SlideShare a Scribd company logo
1 of 4
Download to read offline
The	
  Forgotten	
  Trigonometric	
  Functions,	
  or	
  
How	
  Trigonometry	
  was	
  used	
  in	
  the	
  Ancient	
  Art	
  of	
  Navigation	
  (Before	
  GPS!)	
  
	
  
Recently,	
  as	
  I	
  was	
  exploring	
  some	
  mathematical	
  concept	
  I	
  came	
  across	
  some	
  terms	
  that	
  were	
  
suspiciously	
  similar	
  to	
  some	
  familiar	
  trigonometric	
  functions.	
  	
  What	
  is	
  an	
  excosecant?	
  	
  How	
  about	
  a	
  
Havercosine?	
  	
  	
  As	
  it	
  turns	
  out,	
  these	
  belong	
  to	
  a	
  family	
  of	
  trigonometric	
  functions	
  that	
  once	
  enjoyed	
  
very	
  standard	
  usage,	
  in	
  very	
  notable	
  and	
  practical	
  fields,	
  but	
  in	
  recent	
  times	
  have	
  become	
  nearly	
  
obsolete.	
  	
  	
  	
  
Versine	
  
The	
  most	
  basic	
  of	
  this	
  family	
  of	
  functions	
  is	
  the	
  
versine,	
  or	
  versed	
  sine.	
  	
  The	
  versine,	
  abbreviated	
  
versin	
  of	
  some	
  angle	
  x	
  is	
  actually	
  calculated	
  by	
  
subtracting	
  the	
  cosine	
  of	
  x	
  from	
  1;	
  that	
  is	
  versin(x)	
  =	
  
1	
  -­‐	
  cos	
  (x).	
  	
  Through	
  some	
  manipulations	
  with	
  half-­‐
angle	
  identities,	
  we	
  can	
  see	
  another	
  equivalent	
  
expression:	
  
	
   	
   	
  
	
   	
  
Notice,	
  we	
  do	
  not	
  need	
  the	
  ±	
  as	
  the	
  versine	
  will	
  always	
  represent	
  non-­‐negative	
  value	
  (since	
  cosine	
  
ranges	
  from	
  negative	
  one	
  to	
  positive	
  one,	
  one	
  minus	
  these	
  values	
  will	
  range	
  from	
  zero	
  to	
  two).	
  	
  	
  This	
  
was	
  especially	
  helpful	
  as	
  navigators	
  used	
  logarithms	
  in	
  their	
  calculations,	
  so	
  they	
  could	
  always	
  take	
  
the	
  logarithm	
  of	
  the	
  versine.	
  	
  	
  
It	
  is	
  interesting	
  that	
  the	
  Latin	
  name	
  for	
  versine	
  is	
  either	
  sinus	
  
versus	
  (flipped	
  sine,	
  to	
  distinguish	
  from	
  sinus	
  rectus,	
  the	
  
vertical	
  sine)	
  or	
  sagitta,	
  meaning	
  arrow.	
  	
  It	
  is	
  easy	
  to	
  see,	
  when	
  
looking	
  at	
  a	
  drawing	
  of	
  the	
  sine,	
  cosine	
  and	
  versine	
  why	
  the	
  
reference	
  to	
  arrow	
  occurs.	
  	
  	
  	
  Envision	
  a	
  bow	
  and	
  arrow;	
  on	
  the	
  
sketch,	
  the	
  arc	
  AB	
  is	
  the	
  bow,	
  segment	
  AB	
  is	
  the	
  bowstring,	
  
and	
  segment	
  CD	
  is	
  the	
  drawn	
  arrow	
  shaft,	
  thus,	
  the	
  reference	
  
to	
  an	
  arrow.	
  	
  Interestingly,	
  though	
  it	
  has	
  fallen	
  out	
  of	
  
contemporary	
  usage,	
  the	
  word	
  sagitta	
  is	
  a	
  synonym	
  for	
  
abscissa,	
  the	
  x-­‐axis.	
  	
  	
  
	
  
	
  
!"#$%&(!)  	
  	
  	
   =   1 − cos !	
  
	
   	
   =   
!(!!!"#!)
!
	
  
= 2 !!
1 − cos !
2
!
!
	
  
= 2  !"#! !
1
2
!!	
  
!"#$%&  ! = 1 − cos ! = 2  !"#! !
1
2
!!	
  
