Book club


          Andreas Wagner,
The Origins of Evolutionary Innovations


              Chapter 3

Book club presented by G. M. Dall'Olio,
      Pompeu Fabra, IBE-CEXS
Reminder:
               Genotype network
   A genotype network is a set of genotypes that have the same 
      phenotype, and are connected by single pairwise differences
         AAAAA     AAAAC     AAAAG     AAAAT     AAATT
         AAACA     AAACC     AAACG     AAACT     AAATC
         AACCA     AACCC     AACCG     AACCT     …..
         ACCCA     ACCCC     ACCCG     ACCCT     …..
         CCCCA     CCCCC     CCCCG     CCCCT     …..
         …..       …..       …..       …..       …..



   Yellow = same phenotype = a genotype network
   Note: genotype network == neutral network
Chapter 3:
     Regulatory Innovations
   This chapter describes the evolution of regulation 
     mediated by Transcription Factors binding sites
   Regulation is much more difficult to study than 
     metabolic networks
Regulatory innovations,
         definitions (1)
   Genotype: a square 
     matrix, called 
     “Gene regulatory 
     Circuit”
   Describes the 
     interactions 
     between regulation 
     factors
                           Ciliberti, S., Martin, O.C. & Wagner, a, 2007. Innovation and robustness
                           in complex regulatory gene networks.PNAS, 104(34), pp.13591-6.
                           http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1959426
Understanding Gene
                Circuits
   Gene 1 (first column):
          activates Gene 2 and 
             Gene 5 (orange)
          inhibits Gene 4 
             (blue)




                                   Ciliberti, S., Martin, O.C. & Wagner, a, 2007. Innovation and robustness
                                   in complex regulatory gene networks.PNAS, 104(34), pp.13591-6.
                                   http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1959426
                                   (image adapter for color blind people)
Genotype Space of
             Regulatory Circuits
     Each cell corresponds to a regulatory circuit matrix 

00000      01000      01000     01000      01000
00000      00000      00100     00100      00100
00000      00000      00000     00010      00010
00000      00000      00000     00000      00001
00000      00000      00000     00000      00000
10000      11000      11000     11000      11000
00000      00000      00100     00100      00100
00000      00000      00000     00010      00010
00000      00000      00000     00000      00001
00000      00000      00000     00000      00000
10000      11000      11000     11000      11000
01000      01000      01100     01100      01100
00000      00000      00000     00010      00010
00000      00000      00000     00000      00001
00000      00000      00000     00000      00000
Neighbors of Regulatory
           Circuits
   Each circuit differs for one reaction




                                Ciliberti, S., Martin, O.C. & Wagner, a, 2007. Innovation and robustness
                                in complex regulatory gene networks.PNAS, 104(34), pp.13591-6.
                                http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1959426
                                (image adapter for color blind people)
Regulatory innovations,
         definitions (2)
   Et is the list of expression status of each gene at a 
      time t:
           Et = (Egene1(t), Egene2(t), Egene3(t), Egene4(t), Egene5(t))

   Phenotype: the expression state E∞ at equilibrium
Genotype Networks in
          Regulatory networks
     Yellow cells have the same phenotype:
               E∞ = (Egene1(t=∞), Egene2(t=∞), Egene3(t=∞), Egene4(t=∞), Egene5(t=∞))
     We can make some observations without knowing the identity of the genes.
00000          01000       01000         01000        01000
00000          00000       00100         00100        00100
00000          00000       00000         00010        00010
00000          00000       00000         00000        00001
00000          00000       00000         00000        00000
10000          11000       11000         11000        11000
00000          00000       00100         00100        00100
00000          00000       00000         00010        00010
00000          00000       00000         00000        00001
00000          00000       00000         00000        00000
10000          11000       11000         11000        11000
01000          01000       01100         01100        01100
00000          00000       00000         00010        00010
00000          00000       00000         00000        00001
00000          00000       00000         00000        00000
Dimensions of Genotype
          networks
   Genotype networks of regulatory circuits can be 
     very big
   An organism can stand many changes to its 
     regulatory network, without changing the 
     phenotype
Galactose metabolism in
     Yeast and C.albicans
   In Yeast, GAL4 
      initiates the 
      transcription of  
      enzymes required for 
      galactose metabolism
   In C.albicans, GAL4 is 
      associated to 
      telomere and has 
      unknown function
                          Traven A, Jelicic B, Sopta M. Yeast Gal4: a transcriptional paradigm
                          revisited. EMBO Rep. 2006 May;7(5):496-9. Review. PubMed PMID: 16670683;
                          PubMed
                          Central PMCID: PMC1479557
Regulation of mating in
      Yeast and C.albicans
   In yeast, the Cph1 homologue is involved in mating 
      type determination (...)
   In C.albicans, Cph1 is involved in galactose 
      metabolism
Galactose metabolism in
     Yeast and C.albicans
   The regulatory network for galactose metabolism 
     has changed drammatically from S.cerevisiae to 
     C.albicans




