( )$% &'
2
+ tan2
β( ) 2 + γ −1( ) M1 sin β( )$% &'
2
( )$
%
&
'
θ
MAE 5420 - Compressible Fluid Flow!
26!
Oblique Shock Wave Angle (cont’d)!
• Simplify Numerator"
tan β( ) γ +1( ) M1 sin β( )#$ %&
2
− 2 + γ −1( ) M1 sin β( )#$ %&
2
( )#
$
%
&
=
tan β( ) γ M1 sin β( )#$ %&
2
+ M1 sin β( )#$ %&
2
− 2 − γ M1 sin β( )#$ %&
2
+ M1 sin β( )#$ %&
2
#
$
%
&
=
tan β( ) 2 M1 sin β( )#$ %&
2
−1{ }#
$
%
&
MAE 5420 - Compressible Fluid Flow!
27!
Oblique Shock Wave Angle (cont’d)!
• Simplify Denominator"
γ +1( ) M1 sin β( )#$ %&
2
+ tan2
β( ) 2 + γ −1( ) M1 sin β( )#$ %&
2
( )#
$
%
&
=
tan2
β( ) γ +1( ) M1
sin β( )
tan β( )
#
$
(
%
&
)
2
+ 2 + γ −1( ) M1 sin β( )#$ %&
2
( )
#
$
(
(
%
&
)
)
=
tan2
β( ) γ +1( ) M1 cos β( )#$ %&
2
+ 2 + γ −1( ) M1 sin β( )#$ %&
2
( )#
$
%
&
=
tan2
β( ) γ +1( )M1
2
1− sin2
β( )#$ %& + 2 + γ −1( )M1
2
sin2
β( )#
$
%
& =
tan2
β( ) 2 + γ +1( )M1
2
− γ +1( )M1
2
sin2
β( )+ γ −1( )M1
2
sin2
β( )#$ %&#
$
%
& =
tan2
β( ) 2 + γ +1( )M1
2
− 2M1
2
sin2
β( )#$ %& = tan2
β( ) 2 + γ +1( )M1
2
− 2M1
2
sin2
β( )#$ %& =
tan2
β( ) 2 + γ M1
2
+ M1
2
1− 2sin2
β( )#$ %&#
$
%
& = tan2
β( ) 2 + γ M1
2
+ M1
2
cos2
β( )− sin2
β( )#$ %&#
$
%
& =
tan2
β( ) 2 + M1
2
γ + cos 2β( )#$ %&#$ %&
MAE 5420 - Compressible Fluid Flow!
28!
Oblique Shock Wave Angle (cont’d)!
• Collect terms"
tan θ( ) =
2tan β( ) M1 sin β( )#$ %&
2
−1{ }
tan2
β( ) 2 + M1
2
γ + cos 2β( )#$ %&#$ %&
=
2 M1
2
sin2
β( )−1{ }
tan β( ) 2 + M1
2
γ + cos 2β( )#$ %&#$ %&
• “Wedge Angle” Given explicitly as !
function of shock angle and freestream !
Mach number!
• Two Solutions “weak” and “strong” !
shock wave … in reality weak shock !
typically occurs; strong only occurs !
under very Specialized circumstances!
.e.g near stagnation point for a detached !
Shock (Anderson, pp. 138-139, 165,166) !
MAE 5420 - Compressible Fluid Flow!
29!
Oblique Shock Wave Angle (concluded)!
• Plotting versus "
M1=1.5! M1=2.0!
M1=2.5!
M1=3.0!
M1=5.0!
M1=4.0!
max!
curve!
“strong shock”!
“weak shock”!
β θ
γ = 1.4
θ
MAE 5420 - Compressible Fluid Flow!
15!
Compare Oblique to Normal Shock Equations"
(cont’d)!
ρ2
ρ1
=
γ +1( ) M1 sinβ( )2
2 + γ −1( ) M1 sinβ( )2
( )
p2
p1
= 1+
2γ
γ +1( )
M1 sinβ( )2
−1( )
T2
T1
= 1+
2γ
γ +1( )
M1 sinβ( )2
−1( )%
&
'
(
)
*
2 + γ −1( ) M1 sinβ( )2
( )
γ +1( ) M1 sinβ( )2
%
&
'
'
(
)
*
*
Mn2 =
1+
γ −1( )
2
M1 sinβ( )2$
%&
'
()
γ M1 sinβ( )2
−
γ −1( )
2
$
%&
'
()
• Properties across Oblique Shock wave ~ f(M1, )!β
MAE 5420 - Compressible Fluid Flow!
30!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle!
• As derived"
• “Wedge Angle” Given explicitly as function of shock !
angle and freestream Mach number!
• For most practical applications, the geometric deflection angle (wedge angle) and !
Mach number are prescribed .. Need in terms of and M1!
• Obvious Approach …. Numerical Solution using Newton’s method!
tan θ( ) =
2 M1
2
sin2
β( )−1{ }
tan β( ) 2 + M1
2
γ + cos 2β( )%& '(%& '(
β θ
MAE 5420 - Compressible Fluid Flow!
31!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle (cont’d)!
• Newton method"
2 M1
2
sin2
β( )−1{ }
tan β( ) 2 + M1
2
γ + cos 2β( )$% &'$% &'
− tan θ( ) ≡ f (β) = 0
f (β) = f (β( j) ) +
∂f
∂β
+
,-
.
/0
( j)
β − β( j)( )+ O(β2
) + ....→
β( j+1) = β( j) −
2 M1
2
sin2
β( )−1{ }
tan β( ) 2 + M1
2
γ + cos 2β( )$% &'$% &'
− tan θ( )
∂f
∂β
+
,-
.
/0
( j)
MAE 5420 - Compressible Fluid Flow!
32!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle (cont’d)!
• Newton method (continued)"
• Iterate until convergence!
∂f
∂β
=
2 M1
4
sin2
β( ) 1+ γ cos 2β( )$% &' + M1
2
2cos 2β( )+ γ −1( )+ 2$% &'
sin2
β( ) 2 + M1
2
γ + cos 2β( )$% &'$% &'
2
MAE 5420 - Compressible Fluid Flow!
33!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle (cont’d)!
∂f
∂β
β
• “Flat spot”!
Causes potential!
Convergence !
Problems with!
Newton Method!
Increasing!
Mach!
MAE 5420 - Compressible Fluid Flow!
34!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle (cont’d)!
• Newton method … Convergence can often be slow (because of low derivative slope)"
• Converged solution!
βtrue = 60.26o
MAE 5420 - Compressible Fluid Flow!
35!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle (concluded)!
• Newton method … or can “toggle” to strong shock solution"
• Strong !
shock solution!
βstrong = 71.87o
MAE 5420 - Compressible Fluid Flow!
36!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle (improved solution)!
• Because of the slow convergence of Newton’s method for this!
implicit function… explicit solution … !
(if possible) .. Or better behaved .. Method very desirable!
tan θ( ) =
2 M1
2
sin2
β( )−1{ }
tan β( ) 2 + M1
2
γ + cos 2β( )%& '(%& '(
=
2 M1
2
sin2
β( )−1{ }
tan β( ) 2 + γ M1
2
+ M1
2
cos2
β( )− sin2
β( )%& '(%
&
'
(
cos 2β( ) = cos2
β( )− sin2
β( )Substitute!
MAE 5420 - Compressible Fluid Flow!
37!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle (improved solution)"
(cont’d)!
• But, since! 1 = cos2
β( )+ sin2
β( )
2 M1
2
sin2
β( )−1{ }
tan β( ) 2 + γ M1
2
+ M1
2
cos2
β( )− sin2
β( )$% &'$
%
&
'
=
2 M1
2
sin2
β( )− sin2
β( )− cos2
β( ){ }
tan β( ) 2 + γ M1
2
+ M1
2
cos2
β( )− sin2
β( )$% &'$
%
&
'
MAE 5420 - Compressible Fluid Flow!
38!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle (improved solution)"
(cont’d)!
• Simplify and collect terms!
2 M1
2
sin2
β( )− sin2
β( )− cos2
β( ){ }
tan β( ) 2 + γ M1
2
+ M1
2
cos2
β( )− sin2
β( )$% &'$
%
&
'
=
M1
2
−1( )sin2
β( )− cos2
β( ){ }
tan β( ) 1+
γ
2
M1
2
+
1
2
M1
2
cos2
β( )− sin2
β( )$% &'
$
%(
&
')
=
M1
2
−1( )sin2
β( )− cos2
β( ){ }
tan β( ) 1+
γ
2
M1
2
+
1
2
M1
2
cos2
β( )− sin2
β( )$% &'
$
%(
&
')
=
M1
2
−1( )sin2
β( )− cos2
β( ){ }
tan β( ) 1+
γ + cos2
β( )− sin2
β( )
2
M1
2$
%
(
&
'
)
MAE 5420 - Compressible Fluid Flow!
39!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle (improved solution)"
(cont’d)!
• Again, Since!
M1
2
−1( )sin2
β( )− cos2
β( ){ }
tan β( ) 1+
γ + cos2
β( )− sin2
β( )
2
M1
2$
%
&
'
(
)
=
M1
2
−1( )sin2
β( )− cos2
β( ){ }
tan β( ) cos2
β( )+ sin2
β( )+
γ cos2
β( )+ sin2
β( )$% '( + cos2
β( )− sin2
β( )
2
M1
2
$
%
&
&
'
(
)
)
1 = cos2
β( )+ sin2
β( )
MAE 5420 - Compressible Fluid Flow!
40!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle (improved solution)"
(cont’d)!
• Regroup and collect terms!
M1
2
−1( )sin2
β( )− cos2
β( ){ }
tan β( ) cos2
β( )+ sin2
β( )+
γ cos2
β( )+ sin2
β( )$% &' + cos2
β( )− sin2
β( )
2
M1
2
$
%
(
(
&
'
)
)
=
M1
2
−1( )tan2
β( )−1{ }
tan β( ) 1+ tan2
β( )+
γ 1+ tan2
β( )$% &' +1− tan2
β( )
2
M1
2
$
%
(
(
&
'
)
)
=
M1
2
−1( )tan2
β( )−1{ }
tan β( ) 1+
γ +1
2
M1
2
+ tan2
β( )+
γ tan2
β( )$% &' − tan2
β( )
2
M1
2
$
%
(
(
&
'
)
)
=
M1
2
−1( )tan2
β( )−1{ }
tan β( ) 1+
γ +1
2
M1
2$
%(
&
') + tan2
β( ) 1+
γ −1
2
M1
2$
%(
&
')
$
%
(
&
'
)
MAE 5420 - Compressible Fluid Flow!
41!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle (improved solution)"
(cont’d)!
• Finally!
• Regrouping in terms of powers of tan( )!
tan θ( ) =
M1
2
−1( )tan2
β( )−1{ }
1+
γ +1
2
M1
2%
&'
(
)*tan β( )+ 1+
γ −1
2
M1
2%
&'
(
)*tan3
β( )
β
1+
γ −1
2
M1
2#
$%
&
'(tan θ( )
*
+
,
-
.
/
tan3
β( )− M1
2
−1( )tan2
β( )+ 1+
γ +1
2
M1
2#
$%
&
'(tan θ( )
*
+
,
-
.
/
tan β( )+1 = 0
MAE 5420 - Compressible Fluid Flow!