ℎ!"#$%&'  ! =
1 − cos !
2
= !"#! !
1
2
!!	
  
!"#  ! = 1 − !"#$%&  ! = 1 − 2  ℎ!"#$%&'  !	
  
Haversine	
  
While	
  this	
  function	
  is	
  obviously	
  related	
  to	
  the	
  
versine	
  (literally,	
  it	
  is	
  half	
  the	
  versine,	
  thus	
  
haversine),	
  it	
  has	
  the	
  most	
  practical	
  usage	
  
associated	
  with	
  it.	
  	
  	
  
In	
  early	
  times,	
  navigators	
  would	
  calculate	
  distance	
  
from	
  their	
  known	
  latitudinal	
  and	
  longitudinal	
  
coordinates	
  to	
  those	
  of	
  their	
  desired	
  destination	
  by	
  using	
  what	
  became	
  known	
  as	
  the	
  Haversine	
  
formula.	
  	
  	
  	
  Starting	
  with	
  the	
  Spherical	
  Law	
  of	
  Cosines,	
  and	
  making	
  appropriate	
  substitutions	
  using	
  the	
  
definition	
  of	
  haversine,	
  and	
  the	
  difference	
  of	
  cosines	
  identity,	
  we	
  can	
  derive	
  what	
  is	
  known	
  as	
  the	
  Law	
  
of	
  Haversines.	
  	
  From	
  there,	
  we	
  can	
  relate	
  it	
  to	
  the	
  specific	
  case	
  of	
  the	
  earth	
  to	
  arrive	
  at	
  the	
  Haverine	
  
formula,	
  which	
  then	
  can	
  be	
  applied	
  to	
  find	
  a	
  distance	
  between	
  two	
  points.	
  	
  	
  	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  !"#$%$&'  !"#  !"#  !"  !"#$%&'($&:	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  !ℎ!  !"ℎ!"#$%&  !"#  !"  !"#$%&#:	
  
	
  
                                              cos ! = cos ! cos ! + sin ! sin ! cos!  	
  
	
  
Where	
  a,	
  b,	
  c	
  are	
  spherical	
  arcs,	
  	
  
and	
  C	
  is	
  the	
  spherical	
  angle	
  between	
  a	
  and	
  b.	
  	
  	
  
	
  
First,	
  substitute	
  for	
  cos	
  c	
  and	
  cos	
  C	
  in	
  terms	
  of	
  haversine:	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1 − 2  hav ! = cos ! cos ! + sin ! sin !(1 − 2  hav !)  	
  
	
  
Then	
  distributing	
  on	
  the	
  right	
  hand	
  side:	
  
	
  
1 − 2  hav ! = cos ! cos ! + sin ! sin ! − 2 sin ! sin !  ℎ!"  !	
  
	
  
Replacing	
  the	
  difference	
  of	
  cosines:	
  
	
  
1 − 2  hav ! = cos(! − !) − 2 sin ! sin !  ℎ!"  !	
  
	
  
Next,	
  substitute	
  for	
  cos	
  (a-­‐b)	
  in	
  terms	
  of	
  haversin:	
  
	
  
1 − 2  hav ! = 1 − 2  hav(! − !) − 2 sin ! sin !  ℎ!"  !	
  
	
  
Last,	
  simplify	
  by	
  subtracting	
  one	
  and	
  dividing	
  by	
  -­‐2:	
  
	
  
hav ! =   hav(! − !) + sin ! sin !  ℎ!"  !	
  
So,	
  now	
  we	
  are	
  able	
  to	
  determine	
  the	
  distance	
  between	
  two	
  points.	
  	
  Letting	
  point	
  1	
  be	
  Atlanta,	
  GA	
  
(33o
44’56”N,	
  84o
23’17”W)	
  and	
  point	
  2	
  be	
  Sao	
  Paulo,	
  Brazil	
  (23o
32’0”S,	
  46o
37’0”W),	
  we	
  should	
  be	
  able	
  
to	
  find	
  the	
  distance	
  by	
  making	
  appropriate	
  substitutions	
  and	
  a	
  reasonable	
  approximation	
  for	
  the	
  
radius	
  of	
  the	
  earth	
  (which	
  is	
  not	
  a	
  perfect	
  sphere).	
  	
  We	
  will	
  use	
  the	
  mean	
  of	
  the	
  shortest	
  and	
  longest	
  
radii:	
  	
  approximately	
  3959	
  miles.	
  	