                      Figure from: Rokas A, & Hittinger CT (2007). Transcriptional rewiring: the proof is in the eating.
                      Current biology : CB, 17 (16) PMID: 17714646

                      See also: Martchenko, M., Levitin, A., Hogues, H., Nantel, A., & Whiteway, M. (2007). Transcriptional
                      Rewiring of Fungal Galactose-Metabolism Circuitry Current Biology, 17 (12), 1007-1013 DOI:
                      10.1016/j.cub.2007.05.017
Galactose metabolism in
         fungii




         Figure from: Rokas A, & Hittinger CT (2007). Transcriptional rewiring: the proof is in the eating.
         Current biology : CB, 17 (16) PMID: 17714646

         See also: Martchenko, M., Levitin, A., Hogues, H., Nantel, A., & Whiteway, M. (2007). Transcriptional
         Rewiring of Fungal Galactose-Metabolism Circuitry Current Biology, 17 (12), 1007-1013 DOI:
         10.1016/j.cub.2007.05.017
Evolvability of Gene
          Networks
Authors introduced 600 new regulatory interactions 
 in E.coli, and it tolerated 95% of them




          Isalan M, Lemerle C, Michalodimitrakis K, Horn C, Beltrao P, Raineri E,
          Garriga-Canut M, Serrano L. Evolvability and hierarchy in rewired bacterial gene
          networks. Nature. 2008 Apr 17;452(7189):840-5. PubMed PMID: 18421347; PubMed
          Central PMCID: PMC2666274.
Example: Stem Cells
          transformation
   Changes of very few transcription factors can 
     transform a cell into a stem cell, or another type




                          Graf T, Enver T. Forcing cells to change lineages. Nature. 2009 Dec
                          3;462(7273):587-94. Review. PubMed PMID: 19956253.
Robustness to change is a
 requisite for innovations




              Ciliberti, S., Martin, O.C. & Wagner, a, 2007. Innovation and robustness
              in complex regulatory gene networks.PNAS, 104(34), pp.13591-6.
              http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1959426
The number of phenotypes
   is much smaller than
 the number of genotypes
   Number of genotypes: 3^(S^2), where S=number of 
     genes
   Number of phenotypes: 2^(2*S)
   There are much more genotypes than phenotypes
Some phenotypes have
more genotypes than others




                [1]: A. Wagner, The Origins of Evolutionary Innovations. Figure 3.2

              Ciliberti, S., Martin, O.C. & Wagner, a, 2007. Innovation and robustness
              in complex regulatory gene networks.PNAS, 104(34), pp.13591-6.
              http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1959426
Distance between circuits
    with the same phenotype
   On average, two 
     circuits from the 
     same genotype 
     network differ by 
     about 80% of their 
     reactions




                           Ciliberti, S., Martin, O.C. & Wagner, a, 2007. Innovation and robustness
                           in complex regulatory gene networks.PNAS, 104(34), pp.13591-6.
                           http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1959426
Phenotypes of neighbors
   Neighbors of two 
     genotypes in the 
     same network are 
     usually different




                                                    [1]: A. Wagner, The Origins of Evolutionary Innovations. Figure 3.6
     [1]: A. Wagner, The Origins of Evolutionary 
           Innovations. Figure 2.6
Distance between two
       genotype networks
   On average, all the 
     genotype networks 
     are interwoven 
   The distance to pass 
     from a phenotype to 
     another is usually 
     shorter than the 
     distance between two 
     circuits in the same 
     network                 Ciliberti, S., Martin, O.C. & Wagner, a, 2007. Innovation and robustness
                             in complex regulatory gene networks.PNAS, 104(34), pp.13591-6.
                             http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1959426
Take Home messages
   Genotype networks of regulatory 
     circuits are large
   Regulatory phenotypes are robust 
     to changes (e.g. GAT4 in 
     S.cerevisiae/C.albicans)
   Many more genotypes than 
     phenotypes

