SlideShare a Scribd company logo
1 of 38
Download to read offline
Friction


             Cause of dry friction
       Contact between two surfaces.
   Hence first task in a friction problem is correct
           identification of contact surfaces
 Identify the surface, the normal and the tangential
                         vectors.
Also important is to get an idea of probable direction
                   of relative motion
       The contact force acts along the normal.
 Gravity is the most common cause of normal force.
Friction acts along the tangent plane opposite to the
              direction of relative motion



Normal

                                    Relative velocity
Friction


Normal

                           Relative velocity




               Friction problems are
              essentially equilibrium
              problems with one f the
             forces being functions of
                      another


                          N
         Fr=f(N,V)



            Fr=f(N,V)
   N
The correct way of writing the dry friction force




            V
       −µ N
    Fr = =ˆ   −µ N V
            V

   N=Normal force vector

   V=Relative velocity vector of the   body
   µ= coefficient of dry friction or Coulomb
   friction
Problem 1




     Knowing that the coefficient of friction between the 13.5
     kg block and the incline is µs = 0.25, determine


a)   the smallest value of P required to maintain the block in
     equilibrium,
b)   the corresponding value of β.
Problem 1                     y


N cos60 − mg + f sin60 + P sin β =  0
− N sin60 + f cos 60 + P cos β =  0
f = µN                                                                            x
             mg sin60 − f
⇒P=
       sin β sin60 + cos β cos 60
N cos60 − mg + µ N sin60 + P sin β =  0
         mg − P sin β
⇒N=
        cos 60 − µ sin60
− N sin60 + µ N cos 60 + P cos β =  0
      mg − P sin β
⇒−                    ( sin60 − µ cos 60 ) + P cos β =0
     cos60 − µ sin60
⇒ − ( mg − P sin β )( sin60 − µ cos 60 ) + P cos β ( cos 60 − µ sin60 ) =
                                                                        0
⇒ − mg ( sin60 − µ cos 60 ) + P sin β ( sin60 − µ cos 60 ) + P cos β ( cos 60 − µ sin60 ) =
                                                                                          0
⇒ P ( sin60 sin β − µ cos 60 sin β + cos 60 cos β − µ sin60 cos β ) = ( sin60 − µ cos 60 )
                                                                     mg
             ( sin60 − µ cos 60 )
⇒P=
  mg
      cos ( 60 − β ) − µ sin ( 60 − β )
 1    cos ( 60 − β ) − µ sin ( 60 − β )
⇒ =mg
 P           ( sin60 − µ cos 60 )
 d 1          d
      =⇒0         cos ( 60 − β ) − µ sin ( 60 − β )  =
dβ P         dβ                                      0
   d
⇒    [ sin60 sin β − µ cos 60 sin β + cos 60 cos β − µ sin60 cos β ] =
                                                                     0
  dβ
⇒ sin60 cos β − µ cos 60 cos β − cos 60 sin β + µ sin60 sin β = 0
           sin60 − µ cos 60 
      β
⇒ tan =                                  β
                                = 2.614 ⇒ = 69 o
                                 
           cos 60 − µ sin60 
               ( sin 60 − µ cos 60 )          ( 0.866 − 0.125 )
P = mg         = mg                       = 0.72mg
        cos ( 60 − β ) − µ sin ( 60 − β )   cos ( −9 ) − µ sin ( −9 )
Problem 2




Knowing that P = 110 N, determine the range of values value of θ
for which equilibrium of the 8 kg block is maintained.
Problem 2
                   y                                       y




                                 x                                      x

                    mg                                      mg

                                        − P cos θ + N =0
− P cos θ + N =0
                                        P sinθ − mg − f = 0
P sinθ − mg + f = 0
                                        f = µN
f = µN
                                        ⇒N= θ    P cos
⇒N= θ    P cos
                                        P sinθ − mg − µ N = 0
P sinθ − mg + µ N = 0
                                        ⇒ P sinθ − mg − µ P cos θ =
                                                                  0
⇒ P sinθ − mg + µ P cos θ =
                          0
                                        ⇒ P ( sinθ − µ cos θ ) =
                                                               mg
⇒ P ( sinθ + µ cos θ ) =
                       mg
                                                   mg
           mg                           ⇒P=
⇒P=                                           sinθ − µ cos θ
      sinθ + µ cos θ
                                        Hence
Hence
                                        upward movement will not start before
downward movement will not start before
                                                 mg
         mg                             P=
P=                                         sinθ − µ s cos θ
   sinθ + µ k cos θ
Problem 3




The coefficients of friction are µs = 0.40 and µk = 0.30 between all
     the surfaces of contact. Determine the force P for which
     motion of the 27 kg block is impending if cable
a)   is attached as shown,
b)   is removed
Problem 3
                v

                   T        N1
                                 f1
m1g        f1
      N1                                     T
                         m2g          f2
                                 N2


T − µ N1 =
         0
N 1 − m1 g =
           0
= µ N= m1 g
⇒T   1
       , N1
    µm
⇒ T = 1g
T + µ N1 + µ N2 − P =
                    0
N 2 − N 1 − m2 g =
                 0
N 2 − N 1 − m2 g = ⇒ N 2 =m1 + m2 ) g
                  0       (
T + µ N1 + µ N2 − P =
                    0
⇒ µ m1 g + µ m1 g + µ ( m1 + m 2 ) g − P =
                                         0
⇒ P 3 µ m1 g + µ m 2 g
 =
Problem 3
                v

                0           N1
                                 f1
m1g        f1
      N1                                   0
                          m2g         f2
                                 N2


 T − µ N1 =
          m1 a
 Now T = 0 ⇒ − µ N 1 = m1 a
 N 1 − m1 g =
            0
 ⇒ N1 =
      m1 g
 µ N1 + µ N2 − P =
                 0
 N 2 − N 1 − m2 g =
                  0
 N 2 − N 1 − m2 g = ⇒ N 2 =m1 + m2 ) g
                   0       (
 µ N1 + µ N2 − P =
                 0
 ⇒ µ m1 g + µ ( m1 + m 2 ) g − P =
                                 0
 ⇒ P 2 µ m1 g + µ m 2 g
  =
Additional Problems




The 8 kg block A and the 16 kg block B are at rest on an
incline as shown. Knowing that the coefficient of static
friction is 0.25 between all surfaces of contact, determine the
value of θ for which motion is impending.
Toppling




The magnitude of the force P is slowly increased.
Does the homogeneous box of mass m slip or tip
first? State the value of P which would cause each
occurrence.
Slip or topple?