  	
  
Check	
  out	
  the	
  link	
  on	
  my	
  home	
  page	
  for	
  an	
  Excel	
  Worksheet	
  that	
  will	
  calculate	
  the	
  distance	
  between	
  
two	
  locations	
  using	
  the	
  Haversine	
  Formula	
  and	
  their	
  latitudes	
  and	
  longitudes.	
  	
  	
  
!"#$    !"#  !"#  !"  !"#$%&'($&  !"  !"#  !"#$%&'($  !"#$%&':	
  
	
  
	
  
hav ! =   hav(! − !) + sin ! sin !  ℎ!"  !	
  
Let	
  d	
  be	
  the	
  spherical	
  distance	
  between	
  any	
  two	
  points	
  on	
  the	
  surface	
  of	
  the	
  earth,	
  r	
  be	
  the	
  radius	
  of	
  the	
  
earth,	
  ∝!   !"!   ∝!	
  be	
  the	
  latitudes	
  of	
  point	
  1	
  and	
  point	
  2,	
  respectively,	
  and	
  !!  !"#  !!	
  be	
  their	
  
respective	
  longitudes.	
  	
  The	
  haversine	
  of	
  the	
  central	
  angle	
  between	
  the	
  points	
  is:	
  
hav !
!
!
! =   hav(∝!−∝!) + cos ∝! cos ∝!   ℎ!"  (!! − !!)	
  
Since	
  ℎ!"#$%&'  ! = !"#! !
!
!
!!,	
  we	
  have	
    
!"#! !
!
2!
! =   hav(∝!−∝!) + cos ∝! cos ∝!   ℎ!"  (!! − !!)	
  
And	
  	
  	
  	
  
!
!!
= !"#$%&!  hav(∝!−∝!) + cos ∝! cos ∝!   ℎ!"  (!! − !!)	
  
Finally,	
  ! = 2!  !"#$%&!!"#! !
∝!!∝!
!
! + cos ∝! cos ∝!   !"#!   !
!!!!!
!
!	
  
!"#$%  !"#  !"#$%&'($  !"#$%&':	
  
	
  
! = 2(3959)  !"#$%&!!"#! !
−23.533° − 33.749°
2
! + cos 33.749° cos(−23.533°)  !"#!   !
46.617° − 84.388°
2
!
! = 7918  !"#$%&!!"#!(−28.641°) + cos33.749° cos(−23.533°)  !"#!  (−18.886)
! = 7918  !"#$%&!(−0.4793)! + (0.8315)(0.9168)(−0.3237)!
! = 7918  !"#$%&√. 3096
! = 7918  !"#$%& 0.5564
! = 7918  (33.8083) !
!
180
! ≈ 4672   !"#$%
There	
  are	
  many	
  other	
  “classical”	
  trigonometric	
  functions	
  that	
  are	
  not	
  as	
  practical	
  and	
  have	
  been	
  
abandoned	
  in	
  favor	
  of	
  manipulation	
  of	
  the	
  six	
  well-­‐known	
  (and	
  loved)	
  trig	
  ratios.	
  	
  The	
  table	
  and	
  
diagram	
  below	
  illustrate	
  how	
  these	
  functions	
  are	
  defined.	
  	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
As	
  we	
  evolve	
  technologically,	
  it	
  is	
  important	
  that	
  we	
  remember	
  and	
  recall	
  the	
  steps	
  we	
  have	
  taken	
  to	
  
achieve	
  the	
  stature	
  we	
  have	
  reached	
  thus	
  far.	
  	
  It	
  is	
  valuable	
  for	
  us	
  to	
  remember	
  those	
  “giants”	
  upon	
  
whose	
  shoulders	
  we	
  happen	
  to	
  currently	
  stand.	
  	
  	
  
Weisstein,	
  Eric	
  W.	
  "Versine."	
  From	
  MathWorld-­‐-­‐A	
  Wolfram	
  Web	
  Resource.	
  
http://mathworld.wolfram.com/Versine.html	
  	
  
http://en.wikipedia.org/wiki/Versine	
  
http://en.wikipedia.org/wiki/Haversine_formula	
  
Kells,	
  Kern	
  &	
  Bland.	
  	
  Plane	
  and	
  Spherical	
  Trigonometry.	
  	