42!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle (improved solution)"
(cont’d)!
• Letting"
• Result is a cubic equation of the form!
a = 1+
γ −1
2
M1
2#
$%
&
'(tan θ( )
*
+
,
-
.
/
b = M1
2
−1( )
c = 1+
γ +1
2
M1
2#
$%
&
'(tan θ( )
*
+
,
-
.
/
x = tan β( )
ax3
− bx2
+ cx +1 = 0
• Polynomial has 3 real roots!
!i) weak shock!
!ii) strong shock!
!iii) meaningless solution!
! !( < 0)!β
MAE 5420 - Compressible Fluid Flow!
43!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle (improved solution)"
(cont’d)!
• Numerical Solution of Cubic (Newton’s method)!
ax3
− bx2
+ cx +1 ≡ f (x) = 0 →
0 = f (xj ) +
∂f (x)
∂x j
xj+1 − xj( )+ o(x2
)
xj+1 = xj −
f (xj )
∂f (x)
∂x j
= xj −
axj
3
− bxj
2
+ cxj +1
3axj
2
− 2bxj + c
MAE 5420 - Compressible Fluid Flow!
44!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle (improved solution)"
(cont’d)!
• Collecting terms!
xj −
axj
3
− bxj
2
+ cxj +1
3axj
2
− 2bxj + c
=
3axj
3
− 2bxj
2
+ cxj − axj
3
− bxj
2
+ cxj +1( )
3axj
2
− 2bxj + c
=
2axj
3
− bxj
2
−1
3axj
2
− 2bxj + c
MAE 5420 - Compressible Fluid Flow!
45!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle (improved solution)"
(cont’d)!
• Solution Algorithm (iterate to convergence)!
xj+1 =
2axj
3
− bxj
2
−1
3axj
2
− 2bxj + c
• Where again! a = 1+
γ −1
2
M1
2#
$%
&
'(tan θ( )
*
+
,
-
.
/
b = M1
2
−1( )
c = 1+
γ +1
2
M1
2#
$%
&
'(tan θ( )
*
+
,
-
.
/
x = tan β( )
MAE 5420 - Compressible Fluid Flow!
46!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle (improved solution)"
(cont’d)!
• Properties of Solver algorithm are much improved!
Improved Algorithm!Original Algorithm!
βtrue = 60.26o
• Original algorithm!
• Improved algorithm!
MAE 5420 - Compressible Fluid Flow!
47!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle (improved solution)"
(cont’d)!
• Three Solutions always returned depending on start condition!
Original Algorithm! Improved Algorithm!
βtrue = 60.26o
• Weak Shock Solution!
MAE 5420 - Compressible Fluid Flow!
48!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle (improved solution)"
(cont’d)!
• Three Solutions always returned depending on start condition!
Improved Algorithm!
• Strong Shock Solution!
βstrong = 71.87o
MAE 5420 - Compressible Fluid Flow!
49!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle (improved solution)"
(cont’d)!
• Three Solutions always returned depending on start condition!
Improved Algorithm!• Meaningless Solution! βmeaningless < 0o
MAE 5420 - Compressible Fluid Flow!
50!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle (explicit solution)"
Improved Algorithm!• Meaningless Solution!
• Explicit Solution … Using guidance from numerical algorithm, can we find!
Explicit (non -iterative) solution for shock angle?!
• Cubic equation has three explicit solutions!
!i) !weak shock!
!ii) !Strong shock!
!iii) !non-physical solution !
MAE 5420 - Compressible Fluid Flow!
51!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle (explicit solution)"
Improved Algorithm!
• Explicit Solution … Using guidance from numerical algorithm, can we find!
Explicit (non -iterative) solution for shock angle?!
• Root 1: tan[ ]=!
• Root 2: tan[ ]=!
• Root 3: tan[ ]=!
• Break solutions down into manageable form!
β
β
β
MAE 5420 - Compressible Fluid Flow!
52!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle (explicit solution)"
Improved Algorithm!• Meaningless Solution!
• Explicit Solution (From Anderson, pp. 142,143) …!
1+
γ −1
2
M1
2#
$%
&
'(tan θ( )
*
+
,
-
.
/
tan3
β( )− M1
2
−1( )tan2
β( )+ 1+
γ +1
2
M1
2#
$%
&
'(tan θ( )
*
+
,
-
.
/
tan β( )+1 = 0
tan β( ) =
M1
2
−1( )+ 2λ cos
4πδ + cos−1
χ( )
3
'
()
*
+,
3 1+
γ −1
2
M1
2.
/0
1
23tan θ( )
λ = M1
2
−1( )
2
− 3 1+
γ −1
2
M1
2$
%&
'
() 1+
γ +1
2
M1
2$
%&
'
()tan2
θ( )
χ =
M1
2
−1( )
3
− 9 1+
γ −1
2
M1
2$
%&
'
() 1+
γ −1
2
M1
2
+
γ +1
4
M1
4$
%&
'
()tan2
θ( )
λ3
δ = 0 ---> Strong Shock!
δ = 1 ---> Weak Shock !
MAE 5420 - Compressible Fluid Flow!
53!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle (explicit solution)"
Improved Algorithm!• Meaningless Solution!
• Explicit Solution Check … let {M=5, , =40°}!
λ = M1
2
−1( )
2
− 3 1+
γ −1
2
M1
2$
%&
'
() 1+
γ +1
2
M1
2$
%&
'
()tan2
θ( ) =!
= 13.5321!
5
2
1−( )
2
3 1
1.4 1−
2
5
2
+" #
$ % 1
1.4 1+
2
5
2
+" #
$ % π
180
40" #
$ %tan" #
$ %
2
−
" #
' (
$ % 0.5
θγ = 1.4
MAE 5420 - Compressible Fluid Flow!
54!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle (explicit solution)"
Improved Algorithm!• Meaningless Solution!
• Explicit Solution Check … let {M=5, , =40°}!
=!
χ =
M1
2
−1( )
3
− 9 1+
γ −1
2
M1
2$
%&
'
() 1+
γ −1
2
M1
2
+
γ +1
4
M1
4$
%&
'
()tan2
θ( )
λ3
= -0.267118!
52
1−( )
3
9 1
1.4 1−
2
52
+" #
$ % 1
1.4 1−
2
52 1.4 1+
4
54
+ +" #
$ % π
180
40" #
$ %tan" #
$ %
2
−
13.5321
3
θγ = 1.4
MAE 5420 - Compressible Fluid Flow!
55!
Solving for Oblique Shock "
Wave Angle in Terms of Wedge Angle (explicit solution)"
Improved Algorithm!• Meaningless Solution!
tan β( ) =
M1
2
−1( )+ 2λ cos
4πδ + cos−1
χ( )
3
'
()
*
+,
3 1+
γ −1
2
M1
2.
/0
1
23tan θ( )
δ = 1 ---> Weak Shock !
=!
180
π
5
2
1−( ) 2 13.5321( )
4π 1( ) 0.26712−( )acos+
3
# $
% &cos+
3 1
1.4 1−
2
5
2
+# $
% & π
180
40# $
% &tan
# $
' (
' (
' (
' (
% &
atan
= 60.259°! Check!!
• Explicit Solution Check … let {M=5, , =40°}!θγ = 1.4
MAE 5420 - Compressible Fluid Flow!
56!
Solving for Oblique Shock "
Wave Anglein Terms of Wedge Angle (explicit solution)"
• Meaningless Solution!
tan β( ) =
M1
2
−1( )+ 2λ cos
4πδ + cos−1
χ( )
3
'
()
*
+,
3 1+
γ −1
2
M1
2.
/0
1
23tan θ( )
δ = 0 ---> Strong Shock !
=!
= 71.869°! Check!!
180
π
5
2
1−( ) 2 13.5321( )
4π 0( ) 0.26712−( )acos+
3
# $
% &cos+
3 1
1.4 1−
2
5
2
+# $
% & π
180
40# $
% &tan
# $
' (
' (
' (
' (
% &
atan
… OK .. This works …. But is it !
… the best method?!
(concluded)!
• Explicit Solution Check … let {M=5, , =40°}!θγ = 1.4
MAE 5420 - Compressible Fluid Flow!
57!
Floating Point Operation (FLOP) Estimate!
tan β( ) =
M1
2
−1( )+ 2λ cos
4πδ + cos−1
χ( )
3
'
()
*
+,
3 1+
γ −1
2
M1
2.
/0
1
23tan θ( )
tan θ( )=
M1
2
−1( )tan2
β( )−1{ }
1+
γ +1
2
M1
2%
&'
(
)*tan β( )+ 1+
γ −1
2
M1
2%
&'
(
)*tan3
β( )
xj+1 =
2axj
3
− bxj
2
−1
3axj
2
− 2bxj + c
• Actually the simplified numerical!
Algorithm is slightly faster than closed!
Form solution !
MAE 5420 - Compressible Fluid Flow!
58!
Oblique Shock Waves:"
Collected Algorithm!
• Properties across Oblique !
Shock wave ~ f(M1, )!
• is the geometric angle!
that “forces” the flow!
tan θ( ) =
2 M1
2
sin2
β( )−1{ }
tan β( ) 2 + M1
2
γ + cos 2β( )%& '(%& '(
θ
β
MAE 5420 - Compressible Fluid Flow!
59!
Oblique Shock Waves:"
Collected Algorithm (cont’d)!
• Can be re-written as third order polynomial in tan( )!
• “Very Easy” numerical solution!
xj+1 =
2axj
3
− bxj
2
−1
3axj
2
− 2bxj + c
a = 1+
γ −1
2
M1
2#
$%
&
'(tan θ( )
*
+
,
-
.
/
b = M1
2
−1( )
c = 1+
γ +1
2
M1
2#
$%
&
'(tan θ( )
*
+
,
-
.
/
x = tan β( )
• Cubic equation has three solutions!
!i) !weak shock!
!ii) !Strong shock!
!iii) !non-physical solution !
θ
1+
γ −1
2
M1
2#
$%
&
'(tan θ( )
*
+
,
-
.
/
tan3
β( )− M1
2
−1( )tan2
β( )+ 1+
γ +1
2
M1
2#
$%
&
'(tan θ( )
*
+
,
-
.
/
tan β( )+1 = 0
MAE 5420 - Compressible Fluid Flow!
60!
Oblique Shock Waves:"
Collected Algorithm (cont’d)!