                         mg


f1                                         f2

     N1                                          N2

          P cos 30 − µ N 1 − µ N 2 =
                                   0
          P sin 30 + N 1 + N 2 − mg =
                                    0
          − P cos 30 × d − mg × d + µ N 2 × 2d =
                                               0
          P cos 30 = µ N 1 + µ N 2 = µ ( N 1 + N 2 )
          P sin 30 = 1 + N 2 ) + mg
                   −( N
                        2µ N
          P cos 30 + mg = 2
          µ P sin 30 = N 1 + N 2 ) + µ mg = 30 + µ mg
                     −µ (                 − P cos
          µ P sin 30 + P cos 30 =mg ⇒ P ( µ sin 30 + cos 30 ) =mg
                                 µ                             µ
                   µ mg
          ⇒P=
             µ sin 30 + cos 30
                0.5mg
          ⇒P=              = 0.448mg
            0.25 + 0.866
Slip or topple?




                mg


f1                            f2

     N1                            N2


          P cos 30 − f 2 =
                         0
          P sin 30 + N 2 − mg =
                              0
          − P cos 30 × d − P sin 30 × 2d + mg × d =
                                                  0

          P cos 30 = f 2
          P sin 30 = 2 + mg
                   −N
          P cos 30 + 2P sin 30 − mg =
                                    0
          ⇒ P ( cos 30 + 2 sin 30 ) =
                                    mg
                    mg
          ⇒P=
             cos 30 + 2 sin 30
                mg
          =
          ⇒P     = 0.536mg
             0.866 + 1
Additional Problems
Additional Problems
Additional Problems
Wedge
                f=µN
                                       P




                                           θ

                 N              mg



P − f cos θ + N sinθ =0
f sinθ + N cos θ − mg = 0
f = µN
                                           mg
µ N sinθ + N cos θ − mg = ⇒ N =
                           0
                                     µ sinθ + cos θ
P − µ N cos θ + N sinθ = 0
                               µ cos θ − sinθ
⇒ P ( µ cos θ − sinθ= mg
=                     )N
                               µ sinθ + cos θ
    P     µ − tanθ
⇒       =
   mg µ tanθ + 1
    P    tanφ − tanθ
⇒     =               = tan (φ − θ )
   mg tanφ tanθ + 1
A screw thread is a wedge
A screw thread is a wedge

              M=Pa




                          Q=Pa/r
                          = equivalent force




                      W




    Q
                            N
               f=µN
A screw thread is a wedge


                                     W


         Q
                                       N
           θ            f=µN

Q − f cos θ − N sinθ = 0
− f sinθ + N cos θ − W = 0
f = µN
                                           W
− µ N sinθ + N cos θ − W = ⇒ N =
                           0
                                    − µ sinθ + cos θ
Q − µ N cos θ − N sinθ = 0
                              µ cos θ + sinθ
⇒ Q ( µ cos θ + sinθ= W
=                      )N
                             − µ sinθ + cos θ
    Q    µ + tanθ
⇒      =
   W 1 − µ tanθ           Pa      µ + tanθ
                               =
                        Wr     1 − µ tanθ
                                   1     P
                         if tanθ =⇒        =
                                           ∞
                                   µ W
                                   Screw locks
A screw thread is a wedge

    The
                              W


    P
                               N
        θ           f=µN


        1   Pa
tanθ =    ⇒    =
               ∞                  Screw locks
        µ Wr
      1    Wr
µ
=     = = 0
    tanθ Pa

             There is a critical value of friction
            coefficient beyond which the thread
              does not move irrespective of the
                        force applied.
         This happens when a screw is not
        maintained properly. Because of dirt
          and rust µ becomes more than
                     critical.
A screw thread is a wedge




                      W




                            N
               f=µN
A screw thread is a wedge


                            W




                             N
         θ           f

For no movement
f cos θ − N sinθ = 0
f sinθ + N cos θ − W =
                     0
                           Self locking
    f    sinθ
⇒      =
   N cos θ
        sinθ
⇒= µ        = tanθ
        cos θ

          Therefore after raising the load if we
          let go of the screw the load will not
          cause the screw to unscrew by itself.
Terminologies




                                              Lead (L)
                    2πr


                     Pitch (p)




    = =
Lead L np
where
n=no. of parallely running threads = starts
          L
tanθ =
         2π r
Turnbuckle

T1                                   T2


         Used to apply tension.
     The sleeve is rotated to pull the
            threads together.




            M         µ + tanθ
                    =
       ( T2 − T1 ) r 1 − µ tanθ
An improved screw jack

               W




       θ
       θ




        W
                      T


T              T
                      T




    2T cos θ
An improved screw jack

                 W




       φ
       φ




                                      M=Pa
W=2T cos φ



      Pa    µ cos θ + sinθ
          =
      Wr − µ sinθ + cos θ
            M        µ cos θ + sinθ
      ⇒            =
         2Tr cos φ − µ sinθ + cos θ
Worm gear


                    MG



                                 M0/R



        R           N
M                            f




                        MG
    M G = WR ⇒ W =
                        R
    Pa     µ + tanθ
        =
    Wr 1 − µ tanθ
         M       µ + tanθ
    ⇒         =
       MG       1 − µ tanθ
            r
         R
       MR       µ + tanθ
    ⇒         =
       M G r 1 − µ tanθ
Belt drives
Belt drives