  York,	
  PA:	
  	
  Maple	
  Press	
  Company,	
  1935.	
  	
  Print.	
  
	
  
!"#$%&'("  ! 1 + !"#$%&  !
!"#$%&'($  ! 1 − !"#$  !
!"#$%!"&'($  ! 1 + !"#$  !
ℎ!"#$%&'()#  ! 1 + !"#$%&  !
2
ℎ!!"#$%&'($  ! 1 − !"#$  !
2
ℎ!"#$%&"#'()%  ! 1 + !"#$  !
2
!"#!"#$%  ! !"#$%&  ! − 1
!"#$%!#&'(  ! !"#$!%&'  ! − 1
	
  
	
  	
  

More Related Content

Similar to The forgotten trigonometric_functions

Similar to The forgotten trigonometric_functions (20)

An Introduction to Trigonometry.pdf
An Introduction to Trigonometry.pdfAn Introduction to Trigonometry.pdf
An Introduction to Trigonometry.pdf
 
7.curves Further Mathematics Zimbabwe Zimsec Cambridge
7.curves   Further Mathematics Zimbabwe Zimsec Cambridge7.curves   Further Mathematics Zimbabwe Zimsec Cambridge
7.curves Further Mathematics Zimbabwe Zimsec Cambridge
 
BIOS 203: Lecture 2 - introduction to electronic structure theory
BIOS 203: Lecture 2 - introduction to electronic structure theoryBIOS 203: Lecture 2 - introduction to electronic structure theory
BIOS 203: Lecture 2 - introduction to electronic structure theory
 
Circular functions
Circular functionsCircular functions
Circular functions
 
Circular functions
Circular functionsCircular functions
Circular functions
 
Applied Math 40S May 26, 2008
Applied Math 40S May 26, 2008Applied Math 40S May 26, 2008
Applied Math 40S May 26, 2008
 
Weak and strong oblique shock waves1
Weak and strong oblique shock waves1Weak and strong oblique shock waves1
Weak and strong oblique shock waves1
 
Gradient derivation
Gradient derivation Gradient derivation
Gradient derivation
 
三角関数(人間科学のための基礎数学)
三角関数(人間科学のための基礎数学)三角関数(人間科学のための基礎数学)
三角関数(人間科学のための基礎数学)
 
Graddivcurl1
Graddivcurl1Graddivcurl1
Graddivcurl1
 
Notes on vectors
Notes on vectorsNotes on vectors
Notes on vectors
 
cupdf.com_control-chap7.ppt
cupdf.com_control-chap7.pptcupdf.com_control-chap7.ppt
cupdf.com_control-chap7.ppt
 
Exam 1 ansewrs
Exam 1 ansewrsExam 1 ansewrs
Exam 1 ansewrs
 
Polar Equation Writeup
Polar Equation WriteupPolar Equation Writeup
Polar Equation Writeup
 
A Scala Corrections Library
A Scala Corrections LibraryA Scala Corrections Library
A Scala Corrections Library
 
Derivation of great-circle distance formula using of HCR's Inverse cosine for...
Derivation of great-circle distance formula using of HCR's Inverse cosine for...Derivation of great-circle distance formula using of HCR's Inverse cosine for...
Derivation of great-circle distance formula using of HCR's Inverse cosine for...
 
Cylindrical and spherical coordinates shalini
Cylindrical and spherical coordinates shaliniCylindrical and spherical coordinates shalini
Cylindrical and spherical coordinates shalini
 
Trigonometry Lesson: Introduction & Basics
Trigonometry Lesson: Introduction & BasicsTrigonometry Lesson: Introduction & Basics
Trigonometry Lesson: Introduction & Basics
 
三角関数の加法定理と関連公式(人間科学のための基礎数学 補足資料)
三角関数の加法定理と関連公式(人間科学のための基礎数学 補足資料)三角関数の加法定理と関連公式(人間科学のための基礎数学 補足資料)
三角関数の加法定理と関連公式(人間科学のための基礎数学 補足資料)
 
Control chap7
Control chap7Control chap7
Control chap7
 

Recently uploaded

Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
US Environmental Protection Agency (EPA), Center for Computational Toxicology and Exposure
 
GENETICALLY MODIFIED ORGANISM'S PRESENTATION.ppt
GENETICALLY MODIFIED ORGANISM'S PRESENTATION.pptGENETICALLY MODIFIED ORGANISM'S PRESENTATION.ppt
GENETICALLY MODIFIED ORGANISM'S PRESENTATION.ppt
SyedArifMalki
 

Recently uploaded (20)

Information science research with large language models: between science and ...
Information science research with large language models: between science and ...Information science research with large language models: between science and ...
Information science research with large language models: between science and ...
 