• “Less Obvious” explicit solution!
tan β( ) =
M1
2
−1( )+ 2λ cos
4πδ + cos−1
χ( )
3
'
()
*
+,
3 1+
γ −1
2
M1
2.
/0
1
23tan θ( )
λ = M1
2
−1( )
2
− 3 1+
γ −1
2
M1
2$
%&
'
() 1+
γ +1
2
M1
2$
%&
'
()tan2
θ( )
χ =
M1
2
−1( )
3
− 9 1+
γ −1
2
M1
2$
%&
'
() 1+
γ −1
2
M1
2
+
γ +1
4
M1
4$
%&
'
()tan2
θ( )
λ3
δ = 0 ---> Strong Shock!
δ = 1 ---> Weak Shock !
• Either solution!
Method is acceptable!
For large scale-calculations!
MAE 5420 - Compressible Fluid Flow!
61!
Oblique Shock Waves:"
Collected Algorithm (cont’d)!
• ... and the rest of the story … !
ρ2
ρ1
=
γ +1( ) M1 sinβ( )2
2 + γ −1( ) M1 sinβ( )2
( )
p2
p1
= 1+
2γ
γ +1( )
M1 sinβ( )2
−1( )
T2
T1
= 1+
2γ
γ +1( )
M1 sinβ( )2
−1( )%
&
'
(
)
*
2 + γ −1( ) M1 sinβ( )2
( )
γ +1( ) M1 sinβ( )2
%
&
'
'
(
)
*
*
MAE 5420 - Compressible Fluid Flow!
62!
Oblique Shock Waves:"
Collected Algorithm (concluded)!
• ... and the rest of the story … !
Mn2 =
1+
γ −1( )
2
M1 sinβ( )2$
%&
'
()
γ M1 sinβ( )2
−
γ −1( )
2
$
%&
'
()
M2 =
Mn2
sin β −θ( )
P02
P01
=
2
γ +1( ) γ M1 sinβ( )2
−
γ −1( )
2
$
%&
'
()
1
γ −1
γ +1( )
2
M1 sinβ( )
*
+
,
-
.
/
2
1+
γ −1
2
M1 sinβ( )2$
%&
'
()
$
%
&
&
&
&
'
(
)
)
)
)
γ
γ −1
$
%&
'
()
MAE 5420 - Compressible Fluid Flow!
63!
Example:!
•M1 = 3.0, p1=1atm, T1=288°K, =20°, =1.4, !
β
θ
M1
M2
• Compute shock wave angle (weak)!
• Compute P02, T02, p2, T2, M2 … Behind Shockwave!
θ γ
MAE 5420 - Compressible Fluid Flow!
64!
Example: (cont’d)!
•M1 = 3.0, p1=1atm, =1.4, T1=288°K,
=20°!
• Explicit Solver for !
λ = M1
2
−1( )
2
− 3 1+
γ −1
2
M1
2$
%&
'
() 1+
γ +1
2
M1
2$
%&
'
()tan2
θ( ) =7.13226!
χ =
M1
2
−1( )
3
− 9 1+
γ −1
2
M1
2$
%&
'
() 1+
γ −1
2
M1
2
+
γ +1
4
M1
4$
%&
'
()tan2
θ( )
λ3
=0.93825!
θ
γ
β
MAE 5420 - Compressible Fluid Flow!
65!
Example: (cont’d)!
•M1 = 3.0, p1=1atm, =1.4, T1=288°K, =20°!
• = 1 (weak shock)!
180
π
3
2
1− 2 7.13226
4π 1( ) 0.93825( )acos+
3
# $
% &cos⋅+
3 1
1.4 1−
2
3
2
+# $
% & π
180
20# $
% &tan
# $
( )
( )
( )
( )
% &
atan
tan β( ) =
M1
2
−1( )+ 2λ cos
4πδ + cos−1
χ( )
3
'
()
*
+,
3 1+
γ −1
2
M1
2.
/0
1
23tan θ( )
=!
37.764°!
θγ
δ
MAE 5420 - Compressible Fluid Flow!
66!
Example: (cont’d)!
•M1 = 3.0, p1=1atm, =1.4, T1=288°K, =20°!
• Compute Normal Component of Free stream mach Number!
Mn1 = M1 sinβ = 3
π
180
37.7636" #
$ %sin =1.837!
Normal Shock Solver!
• Mach “normal” component of number behind shock wave!
θγ
Mn2
2
#$ → Mn2 =
1+
γ −1( )
2
M1
sin(β)[ ]2)
*+
,
-.
γ M1
sin(β)[ ]2
−
γ −1( )
2
)
*+
,
-.
2 T1
1+
γ −1( )
2
M1
sin(β)[ ]2)
*+
,
-.
#
0
0
=0.608392!
MAE 5420 - Compressible Fluid Flow!
67!
Example: (cont’d)!
•M1 = 3.0, p1=1atm, =1.4, T1=288°K, =20°!
• Mach “normal” component of number behind shock wave!
θγ
Mn2
2
#$ → Mn2 =
1+
γ −1( )
2
M1
sin(β)[ ]2)
*+
,
-.
γ M1
sin(β)[ ]2
−
γ −1( )
2
)
*+
,
-.
s(β)]2 T1
T2
+
1+
γ −1( )
2
M1
sin(β)[ ]2)
*+
,
-.
γ M1
sin(β)[ ]2
−
γ −1( )
2
)
*+
,
-.
#
$
0
0
0
0
=0.608392!
M2 =
Mn2
sin β −θ( ) M3M2
Mn2
Mt2
β−θ
=1.99414!
FLOW BEHIND SHOCK WAVE IS SUPERSONIC!!
MAE 5420 - Compressible Fluid Flow!
68!
Example: (cont’d)!
•M1 = 3.0, p1=1atm, =1.4, T1=288°K, =20°!
• Compute Normal Component of Free stream mach Number!
p2
p1
= 1+
2γ
γ +1( )
Mn1
2
−1( )
Mn1 = M1 sinβ = 3
π
180
37.7636" #
$ %sin =1.837!
Normal Shock Solver!
p2 = 3.771(1 atm) = 3.771 atm !
• Compute Pressure ratio across shock!
• Flow is compressed!
θγ
MAE 5420 - Compressible Fluid Flow!
69!
Example: (cont’d)!
•M1 = 3.0, p1=1atm, =1.4, T1=288°K, =20°!
• Compute Temperature ratio Across Shock!
Normal Shock Solver!
T2 = 1.5596(288 °K) = 449.2 °K !
T2
T1
= 1+
2γ
γ +1( )
Mn1
2
−1( )
#
$
%
&
'
(
2 + γ −1( )Mn1
2
( )
γ +1( )Mn1
2
#
$
%
%
&
'
(
(
θγ
MAE 5420 - Compressible Fluid Flow!
70!
Example: (cont’d)!
•M1 = 3.0, p1=1atm, =1.4, T1=288°K, =20°!
• Compute Stagnation Pressure ratio across shock!
Normal Shock Solver!
0.7961!
Mn1 = M1 sinβ = 3
π
180
37.7636" #
$ %sin =1.837!
P02
P01
=
θγ
MAE 5420 - Compressible Fluid Flow!
71!
Example: (cont’d)!
•M1 = 3.0, p1=1atm, =1.4, T1=288°K, =20°!
• Compute Stagnation Pressure ratio (alternate method)!
2
1.4 1+( ) 1.4 3
π
180
37.7636" #
$ %sin" #
$ %
2
1.4 1−( )
2" #
$ %−
" #
' (
$ %
1
1.4 1−
1.4 1+( )
2
" #
$ %
2
3
π
180
37.7636" #
$ %sin" #
$ %
2
" #
' (
$ %
1
1.4 1−( )
2
" #
$ % 3
π
180
37.7636" #
$ %sin" #
$ %
2
+
" #
' (
$ %
" #
' (
' (
' (
' (
$ %
1.4
1.4 1−( )
=0.7961!
θγ
P02
P01
=
2
γ +1( ) γ Mn1
2
−
γ −1( )
2
#
$%
&
'(
1
γ −1
γ +1( )
2
Mn1
)
*
+
,
-
.
2
1+
γ −1
2
Mn1
2#
$%
&
'(
#
$
%
%
%
%
&
'
(
(
(
(
γ
γ −1
#
$%
&
'(
MAE 5420 - Compressible Fluid Flow!
72!
Example: (cont’d)!
•M1 = 3.0, p1=1atm, =1.4, T1=288°K, =20°!
• Compute Stagnation Pressure!
=29.24 atm!
P02
=
P02
P01
×
P01
p1
× p1
=
P02
P01
× 1+
γ −1
2
M1
2$
%&
'
()
γ
γ −1
× p1
0.7961( ) 1+
1.4 −1
2
32$
%&
'
()
1.4
1.4−1
×1atm =
θγ
MAE 5420 - Compressible Fluid Flow!
73!
Example: (cont’d)!
•M1 = 3.0, p1=1atm, =1.4, T1=288°K, =20°!
• Compute Stagnation Temperature behind shock!
=806.4 oK!
T02
= T01
=
T01
T1
× T1
= 1+
γ −1
2
M1
2$
%&
'
() × T1
1+
1.4 −1
2
32$
%&
'
() × 288o
K =
θγ
MAE 5420 - Compressible Fluid Flow!
74!
Example: (summary)!
Ahead of shock Behind Shock
M∞ = 3.0 M2 =1.99414
θ = 200
β = 37.764o
p∞ =1 atm p2 = 3.771 atm
T∞ = 288o
K T2 = 449.2o
K
P0∞
= 36.73 atm P02
= 29.24 atm
T0θ
= 806.4o
K T02
= 806.4o
K
M1n
=1.837 M2n
= 0.608392
M1t
= 2.372 M2t
=1.21333
Flow is supersonic!
Behind shock wave!
MAE 5420 - Compressible Fluid Flow!
75!
What Happens When …. !
Flow is subsonic!
Behind shock wave!
θ = 34.01o ?!
β = 63.786o
→ M1n
= 3⋅sin(
π
180
63.786o
) = 2.69145 → M2 n
= 0.49631
M2 =
M2 n
sin β −θ( )
=
0.49631
sin(
π
180
63.786o
− 34.01o
)
= 0.999394
Select Weak Shock Wave Solution!
Select Strong Shock Wave Solution!
β = 66.6448o
→ M1n
= 3⋅sin(
π
180
63.786o
) = 2.75419 → M2 n
= 0.491498
M2 =
M2 n
sin β −θ( )
=
0.491498
sin(
π
180
63.786o
− 34.01o
)
= 0.989705
MAE 5420 - Compressible Fluid Flow!
76!
Add another Curve to β-θ-M diagram…. !
M2 “sonic line”!
MAE 5420 - Compressible Fluid Flow!
Weak, Strong, and Detached Shockwaves!
77!
MAE 5420 - Compressible Fluid Flow!
78!
What Happens when … !
•M1 = 3.0, p1=1atm, =1.4, T1=288°K, =0.00001°!
• Explicit Solver for !
λ = M1
2
−1( )
2
− 3 1+
γ −1
2
M1
2$
%&
'
() 1+
γ +1
2
M1
2$
%&
'
()tan2
θ( ) =8.0!
χ =
M1
2
−1( )
3
− 9 1+
γ −1
2
M1
2$
%&
'
() 1+
γ −1
2
M1
2
+
γ +1
4
M1
4$
%&
'
()tan2
θ( )
λ3
=1.0!
θγ
β
MAE 5420 - Compressible Fluid Flow!
79!
What Happens when (cont’d) !
•M1 = 3.0, p1=1atm, =1.4, T1=288°K, =0.00001°!
tan β( ) =
M1
2
−1( )+ 2λ cos
4πδ + cos−1
χ( )
3
'
()
*
+,
3 1+
γ −1
2
M1
2.
/0
1
23tan θ( )
=19.47°! µ =
180
π
sin−1 1
M1
#
$
%
&
'
( = 19.47o
• “mach line”!
θγ
β
MAE 5420 - Compressible Fluid Flow!
80!
What Happens when (cont’d) !
•M1 = 3.0, p1=1atm, =1.4, T1=288°K, =0.00001°!
• Χοµπυτε Normal Component of Free stream mach Number!
Mn1 = M1 sinβ = 1.0000!
• !
p2
p1
= 1+
2γ
γ +1( )
Mn1
2
−1( ) = 1.0 (NO COMPRESSION!)!
θγ
MAE 5420 - Compressible Fluid Flow!
81!
Expansion Waves !
• So if!
! >0 .. Compression around corner!
! =0 … no compression across shock!
β
θ
M1
M2
θ
θ
MAE 5420 - Compressible Fluid Flow!
82!
Expansion Waves (concluded) !
• Then it follows that!
! <0 .. We get an expansion wave!
• Next!
!Prandtl-Meyer !
!Expansion waves!
θ