                           ∆θ                                   ∆θ
∑F  x
        = 0 ⇒ −T cos              − ∆ F + ( T + ∆T ) cos             = 0
                              2                                  2
                           ∆θ                                   ∆θ
∑F   y
       = 0 ⇒ −T sin               − ∆ N − ( T + ∆T ) sin             = 0
                              2                                 2
∆ F = µs ∆ N
       ∆θ                                   ∆θ
−T cos        − ∆ F + ( T + ∆T ) cos                 =
                                                     0
          2                                     2
              ∆θ                      ∆θ                  ∆θ
⇒ −T cos              − ∆ F + T cos        + ∆T cos             =0
              2                        2                   2
                         ∆θ                         ∆θ
⇒ − ∆ F + ∆T cos              = 0 ⇒ ∆T cos               = ∆ F = µs ∆ N
                          2                          2
         ∆θ                                 ∆θ
−T sin        − ∆ N − ( T + ∆T ) sin                =
                                                    0
          2                                     2
              ∆θ                      ∆θ                  ∆θ
⇒ −T sin              + ∆ N − T sin        − ∆T sin             =0
              2                        2                   2
              ∆θ                           ∆θ
⇒ −2T sin              + ∆ N − ∆T sin           =0
                  2                        2
              ∆θ                                    ∆θ
⇒ −2T sin              + ∆ N = 0 ⇒ 2T sin                = ∆N
                  2                                 2
Belt drives




         ∆θ
∆T cos        = µs ∆ N
         2
         ∆θ
2T sin        = ∆N
         2
              ∆θ              ∆θ
⇒ ∆T cos        2T µ s sin
                =
              2            2
                               ∆θ
                  sin
   1 ∆T     ∆θ        2
⇒       cos    µs
               =
  2T ∆θ      2      ∆θ
                                                   ∆θ
                                             sin
                1 ∆T     ∆θ                        2
  Lim                cos    = Lim µ
∆θ → 0 ,∆T → 0 2T ∆θ      2 ∆θ →0 ,∆T →0 s    ∆θ
        1 dT       µs
⇒                1=
     2T dθ          2



⇒
    dT = µ dθ
    T     s
Belt drives


                          Belt is just about to
                           slide to the right




dT = µ dθ
T     s
    dT β
   T2
                                           µ β    µ β
⇒ ∫ = ∫ µ s dθ                         T2
                                       = e  s ⇒T e s T
                                               =
  T T
    1  0                                        2     1
                                       T1
⇒  lnT                   β
            T2

               =  µ sθ 0
                         
            T1                         Torque required to drive the pulley
⇒ lnT − lnT
        2            1
                         = µs β                 µ β     
                                       T2 − T1  e
                                           =       s − 1 T
⇒ ln T = µ β
        2                                      
                                               
                                                          1
                                                         
     T  1
                 s




   2 = e µsβ
  T
⇒
  T
   1
Belt drives : Important points


                   2 = e µsβ
                  T
                ⇒
                  T
                   1


    Angle β must be expressed in radians
  Smallest µβ determines which pulley slips
                       first
   Larger tension occurs at that end of the
belt where relative motion is about to begin or
               is already moving
    T2 is used to denote the larger tension
  A freely rotating pulley implies no friction
   For a rotating pulley where slipping is
   about to start friction is µs since relative
    velocity between belt and pulley is zero.
  Once slipping starts friction coefficient is
            dynamic or kinetic i.e. µk
   If pulley does not rotate at all then rope
 has to slide and not slip, hence friction is µk
Belt drives




A                         B


                              θ

        θ




A                         B


                                  θ

    θ
Belt drives


                                T2
                             T2
                          = exp  µ ( π + 2θ )  ???
                                                 
                             T1
       A                            Always check
                                   for µβ value for
                                   each pulley in a
                                   system. The one
                                        with the
                              T1
                                      smallest µβ
            θ
                                       value will
                                    determine the
    Which expression is                tensions.
    correct???? Is T2>T1
          Or T1>T2.
    One pulley must slip.       T2
   Friction force is larger
 for the larger pulley since
  angle of wrap is larger.
    Hence smaller pulley
                                          B
  slips and determines the
           tension

T1                                        θ
     exp  µ ( π − 2θ )  ???
                                 T1
T2
Band brakes
Band brakes


                       TB                          T1             T3
              B




     T1                        T3




             75    75 4 
                        Tπ
T2   T1 exp  µ  π
      = T1 exp  0.25      
             180   180                               T2
T2 = 1.39T1
             135   135 
T3   T4 exp  µ  π
      = T4 exp  0.25    π
             180   180 
T4 = 0.55T3
M 0 =( T3 − T4 + T2 − T1 ) R
     −
Consider the pin B
∑F   x
         =0 ⇒ T1 cos 45 =T3 cos 45 ⇒ T1 =T3
∑F   y
         = cos 45 + T3 cos 45 = 1 cos 45 = ⇒ 2T1 =
         0 ⇒ T1               TB ⇒ 2T    TB      TB
∴ T2 1.39T1 ,T3 T1 ,T4 0.55T1
   =          =      =
Thus the largest tension is T2 = 5.6 ⇒ T1 = T3 = 4.03,T4 = 2.22,TB = 5.7
∴ M0 =    ( 5.6 − 2.22 ) R =   3.38 × 0.16 = 0.54 KNm = 540 Nm
Taking moments about D
50TB 250 P ⇒ = 0.2TB 1.14 KN
   =          P      =

More Related Content

What's hot

Stress&strain part 2
Stress&strain part 2Stress&strain part 2
Stress&strain part 2
AHMED SABER
 
Structural Mechanics: Shear stress in Beams (1st-Year)
Structural Mechanics: Shear stress in Beams (1st-Year)Structural Mechanics: Shear stress in Beams (1st-Year)
Structural Mechanics: Shear stress in Beams (1st-Year)
Alessandro Palmeri
 

What's hot (20)

Unit 6- Plate Bending Theory.pdf
Unit 6- Plate Bending Theory.pdfUnit 6- Plate Bending Theory.pdf
Unit 6- Plate Bending Theory.pdf
 
Slide-CIV204-CIV204-slide-3-7.pdf
Slide-CIV204-CIV204-slide-3-7.pdfSlide-CIV204-CIV204-slide-3-7.pdf
Slide-CIV204-CIV204-slide-3-7.pdf
 
Bending of curved bars
Bending of curved barsBending of curved bars
Bending of curved bars
 
Bending stresses in beams
Bending stresses in beamsBending stresses in beams
Bending stresses in beams
 