EU START PROJECT. START-Newsletter_Issue_4.pdf
EU START PROJECT. START-Newsletter_Issue_4.pdfEU START PROJECT. START-Newsletter_Issue_4.pdf
EU START PROJECT. START-Newsletter_Issue_4.pdf
 
Efficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence accelerationEfficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence acceleration
 
An Overview of Active and Passive Targeting Strategies to Improve the Nano-Ca...
An Overview of Active and Passive Targeting Strategies to Improve the Nano-Ca...An Overview of Active and Passive Targeting Strategies to Improve the Nano-Ca...
An Overview of Active and Passive Targeting Strategies to Improve the Nano-Ca...
 
RACEMIzATION AND ISOMERISATION completed.pptx
RACEMIzATION AND ISOMERISATION completed.pptxRACEMIzATION AND ISOMERISATION completed.pptx
RACEMIzATION AND ISOMERISATION completed.pptx
 
NuGOweek 2024 programme final FLYER short.pdf
NuGOweek 2024 programme final FLYER short.pdfNuGOweek 2024 programme final FLYER short.pdf
NuGOweek 2024 programme final FLYER short.pdf
 
Taphonomy and Quality of the Fossil Record
Taphonomy and Quality of the  Fossil RecordTaphonomy and Quality of the  Fossil Record
Taphonomy and Quality of the Fossil Record
 
PARENTAL CARE IN FISHES.pptx for 5th sem
PARENTAL CARE IN FISHES.pptx for 5th semPARENTAL CARE IN FISHES.pptx for 5th sem
PARENTAL CARE IN FISHES.pptx for 5th sem
 
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
 
GBSN - Microbiology (Unit 4) Concept of Asepsis
GBSN - Microbiology (Unit 4) Concept of AsepsisGBSN - Microbiology (Unit 4) Concept of Asepsis
GBSN - Microbiology (Unit 4) Concept of Asepsis
 
Heads-Up Multitasker: CHI 2024 Presentation.pdf
Heads-Up Multitasker: CHI 2024 Presentation.pdfHeads-Up Multitasker: CHI 2024 Presentation.pdf
Heads-Up Multitasker: CHI 2024 Presentation.pdf
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
 
Precision Farming in Fruit Crops presentation
Precision Farming in Fruit Crops presentationPrecision Farming in Fruit Crops presentation
Precision Farming in Fruit Crops presentation
 
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
 
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...
 
MSCII_ FCT UNIT 5 TOXICOLOGY.pdf
MSCII_              FCT UNIT 5 TOXICOLOGY.pdfMSCII_              FCT UNIT 5 TOXICOLOGY.pdf
MSCII_ FCT UNIT 5 TOXICOLOGY.pdf
 
TEST BANK for Organic Chemistry 6th Edition.pdf
TEST BANK for Organic Chemistry 6th Edition.pdfTEST BANK for Organic Chemistry 6th Edition.pdf
TEST BANK for Organic Chemistry 6th Edition.pdf
 
Technical english Technical english.pptx
Technical english Technical english.pptxTechnical english Technical english.pptx
Technical english Technical english.pptx
 
Introduction and significance of Symbiotic algae
Introduction and significance of  Symbiotic algaeIntroduction and significance of  Symbiotic algae
Introduction and significance of Symbiotic algae
 
GENETICALLY MODIFIED ORGANISM'S PRESENTATION.ppt
GENETICALLY MODIFIED ORGANISM'S PRESENTATION.pptGENETICALLY MODIFIED ORGANISM'S PRESENTATION.ppt
GENETICALLY MODIFIED ORGANISM'S PRESENTATION.ppt
 