                                 Ciliberti, S., Martin, O.C. & Wagner, a, 2007. Innovation and robustness
                                 in complex regulatory gene networks.PNAS, 104(34), pp.13591-6.
                                 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1959426

Wagner chapter 3

  • 1.
    Book club Andreas Wagner, The Origins of Evolutionary Innovations Chapter 3 Book club presented by G. M. Dall'Olio, Pompeu Fabra, IBE-CEXS
  • 2.
    Reminder: Genotype network  A genotype network is a set of genotypes that have the same  phenotype, and are connected by single pairwise differences AAAAA AAAAC AAAAG AAAAT AAATT AAACA AAACC AAACG AAACT AAATC AACCA AACCC AACCG AACCT ….. ACCCA ACCCC ACCCG ACCCT ….. CCCCA CCCCC CCCCG CCCCT ….. ….. ….. ….. ….. …..  Yellow = same phenotype = a genotype network  Note: genotype network == neutral network
  • 3.
    Chapter 3: Regulatory Innovations  This chapter describes the evolution of regulation  mediated by Transcription Factors binding sites  Regulation is much more difficult to study than  metabolic networks
  • 4.
    Regulatory innovations, definitions (1)  Genotype: a square  matrix, called  “Gene regulatory  Circuit”  Describes the  interactions  between regulation  factors Ciliberti, S., Martin, O.C. & Wagner, a, 2007. Innovation and robustness in complex regulatory gene networks.PNAS, 104(34), pp.13591-6. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1959426
  • 5.
    Understanding Gene Circuits  Gene 1 (first column):  activates Gene 2 and  Gene 5 (orange)  inhibits Gene 4  (blue) Ciliberti, S., Martin, O.C. & Wagner, a, 2007. Innovation and robustness in complex regulatory gene networks.PNAS, 104(34), pp.13591-6. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1959426 (image adapter for color blind people)
  • 6.
    Genotype Space of Regulatory Circuits  Each cell corresponds to a regulatory circuit matrix  00000 01000 01000 01000 01000 00000 00000 00100 00100 00100 00000 00000 00000 00010 00010 00000 00000 00000 00000 00001 00000 00000 00000 00000 00000 10000 11000 11000 11000 11000 00000 00000 00100 00100 00100 00000 00000 00000 00010 00010 00000 00000 00000 00000 00001 00000 00000 00000 00000 00000 10000 11000 11000 11000 11000 01000 01000 01100 01100 01100 00000 00000 00000 00010 00010 00000 00000 00000 00000 00001 00000 00000 00000 00000 00000
  • 7.
    Neighbors of Regulatory Circuits  Each circuit differs for one reaction Ciliberti, S., Martin, O.C. & Wagner, a, 2007. Innovation and robustness in complex regulatory gene networks.PNAS, 104(34), pp.13591-6. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1959426 (image adapter for color blind people)
  • 8.
    Regulatory innovations, definitions (2)  Et is the list of expression status of each gene at a  time t:  Et = (Egene1(t), Egene2(t), Egene3(t), Egene4(t), Egene5(t))  Phenotype: the expression state E∞ at equilibrium
  • 9.
    Genotype Networks in Regulatory networks  Yellow cells have the same phenotype:  E∞ = (Egene1(t=∞), Egene2(t=∞), Egene3(t=∞), Egene4(t=∞), Egene5(t=∞))  We can make some observations without knowing the identity of the genes. 00000 01000 01000 01000 01000 00000 00000 00100 00100 00100 00000 00000 00000 00010 00010 00000 00000 00000 00000 00001 00000 00000 00000 00000 00000 10000 11000 11000 11000 11000 00000 00000 00100 00100 00100 00000 00000 00000 00010 00010 00000 00000 00000 00000 00001 00000 00000 00000 00000 00000 10000 11000 11000 11000 11000 01000 01000 01100 01100 01100 00000 00000 00000 00010 00010 00000 00000 00000 00000 00001 00000 00000 00000 00000 00000
  • 10.
    Dimensions of Genotype networks  Genotype networks of regulatory circuits can be  very big  An organism can stand many changes to its  regulatory network, without changing the  phenotype
  • 11.
    Galactose metabolism in Yeast and C.albicans  In Yeast, GAL4  initiates the  transcription of   enzymes required for  galactose metabolism  In C.albicans, GAL4 is  associated to  telomere and has  unknown function Traven A, Jelicic B, Sopta M. Yeast Gal4: a transcriptional paradigm revisited. EMBO Rep. 2006 May;7(5):496-9. Review. PubMed PMID: 16670683; PubMed Central PMCID: PMC1479557