H#8
H#8H#8
H#8
 
Structural Analysis - Virtual Work Method
Structural Analysis - Virtual Work MethodStructural Analysis - Virtual Work Method
Structural Analysis - Virtual Work Method
 
membrane analogy and torsion of thin walled tube
membrane analogy and torsion of thin walled tubemembrane analogy and torsion of thin walled tube
membrane analogy and torsion of thin walled tube
 
176976937 vigas
176976937 vigas176976937 vigas
176976937 vigas
 
Stress&strain part 2
Stress&strain part 2Stress&strain part 2
Stress&strain part 2
 
Parallel axis theorem and their use on Moment Of Inertia
Parallel axis theorem and their use on Moment Of InertiaParallel axis theorem and their use on Moment Of Inertia
Parallel axis theorem and their use on Moment Of Inertia
 
5. stress function
5.  stress function5.  stress function
5. stress function
 
solution manual of mechanics of material by beer johnston
solution manual of mechanics of material by beer johnstonsolution manual of mechanics of material by beer johnston
solution manual of mechanics of material by beer johnston
 
Column Direct Load.ppt
 Column Direct Load.ppt Column Direct Load.ppt
Column Direct Load.ppt
 
Ch 5 problems
Ch 5 problemsCh 5 problems
Ch 5 problems
 
Structural Mechanics: Shear stress in Beams (1st-Year)
Structural Mechanics: Shear stress in Beams (1st-Year)Structural Mechanics: Shear stress in Beams (1st-Year)
Structural Mechanics: Shear stress in Beams (1st-Year)
 
Friction
FrictionFriction
Friction
 
1 introduction - Mechanics of Materials - 4th - Beer
1 introduction - Mechanics of Materials - 4th - Beer1 introduction - Mechanics of Materials - 4th - Beer
1 introduction - Mechanics of Materials - 4th - Beer
 
3
33
3
 
Ch06 07 pure bending & transverse shear
Ch06 07 pure bending & transverse shearCh06 07 pure bending & transverse shear
Ch06 07 pure bending & transverse shear
 
Solutions manual for mechanics of materials si 9th edition by hibbeler ibsn 9...
Solutions manual for mechanics of materials si 9th edition by hibbeler ibsn 9...Solutions manual for mechanics of materials si 9th edition by hibbeler ibsn 9...
Solutions manual for mechanics of materials si 9th edition by hibbeler ibsn 9...
 

Viewers also liked

Viewers also liked (10)

6 friction fe
6 friction fe6 friction fe
6 friction fe
 
Engineering mechanics statics j.l.meriam-l.g.kraige-solution manual (5th ed)
Engineering mechanics statics j.l.meriam-l.g.kraige-solution manual (5th ed)Engineering mechanics statics j.l.meriam-l.g.kraige-solution manual (5th ed)
Engineering mechanics statics j.l.meriam-l.g.kraige-solution manual (5th ed)
 
Novo Catalogo Potente
Novo Catalogo PotenteNovo Catalogo Potente
Novo Catalogo Potente
 
Mechanics 2
Mechanics 2Mechanics 2
Mechanics 2
 
Friction
FrictionFriction
Friction
 
Friction And Wedges
Friction And WedgesFriction And Wedges
Friction And Wedges
 
FRICTION
FRICTIONFRICTION
FRICTION
 
Friction
FrictionFriction
Friction
 
Friction
FrictionFriction
Friction
 
Engineering mechanics dynamics (7th edition) j. l. meriam, l. g. kraige
Engineering mechanics dynamics (7th edition)   j. l. meriam, l. g. kraigeEngineering mechanics dynamics (7th edition)   j. l. meriam, l. g. kraige
Engineering mechanics dynamics (7th edition) j. l. meriam, l. g. kraige
 

Similar to Friction

2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
zabidah awang
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
zabidah awang
 
Lec4 MECH ENG STRucture
Lec4    MECH ENG  STRuctureLec4    MECH ENG  STRucture
Lec4 MECH ENG STRucture
Mohamed Yaser
 
The proof complexity of matrix algebra - Newton Institute, Cambridge 2006
The proof complexity of matrix algebra - Newton Institute, Cambridge 2006The proof complexity of matrix algebra - Newton Institute, Cambridge 2006
The proof complexity of matrix algebra - Newton Institute, Cambridge 2006
Michael Soltys
 
Formulario de matematicas
Formulario de matematicasFormulario de matematicas
Formulario de matematicas
Carlos
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
zabidah awang
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
zabidah awang
 
Tutorial solutions 2010
Tutorial solutions 2010Tutorial solutions 2010
Tutorial solutions 2010
Sufi Sulaiman
 

Similar to Friction (20)

Borut Bajc "Asymptotic safety"
Borut Bajc "Asymptotic safety"Borut Bajc "Asymptotic safety"
Borut Bajc "Asymptotic safety"
 
B. Sazdovic - Noncommutativity and T-duality
B. Sazdovic - Noncommutativity and T-dualityB. Sazdovic - Noncommutativity and T-duality
B. Sazdovic - Noncommutativity and T-duality
 
Presentation5 1
Presentation5 1Presentation5 1
Presentation5 1
 
8. terapan hk1 n
8. terapan hk1 n8. terapan hk1 n
8. terapan hk1 n
 
Sect5 6
Sect5 6Sect5 6
Sect5 6
 
Trigonometric ratios and identities 1
Trigonometric ratios and identities 1Trigonometric ratios and identities 1
Trigonometric ratios and identities 1
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
Mit2 092 f09_lec15
Mit2 092 f09_lec15Mit2 092 f09_lec15
Mit2 092 f09_lec15
 
Lec4 MECH ENG STRucture
Lec4    MECH ENG  STRuctureLec4    MECH ENG  STRucture
Lec4 MECH ENG STRucture
 
The proof complexity of matrix algebra - Newton Institute, Cambridge 2006
The proof complexity of matrix algebra - Newton Institute, Cambridge 2006The proof complexity of matrix algebra - Newton Institute, Cambridge 2006
The proof complexity of matrix algebra - Newton Institute, Cambridge 2006
 
Cheat Sheet
Cheat SheetCheat Sheet
Cheat Sheet
 
Formulario de matematicas
Formulario de matematicasFormulario de matematicas
Formulario de matematicas
 
gft_handout2_06.pptx
gft_handout2_06.pptxgft_handout2_06.pptx
gft_handout2_06.pptx
 