More Related Content

What's hot (15)

Missile
MissileMissile
Missile
 
Ae 53 2 marks
Ae 53 2 marksAe 53 2 marks
Ae 53 2 marks
 
Chapter 2 friction
Chapter 2 frictionChapter 2 friction
Chapter 2 friction
 
Friction
FrictionFriction
Friction
 
Kinetics of a Particle : Force and Acceleration
Kinetics of a Particle : Force and AccelerationKinetics of a Particle : Force and Acceleration
Kinetics of a Particle : Force and Acceleration
 
Chapter 20
Chapter 20Chapter 20
Chapter 20
 
PEDAL EQUATIONS-ENGINEERING MATH (VTU)
PEDAL EQUATIONS-ENGINEERING MATH (VTU)PEDAL EQUATIONS-ENGINEERING MATH (VTU)
PEDAL EQUATIONS-ENGINEERING MATH (VTU)
 
Newton-Raphson Method
Newton-Raphson MethodNewton-Raphson Method
Newton-Raphson Method
 
Mass and Balance
Mass and BalanceMass and Balance
Mass and Balance
 
Role of Space in Deterrence
Role of Space in DeterrenceRole of Space in Deterrence
Role of Space in Deterrence
 
fuandametals of fluid mechanics by I. G. Currie solution manual
fuandametals of fluid mechanics by I. G. Currie solution manualfuandametals of fluid mechanics by I. G. Currie solution manual
fuandametals of fluid mechanics by I. G. Currie solution manual
 
Lecture 02.pdf
Lecture 02.pdfLecture 02.pdf
Lecture 02.pdf
 
Naval Aircraft & Missiles Web
Naval Aircraft & Missiles WebNaval Aircraft & Missiles Web
Naval Aircraft & Missiles Web
 
Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...
Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...
Numerical Simulation: Flight Dynamic Stability Analysis Using Unstructured Ba...
 
planos inclinados
planos inclinadosplanos inclinados
planos inclinados
 

Similar to Weak and strong oblique shock waves1

BIOS 203: Lecture 2 - introduction to electronic structure theory
BIOS 203: Lecture 2 - introduction to electronic structure theoryBIOS 203: Lecture 2 - introduction to electronic structure theory
BIOS 203: Lecture 2 - introduction to electronic structure theorybios203
 
Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures? Alessandro Palmeri
 
Trigo Sheet Cheat :D
Trigo Sheet Cheat :DTrigo Sheet Cheat :D
Trigo Sheet Cheat :DQuimm Lee
 
Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)Amro Elfeki
 
The inGraph project and incremental evaluation of Cypher queries
The inGraph project and incremental evaluation of Cypher queriesThe inGraph project and incremental evaluation of Cypher queries
The inGraph project and incremental evaluation of Cypher queriesopenCypher
 
Lecture 3 mohr’s circle and theory of failure
Lecture 3 mohr’s circle and theory of failure Lecture 3 mohr’s circle and theory of failure
Lecture 3 mohr’s circle and theory of failure Deepak Agarwal
 
The forgotten trigonometric_functions
The forgotten trigonometric_functionsThe forgotten trigonometric_functions
The forgotten trigonometric_functionsbtanwar74
 
6 7 irrotational flow
6 7 irrotational flow6 7 irrotational flow
6 7 irrotational flownavala
 
electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...
electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...
electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...LucasMogaka
 
Chapter 6 AC-AC Converters.pdf
Chapter 6 AC-AC Converters.pdfChapter 6 AC-AC Converters.pdf
Chapter 6 AC-AC Converters.pdfLiewChiaPing
 
Field exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionField exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionBaaselMedhat
 
controlled rectifiers
controlled rectifierscontrolled rectifiers
controlled rectifiersAnkur Mahajan
 
'The influence of muscular activation profiles on lower limb biomechanics dur...
'The influence of muscular activation profiles on lower limb biomechanics dur...'The influence of muscular activation profiles on lower limb biomechanics dur...
'The influence of muscular activation profiles on lower limb biomechanics dur...aaron_s_fox
 
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).pptEE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).pptRyanAnderson41811
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDBenjamin Jaedon Choi
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisSimen Li
 
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...NUI Galway
 

Similar to Weak and strong oblique shock waves1 (20)

BIOS 203: Lecture 2 - introduction to electronic structure theory
BIOS 203: Lecture 2 - introduction to electronic structure theoryBIOS 203: Lecture 2 - introduction to electronic structure theory
BIOS 203: Lecture 2 - introduction to electronic structure theory
 
Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?
 
Trigo Sheet Cheat :D
Trigo Sheet Cheat :DTrigo Sheet Cheat :D
Trigo Sheet Cheat :D
 
Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)
 
The inGraph project and incremental evaluation of Cypher queries
The inGraph project and incremental evaluation of Cypher queriesThe inGraph project and incremental evaluation of Cypher queries
The inGraph project and incremental evaluation of Cypher queries
 
Lecture 3 mohr’s circle and theory of failure
Lecture 3 mohr’s circle and theory of failure Lecture 3 mohr’s circle and theory of failure
Lecture 3 mohr’s circle and theory of failure
 
The forgotten trigonometric_functions
The forgotten trigonometric_functionsThe forgotten trigonometric_functions
The forgotten trigonometric_functions
 
6 7 irrotational flow
6 7 irrotational flow6 7 irrotational flow
6 7 irrotational flow
 
electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...
electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...
electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...
 
Chapter 6 AC-AC Converters.pdf
Chapter 6 AC-AC Converters.pdfChapter 6 AC-AC Converters.pdf
Chapter 6 AC-AC Converters.pdf
 
Field exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionField exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solution
 
controlled rectifiers
controlled rectifierscontrolled rectifiers
controlled rectifiers
 
'The influence of muscular activation profiles on lower limb biomechanics dur...
'The influence of muscular activation profiles on lower limb biomechanics dur...'The influence of muscular activation profiles on lower limb biomechanics dur...
'The influence of muscular activation profiles on lower limb biomechanics dur...
 
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).pptEE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
 
Unit 5 inverters
Unit 5 invertersUnit 5 inverters
Unit 5 inverters
 
Trigonometry cheat sheet
Trigonometry cheat sheetTrigonometry cheat sheet
Trigonometry cheat sheet
 
Trig cheat sheet
Trig cheat sheetTrig cheat sheet
Trig cheat sheet
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
 
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
 

More from Saif al-din ali

Nonlinear integral control for dc motor speed control with unknown and variab...
Nonlinear integral control for dc motor speed control with unknown and variab...Nonlinear integral control for dc motor speed control with unknown and variab...
Nonlinear integral control for dc motor speed control with unknown and variab...Saif al-din ali
 
Evaluation of thermal performance of a typical vapor compression refrigeratio...
Evaluation of thermal performance of a typical vapor compression refrigeratio...Evaluation of thermal performance of a typical vapor compression refrigeratio...
Evaluation of thermal performance of a typical vapor compression refrigeratio...Saif al-din ali
 
Refrigeration air conditioning laboratory Moist Air Properties and Air-Condi...
Refrigeration  air conditioning laboratory Moist Air Properties and Air-Condi...Refrigeration  air conditioning laboratory Moist Air Properties and Air-Condi...
Refrigeration air conditioning laboratory Moist Air Properties and Air-Condi...Saif al-din ali
 
Characteristics of a simply converging nozzle through which steam is passes
Characteristics of a simply converging nozzle through which steam is passesCharacteristics of a simply converging nozzle through which steam is passes
Characteristics of a simply converging nozzle through which steam is passesSaif al-din ali
 
Power plant steam condenser
Power plant steam condenser Power plant steam condenser
Power plant steam condenser Saif al-din ali
 
Performance of the four strokes diesel engine
Performance of the four strokes diesel enginePerformance of the four strokes diesel engine
Performance of the four strokes diesel engineSaif al-din ali
 
performance of the four strokes diesel engine
 performance of the four strokes diesel engine performance of the four strokes diesel engine
performance of the four strokes diesel engineSaif al-din ali
 
Introduction about i.c engine
Introduction about i.c engine Introduction about i.c engine
Introduction about i.c engine Saif al-din ali
 
Using the convergent steam nozzle type in the entrance
Using the convergent steam nozzle type in the entranceUsing the convergent steam nozzle type in the entrance
Using the convergent steam nozzle type in the entranceSaif al-din ali
 
Hybrid car Advanced vehicle technology
Hybrid car Advanced vehicle technologyHybrid car Advanced vehicle technology
Hybrid car Advanced vehicle technologySaif al-din ali
 
Nonlinear integral control for dc motor speed control
Nonlinear integral control for dc motor speed controlNonlinear integral control for dc motor speed control
Nonlinear integral control for dc motor speed controlSaif al-din ali
 
Weak and strong oblique shock waves2
Weak and strong oblique shock waves2Weak and strong oblique shock waves2
Weak and strong oblique shock waves2Saif al-din ali
 
Oblique shock and expansion waves
Oblique shock and expansion wavesOblique shock and expansion waves
Oblique shock and expansion wavesSaif al-din ali
 
Characteristics of shock reflection in the dual solution domain
Characteristics of shock reflection in the dual solution domainCharacteristics of shock reflection in the dual solution domain
Characteristics of shock reflection in the dual solution domainSaif al-din ali
 

More from Saif al-din ali (20)

Nonlinear integral control for dc motor speed control with unknown and variab...
Nonlinear integral control for dc motor speed control with unknown and variab...Nonlinear integral control for dc motor speed control with unknown and variab...
Nonlinear integral control for dc motor speed control with unknown and variab...
 
Design problem
Design problemDesign problem
Design problem
 
Evaluation of thermal performance of a typical vapor compression refrigeratio...
Evaluation of thermal performance of a typical vapor compression refrigeratio...Evaluation of thermal performance of a typical vapor compression refrigeratio...
Evaluation of thermal performance of a typical vapor compression refrigeratio...
 
Refrigeration air conditioning laboratory Moist Air Properties and Air-Condi...
Refrigeration  air conditioning laboratory Moist Air Properties and Air-Condi...Refrigeration  air conditioning laboratory Moist Air Properties and Air-Condi...
Refrigeration air conditioning laboratory Moist Air Properties and Air-Condi...
 