  • 12.
    Regulation of matingin Yeast and C.albicans  In yeast, the Cph1 homologue is involved in mating  type determination (...)  In C.albicans, Cph1 is involved in galactose  metabolism
  • 13.
    Galactose metabolism in Yeast and C.albicans  The regulatory network for galactose metabolism  has changed drammatically from S.cerevisiae to  C.albicans Figure from: Rokas A, & Hittinger CT (2007). Transcriptional rewiring: the proof is in the eating. Current biology : CB, 17 (16) PMID: 17714646 See also: Martchenko, M., Levitin, A., Hogues, H., Nantel, A., & Whiteway, M. (2007). Transcriptional Rewiring of Fungal Galactose-Metabolism Circuitry Current Biology, 17 (12), 1007-1013 DOI: 10.1016/j.cub.2007.05.017
  • 14.
    Galactose metabolism in fungii Figure from: Rokas A, & Hittinger CT (2007). Transcriptional rewiring: the proof is in the eating. Current biology : CB, 17 (16) PMID: 17714646 See also: Martchenko, M., Levitin, A., Hogues, H., Nantel, A., & Whiteway, M. (2007). Transcriptional Rewiring of Fungal Galactose-Metabolism Circuitry Current Biology, 17 (12), 1007-1013 DOI: 10.1016/j.cub.2007.05.017
  • 15.
    Evolvability of Gene Networks Authors introduced 600 new regulatory interactions  in E.coli, and it tolerated 95% of them Isalan M, Lemerle C, Michalodimitrakis K, Horn C, Beltrao P, Raineri E, Garriga-Canut M, Serrano L. Evolvability and hierarchy in rewired bacterial gene networks. Nature. 2008 Apr 17;452(7189):840-5. PubMed PMID: 18421347; PubMed Central PMCID: PMC2666274.
  • 16.
    Example: Stem Cells transformation  Changes of very few transcription factors can  transform a cell into a stem cell, or another type Graf T, Enver T. Forcing cells to change lineages. Nature. 2009 Dec 3;462(7273):587-94. Review. PubMed PMID: 19956253.
  • 17.
    Robustness to changeis a requisite for innovations Ciliberti, S., Martin, O.C. & Wagner, a, 2007. Innovation and robustness in complex regulatory gene networks.PNAS, 104(34), pp.13591-6. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1959426
  • 18.
    The number ofphenotypes is much smaller than the number of genotypes  Number of genotypes: 3^(S^2), where S=number of  genes  Number of phenotypes: 2^(2*S)  There are much more genotypes than phenotypes
  • 19.
    Some phenotypes have moregenotypes than others [1]: A. Wagner, The Origins of Evolutionary Innovations. Figure 3.2 Ciliberti, S., Martin, O.C. & Wagner, a, 2007. Innovation and robustness in complex regulatory gene networks.PNAS, 104(34), pp.13591-6. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1959426
  • 20.
    Distance between circuits with the same phenotype  On average, two  circuits from the  same genotype  network differ by  about 80% of their  reactions Ciliberti, S., Martin, O.C. & Wagner, a, 2007. Innovation and robustness in complex regulatory gene networks.PNAS, 104(34), pp.13591-6. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1959426
  • 21.
    Phenotypes of neighbors  Neighbors of two  genotypes in the  same network are  usually different [1]: A. Wagner, The Origins of Evolutionary Innovations. Figure 3.6 [1]: A. Wagner, The Origins of Evolutionary  Innovations. Figure 2.6
  • 22.
    Distance between two genotype networks  On average, all the  genotype networks  are interwoven   The distance to pass  from a phenotype to  another is usually  shorter than the  distance between two  circuits in the same  network Ciliberti, S., Martin, O.C. & Wagner, a, 2007. Innovation and robustness in complex regulatory gene networks.PNAS, 104(34), pp.13591-6. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1959426
  • 23.
    Take Home messages  Genotype networks of regulatory  circuits are large  Regulatory phenotypes are robust  to changes (e.g. GAT4 in  S.cerevisiae/C.albicans)  Many more genotypes than  phenotypes Ciliberti, S., Martin, O.C. & Wagner, a, 2007. Innovation and robustness in complex regulatory gene networks.PNAS, 104(34), pp.13591-6. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1959426