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheoryL. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
Tutorial solutions 2010
Tutorial solutions 2010Tutorial solutions 2010
Tutorial solutions 2010
 
Sm8 21
Sm8 21Sm8 21
Sm8 21
 
Improper integral
Improper integralImproper integral
Improper integral
 

More from faizankhan260690 (7)

Science and Tech question for UPSC prelims
Science and Tech question for UPSC prelimsScience and Tech question for UPSC prelims
Science and Tech question for UPSC prelims
 
sort search in C
 sort search in C  sort search in C
sort search in C
 
C applications
C applicationsC applications
C applications
 
Polarisation
PolarisationPolarisation
Polarisation
 
Friction problems
Friction problemsFriction problems
Friction problems
 
Friction [compatibility mode]
Friction [compatibility mode]Friction [compatibility mode]
Friction [compatibility mode]
 
Friction (2) [compatibility mode]
Friction (2) [compatibility mode]Friction (2) [compatibility mode]
Friction (2) [compatibility mode]
 

Recently uploaded

在线办理(concordia学位证书)康考迪亚大学毕业证学历学位证书学费发票原版一模一样
在线办理(concordia学位证书)康考迪亚大学毕业证学历学位证书学费发票原版一模一样在线办理(concordia学位证书)康考迪亚大学毕业证学历学位证书学费发票原版一模一样
在线办理(concordia学位证书)康考迪亚大学毕业证学历学位证书学费发票原版一模一样
ahafux
 

Recently uploaded (20)

WHO KILLED ALASKA? #18: Mirror Memoria - "TATTOO" TRANSCRIPT.pdf
WHO KILLED ALASKA? #18: Mirror Memoria - "TATTOO" TRANSCRIPT.pdfWHO KILLED ALASKA? #18: Mirror Memoria - "TATTOO" TRANSCRIPT.pdf
WHO KILLED ALASKA? #18: Mirror Memoria - "TATTOO" TRANSCRIPT.pdf
 
High Profile Call Girls in Dubai 💦+0521445865 🥵 Dubai Call Girls
High  Profile  Call  Girls in  Dubai 💦+0521445865 🥵 Dubai  Call  GirlsHigh  Profile  Call  Girls in  Dubai 💦+0521445865 🥵 Dubai  Call  Girls
High Profile Call Girls in Dubai 💦+0521445865 🥵 Dubai Call Girls
 
在线办理(concordia学位证书)康考迪亚大学毕业证学历学位证书学费发票原版一模一样
在线办理(concordia学位证书)康考迪亚大学毕业证学历学位证书学费发票原版一模一样在线办理(concordia学位证书)康考迪亚大学毕业证学历学位证书学费发票原版一模一样
在线办理(concordia学位证书)康考迪亚大学毕业证学历学位证书学费发票原版一模一样
 
Party 💦+0545260616 Call Girls Al Barsha By Party Call Girls For Nig...
Party 💦+0545260616  Call  Girls  Al  Barsha  By  Party  Call  Girls  For  Nig...Party 💦+0545260616  Call  Girls  Al  Barsha  By  Party  Call  Girls  For  Nig...
Party 💦+0545260616 Call Girls Al Barsha By Party Call Girls For Nig...
 
❤️ Call Girls Service Palghar ❤️🍑 6378878445 👄🫦Independent Escort Service
❤️ Call Girls Service Palghar ❤️🍑 6378878445 👄🫦Independent Escort Service❤️ Call Girls Service Palghar ❤️🍑 6378878445 👄🫦Independent Escort Service
❤️ Call Girls Service Palghar ❤️🍑 6378878445 👄🫦Independent Escort Service
 
British Call Girls available in Downtown 💦+0545260616 💋 Call Girls serv...
British  Call  Girls  available in  Downtown 💦+0545260616 💋 Call  Girls  serv...British  Call  Girls  available in  Downtown 💦+0545260616 💋 Call  Girls  serv...
British Call Girls available in Downtown 💦+0545260616 💋 Call Girls serv...
 
Precious Call Girls Al Barsha 💦+0545260616🥵 Call Girls in Dubai
Precious  Call  Girls  Al  Barsha 💦+0545260616🥵  Call  Girls in  DubaiPrecious  Call  Girls  Al  Barsha 💦+0545260616🥵  Call  Girls in  Dubai
Precious Call Girls Al Barsha 💦+0545260616🥵 Call Girls in Dubai
 
Sexiest Girls Deira Abu Dhabi 💦+0522618040 🥵 Call Girls service in Abu ...
Sexiest  Girls  Deira  Abu Dhabi 💦+0522618040 🥵 Call  Girls  service in  Abu ...Sexiest  Girls  Deira  Abu Dhabi 💦+0522618040 🥵 Call  Girls  service in  Abu ...
Sexiest Girls Deira Abu Dhabi 💦+0522618040 🥵 Call Girls service in Abu ...
 
Premium Call Girls In Munger { 6297126446 } ❤️VVIP NISHA Call Girls Near 5 St...
Premium Call Girls In Munger { 6297126446 } ❤️VVIP NISHA Call Girls Near 5 St...Premium Call Girls In Munger { 6297126446 } ❤️VVIP NISHA Call Girls Near 5 St...
Premium Call Girls In Munger { 6297126446 } ❤️VVIP NISHA Call Girls Near 5 St...
 
Cheap Call Girls Banmankhi ➡️ 6297126446 HOT & SEXY Models beautiful and char...
Cheap Call Girls Banmankhi ➡️ 6297126446 HOT & SEXY Models beautiful and char...Cheap Call Girls Banmankhi ➡️ 6297126446 HOT & SEXY Models beautiful and char...
Cheap Call Girls Banmankhi ➡️ 6297126446 HOT & SEXY Models beautiful and char...
 
NO1 Top Amil Baba In Sahiwal, Okara, Hafizabad, Mandi Bahauddin, Jhelum, Jar...
NO1 Top Amil Baba In Sahiwal, Okara, Hafizabad,  Mandi Bahauddin, Jhelum, Jar...NO1 Top Amil Baba In Sahiwal, Okara, Hafizabad,  Mandi Bahauddin, Jhelum, Jar...
NO1 Top Amil Baba In Sahiwal, Okara, Hafizabad, Mandi Bahauddin, Jhelum, Jar...
 