Characteristics of a simply converging nozzle through which steam is passes
Characteristics of a simply converging nozzle through which steam is passesCharacteristics of a simply converging nozzle through which steam is passes
Characteristics of a simply converging nozzle through which steam is passes
 
Power plant steam condenser
Power plant steam condenser Power plant steam condenser
Power plant steam condenser
 
Performance of the four strokes diesel engine
Performance of the four strokes diesel enginePerformance of the four strokes diesel engine
Performance of the four strokes diesel engine
 
i.c engine
 i.c engine  i.c engine
i.c engine
 
Flow system control
Flow system controlFlow system control
Flow system control
 
Control servo motors
Control servo motors  Control servo motors
Control servo motors
 
Nozzles
NozzlesNozzles
Nozzles
 
performance of the four strokes diesel engine
 performance of the four strokes diesel engine performance of the four strokes diesel engine
performance of the four strokes diesel engine
 
Introduction about i.c engine
Introduction about i.c engine Introduction about i.c engine
Introduction about i.c engine
 
Flow system control
Flow system controlFlow system control
Flow system control
 
Using the convergent steam nozzle type in the entrance
Using the convergent steam nozzle type in the entranceUsing the convergent steam nozzle type in the entrance
Using the convergent steam nozzle type in the entrance
 
Hybrid car Advanced vehicle technology
Hybrid car Advanced vehicle technologyHybrid car Advanced vehicle technology
Hybrid car Advanced vehicle technology
 
Nonlinear integral control for dc motor speed control
Nonlinear integral control for dc motor speed controlNonlinear integral control for dc motor speed control
Nonlinear integral control for dc motor speed control
 
Weak and strong oblique shock waves2
Weak and strong oblique shock waves2Weak and strong oblique shock waves2
Weak and strong oblique shock waves2
 
Oblique shock and expansion waves
Oblique shock and expansion wavesOblique shock and expansion waves
Oblique shock and expansion waves
 
Characteristics of shock reflection in the dual solution domain
Characteristics of shock reflection in the dual solution domainCharacteristics of shock reflection in the dual solution domain
Characteristics of shock reflection in the dual solution domain
 

Recently uploaded

GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacingjaychoudhary37
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 

Recently uploaded (20)

GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacing
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 