The forgotten trigonometric_functions

  • 1. The  Forgotten  Trigonometric  Functions,  or   How  Trigonometry  was  used  in  the  Ancient  Art  of  Navigation  (Before  GPS!)     Recently,  as  I  was  exploring  some  mathematical  concept  I  came  across  some  terms  that  were   suspiciously  similar  to  some  familiar  trigonometric  functions.    What  is  an  excosecant?    How  about  a   Havercosine?      As  it  turns  out,  these  belong  to  a  family  of  trigonometric  functions  that  once  enjoyed   very  standard  usage,  in  very  notable  and  practical  fields,  but  in  recent  times  have  become  nearly   obsolete.         Versine   The  most  basic  of  this  family  of  functions  is  the   versine,  or  versed  sine.    The  versine,  abbreviated   versin  of  some  angle  x  is  actually  calculated  by   subtracting  the  cosine  of  x  from  1;  that  is  versin(x)  =   1  -­‐  cos  (x).    Through  some  manipulations  with  half-­‐ angle  identities,  we  can  see  another  equivalent   expression:             Notice,  we  do  not  need  the  ±  as  the  versine  will  always  represent  non-­‐negative  value  (since  cosine   ranges  from  negative  one  to  positive  one,  one  minus  these  values  will  range  from  zero  to  two).      This   was  especially  helpful  as  navigators  used  logarithms  in  their  calculations,  so  they  could  always  take   the  logarithm  of  the  versine.       It  is  interesting  that  the  Latin  name  for  versine  is  either  sinus   versus  (flipped  sine,  to  distinguish  from  sinus  rectus,  the   vertical  sine)  or  sagitta,  meaning  arrow.    It  is  easy  to  see,  when   looking  at  a  drawing  of  the  sine,  cosine  and  versine  why  the   reference  to  arrow  occurs.        Envision  a  bow  and  arrow;  on  the   sketch,  the  arc  AB  is  the  bow,  segment  AB  is  the  bowstring,   and  segment  CD  is  the  drawn  arrow  shaft,  thus,  the  reference   to  an  arrow.    Interestingly,  though  it  has  fallen  out  of   contemporary  usage,  the  word  sagitta  is  a  synonym  for   abscissa,  the  x-­‐axis.           !"#$%&(!)         =  1 − cos !       =   !(!!!"#!) !   = 2 !! 1 − cos ! 2 ! !   = 2  !"#! ! 1 2 !!  
  • 2. !"#$%&  ! = 1 − cos ! = 2  !"#! ! 1 2 !!   ℎ!"#$%&'  ! = 1 − cos ! 2 = !"#! ! 1 2 !!   !"#  ! = 1 − !"#$%&  ! = 1 − 2  ℎ!"#$%&'  !   Haversine   While  this  function  is  obviously  related  to  the   versine  (literally,  it  is  half  the  versine,  thus   haversine),  it  has  the  most  practical  usage   associated  with  it.       In  early  times,  navigators  would  calculate  distance   from  their  known  latitudinal  and  longitudinal   coordinates  to  those  of  their  desired  destination  by  using  what  became  known  as  the  Haversine   formula.        Starting  with  the  Spherical  Law  of  Cosines,  and  making  appropriate  substitutions  using  the   definition  of  haversine,  and  the  difference  of  cosines  identity,  we  can  derive  what  is  known  as  the  Law   of  Haversines.    From  there,  we  can  relate  it  to  the  specific  case  of  the  earth  to  arrive  at  the  Haverine   formula,  which  then  can  be  applied  to  find  a  distance  between  two  points.                                                          !"#$%$&'  !"#  !"#  !"  !"#$%&'($&:                                                          !ℎ!  !"ℎ!"#$%&  !"#  !"  !"#$%&#:                                                  cos ! = cos ! cos ! + sin ! sin ! cos!       Where  a,  b,  c  are  spherical  arcs,     and  C  is  the  spherical  angle  between  a  and  b.         