Business Bay 💦+0545260616 💋 WhatsApp💦 Number Call Girls service in Dubai
Business  Bay 💦+0545260616 💋 WhatsApp💦  Number  Call  Girls  service in  DubaiBusiness  Bay 💦+0545260616 💋 WhatsApp💦  Number  Call  Girls  service in  Dubai
Business Bay 💦+0545260616 💋 WhatsApp💦 Number Call Girls service in Dubai
 
Delivery in 20 Mins Call Girls Bikramganj 📲🔝 6297126446 🔝Call Girls Advance C...
Delivery in 20 Mins Call Girls Bikramganj 📲🔝 6297126446 🔝Call Girls Advance C...Delivery in 20 Mins Call Girls Bikramganj 📲🔝 6297126446 🔝Call Girls Advance C...
Delivery in 20 Mins Call Girls Bikramganj 📲🔝 6297126446 🔝Call Girls Advance C...
 
C&C Artists' Websites .
C&C Artists' Websites                       .C&C Artists' Websites                       .
C&C Artists' Websites .
 
Night 7k to 12k Rajouri Garden Call Girl Photo 👉 BOOK NOW 7065000506 👈 ♀️ nig...
Night 7k to 12k Rajouri Garden Call Girl Photo 👉 BOOK NOW 7065000506 👈 ♀️ nig...Night 7k to 12k Rajouri Garden Call Girl Photo 👉 BOOK NOW 7065000506 👈 ♀️ nig...
Night 7k to 12k Rajouri Garden Call Girl Photo 👉 BOOK NOW 7065000506 👈 ♀️ nig...
 
High Class ℂall Girls Saharanpur Hire me Neha 6367492432 Top Class ℂall Girl ...
High Class ℂall Girls Saharanpur Hire me Neha 6367492432 Top Class ℂall Girl ...High Class ℂall Girls Saharanpur Hire me Neha 6367492432 Top Class ℂall Girl ...
High Class ℂall Girls Saharanpur Hire me Neha 6367492432 Top Class ℂall Girl ...
 
Call Girl In Ratnagiri 💯Niamh 📲🔝6378878445🔝Call Girls No💰Advance Cash On Deli...
Call Girl In Ratnagiri 💯Niamh 📲🔝6378878445🔝Call Girls No💰Advance Cash On Deli...Call Girl In Ratnagiri 💯Niamh 📲🔝6378878445🔝Call Girls No💰Advance Cash On Deli...
Call Girl In Ratnagiri 💯Niamh 📲🔝6378878445🔝Call Girls No💰Advance Cash On Deli...
 
Pretty Call Girls in Dubai 💦+0521445865 🥵 Dubai Call Girls Service
Pretty  Call  Girls in  Dubai 💦+0521445865 🥵 Dubai  Call  Girls  ServicePretty  Call  Girls in  Dubai 💦+0521445865 🥵 Dubai  Call  Girls  Service
Pretty Call Girls in Dubai 💦+0521445865 🥵 Dubai Call Girls Service
 
VIP/Call/Girls Nandi Hills 6378878445 Hours Service Available Day and Night
VIP/Call/Girls Nandi Hills 6378878445 Hours Service Available Day and NightVIP/Call/Girls Nandi Hills 6378878445 Hours Service Available Day and Night
VIP/Call/Girls Nandi Hills 6378878445 Hours Service Available Day and Night
 
Chubby Call Girls Service in Dubai 💦+0545260616💋 Dubai Call Girls
Chubby  Call  Girls  Service in  Dubai 💦+0545260616💋  Dubai  Call  GirlsChubby  Call  Girls  Service in  Dubai 💦+0545260616💋  Dubai  Call  Girls
Chubby Call Girls Service in Dubai 💦+0545260616💋 Dubai Call Girls
 