Weak and strong oblique shock waves1

  • 1. MAE 5420 - Compressible Fluid Flow! 1! Section 6 Lecture 1:Oblique Shock Waves! • Anderson, ! Chapter 4 pp.127-145 !
  • 2. MAE 5420 - Compressible Fluid Flow! 2! Mach Waves, Revisited! • In Supersonic flow, pressure disturbances cannot ! outrun “point-mass” generating object! • Result is an infinitesimally weak “mach wave”! V t c t µ sinµ = c × t V × t " #$ % &' = 1 M → µ = sin−1 1 M
  • 3. MAE 5420 - Compressible Fluid Flow! 3! Oblique Shock Wave! • When generating object is larger than a “point”, shockwave is stronger than! mach wave …. Oblique shock wave! • -- shock angle! • -- turning or! “wedge angle”! β ≥ µ β θ θ
  • 4. MAE 5420 - Compressible Fluid Flow! 4! Oblique Shock Wave Geometry! ! !Tangential ! !Normal! Ahead ! !w1, Mt1 ! ! !u1, Mn1! Of Shock! Behind ! ! w2, Mt2 ! ! !u2, Mn2! Shock ! • Must satisfy! !i) continuity! !ii) momentum! !iii) energy!
  • 5. MAE 5420 - Compressible Fluid Flow! 5! Continuity Equation! • For Steady Flow! w2 u2 w1 u1 ds ds ρV −> • ds −> # $ % & C.S. ∫∫ = 0 = −ρ1u1A + ρ2u2 A → ρ1u1 = ρ2u2 − ρV −> • ds −> # $ % & C.S. ∫∫ = ∂ ∂t ρdv c.v. ∫∫∫ # $ ) % & * 0!
  • 6. MAE 5420 - Compressible Fluid Flow! 6! Momentum Equation! • For Steady Flow w/no Body Forces! ρV −> • ds −> # $ % & C.S. ∫∫ V −> = − p( ) C.S. ∫∫ dS −> • Tangential Component! • But from continuity! −ρ1u1w1A + ρ2u2w2 A( )= 0 ρ1u1 = ρ2u2 w1 = w2 Tangential velocity is! Constant across oblique! Shock wave!
  • 7. MAE 5420 - Compressible Fluid Flow! 7! Momentum Equation (concluded)! ρV −> • ds −> # $ % & C.S. ∫∫ V −> = − p( ) C.S. ∫∫ dS −> • Normal Component! Tangential velocity is! Constant across oblique! Shock wave! −ρ1u1 2 A + ρ2u2 2 A = p2 − p1( )A → p1 + ρ1u1 2 = p2 + ρ2u2 2
  • 8. MAE 5420 - Compressible Fluid Flow! 8! Energy Equation! • Steady Adiabatic Flow! ρ e + V2 2 " # $ % & ' V −> • d S −> + (pd S −> ) • V −> C.S. ∫∫ = 0 C.S. ∫∫ • Tangential velocity components do not ! contribute to integrals … thus …! p1u1 + ρ1 e1 + V1 2 2 " # $ % & ' u1 = p2u2 + ρ2 e2 + V2 2 2 " # $ % & ' u2
  • 9. MAE 5420 - Compressible Fluid Flow! 9! Energy Equation (cont’d)! •! • But …! • … thus …! Factor out {ρ1,u1}, {ρ2,u2}! p1 ρ1 + e1 " #$ % &' + V1 2 2 ( ) * * + , - - ρ1u1 = p2 ρ2 + e2 " #$ % &' + V2 2 2 ( ) * * + , - - ρ2u2 p1 ρ1 + e1 = RgT1 + cvT1 = cp − cv( )T1 + cvT1 = cpT1 = h1 p2 ρ2 + e2 = h2 … and …! ρ1u1 = ρ2u2 h1 + V1 2 2 = h2 + V2 2 2
  • 10. MAE 5420 - Compressible Fluid Flow! 10! Energy Equation (concluded)! •! • thus …! Write Velocity in terms of components! V1 2 = u1 2 + w1 2 → V2 2 = u2 2 + w2 2 → w1 = w2 h1 + u1 2 2 = h2 + u2 2 2
  • 11. MAE 5420 - Compressible Fluid Flow! 11! Collected Oblique Shock Equations! • Continuity! • Momentum! • Energy! w1 = w2 p1 + ρ1u1 2 = p2 + ρ2u2 2 ρ1u1 = ρ2u2 cpT1 + u1 2 2 = cpT2 + u2 2 2 θ β−θ β−θ β u1 u2 w1 w2
  • 12. MAE 5420 - Compressible Fluid Flow! 12! Compare Oblique to Normal Shock Equations! • Continuity! • Momentum! • Energy! ρ1V1 = ρ2V2 p1+ ρ1V1 2 = p2 + ρ2V2 2 cp1T1 + V1 2 2 = cp2T2 + V2 2 2 • Identical except for u1 replaces V1 (normal to shock wave)! and w1=w2 (tangential to shock wave)! Normal Shock Equations!
  • 13. MAE 5420 - Compressible Fluid Flow! 13! Compare Oblique to Normal Shock Equations" (cont’d)! • Defining:! Mn 1=M1sin( )! Mt 1=M1cos( )! • Then by similarity! we can write the solution! Mn2 = 1+ γ −1( ) 2 Mn1 2# $% & '( γ Mn1 2 − γ −1( ) 2 # $% & '( β β
  • 14. MAE 5420 - Compressible Fluid Flow! 14! Compare Oblique to Normal Shock Equations" (cont’d)! • Similarity Solution! ρ2 ρ1 = γ +1( )Mn1 2 2 + γ −1( )Mn1 2 ( ) p2 p1 = 1+ 2γ γ +1( ) Mn1 2 −1( ) T2 T1 = 1+ 2γ γ +1( ) Mn1 2 −1( ) # $ % & ' ( 2 + γ −1( )Mn1 2 ( ) γ +1( )Mn1 2 # $ % % & ' ( ( Mn1 = M1 sin β( ) Letting! Then …..!
  • 15. MAE 5420 - Compressible Fluid Flow! 15! Compare Oblique to Normal Shock Equations" (cont’d)! ρ2 ρ1 = γ +1( ) M1 sinβ( )2 2 + γ −1( ) M1 sinβ( )2 ( ) p2 p1 = 1+ 2γ γ +1( ) M1 sinβ( )2 −1( ) T2 T1 = 1+ 2γ γ +1( ) M1 sinβ( )2 −1( )% & ' ( ) * 2 + γ −1( ) M1 sinβ( )2 ( ) γ +1( ) M1 sinβ( )2 % & ' ' ( ) * * Mn2 = 1+ γ −1( ) 2 M1 sinβ( )2$ %& ' () γ M1 sinβ( )2 − γ −1( ) 2 $ %& ' () • Properties across Oblique Shock wave ~ f(M1, )!β
  • 16. MAE 5420 - Compressible Fluid Flow! 16! Total Mach Number Downstream " of Oblique Shock! w1 = w2 Tangential velocity is! Constant across oblique! Shock wave! w1 = w2 → Mt1c1 = Mt2c2 = M1 cos(β)c1 Mt2 = M1 cos(β)c1 c2 = M1 cos(β) T1 T2 M2 = Mt2 2 + Mn2 2 #$ %&
  • 17. MAE 5420 - Compressible Fluid Flow! 17! Total Mach Number Downstream " of Oblique Shock (cont’d)!Tangential velocity is! Constant across oblique! Shock wave! M2 = Mt2 2 + Mn2 2 !" #$ → Mn2 = 1+ γ −1( ) 2 M1 sin(β)[ ]2) *+ , -. γ M1 sin(β)[ ]2 − γ −1( ) 2 ) *+ , -. M2 = M1 cos(β)[ ]2 T1 T2 + 1+ γ −1( ) 2 M1 sin(β)[ ]2) *+ , -. γ M1 sin(β)[ ]2 − γ −1( ) 2 ) *+ , -. ! " / / / / # $ 0 0 0 0
  • 18. MAE 5420 - Compressible Fluid Flow! 18! Total Mach Number Downstream " of Oblique Shock (concluded)!Tangential velocity is! Constant across oblique! Shock wave! • Or … More simply .. If we consider geometric arguments! M2 = Mn2 sin β −θ( ) M3M2 Mn2 Mt2 β−θ
  • 19. MAE 5420 - Compressible Fluid Flow! 19! Oblique Shock Wave Angle! • Properties across Oblique ! Shock wave ~ f(M1, )! • is the geometric angle! that “forces” the flow! • How do we relate to ?! β θ β θ
  • 20. MAE 5420 - Compressible Fluid Flow! 20! Oblique Shock Wave Angle (cont’d)! • Since (from continuity)! ρ1u1 = ρ2u2 θ β−θ β−θ β u1 u2 w1 w2 ρ1u1 = ρ2u2 → u2 u1 = ρ1 ρ2
  • 21. MAE 5420 - Compressible Fluid Flow! 21! Oblique Shock Wave Angle (cont’d)! θ β−θ β−θ β u1 u2 w1 w2 u2 w2 = tan β −θ( ) u1 w1 = tan β( ) $ % & & & & & & ' ( ) ) ) ) ) ) • from Momentum! w1 = w2
  • 22. MAE 5420 - Compressible Fluid Flow! 22! Oblique Shock Wave Angle (cont’d)! • Solving for the ratio u2/u1! Implicit relationship for shock angle in terms of! Free stream mach number and “wedge angle”! → u2 u1 = tan β −θ( ) tan β( ) = ρ1 ρ2 →→ ρ2 ρ1 = γ +1( )Mn1 2 2 + γ −1( )Mn1 2 ( ) ∴ tan β −θ( ) tan β( ) = 2 + γ −1( ) M1 sin β( )() *+ 2 ( ) γ +1( ) M1 sin β( )() *+ 2
  • 23. MAE 5420 - Compressible Fluid Flow! 23! Oblique Shock Wave Angle (cont’d)! • Solve explicitly for tan( )! tan β −θ( ) tan β( ) = sin β −θ( ) cos β −θ( ) = sin β( )cos θ( )− cos β( )sin θ( ) cos β( )cos θ( )+ sin β( )sin θ( ) $ %& ' () cosβ sinβ = sin β( )cos θ( ) sinβ − cos β( )sin θ( ) sinβ cos β( )cos θ( ) cosβ + sin β( )sin θ( ) cosβ $ % & & & & ' ( ) ) ) ) = cos θ( )− sin θ( ) tan β( ) cos θ( )+ tan β( )sin θ( ) $ % & & & & ' ( ) ) ) ) = 1− sin θ( ) cos θ( )tan β( ) 1+ tan β( )sin θ( ) cos θ( ) $ % & & & & ' ( ) ) ) ) = 1− tan θ( ) tan β( ) 1+ tan β( )tan θ( ) $ % & & & & ' ( ) ) ) ) = tan β( )− tan θ( ) tan β( )+ tan2 β( )tan θ( ) θ
  • 24. MAE 5420 - Compressible Fluid Flow! 24! Oblique Shock Wave Angle (cont’d)! • Solve explicitly for tan( )! tan β( )− tan θ( ) tan β( )+ tan2 β( )tan θ( ) = 2 + γ −1( ) M1 sin β( )%& '( 2 ( ) γ +1( ) M1 sin β( )%& '( 2 θ
  • 25. MAE 5420 - Compressible Fluid Flow! 25! Oblique Shock Wave Angle (cont’d)! • Solve for tan( )" tan β( )− tan θ( )$% &' γ +1( ) M1 sin β( )$% &' 2 = tan β( )+ tan2 β( )tan θ( )$% &' 2 + γ −1( ) M1 sin β( )$% &' 2 ( )→ tan β( ) γ +1( ) M1 sin β( )$% &' 2 − 2 + γ −1( ) M1 sin β( )$% &' 2 ( )$ % & ' = tan θ( ) γ +1( ) M1 sin β( )$% &' 2 + tan2 β( ) 2 + γ −1( ) M1 sin β( )$% &' 2 ( )$ % & ' → tan θ( ) = tan β( ) γ +1( ) M1 sin β( )$% &' 2 − 2 + γ −1( ) M1 sin β( )$% &' 2 ( )$ % & ' γ +1( ) M1 sin β( )$% &' 2 + tan2 β( ) 2 + γ −1( ) M1 sin β( )$% &' 2 ( )$ % & ' θ
  • 26. MAE 5420 - Compressible Fluid Flow! 26! Oblique Shock Wave Angle (cont’d)! • Simplify Numerator" tan β( ) γ +1( ) M1 sin β( )#$ %& 2 − 2 + γ −1( ) M1 sin β( )#$ %& 2 ( )# $ % & = tan β( ) γ M1 sin β( )#$ %& 2 + M1 sin β( )#$ %& 2 − 2 − γ M1 sin β( )#$ %& 2 + M1 sin β( )#$ %& 2 # $ % & = tan β( ) 2 M1 sin β( )#$ %& 2 −1{ }# $ % &
  • 27. MAE 5420 - Compressible Fluid Flow! 27! Oblique Shock Wave Angle (cont’d)! • Simplify Denominator" γ +1( ) M1 sin β( )#$ %& 2 + tan2 β( ) 2 + γ −1( ) M1 sin β( )#$ %& 2 ( )# $ % & = tan2 β( ) γ +1( ) M1 sin β( ) tan β( ) # $ ( % & ) 2 + 2 + γ −1( ) M1 sin β( )#$ %& 2 ( ) # $ ( ( % & ) ) = tan2 β( ) γ +1( ) M1 cos β( )#$ %& 2 + 2 + γ −1( ) M1 sin β( )#$ %& 2 ( )# $ % & = tan2 β( ) γ +1( )M1 2 1− sin2 β( )#$ %& + 2 + γ −1( )M1 2 sin2 β( )# $ % & = tan2 β( ) 2 + γ +1( )M1 2 − γ +1( )M1 2 sin2 β( )+ γ −1( )M1 2 sin2 β( )#$ %&# $ % & = tan2 β( ) 2 + γ +1( )M1 2 − 2M1 2 sin2 β( )#$ %& = tan2 β( ) 2 + γ +1( )M1 2 − 2M1 2 sin2 β( )#$ %& = tan2 β( ) 2 + γ M1 2 + M1 2 1− 2sin2 β( )#$ %&# $ % & = tan2 β( ) 2 + γ M1 2 + M1 2 cos2 β( )− sin2 β( )#$ %&# $ % & = tan2 β( ) 2 + M1 2 γ + cos 2β( )#$ %&#$ %&
  • 28. MAE 5420 - Compressible Fluid Flow! 28! Oblique Shock Wave Angle (cont’d)! • Collect terms" tan θ( ) = 2tan β( ) M1 sin β( )#$ %& 2 −1{ } tan2 β( ) 2 + M1 2 γ + cos 2β( )#$ %&#$ %& = 2 M1 2 sin2 β( )−1{ } tan β( ) 2 + M1 2 γ + cos 2β( )#$ %&#$ %& • “Wedge Angle” Given explicitly as ! function of shock angle and freestream ! Mach number! • Two Solutions “weak” and “strong” ! shock wave … in reality weak shock ! typically occurs; strong only occurs ! under very Specialized circumstances! .e.g near stagnation point for a detached ! Shock (Anderson, pp. 138-139, 165,166) !
  • 29. MAE 5420 - Compressible Fluid Flow! 29! Oblique Shock Wave Angle (concluded)! • Plotting versus " M1=1.5! M1=2.0! M1=2.5! M1=3.0! M1=5.0! M1=4.0! max! curve! “strong shock”! “weak shock”! β θ γ = 1.4 θ
  • 30. MAE 5420 - Compressible Fluid Flow! 15! Compare Oblique to Normal Shock Equations" (cont’d)! ρ2 ρ1 = γ +1( ) M1 sinβ( )2 2 + γ −1( ) M1 sinβ( )2 ( ) p2 p1 = 1+ 2γ γ +1( ) M1 sinβ( )2 −1( ) T2 T1 = 1+ 2γ γ +1( ) M1 sinβ( )2 −1( )% & ' ( ) * 2 + γ −1( ) M1 sinβ( )2 ( ) γ +1( ) M1 sinβ( )2 % & ' ' ( ) * * Mn2 = 1+ γ −1( ) 2 M1 sinβ( )2$ %& ' () γ M1 sinβ( )2 − γ −1( ) 2 $ %& ' () • Properties across Oblique Shock wave ~ f(M1, )!β