First,  substitute  for  cos  c  and  cos  C  in  terms  of  haversine:                              1 − 2  hav ! = cos ! cos ! + sin ! sin !(1 − 2  hav !)       Then  distributing  on  the  right  hand  side:     1 − 2  hav ! = cos ! cos ! + sin ! sin ! − 2 sin ! sin !  ℎ!"  !     Replacing  the  difference  of  cosines:     1 − 2  hav ! = cos(! − !) − 2 sin ! sin !  ℎ!"  !     Next,  substitute  for  cos  (a-­‐b)  in  terms  of  haversin:     1 − 2  hav ! = 1 − 2  hav(! − !) − 2 sin ! sin !  ℎ!"  !     Last,  simplify  by  subtracting  one  and  dividing  by  -­‐2:     hav ! =  hav(! − !) + sin ! sin !  ℎ!"  !  
  • 3. So,  now  we  are  able  to  determine  the  distance  between  two  points.    Letting  point  1  be  Atlanta,  GA   (33o 44’56”N,  84o 23’17”W)  and  point  2  be  Sao  Paulo,  Brazil  (23o 32’0”S,  46o 37’0”W),  we  should  be  able   to  find  the  distance  by  making  appropriate  substitutions  and  a  reasonable  approximation  for  the   radius  of  the  earth  (which  is  not  a  perfect  sphere).    We  will  use  the  mean  of  the  shortest  and  longest   radii:    approximately  3959  miles.       Check  out  the  link  on  my  home  page  for  an  Excel  Worksheet  that  will  calculate  the  distance  between   two  locations  using  the  Haversine  Formula  and  their  latitudes  and  longitudes.       !"#$    !"#  !"#  !"  !"#$%&'($&  !"  !"#  !"#$%&'($  !"#$%&':       hav ! =  hav(! − !) + sin ! sin !  ℎ!"  !   Let  d  be  the  spherical  distance  between  any  two  points  on  the  surface  of  the  earth,  r  be  the  radius  of  the   earth,  ∝!  !"!   ∝!  be  the  latitudes  of  point  1  and  point  2,  respectively,  and  !!  !"#  !!  be  their   respective  longitudes.    The  haversine  of  the  central  angle  between  the  points  is:   hav ! ! ! ! =  hav(∝!−∝!) + cos ∝! cos ∝!  ℎ!"  (!! − !!)   Since  ℎ!"#$%&'  ! = !"#! ! ! ! !!,  we  have     !"#! ! ! 2! ! =  hav(∝!−∝!) + cos ∝! cos ∝!  ℎ!"  (!! − !!)   And         ! !! = !"#$%&!  hav(∝!−∝!) + cos ∝! cos ∝!  ℎ!"  (!! − !!)   Finally,  ! = 2!  !"#$%&!!"#! ! ∝!!∝! ! ! + cos ∝! cos ∝!  !"#!  ! !!!!! ! !   !"#$%  !"#  !"#$%&'($  !"#$%&':     ! = 2(3959)  !"#$%&!!"#! ! −23.533° − 33.749° 2 ! + cos 33.749° cos(−23.533°)  !"#!  ! 46.617° − 84.388° 2 ! ! = 7918  !"#$%&!!"#!(−28.641°) + cos33.749° cos(−23.533°)  !"#!  (−18.886) ! = 7918  !"#$%&!(−0.4793)! + (0.8315)(0.9168)(−0.3237)! ! = 7918  !"#$%&√. 3096 ! = 7918  !"#$%& 0.5564 ! = 7918  (33.8083) ! ! 180 ! ≈ 4672  !"#$%
  • 4. There  are  many  other  “classical”  trigonometric  functions  that  are  not  as  practical  and  have  been   abandoned  in  favor  of  manipulation  of  the  six  well-­‐known  (and  loved)  trig  ratios.    The  table  and   diagram  below  illustrate  how  these  functions  are  defined.                       As  we  evolve  technologically,  it  is  important  that  we  remember  and  recall  the  steps  we  have  taken  to   achieve  the  stature  we  have  reached  thus  far.    It  is  valuable  for  us  to  remember  those  “giants”  upon   whose  shoulders  we  happen  to  currently  stand.       Weisstein,  Eric  W.  "Versine."  From  MathWorld-­‐-­‐A  Wolfram  Web  Resource.   http://mathworld.wolfram.com/Versine.html     http://en.wikipedia.org/wiki/Versine   http://en.wikipedia.org/wiki/Haversine_formula   Kells,  Kern  &  Bland.    Plane  and  Spherical  Trigonometry.    York,  PA:    Maple  Press  Company,  1935.    Print.     !"#$%&'("  ! 1 + !"#$%&  ! !"#$%&'($  ! 1 − !"#$  ! !"#$%!"&'($  ! 1 + !"#$  ! ℎ!"#$%&'()#  ! 1 + !"#$%&  ! 2 ℎ!!"#$%&'($  ! 1 − !"#$  ! 2 ℎ!"#$%&"#'()%  ! 1 + !"#$  ! 2 !"#!"#$%  ! !"#$%&  ! − 1 !"#$%!#&'(  ! !"#$!%&'  ! − 1