Friction

  • 1. Friction Cause of dry friction Contact between two surfaces. Hence first task in a friction problem is correct identification of contact surfaces Identify the surface, the normal and the tangential vectors. Also important is to get an idea of probable direction of relative motion The contact force acts along the normal. Gravity is the most common cause of normal force. Friction acts along the tangent plane opposite to the direction of relative motion Normal Relative velocity
  • 2. Friction Normal Relative velocity Friction problems are essentially equilibrium problems with one f the forces being functions of another N Fr=f(N,V) Fr=f(N,V) N
  • 3. The correct way of writing the dry friction force V −µ N Fr = =ˆ −µ N V V N=Normal force vector V=Relative velocity vector of the body µ= coefficient of dry friction or Coulomb friction
  • 4. Problem 1 Knowing that the coefficient of friction between the 13.5 kg block and the incline is µs = 0.25, determine a) the smallest value of P required to maintain the block in equilibrium, b) the corresponding value of β.
  • 5. Problem 1 y N cos60 − mg + f sin60 + P sin β = 0 − N sin60 + f cos 60 + P cos β = 0 f = µN x mg sin60 − f ⇒P= sin β sin60 + cos β cos 60 N cos60 − mg + µ N sin60 + P sin β = 0 mg − P sin β ⇒N= cos 60 − µ sin60 − N sin60 + µ N cos 60 + P cos β = 0 mg − P sin β ⇒− ( sin60 − µ cos 60 ) + P cos β =0 cos60 − µ sin60 ⇒ − ( mg − P sin β )( sin60 − µ cos 60 ) + P cos β ( cos 60 − µ sin60 ) = 0 ⇒ − mg ( sin60 − µ cos 60 ) + P sin β ( sin60 − µ cos 60 ) + P cos β ( cos 60 − µ sin60 ) = 0 ⇒ P ( sin60 sin β − µ cos 60 sin β + cos 60 cos β − µ sin60 cos β ) = ( sin60 − µ cos 60 ) mg ( sin60 − µ cos 60 ) ⇒P= mg cos ( 60 − β ) − µ sin ( 60 − β ) 1 cos ( 60 − β ) − µ sin ( 60 − β ) ⇒ =mg P ( sin60 − µ cos 60 ) d 1 d   =⇒0  cos ( 60 − β ) − µ sin ( 60 − β )  = dβ P dβ   0 d ⇒ [ sin60 sin β − µ cos 60 sin β + cos 60 cos β − µ sin60 cos β ] = 0 dβ ⇒ sin60 cos β − µ cos 60 cos β − cos 60 sin β + µ sin60 sin β = 0  sin60 − µ cos 60  β ⇒ tan =  β = 2.614 ⇒ = 69 o   cos 60 − µ sin60  ( sin 60 − µ cos 60 ) ( 0.866 − 0.125 ) P = mg = mg = 0.72mg cos ( 60 − β ) − µ sin ( 60 − β ) cos ( −9 ) − µ sin ( −9 )
  • 6. Problem 2 Knowing that P = 110 N, determine the range of values value of θ for which equilibrium of the 8 kg block is maintained.
  • 7. Problem 2 y y x x mg mg − P cos θ + N =0 − P cos θ + N =0 P sinθ − mg − f = 0 P sinθ − mg + f = 0 f = µN f = µN ⇒N= θ P cos ⇒N= θ P cos P sinθ − mg − µ N = 0 P sinθ − mg + µ N = 0 ⇒ P sinθ − mg − µ P cos θ = 0 ⇒ P sinθ − mg + µ P cos θ = 0 ⇒ P ( sinθ − µ cos θ ) = mg ⇒ P ( sinθ + µ cos θ ) = mg mg mg ⇒P= ⇒P= sinθ − µ cos θ sinθ + µ cos θ Hence Hence upward movement will not start before downward movement will not start before mg mg P= P= sinθ − µ s cos θ sinθ + µ k cos θ
  • 8. Problem 3 The coefficients of friction are µs = 0.40 and µk = 0.30 between all the surfaces of contact. Determine the force P for which motion of the 27 kg block is impending if cable a) is attached as shown, b) is removed
  • 9. Problem 3 v T N1 f1 m1g f1 N1 T m2g f2 N2 T − µ N1 = 0 N 1 − m1 g = 0 = µ N= m1 g ⇒T 1 , N1 µm ⇒ T = 1g T + µ N1 + µ N2 − P = 0 N 2 − N 1 − m2 g = 0 N 2 − N 1 − m2 g = ⇒ N 2 =m1 + m2 ) g 0 ( T + µ N1 + µ N2 − P = 0 ⇒ µ m1 g + µ m1 g + µ ( m1 + m 2 ) g − P = 0 ⇒ P 3 µ m1 g + µ m 2 g =
  • 10. Problem 3 v 0 N1 f1 m1g f1 N1 0 m2g f2 N2 T − µ N1 = m1 a Now T = 0 ⇒ − µ N 1 = m1 a N 1 − m1 g = 0 ⇒ N1 = m1 g µ N1 + µ N2 − P = 0 N 2 − N 1 − m2 g = 0 N 2 − N 1 − m2 g = ⇒ N 2 =m1 + m2 ) g 0 ( µ N1 + µ N2 − P = 0 ⇒ µ m1 g + µ ( m1 + m 2 ) g − P = 0 ⇒ P 2 µ m1 g + µ m 2 g =
  • 11. Additional Problems The 8 kg block A and the 16 kg block B are at rest on an incline as shown. Knowing that the coefficient of static friction is 0.25 between all surfaces of contact, determine the value of θ for which motion is impending.
  • 12. Toppling The magnitude of the force P is slowly increased. Does the homogeneous box of mass m slip or tip first? State the value of P which would cause each occurrence.
  • 13. Slip or topple? mg f1 f2 N1 N2 P cos 30 − µ N 1 − µ N 2 = 0 P sin 30 + N 1 + N 2 − mg = 0 − P cos 30 × d − mg × d + µ N 2 × 2d = 0 P cos 30 = µ N 1 + µ N 2 = µ ( N 1 + N 2 ) P sin 30 = 1 + N 2 ) + mg −( N 2µ N P cos 30 + mg = 2 µ P sin 30 = N 1 + N 2 ) + µ mg = 30 + µ mg −µ ( − P cos µ P sin 30 + P cos 30 =mg ⇒ P ( µ sin 30 + cos 30 ) =mg µ µ µ mg ⇒P= µ sin 30 + cos 30 0.5mg ⇒P= = 0.448mg 0.25 + 0.866
  • 14. Slip or topple? mg f1 f2 N1 N2 P cos 30 − f 2 = 0 P sin 30 + N 2 − mg = 0 − P cos 30 × d − P sin 30 × 2d + mg × d = 0 P cos 30 = f 2 P sin 30 = 2 + mg −N P cos 30 + 2P sin 30 − mg = 0 ⇒ P ( cos 30 + 2 sin 30 ) = mg mg ⇒P= cos 30 + 2 sin 30 mg = ⇒P = 0.536mg 0.866 + 1