  • 31. MAE 5420 - Compressible Fluid Flow! 30! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle! • As derived" • “Wedge Angle” Given explicitly as function of shock ! angle and freestream Mach number! • For most practical applications, the geometric deflection angle (wedge angle) and ! Mach number are prescribed .. Need in terms of and M1! • Obvious Approach …. Numerical Solution using Newton’s method! tan θ( ) = 2 M1 2 sin2 β( )−1{ } tan β( ) 2 + M1 2 γ + cos 2β( )%& '(%& '( β θ
  • 32. MAE 5420 - Compressible Fluid Flow! 31! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle (cont’d)! • Newton method" 2 M1 2 sin2 β( )−1{ } tan β( ) 2 + M1 2 γ + cos 2β( )$% &'$% &' − tan θ( ) ≡ f (β) = 0 f (β) = f (β( j) ) + ∂f ∂β + ,- . /0 ( j) β − β( j)( )+ O(β2 ) + ....→ β( j+1) = β( j) − 2 M1 2 sin2 β( )−1{ } tan β( ) 2 + M1 2 γ + cos 2β( )$% &'$% &' − tan θ( ) ∂f ∂β + ,- . /0 ( j)
  • 33. MAE 5420 - Compressible Fluid Flow! 32! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle (cont’d)! • Newton method (continued)" • Iterate until convergence! ∂f ∂β = 2 M1 4 sin2 β( ) 1+ γ cos 2β( )$% &' + M1 2 2cos 2β( )+ γ −1( )+ 2$% &' sin2 β( ) 2 + M1 2 γ + cos 2β( )$% &'$% &' 2
  • 34. MAE 5420 - Compressible Fluid Flow! 33! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle (cont’d)! ∂f ∂β β • “Flat spot”! Causes potential! Convergence ! Problems with! Newton Method! Increasing! Mach!
  • 35. MAE 5420 - Compressible Fluid Flow! 34! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle (cont’d)! • Newton method … Convergence can often be slow (because of low derivative slope)" • Converged solution! βtrue = 60.26o
  • 36. MAE 5420 - Compressible Fluid Flow! 35! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle (concluded)! • Newton method … or can “toggle” to strong shock solution" • Strong ! shock solution! βstrong = 71.87o
  • 37. MAE 5420 - Compressible Fluid Flow! 36! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle (improved solution)! • Because of the slow convergence of Newton’s method for this! implicit function… explicit solution … ! (if possible) .. Or better behaved .. Method very desirable! tan θ( ) = 2 M1 2 sin2 β( )−1{ } tan β( ) 2 + M1 2 γ + cos 2β( )%& '(%& '( = 2 M1 2 sin2 β( )−1{ } tan β( ) 2 + γ M1 2 + M1 2 cos2 β( )− sin2 β( )%& '(% & ' ( cos 2β( ) = cos2 β( )− sin2 β( )Substitute!
  • 38. MAE 5420 - Compressible Fluid Flow! 37! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle (improved solution)" (cont’d)! • But, since! 1 = cos2 β( )+ sin2 β( ) 2 M1 2 sin2 β( )−1{ } tan β( ) 2 + γ M1 2 + M1 2 cos2 β( )− sin2 β( )$% &'$ % & ' = 2 M1 2 sin2 β( )− sin2 β( )− cos2 β( ){ } tan β( ) 2 + γ M1 2 + M1 2 cos2 β( )− sin2 β( )$% &'$ % & '
  • 39. MAE 5420 - Compressible Fluid Flow! 38! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle (improved solution)" (cont’d)! • Simplify and collect terms! 2 M1 2 sin2 β( )− sin2 β( )− cos2 β( ){ } tan β( ) 2 + γ M1 2 + M1 2 cos2 β( )− sin2 β( )$% &'$ % & ' = M1 2 −1( )sin2 β( )− cos2 β( ){ } tan β( ) 1+ γ 2 M1 2 + 1 2 M1 2 cos2 β( )− sin2 β( )$% &' $ %( & ') = M1 2 −1( )sin2 β( )− cos2 β( ){ } tan β( ) 1+ γ 2 M1 2 + 1 2 M1 2 cos2 β( )− sin2 β( )$% &' $ %( & ') = M1 2 −1( )sin2 β( )− cos2 β( ){ } tan β( ) 1+ γ + cos2 β( )− sin2 β( ) 2 M1 2$ % ( & ' )
  • 40. MAE 5420 - Compressible Fluid Flow! 39! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle (improved solution)" (cont’d)! • Again, Since! M1 2 −1( )sin2 β( )− cos2 β( ){ } tan β( ) 1+ γ + cos2 β( )− sin2 β( ) 2 M1 2$ % & ' ( ) = M1 2 −1( )sin2 β( )− cos2 β( ){ } tan β( ) cos2 β( )+ sin2 β( )+ γ cos2 β( )+ sin2 β( )$% '( + cos2 β( )− sin2 β( ) 2 M1 2 $ % & & ' ( ) ) 1 = cos2 β( )+ sin2 β( )
  • 41. MAE 5420 - Compressible Fluid Flow! 40! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle (improved solution)" (cont’d)! • Regroup and collect terms! M1 2 −1( )sin2 β( )− cos2 β( ){ } tan β( ) cos2 β( )+ sin2 β( )+ γ cos2 β( )+ sin2 β( )$% &' + cos2 β( )− sin2 β( ) 2 M1 2 $ % ( ( & ' ) ) = M1 2 −1( )tan2 β( )−1{ } tan β( ) 1+ tan2 β( )+ γ 1+ tan2 β( )$% &' +1− tan2 β( ) 2 M1 2 $ % ( ( & ' ) ) = M1 2 −1( )tan2 β( )−1{ } tan β( ) 1+ γ +1 2 M1 2 + tan2 β( )+ γ tan2 β( )$% &' − tan2 β( ) 2 M1 2 $ % ( ( & ' ) ) = M1 2 −1( )tan2 β( )−1{ } tan β( ) 1+ γ +1 2 M1 2$ %( & ') + tan2 β( ) 1+ γ −1 2 M1 2$ %( & ') $ % ( & ' )
  • 42. MAE 5420 - Compressible Fluid Flow! 41! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle (improved solution)" (cont’d)! • Finally! • Regrouping in terms of powers of tan( )! tan θ( ) = M1 2 −1( )tan2 β( )−1{ } 1+ γ +1 2 M1 2% &' ( )*tan β( )+ 1+ γ −1 2 M1 2% &' ( )*tan3 β( ) β 1+ γ −1 2 M1 2# $% & '(tan θ( ) * + , - . / tan3 β( )− M1 2 −1( )tan2 β( )+ 1+ γ +1 2 M1 2# $% & '(tan θ( ) * + , - . / tan β( )+1 = 0
  • 43. MAE 5420 - Compressible Fluid Flow! 42! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle (improved solution)" (cont’d)! • Letting" • Result is a cubic equation of the form! a = 1+ γ −1 2 M1 2# $% & '(tan θ( ) * + , - . / b = M1 2 −1( ) c = 1+ γ +1 2 M1 2# $% & '(tan θ( ) * + , - . / x = tan β( ) ax3 − bx2 + cx +1 = 0 • Polynomial has 3 real roots! !i) weak shock! !ii) strong shock! !iii) meaningless solution! ! !( < 0)!β
  • 44. MAE 5420 - Compressible Fluid Flow! 43! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle (improved solution)" (cont’d)! • Numerical Solution of Cubic (Newton’s method)! ax3 − bx2 + cx +1 ≡ f (x) = 0 → 0 = f (xj ) + ∂f (x) ∂x j xj+1 − xj( )+ o(x2 ) xj+1 = xj − f (xj ) ∂f (x) ∂x j = xj − axj 3 − bxj 2 + cxj +1 3axj 2 − 2bxj + c
  • 45. MAE 5420 - Compressible Fluid Flow! 44! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle (improved solution)" (cont’d)! • Collecting terms! xj − axj 3 − bxj 2 + cxj +1 3axj 2 − 2bxj + c = 3axj 3 − 2bxj 2 + cxj − axj 3 − bxj 2 + cxj +1( ) 3axj 2 − 2bxj + c = 2axj 3 − bxj 2 −1 3axj 2 − 2bxj + c
  • 46. MAE 5420 - Compressible Fluid Flow! 45! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle (improved solution)" (cont’d)! • Solution Algorithm (iterate to convergence)! xj+1 = 2axj 3 − bxj 2 −1 3axj 2 − 2bxj + c • Where again! a = 1+ γ −1 2 M1 2# $% & '(tan θ( ) * + , - . / b = M1 2 −1( ) c = 1+ γ +1 2 M1 2# $% & '(tan θ( ) * + , - . / x = tan β( )
  • 47. MAE 5420 - Compressible Fluid Flow! 46! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle (improved solution)" (cont’d)! • Properties of Solver algorithm are much improved! Improved Algorithm!Original Algorithm! βtrue = 60.26o • Original algorithm! • Improved algorithm!
  • 48. MAE 5420 - Compressible Fluid Flow! 47! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle (improved solution)" (cont’d)! • Three Solutions always returned depending on start condition! Original Algorithm! Improved Algorithm! βtrue = 60.26o • Weak Shock Solution!
  • 49. MAE 5420 - Compressible Fluid Flow! 48! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle (improved solution)" (cont’d)! • Three Solutions always returned depending on start condition! Improved Algorithm! • Strong Shock Solution! βstrong = 71.87o
  • 50. MAE 5420 - Compressible Fluid Flow! 49! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle (improved solution)" (cont’d)! • Three Solutions always returned depending on start condition! Improved Algorithm!• Meaningless Solution! βmeaningless < 0o
  • 51. MAE 5420 - Compressible Fluid Flow! 50! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle (explicit solution)" Improved Algorithm!• Meaningless Solution! • Explicit Solution … Using guidance from numerical algorithm, can we find! Explicit (non -iterative) solution for shock angle?! • Cubic equation has three explicit solutions! !i) !weak shock! !ii) !Strong shock! !iii) !non-physical solution !
  • 52. MAE 5420 - Compressible Fluid Flow! 51! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle (explicit solution)" Improved Algorithm! • Explicit Solution … Using guidance from numerical algorithm, can we find! Explicit (non -iterative) solution for shock angle?! • Root 1: tan[ ]=! • Root 2: tan[ ]=! • Root 3: tan[ ]=! • Break solutions down into manageable form! β β β
  • 53. MAE 5420 - Compressible Fluid Flow! 52! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle (explicit solution)" Improved Algorithm!• Meaningless Solution! • Explicit Solution (From Anderson, pp. 142,143) …! 1+ γ −1 2 M1 2# $% & '(tan θ( ) * + , - . / tan3 β( )− M1 2 −1( )tan2 β( )+ 1+ γ +1 2 M1 2# $% & '(tan θ( ) * + , - . / tan β( )+1 = 0 tan β( ) = M1 2 −1( )+ 2λ cos 4πδ + cos−1 χ( ) 3 ' () * +, 3 1+ γ −1 2 M1 2. /0 1 23tan θ( ) λ = M1 2 −1( ) 2 − 3 1+ γ −1 2 M1 2$ %& ' () 1+ γ +1 2 M1 2$ %& ' ()tan2 θ( ) χ = M1 2 −1( ) 3 − 9 1+ γ −1 2 M1 2$ %& ' () 1+ γ −1 2 M1 2 + γ +1 4 M1 4$ %& ' ()tan2 θ( ) λ3 δ = 0 ---> Strong Shock! δ = 1 ---> Weak Shock !
  • 54. MAE 5420 - Compressible Fluid Flow! 53! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle (explicit solution)" Improved Algorithm!• Meaningless Solution! • Explicit Solution Check … let {M=5, , =40°}! λ = M1 2 −1( ) 2 − 3 1+ γ −1 2 M1 2$ %& ' () 1+ γ +1 2 M1 2$ %& ' ()tan2 θ( ) =! = 13.5321! 5 2 1−( ) 2 3 1 1.4 1− 2 5 2 +" # $ % 1 1.4 1+ 2 5 2 +" # $ % π 180 40" # $ %tan" # $ % 2 − " # ' ( $ % 0.5 θγ = 1.4
  • 55. MAE 5420 - Compressible Fluid Flow! 54! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle (explicit solution)" Improved Algorithm!• Meaningless Solution! • Explicit Solution Check … let {M=5, , =40°}! =! χ = M1 2 −1( ) 3 − 9 1+ γ −1 2 M1 2$ %& ' () 1+ γ −1 2 M1 2 + γ +1 4 M1 4$ %& ' ()tan2 θ( ) λ3 = -0.267118! 52 1−( ) 3 9 1 1.4 1− 2 52 +" # $ % 1 1.4 1− 2 52 1.4 1+ 4 54 + +" # $ % π 180 40" # $ %tan" # $ % 2 − 13.5321 3 θγ = 1.4