  • 18. Wedge f=µN P θ N mg P − f cos θ + N sinθ =0 f sinθ + N cos θ − mg = 0 f = µN mg µ N sinθ + N cos θ − mg = ⇒ N = 0 µ sinθ + cos θ P − µ N cos θ + N sinθ = 0 µ cos θ − sinθ ⇒ P ( µ cos θ − sinθ= mg = )N µ sinθ + cos θ P µ − tanθ ⇒ = mg µ tanθ + 1 P tanφ − tanθ ⇒ = = tan (φ − θ ) mg tanφ tanθ + 1
  • 19. A screw thread is a wedge
  • 20. A screw thread is a wedge M=Pa Q=Pa/r = equivalent force W Q N f=µN
  • 21. A screw thread is a wedge W Q N θ f=µN Q − f cos θ − N sinθ = 0 − f sinθ + N cos θ − W = 0 f = µN W − µ N sinθ + N cos θ − W = ⇒ N = 0 − µ sinθ + cos θ Q − µ N cos θ − N sinθ = 0 µ cos θ + sinθ ⇒ Q ( µ cos θ + sinθ= W = )N − µ sinθ + cos θ Q µ + tanθ ⇒ = W 1 − µ tanθ Pa µ + tanθ = Wr 1 − µ tanθ 1 P if tanθ =⇒ = ∞ µ W Screw locks
  • 22. A screw thread is a wedge The W P N θ f=µN 1 Pa tanθ = ⇒ = ∞ Screw locks µ Wr 1 Wr µ = = = 0 tanθ Pa There is a critical value of friction coefficient beyond which the thread does not move irrespective of the force applied. This happens when a screw is not maintained properly. Because of dirt and rust µ becomes more than critical.
  • 23. A screw thread is a wedge W N f=µN
  • 24. A screw thread is a wedge W N θ f For no movement f cos θ − N sinθ = 0 f sinθ + N cos θ − W = 0 Self locking f sinθ ⇒ = N cos θ sinθ ⇒= µ = tanθ cos θ Therefore after raising the load if we let go of the screw the load will not cause the screw to unscrew by itself.
  • 25. Terminologies Lead (L) 2πr Pitch (p) = = Lead L np where n=no. of parallely running threads = starts L tanθ = 2π r
  • 26. Turnbuckle T1 T2 Used to apply tension. The sleeve is rotated to pull the threads together. M µ + tanθ = ( T2 − T1 ) r 1 − µ tanθ
  • 27. An improved screw jack W θ θ W T T T T 2T cos θ
  • 28. An improved screw jack W φ φ M=Pa W=2T cos φ Pa µ cos θ + sinθ = Wr − µ sinθ + cos θ M µ cos θ + sinθ ⇒ = 2Tr cos φ − µ sinθ + cos θ
  • 29. Worm gear MG M0/R R N M f MG M G = WR ⇒ W = R Pa µ + tanθ = Wr 1 − µ tanθ M µ + tanθ ⇒ = MG 1 − µ tanθ r R MR µ + tanθ ⇒ = M G r 1 − µ tanθ
  • 31. Belt drives ∆θ ∆θ ∑F x = 0 ⇒ −T cos − ∆ F + ( T + ∆T ) cos = 0 2 2 ∆θ ∆θ ∑F y = 0 ⇒ −T sin − ∆ N − ( T + ∆T ) sin = 0 2 2 ∆ F = µs ∆ N ∆θ ∆θ −T cos − ∆ F + ( T + ∆T ) cos = 0 2 2 ∆θ ∆θ ∆θ ⇒ −T cos − ∆ F + T cos + ∆T cos =0 2 2 2 ∆θ ∆θ ⇒ − ∆ F + ∆T cos = 0 ⇒ ∆T cos = ∆ F = µs ∆ N 2 2 ∆θ ∆θ −T sin − ∆ N − ( T + ∆T ) sin = 0 2 2 ∆θ ∆θ ∆θ ⇒ −T sin + ∆ N − T sin − ∆T sin =0 2 2 2 ∆θ ∆θ ⇒ −2T sin + ∆ N − ∆T sin =0 2 2 ∆θ ∆θ ⇒ −2T sin + ∆ N = 0 ⇒ 2T sin = ∆N 2 2
  • 32. Belt drives ∆θ ∆T cos = µs ∆ N 2 ∆θ 2T sin = ∆N 2 ∆θ ∆θ ⇒ ∆T cos 2T µ s sin = 2 2 ∆θ sin 1 ∆T ∆θ 2 ⇒ cos µs = 2T ∆θ 2 ∆θ ∆θ sin 1 ∆T ∆θ 2 Lim cos = Lim µ ∆θ → 0 ,∆T → 0 2T ∆θ 2 ∆θ →0 ,∆T →0 s ∆θ 1 dT µs ⇒ 1= 2T dθ 2 ⇒ dT = µ dθ T s
  • 33. Belt drives Belt is just about to slide to the right dT = µ dθ T s dT β T2 µ β µ β ⇒ ∫ = ∫ µ s dθ T2 = e s ⇒T e s T = T T 1 0 2 1 T1 ⇒  lnT  β T2   =  µ sθ 0   T1 Torque required to drive the pulley ⇒ lnT − lnT 2 1 = µs β  µ β  T2 − T1  e = s − 1 T ⇒ ln T = µ β 2    1  T 1 s 2 = e µsβ T ⇒ T 1
  • 34. Belt drives : Important points 2 = e µsβ T ⇒ T 1  Angle β must be expressed in radians  Smallest µβ determines which pulley slips first  Larger tension occurs at that end of the belt where relative motion is about to begin or is already moving  T2 is used to denote the larger tension  A freely rotating pulley implies no friction  For a rotating pulley where slipping is about to start friction is µs since relative velocity between belt and pulley is zero.  Once slipping starts friction coefficient is dynamic or kinetic i.e. µk  If pulley does not rotate at all then rope has to slide and not slip, hence friction is µk
  • 35. Belt drives A B θ θ A B θ θ
  • 36. Belt drives T2 T2 = exp  µ ( π + 2θ )  ???   T1 A Always check for µβ value for each pulley in a system. The one with the T1 smallest µβ θ value will determine the Which expression is tensions. correct???? Is T2>T1 Or T1>T2. One pulley must slip. T2 Friction force is larger for the larger pulley since angle of wrap is larger. Hence smaller pulley B slips and determines the tension T1 θ exp  µ ( π − 2θ )  ???   T1 T2
  • 38. Band brakes TB T1 T3 B T1 T3  75   75 4  Tπ T2 T1 exp  µ π = T1 exp  0.25   180   180  T2 T2 = 1.39T1  135   135  T3 T4 exp  µ π = T4 exp  0.25 π  180   180  T4 = 0.55T3 M 0 =( T3 − T4 + T2 − T1 ) R − Consider the pin B ∑F x =0 ⇒ T1 cos 45 =T3 cos 45 ⇒ T1 =T3 ∑F y = cos 45 + T3 cos 45 = 1 cos 45 = ⇒ 2T1 = 0 ⇒ T1 TB ⇒ 2T TB TB ∴ T2 1.39T1 ,T3 T1 ,T4 0.55T1 = = = Thus the largest tension is T2 = 5.6 ⇒ T1 = T3 = 4.03,T4 = 2.22,TB = 5.7 ∴ M0 = ( 5.6 − 2.22 ) R = 3.38 × 0.16 = 0.54 KNm = 540 Nm Taking moments about D 50TB 250 P ⇒ = 0.2TB 1.14 KN = P =