  • 56. MAE 5420 - Compressible Fluid Flow! 55! Solving for Oblique Shock " Wave Angle in Terms of Wedge Angle (explicit solution)" Improved Algorithm!• Meaningless Solution! tan β( ) = M1 2 −1( )+ 2λ cos 4πδ + cos−1 χ( ) 3 ' () * +, 3 1+ γ −1 2 M1 2. /0 1 23tan θ( ) δ = 1 ---> Weak Shock ! =! 180 π 5 2 1−( ) 2 13.5321( ) 4π 1( ) 0.26712−( )acos+ 3 # $ % &cos+ 3 1 1.4 1− 2 5 2 +# $ % & π 180 40# $ % &tan # $ ' ( ' ( ' ( ' ( % & atan = 60.259°! Check!! • Explicit Solution Check … let {M=5, , =40°}!θγ = 1.4
  • 57. MAE 5420 - Compressible Fluid Flow! 56! Solving for Oblique Shock " Wave Anglein Terms of Wedge Angle (explicit solution)" • Meaningless Solution! tan β( ) = M1 2 −1( )+ 2λ cos 4πδ + cos−1 χ( ) 3 ' () * +, 3 1+ γ −1 2 M1 2. /0 1 23tan θ( ) δ = 0 ---> Strong Shock ! =! = 71.869°! Check!! 180 π 5 2 1−( ) 2 13.5321( ) 4π 0( ) 0.26712−( )acos+ 3 # $ % &cos+ 3 1 1.4 1− 2 5 2 +# $ % & π 180 40# $ % &tan # $ ' ( ' ( ' ( ' ( % & atan … OK .. This works …. But is it ! … the best method?! (concluded)! • Explicit Solution Check … let {M=5, , =40°}!θγ = 1.4
  • 58. MAE 5420 - Compressible Fluid Flow! 57! Floating Point Operation (FLOP) Estimate! tan β( ) = M1 2 −1( )+ 2λ cos 4πδ + cos−1 χ( ) 3 ' () * +, 3 1+ γ −1 2 M1 2. /0 1 23tan θ( ) tan θ( )= M1 2 −1( )tan2 β( )−1{ } 1+ γ +1 2 M1 2% &' ( )*tan β( )+ 1+ γ −1 2 M1 2% &' ( )*tan3 β( ) xj+1 = 2axj 3 − bxj 2 −1 3axj 2 − 2bxj + c • Actually the simplified numerical! Algorithm is slightly faster than closed! Form solution !
  • 59. MAE 5420 - Compressible Fluid Flow! 58! Oblique Shock Waves:" Collected Algorithm! • Properties across Oblique ! Shock wave ~ f(M1, )! • is the geometric angle! that “forces” the flow! tan θ( ) = 2 M1 2 sin2 β( )−1{ } tan β( ) 2 + M1 2 γ + cos 2β( )%& '(%& '( θ β
  • 60. MAE 5420 - Compressible Fluid Flow! 59! Oblique Shock Waves:" Collected Algorithm (cont’d)! • Can be re-written as third order polynomial in tan( )! • “Very Easy” numerical solution! xj+1 = 2axj 3 − bxj 2 −1 3axj 2 − 2bxj + c a = 1+ γ −1 2 M1 2# $% & '(tan θ( ) * + , - . / b = M1 2 −1( ) c = 1+ γ +1 2 M1 2# $% & '(tan θ( ) * + , - . / x = tan β( ) • Cubic equation has three solutions! !i) !weak shock! !ii) !Strong shock! !iii) !non-physical solution ! θ 1+ γ −1 2 M1 2# $% & '(tan θ( ) * + , - . / tan3 β( )− M1 2 −1( )tan2 β( )+ 1+ γ +1 2 M1 2# $% & '(tan θ( ) * + , - . / tan β( )+1 = 0
  • 61. MAE 5420 - Compressible Fluid Flow! 60! Oblique Shock Waves:" Collected Algorithm (cont’d)! • “Less Obvious” explicit solution! tan β( ) = M1 2 −1( )+ 2λ cos 4πδ + cos−1 χ( ) 3 ' () * +, 3 1+ γ −1 2 M1 2. /0 1 23tan θ( ) λ = M1 2 −1( ) 2 − 3 1+ γ −1 2 M1 2$ %& ' () 1+ γ +1 2 M1 2$ %& ' ()tan2 θ( ) χ = M1 2 −1( ) 3 − 9 1+ γ −1 2 M1 2$ %& ' () 1+ γ −1 2 M1 2 + γ +1 4 M1 4$ %& ' ()tan2 θ( ) λ3 δ = 0 ---> Strong Shock! δ = 1 ---> Weak Shock ! • Either solution! Method is acceptable! For large scale-calculations!
  • 62. MAE 5420 - Compressible Fluid Flow! 61! Oblique Shock Waves:" Collected Algorithm (cont’d)! • ... and the rest of the story … ! ρ2 ρ1 = γ +1( ) M1 sinβ( )2 2 + γ −1( ) M1 sinβ( )2 ( ) p2 p1 = 1+ 2γ γ +1( ) M1 sinβ( )2 −1( ) T2 T1 = 1+ 2γ γ +1( ) M1 sinβ( )2 −1( )% & ' ( ) * 2 + γ −1( ) M1 sinβ( )2 ( ) γ +1( ) M1 sinβ( )2 % & ' ' ( ) * *
  • 63. MAE 5420 - Compressible Fluid Flow! 62! Oblique Shock Waves:" Collected Algorithm (concluded)! • ... and the rest of the story … ! Mn2 = 1+ γ −1( ) 2 M1 sinβ( )2$ %& ' () γ M1 sinβ( )2 − γ −1( ) 2 $ %& ' () M2 = Mn2 sin β −θ( ) P02 P01 = 2 γ +1( ) γ M1 sinβ( )2 − γ −1( ) 2 $ %& ' () 1 γ −1 γ +1( ) 2 M1 sinβ( ) * + , - . / 2 1+ γ −1 2 M1 sinβ( )2$ %& ' () $ % & & & & ' ( ) ) ) ) γ γ −1 $ %& ' ()
  • 64. MAE 5420 - Compressible Fluid Flow! 63! Example:! •M1 = 3.0, p1=1atm, T1=288°K, =20°, =1.4, ! β θ M1 M2 • Compute shock wave angle (weak)! • Compute P02, T02, p2, T2, M2 … Behind Shockwave! θ γ
  • 65. MAE 5420 - Compressible Fluid Flow! 64! Example: (cont’d)! •M1 = 3.0, p1=1atm, =1.4, T1=288°K, =20°! • Explicit Solver for ! λ = M1 2 −1( ) 2 − 3 1+ γ −1 2 M1 2$ %& ' () 1+ γ +1 2 M1 2$ %& ' ()tan2 θ( ) =7.13226! χ = M1 2 −1( ) 3 − 9 1+ γ −1 2 M1 2$ %& ' () 1+ γ −1 2 M1 2 + γ +1 4 M1 4$ %& ' ()tan2 θ( ) λ3 =0.93825! θ γ β
  • 66. MAE 5420 - Compressible Fluid Flow! 65! Example: (cont’d)! •M1 = 3.0, p1=1atm, =1.4, T1=288°K, =20°! • = 1 (weak shock)! 180 π 3 2 1− 2 7.13226 4π 1( ) 0.93825( )acos+ 3 # $ % &cos⋅+ 3 1 1.4 1− 2 3 2 +# $ % & π 180 20# $ % &tan # $ ( ) ( ) ( ) ( ) % & atan tan β( ) = M1 2 −1( )+ 2λ cos 4πδ + cos−1 χ( ) 3 ' () * +, 3 1+ γ −1 2 M1 2. /0 1 23tan θ( ) =! 37.764°! θγ δ
  • 67. MAE 5420 - Compressible Fluid Flow! 66! Example: (cont’d)! •M1 = 3.0, p1=1atm, =1.4, T1=288°K, =20°! • Compute Normal Component of Free stream mach Number! Mn1 = M1 sinβ = 3 π 180 37.7636" # $ %sin =1.837! Normal Shock Solver! • Mach “normal” component of number behind shock wave! θγ Mn2 2 #$ → Mn2 = 1+ γ −1( ) 2 M1 sin(β)[ ]2) *+ , -. γ M1 sin(β)[ ]2 − γ −1( ) 2 ) *+ , -. 2 T1 1+ γ −1( ) 2 M1 sin(β)[ ]2) *+ , -. # 0 0 =0.608392!
  • 68. MAE 5420 - Compressible Fluid Flow! 67! Example: (cont’d)! •M1 = 3.0, p1=1atm, =1.4, T1=288°K, =20°! • Mach “normal” component of number behind shock wave! θγ Mn2 2 #$ → Mn2 = 1+ γ −1( ) 2 M1 sin(β)[ ]2) *+ , -. γ M1 sin(β)[ ]2 − γ −1( ) 2 ) *+ , -. s(β)]2 T1 T2 + 1+ γ −1( ) 2 M1 sin(β)[ ]2) *+ , -. γ M1 sin(β)[ ]2 − γ −1( ) 2 ) *+ , -. # $ 0 0 0 0 =0.608392! M2 = Mn2 sin β −θ( ) M3M2 Mn2 Mt2 β−θ =1.99414! FLOW BEHIND SHOCK WAVE IS SUPERSONIC!!
  • 69. MAE 5420 - Compressible Fluid Flow! 68! Example: (cont’d)! •M1 = 3.0, p1=1atm, =1.4, T1=288°K, =20°! • Compute Normal Component of Free stream mach Number! p2 p1 = 1+ 2γ γ +1( ) Mn1 2 −1( ) Mn1 = M1 sinβ = 3 π 180 37.7636" # $ %sin =1.837! Normal Shock Solver! p2 = 3.771(1 atm) = 3.771 atm ! • Compute Pressure ratio across shock! • Flow is compressed! θγ
  • 70. MAE 5420 - Compressible Fluid Flow! 69! Example: (cont’d)! •M1 = 3.0, p1=1atm, =1.4, T1=288°K, =20°! • Compute Temperature ratio Across Shock! Normal Shock Solver! T2 = 1.5596(288 °K) = 449.2 °K ! T2 T1 = 1+ 2γ γ +1( ) Mn1 2 −1( ) # $ % & ' ( 2 + γ −1( )Mn1 2 ( ) γ +1( )Mn1 2 # $ % % & ' ( ( θγ
  • 71. MAE 5420 - Compressible Fluid Flow! 70! Example: (cont’d)! •M1 = 3.0, p1=1atm, =1.4, T1=288°K, =20°! • Compute Stagnation Pressure ratio across shock! Normal Shock Solver! 0.7961! Mn1 = M1 sinβ = 3 π 180 37.7636" # $ %sin =1.837! P02 P01 = θγ
  • 72. MAE 5420 - Compressible Fluid Flow! 71! Example: (cont’d)! •M1 = 3.0, p1=1atm, =1.4, T1=288°K, =20°! • Compute Stagnation Pressure ratio (alternate method)! 2 1.4 1+( ) 1.4 3 π 180 37.7636" # $ %sin" # $ % 2 1.4 1−( ) 2" # $ %− " # ' ( $ % 1 1.4 1− 1.4 1+( ) 2 " # $ % 2 3 π 180 37.7636" # $ %sin" # $ % 2 " # ' ( $ % 1 1.4 1−( ) 2 " # $ % 3 π 180 37.7636" # $ %sin" # $ % 2 + " # ' ( $ % " # ' ( ' ( ' ( ' ( $ % 1.4 1.4 1−( ) =0.7961! θγ P02 P01 = 2 γ +1( ) γ Mn1 2 − γ −1( ) 2 # $% & '( 1 γ −1 γ +1( ) 2 Mn1 ) * + , - . 2 1+ γ −1 2 Mn1 2# $% & '( # $ % % % % & ' ( ( ( ( γ γ −1 # $% & '(
  • 73. MAE 5420 - Compressible Fluid Flow! 72! Example: (cont’d)! •M1 = 3.0, p1=1atm, =1.4, T1=288°K, =20°! • Compute Stagnation Pressure! =29.24 atm! P02 = P02 P01 × P01 p1 × p1 = P02 P01 × 1+ γ −1 2 M1 2$ %& ' () γ γ −1 × p1 0.7961( ) 1+ 1.4 −1 2 32$ %& ' () 1.4 1.4−1 ×1atm = θγ
  • 74. MAE 5420 - Compressible Fluid Flow! 73! Example: (cont’d)! •M1 = 3.0, p1=1atm, =1.4, T1=288°K, =20°! • Compute Stagnation Temperature behind shock! =806.4 oK! T02 = T01 = T01 T1 × T1 = 1+ γ −1 2 M1 2$ %& ' () × T1 1+ 1.4 −1 2 32$ %& ' () × 288o K = θγ
  • 75. MAE 5420 - Compressible Fluid Flow! 74! Example: (summary)! Ahead of shock Behind Shock M∞ = 3.0 M2 =1.99414 θ = 200 β = 37.764o p∞ =1 atm p2 = 3.771 atm T∞ = 288o K T2 = 449.2o K P0∞ = 36.73 atm P02 = 29.24 atm T0θ = 806.4o K T02 = 806.4o K M1n =1.837 M2n = 0.608392 M1t = 2.372 M2t =1.21333 Flow is supersonic! Behind shock wave!
  • 76. MAE 5420 - Compressible Fluid Flow! 75! What Happens When …. ! Flow is subsonic! Behind shock wave! θ = 34.01o ?! β = 63.786o → M1n = 3⋅sin( π 180 63.786o ) = 2.69145 → M2 n = 0.49631 M2 = M2 n sin β −θ( ) = 0.49631 sin( π 180 63.786o − 34.01o ) = 0.999394 Select Weak Shock Wave Solution! Select Strong Shock Wave Solution! β = 66.6448o → M1n = 3⋅sin( π 180 63.786o ) = 2.75419 → M2 n = 0.491498 M2 = M2 n sin β −θ( ) = 0.491498 sin( π 180 63.786o − 34.01o ) = 0.989705
  • 77. MAE 5420 - Compressible Fluid Flow! 76! Add another Curve to β-θ-M diagram…. ! M2 “sonic line”!
  • 78. MAE 5420 - Compressible Fluid Flow! Weak, Strong, and Detached Shockwaves! 77!
  • 79. MAE 5420 - Compressible Fluid Flow! 78! What Happens when … ! •M1 = 3.0, p1=1atm, =1.4, T1=288°K, =0.00001°! • Explicit Solver for ! λ = M1 2 −1( ) 2 − 3 1+ γ −1 2 M1 2$ %& ' () 1+ γ +1 2 M1 2$ %& ' ()tan2 θ( ) =8.0! χ = M1 2 −1( ) 3 − 9 1+ γ −1 2 M1 2$ %& ' () 1+ γ −1 2 M1 2 + γ +1 4 M1 4$ %& ' ()tan2 θ( ) λ3 =1.0! θγ β
  • 80. MAE 5420 - Compressible Fluid Flow! 79! What Happens when (cont’d) ! •M1 = 3.0, p1=1atm, =1.4, T1=288°K, =0.00001°! tan β( ) = M1 2 −1( )+ 2λ cos 4πδ + cos−1 χ( ) 3 ' () * +, 3 1+ γ −1 2 M1 2. /0 1 23tan θ( ) =19.47°! µ = 180 π sin−1 1 M1 # $ % & ' ( = 19.47o • “mach line”! θγ β
  • 81. MAE 5420 - Compressible Fluid Flow! 80! What Happens when (cont’d) ! •M1 = 3.0, p1=1atm, =1.4, T1=288°K, =0.00001°! • Χοµπυτε Normal Component of Free stream mach Number! Mn1 = M1 sinβ = 1.0000! • ! p2 p1 = 1+ 2γ γ +1( ) Mn1 2 −1( ) = 1.0 (NO COMPRESSION!)! θγ
  • 82. MAE 5420 - Compressible Fluid Flow! 81! Expansion Waves ! • So if! ! >0 .. Compression around corner! ! =0 … no compression across shock! β θ M1 M2 θ θ
  • 83. MAE 5420 - Compressible Fluid Flow! 82! Expansion Waves (concluded) ! • Then it follows that! ! <0 .. We get an expansion wave! • Next! !Prandtl-Meyer ! !Expansion waves! θ